Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.14 (ec5cf08762*) started at 2025-10-30T15:09:42.764 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.9s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.1 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.9.9 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.67.1+0 [3f19e933] + p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.91s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 1456.7 ms ✓ Measurements 4585.7 ms ✓ StatsBase 1293.3 ms ✓ EarCut_jll 23604.1 ms ✓ GeometryBasics 8203.8 ms ✓ RayTraceHeatTransfer 5 dependencies successfully precompiled in 40 seconds. 54 already precompiled. Precompilation completed after 50.35s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_AhaogW/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_AhaogW/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.1 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:41 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:06 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013778452655567746 Iteration 10: d = 1.2841104690595322e-5 Iteration 20: d = 1.3579492284980067e-7 Iteration 30: d = 1.7652953704487804e-9 Iteration 40: d = 2.551390016597047e-11 Iteration 50: d = 3.9464251792981444e-13 Iteration 60: d = 6.378983306498343e-15 Converged after 63 iterations. d = 1.8451896908575584e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 33%|███████████ | ETA: 0:00:02 Bin 1 progress: 72%|███████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011356922747138242 Iteration 10: d = 7.284131583029201e-6 Iteration 20: d = 8.946998493272793e-8 Iteration 30: d = 1.563143738263577e-9 Iteration 40: d = 2.789534526856506e-11 Iteration 50: d = 4.941946794902721e-13 Iteration 60: d = 8.680045609405725e-15 Converged after 64 iterations. d = 1.7476558397989807e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|█████████████ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011213718412115803 Iteration 10: d = 1.1865606599082553e-5 Iteration 20: d = 1.7461064447178351e-7 Iteration 30: d = 2.8967708531509224e-9 Iteration 40: d = 4.9508439591101006e-11 Iteration 50: d = 8.546254302061454e-13 Iteration 60: d = 1.4801239596762144e-14 Converged after 65 iterations. d = 1.937513683356022e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|██████████████ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012394901655766743 Iteration 10: d = 1.0373892543504505e-5 Iteration 20: d = 1.264024609002007e-7 Iteration 30: d = 1.929458010489521e-9 Iteration 40: d = 3.131954583657161e-11 Iteration 50: d = 5.212845286211343e-13 Iteration 60: d = 8.785071331350753e-15 Converged after 64 iterations. d = 1.7001002094677604e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010266468921398676 Iteration 10: d = 8.189446348541843e-6 Iteration 20: d = 7.211370038368643e-8 Iteration 30: d = 7.165996968672688e-10 Iteration 40: d = 7.634411982825906e-12 Iteration 50: d = 8.802453250987866e-14 Converged after 59 iterations. d = 1.6951461399463873e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010297282397908033 Iteration 10: d = 6.539288992906085e-6 Iteration 20: d = 7.128463263017715e-8 Iteration 30: d = 1.0701949976657796e-9 Iteration 40: d = 1.662599093288847e-11 Iteration 50: d = 2.588523620801603e-13 Iteration 60: d = 3.974974520173618e-15 Converged after 62 iterations. d = 1.7888104266031222e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011382617473124927 Iteration 10: d = 8.985361573655527e-6 Iteration 20: d = 1.074701004336169e-7 Iteration 30: d = 1.6363062324745491e-9 Iteration 40: d = 2.5637431110286962e-11 Iteration 50: d = 4.0214875253387585e-13 Iteration 60: d = 6.333265950859717e-15 Converged after 63 iterations. d = 1.8087107563052e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011222688683917043 Iteration 10: d = 6.851526426503237e-6 Iteration 20: d = 6.561110739167924e-8 Iteration 30: d = 9.334682379714164e-10 Iteration 40: d = 1.4171623718230195e-11 Iteration 50: d = 2.1725295718599437e-13 Iteration 60: d = 3.3303595017718e-15 Converged after 61 iterations. d = 2.1980440487106228e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012259384814710605 Iteration 10: d = 1.4135947598600701e-5 Iteration 20: d = 1.9009478814806706e-7 Iteration 30: d = 2.8391246756673315e-9 Iteration 40: d = 4.3555882340302553e-11 Iteration 50: d = 6.747881921070799e-13 Iteration 60: d = 1.0493232032813149e-14 Converged after 64 iterations. d = 1.9877339988339722e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010563418022154286 Iteration 10: d = 8.959255071019551e-6 Iteration 20: d = 1.27686299245948e-7 Iteration 30: d = 1.9868393661618547e-9 Iteration 40: d = 3.079778506236736e-11 Iteration 50: d = 4.760705450330159e-13 Iteration 60: d = 7.369342459088362e-15 Converged after 63 iterations. d = 2.173345976008581e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004521261495290452 Iteration 10: d = 4.825120735497989e-5 Iteration 20: d = 6.064245883482804e-7 Iteration 30: d = 8.55721731099596e-9 Iteration 40: d = 1.2218443223305225e-10 Iteration 50: d = 1.7433824505148662e-12 Iteration 60: d = 2.48304634791096e-14 Converged after 66 iterations. d = 1.9274041155689665e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004014190090630417 Iteration 10: d = 5.1760714990937535e-5 Iteration 20: d = 7.722042581342568e-7 Iteration 30: d = 1.214629537364826e-8 Iteration 40: d = 1.920771225551543e-10 Iteration 50: d = 3.0407468626195088e-12 Iteration 60: d = 4.817220389443803e-14 Converged after 68 iterations. d = 1.7519617336497216e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002596974144436092 Iteration 10: d = 2.274595499308074e-5 Iteration 20: d = 2.5801804320714506e-7 Iteration 30: d = 3.678872184073577e-9 Iteration 40: d = 5.839785407214693e-11 Iteration 50: d = 9.724624332790456e-13 Iteration 60: d = 1.6557996767812644e-14 Converged after 65 iterations. d = 2.1722979267242513e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018746468603185276 Iteration 10: d = 1.640828140509245e-5 Iteration 20: d = 2.379984613473398e-7 Iteration 30: d = 4.025492627810491e-9 Iteration 40: d = 6.983326613254118e-11 Iteration 50: d = 1.2215861907801175e-12 Iteration 60: d = 2.1508683307307088e-14 Converged after 66 iterations. d = 1.9142360913021988e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010266468921398676 Iteration 10: d = 8.189446348541843e-6 Iteration 20: d = 7.211370038368643e-8 Iteration 30: d = 7.165996968672688e-10 Iteration 40: d = 7.634411982825906e-12 Iteration 50: d = 8.802453250987866e-14 Converged after 59 iterations. d = 1.6951461399463873e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014085596392587464 Iteration 10: d = 9.469842961609427e-6 Iteration 20: d = 8.820436939097195e-8 Iteration 30: d = 1.197591621594604e-9 Iteration 40: d = 1.7011918512537367e-11 Iteration 50: d = 2.4231511575185674e-13 Iteration 60: d = 3.4395712039387097e-15 Converged after 62 iterations. d = 1.4671869516415024e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015757186049205354 Iteration 10: d = 1.0978990947700682e-5 Iteration 20: d = 8.506887311791016e-8 Iteration 30: d = 9.750041011417244e-10 Iteration 40: d = 1.2950226655002113e-11 Iteration 50: d = 1.8012232099832375e-13 Iteration 60: d = 2.5500236492789122e-15 Converged after 61 iterations. d = 1.6562927909548089e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.83823608999 Iteration 2: convergence error = 4809.796388636613 Iteration 3: convergence error = 1094.255540923163 Iteration 4: convergence error = 321.18034129754756 Iteration 5: convergence error = 95.42028912726914 Iteration 6: convergence error = 28.501607528902014 Iteration 7: convergence error = 8.52224786443253 Iteration 8: convergence error = 2.558181107577184 Iteration 9: convergence error = 0.7664621425265068 Iteration 10: convergence error = 0.22932818173740088 Iteration 11: convergence error = 0.06856241635250626 Iteration 12: convergence error = 0.020489077673119027 Iteration 13: convergence error = 0.006121374454778561 Iteration 14: convergence error = 0.0018285743340129557 Iteration 15: convergence error = 0.0005461854507302633 Iteration 16: convergence error = 0.00016313484911734122 Iteration 17: convergence error = 4.872380259257625e-5 Iteration 18: convergence error = 1.4552208540408174e-5 Iteration 19: convergence error = 4.346215973782819e-6 Iteration 20: convergence error = 1.298055394727271e-6 Iteration 21: convergence error = 3.876780283462722e-7 Iteration 22: convergence error = 1.1565589375095442e-7 Iteration 23: convergence error = 3.364766598679125e-8 Iteration 24: convergence error = 9.720679372549057e-9 Iteration 25: convergence error = 2.803062670864165e-9 Iteration 26: convergence error = 8.05357558419928e-10 Iteration 27: convergence error = 2.305569068994373e-10 Iteration 28: convergence error = 6.866684998385608e-11 Iteration 29: convergence error = 2.0463630789890885e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014085596392587464 Iteration 10: d = 9.469842961609427e-6 Iteration 20: d = 8.820436939097195e-8 Iteration 30: d = 1.197591621594604e-9 Iteration 40: d = 1.7011918512537367e-11 Iteration 50: d = 2.4231511575185674e-13 Iteration 60: d = 3.4395712039387097e-15 Converged after 62 iterations. d = 1.4671869516415024e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.520727306779 Iteration 2: convergence error = 4823.31571865415 Iteration 3: convergence error = 1096.9411439538828 Iteration 4: convergence error = 317.473363399308 Iteration 5: convergence error = 94.01862235025237 Iteration 6: convergence error = 28.245583533433773 Iteration 7: convergence error = 8.494615010134794 Iteration 8: convergence error = 2.544549991520171 Iteration 9: convergence error = 0.7604083002206607 Iteration 10: convergence error = 0.2269265288848601 Iteration 11: convergence error = 0.06766775432538452 Iteration 12: convergence error = 0.020168937161315625 Iteration 13: convergence error = 0.0060099730874298984 Iteration 14: convergence error = 0.0017905969491494034 Iteration 15: convergence error = 0.0005334406462225161 Iteration 16: convergence error = 0.00015891060661488154 Iteration 17: convergence error = 4.7337711748696165e-5 Iteration 18: convergence error = 1.410114214195346e-5 Iteration 19: convergence error = 4.200458533887286e-6 Iteration 20: convergence error = 1.251227104148711e-6 Iteration 21: convergence error = 3.7270638131303713e-7 Iteration 22: convergence error = 1.1088877727161162e-7 Iteration 23: convergence error = 3.2114257919602096e-8 Iteration 24: convergence error = 9.247287380276248e-9 Iteration 25: convergence error = 2.6693669497035444e-9 Iteration 26: convergence error = 7.605649443576112e-10 Iteration 27: convergence error = 2.2373569663614035e-10 Iteration 28: convergence error = 6.116351869422942e-11 Iteration 29: convergence error = 2.000888343900442e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 10:34:16 Bin 1 ray tracing: 9%|██▊ | ETA: 0:00:47 Bin 1 ray tracing: 18%|█████▌ | ETA: 0:00:27 Bin 1 ray tracing: 26%|███████▉ | ETA: 0:00:19 Bin 1 ray tracing: 34%|██████████▍ | ETA: 0:00:15 Bin 1 ray tracing: 42%|████████████▊ | ETA: 0:00:12 Bin 1 ray tracing: 50%|███████████████▏ | ETA: 0:00:10 Bin 1 ray tracing: 58%|█████████████████▌ | ETA: 0:00:08 Bin 1 ray tracing: 66%|███████████████████▉ | ETA: 0:00:06 Bin 1 ray tracing: 74%|██████████████████████▍ | ETA: 0:00:04 Bin 1 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:03 Bin 1 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 1 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 2 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 2 ray tracing: 24%|███████▎ | ETA: 0:00:10 Bin 2 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 2 ray tracing: 40%|███████████▉ | ETA: 0:00:08 Bin 2 ray tracing: 48%|██████████████▍ | ETA: 0:00:07 Bin 2 ray tracing: 56%|████████████████▉ | ETA: 0:00:06 Bin 2 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 2 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:04 Bin 2 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 2 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 2 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 3 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 3 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 3 ray tracing: 35%|██████████▌ | ETA: 0:00:07 Bin 3 ray tracing: 45%|█████████████▍ | ETA: 0:00:06 Bin 3 ray tracing: 54%|████████████████▎ | ETA: 0:00:05 Bin 3 ray tracing: 64%|███████████████████▏ | ETA: 0:00:04 Bin 3 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:03 Bin 3 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 3 ray tracing: 89%|██████████████████████████▌ | ETA: 0:00:01 Bin 3 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 4 ray tracing: 18%|█████▎ | ETA: 0:00:10 Bin 4 ray tracing: 27%|████████ | ETA: 0:00:09 Bin 4 ray tracing: 35%|██████████▍ | ETA: 0:00:08 Bin 4 ray tracing: 43%|█████████████ | ETA: 0:00:07 Bin 4 ray tracing: 52%|███████████████▌ | ETA: 0:00:06 Bin 4 ray tracing: 60%|██████████████████▏ | ETA: 0:00:05 Bin 4 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 4 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 4 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 4 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 5 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 5 ray tracing: 27%|████████▎ | ETA: 0:00:08 Bin 5 ray tracing: 37%|███████████▎ | ETA: 0:00:07 Bin 5 ray tracing: 47%|██████████████▎ | ETA: 0:00:06 Bin 5 ray tracing: 57%|█████████████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 67%|████████████████████ | ETA: 0:00:04 Bin 5 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:03 Bin 5 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 5 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 6 ray tracing: 18%|█████▎ | ETA: 0:00:10 Bin 6 ray tracing: 27%|████████ | ETA: 0:00:08 Bin 6 ray tracing: 36%|██████████▉ | ETA: 0:00:07 Bin 6 ray tracing: 46%|█████████████▊ | ETA: 0:00:06 Bin 6 ray tracing: 56%|████████████████▊ | ETA: 0:00:05 Bin 6 ray tracing: 65%|███████████████████▋ | ETA: 0:00:04 Bin 6 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:03 Bin 6 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 6 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 10%|███ | ETA: 0:00:09 Bin 7 ray tracing: 20%|█████▉ | ETA: 0:00:09 Bin 7 ray tracing: 29%|████████▋ | ETA: 0:00:08 Bin 7 ray tracing: 38%|███████████▍ | ETA: 0:00:07 Bin 7 ray tracing: 47%|██████████████▏ | ETA: 0:00:06 Bin 7 ray tracing: 57%|█████████████████ | ETA: 0:00:05 Bin 7 ray tracing: 66%|███████████████████▉ | ETA: 0:00:04 Bin 7 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:03 Bin 7 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 7 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 8 ray tracing: 21%|██████▎ | ETA: 0:00:08 Bin 8 ray tracing: 31%|█████████▍ | ETA: 0:00:07 Bin 8 ray tracing: 42%|████████████▌ | ETA: 0:00:06 Bin 8 ray tracing: 52%|███████████████▋ | ETA: 0:00:05 Bin 8 ray tracing: 61%|██████████████████▎ | ETA: 0:00:04 Bin 8 ray tracing: 70%|█████████████████████ | ETA: 0:00:03 Bin 8 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:02 Bin 8 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:01 Bin 8 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 9 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 9 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 9 ray tracing: 35%|██████████▍ | ETA: 0:00:08 Bin 9 ray tracing: 44%|█████████████▏ | ETA: 0:00:07 Bin 9 ray tracing: 52%|███████████████▋ | ETA: 0:00:06 Bin 9 ray tracing: 61%|██████████████████▍ | ETA: 0:00:04 Bin 9 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:03 Bin 9 ray tracing: 80%|████████████████████████ | ETA: 0:00:02 Bin 9 ray tracing: 89%|██████████████████████████▉ | ETA: 0:00:01 Bin 9 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 9%|██▌ | ETA: 0:00:11 Bin 10 ray tracing: 18%|█████▏ | ETA: 0:00:09 Bin 10 ray tracing: 27%|███████▊ | ETA: 0:00:08 Bin 10 ray tracing: 36%|██████████▍ | ETA: 0:00:07 Bin 10 ray tracing: 45%|█████████████▏ | ETA: 0:00:06 Bin 10 ray tracing: 55%|███████████████▉ | ETA: 0:00:05 Bin 10 ray tracing: 64%|██████████████████▋ | ETA: 0:00:04 Bin 10 ray tracing: 74%|█████████████████████▍ | ETA: 0:00:03 Bin 10 ray tracing: 83%|████████████████████████▏ | ETA: 0:00:02 Bin 10 ray tracing: 92%|██████████████████████████▋ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 29%|█████████▌ | ETA: 0:00:03 Bin 1 progress: 62%|████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 27%|████████▊ | ETA: 0:00:03 Bin 2 progress: 62%|████████████████████▌ | ETA: 0:00:01 Bin 2 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 3 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 24%|████████▏ | ETA: 0:00:03 Bin 4 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 4 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 4 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 22%|███████▍ | ETA: 0:00:04 Bin 5 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 5 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 27%|████████▊ | ETA: 0:00:03 Bin 6 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 6 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 24%|████████▏ | ETA: 0:00:03 Bin 7 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 7 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 7 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 8 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 33%|███████████ | ETA: 0:00:02 Bin 9 progress: 62%|████████████████████▌ | ETA: 0:00:01 Bin 9 progress: 87%|████████████████████████████▋ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 31%|██████████ | ETA: 0:00:02 Bin 10 progress: 58%|██████████████████▌ | ETA: 0:00:02 Bin 10 progress: 84%|███████████████████████████ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:03 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014085596392587464 Iteration 10: d = 9.469842961609427e-6 Iteration 20: d = 8.820436939097195e-8 Iteration 30: d = 1.197591621594604e-9 Iteration 40: d = 1.7011918512537367e-11 Iteration 50: d = 2.4231511575185674e-13 Iteration 60: d = 3.4395712039387097e-15 Converged after 62 iterations. d = 1.4671869516415024e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015932624075648471 Iteration 10: d = 1.0935305437416273e-5 Iteration 20: d = 8.332868356612665e-8 Iteration 30: d = 9.505123783617972e-10 Iteration 40: d = 1.2628110567882631e-11 Iteration 50: d = 1.7578253947395832e-13 Iteration 60: d = 2.4711051419966635e-15 Converged after 61 iterations. d = 1.6221764847565712e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014092752050504276 Iteration 10: d = 1.1841819921383403e-5 Iteration 20: d = 1.3007663626556644e-7 Iteration 30: d = 1.6788323221985672e-9 Iteration 40: d = 2.252131380632096e-11 Iteration 50: d = 3.068222323635975e-13 Iteration 60: d = 4.227336798720342e-15 Converged after 62 iterations. d = 1.7907894602563054e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014027623276284247 Iteration 10: d = 1.2633806552340313e-5 Iteration 20: d = 1.5674438885123584e-7 Iteration 30: d = 2.1663023826754414e-9 Iteration 40: d = 3.036157878811624e-11 Iteration 50: d = 4.270944743009855e-13 Iteration 60: d = 6.069420543080316e-15 Converged after 63 iterations. d = 1.6523642486261835e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001423669179597855 Iteration 10: d = 1.2287576258701643e-5 Iteration 20: d = 1.4095215469204268e-7 Iteration 30: d = 1.934231908924931e-9 Iteration 40: d = 2.7173650887551668e-11 Iteration 50: d = 3.830041236846976e-13 Iteration 60: d = 5.422853698989373e-15 Converged after 63 iterations. d = 1.5177510684933191e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001356539830202128 Iteration 10: d = 1.0081437638069315e-5 Iteration 20: d = 9.694664448459456e-8 Iteration 30: d = 1.1599197882938975e-9 Iteration 40: d = 1.4656694177411202e-11 Iteration 50: d = 1.881523725600327e-13 Iteration 60: d = 2.4462463346583784e-15 Converged after 61 iterations. d = 1.550667243274272e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012908697212516236 Iteration 10: d = 1.1703775722237804e-5 Iteration 20: d = 1.493484909134658e-7 Iteration 30: d = 2.107458641141946e-9 Iteration 40: d = 2.984069153690159e-11 Iteration 50: d = 4.218294307192915e-13 Iteration 60: d = 5.9804426566212134e-15 Converged after 63 iterations. d = 1.671391804867295e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016758011740785636 Iteration 10: d = 1.1100852249769234e-5 Iteration 20: d = 1.2080076510317742e-7 Iteration 30: d = 1.7190985112530183e-9 Iteration 40: d = 2.49073368041269e-11 Iteration 50: d = 3.604545475880888e-13 Iteration 60: d = 5.2071181114359955e-15 Converged after 63 iterations. d = 1.4769721626996944e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014900392412717266 Iteration 10: d = 1.1293984620607971e-5 Iteration 20: d = 8.883641977286346e-8 Iteration 30: d = 9.461369711786215e-10 Iteration 40: d = 1.1621736264346115e-11 Iteration 50: d = 1.515477311011996e-13 Converged after 60 iterations. d = 2.0442983947532408e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015076583643149272 Iteration 10: d = 1.4208371089471587e-5 Iteration 20: d = 1.5627566320578984e-7 Iteration 30: d = 2.069891688397647e-9 Iteration 40: d = 2.863703893862711e-11 Iteration 50: d = 4.001249206223446e-13 Iteration 60: d = 5.6237246969596975e-15 Converged after 63 iterations. d = 1.5727012180523581e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.14337655359 Iteration 2: convergence error = 4807.532692841943 Iteration 3: convergence error = 1117.0818029456243 Iteration 4: convergence error = 325.88817549975283 Iteration 5: convergence error = 97.19309481673918 Iteration 6: convergence error = 29.127972978503067 Iteration 7: convergence error = 8.738588880735733 Iteration 8: convergence error = 2.6210500075853815 Iteration 9: convergence error = 0.7872166506901976 Iteration 10: convergence error = 0.2363502770147079 Iteration 11: convergence error = 0.07090488576250209 Iteration 12: convergence error = 0.021261858304114867 Iteration 13: convergence error = 0.006374041771096017 Iteration 14: convergence error = 0.0019105780022528052 Iteration 15: convergence error = 0.0005726350602799357 Iteration 16: convergence error = 0.00017162079461741087 Iteration 17: convergence error = 5.143391831552435e-5 Iteration 18: convergence error = 1.541423989692703e-5 Iteration 19: convergence error = 4.619454102794407e-6 Iteration 20: convergence error = 1.3843919077771716e-6 Iteration 21: convergence error = 4.1487555790808983e-7 Iteration 22: convergence error = 1.2420514394761994e-7 Iteration 23: convergence error = 3.6300662031862885e-8 Iteration 24: convergence error = 1.0520352589082904e-8 Iteration 25: convergence error = 3.039531293325126e-9 Iteration 26: convergence error = 8.776623872108757e-10 Iteration 27: convergence error = 2.5283952709287405e-10 Iteration 28: convergence error = 7.389644451905042e-11 Iteration 29: convergence error = 2.091837814077735e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.2820938200028 K, F = -7454.806045875803, relative_change = 0.032717906179997105 Iter 2: T = 936.6375987697378 K, F = -6319.300133847361, relative_change = 0.031681032085731455 Iter 3: T = 908.0352607815099 K, F = -5355.247146722471, relative_change = 0.030537251574992017 Iter 5: T = 856.8194243750789 K, F = -3842.2264480298295, relative_change = 0.02793401514882439 Iter 10: T = 761.5200722868263 K, F = -1663.8212705843412, relative_change = 0.020023502671499882 Iter 15: T = 705.6764912594765 K, F = -712.4106687957883, relative_change = 0.012011289950122057 Iter 20: T = 676.936161335917 K, F = -301.95568513056475, relative_change = 0.006155816443725432 Iter 25: T = 663.5276481003141 K, F = -127.12053730896808, relative_change = 0.00284500662364178 Iter 30: T = 657.6233296063867 K, F = -53.32318745801653, relative_change = 0.0012447816957434025 Iter 35: T = 655.0971069343752 K, F = -22.329444856191834, relative_change = 0.0005308612289860461 Iter 40: T = 654.0302298903256 K, F = -9.343606119063756, relative_change = 0.00022386280449689203 Iter 45: T = 653.5822014726123 K, F = -3.908517475364713, relative_change = 9.394969120524361e-5 Iter 50: T = 653.3945050711189 K, F = -1.6347482809569813, relative_change = 3.93484739928776e-5 Iter 55: T = 653.3159510751021 K, F = -0.6836992018199124, relative_change = 1.6466096188140086e-5 Iter 60: T = 653.2830888525735 K, F = -0.28593606185614495, relative_change = 6.8880851923693875e-6 Iter 65: T = 653.2693437281196 K, F = -0.11958273139506903, relative_change = 2.8809886759131148e-6 Iter 70: T = 653.2635950466821 K, F = -0.05001107602685301, relative_change = 1.2049179561000676e-6 Iter 75: T = 653.2611908258848 K, F = -0.020915255421652734, relative_change = 5.039205391581689e-7 Iter 80: T = 653.2601853426659 K, F = -0.008747014173545842, relative_change = 2.1074724215539897e-7 Iter 85: T = 653.2597648359371 K, F = -0.003658106587943577, relative_change = 8.813730289149001e-8 Iter 90: T = 653.2595889747146 K, F = -0.0015298640014488885, relative_change = 3.686012325189831e-8 Iter 95: T = 653.2595154274011 K, F = -0.0006398074206973026, relative_change = 1.5415352608631162e-8 Iter 100: T = 653.2594846690274 K, F = -0.00026757510850938804, relative_change = 6.446886106949368e-9 Iter 105: T = 653.2594718055067 K, F = -0.00011190310651104651, relative_change = 2.6961650294897216e-9 Iter 110: T = 653.2594664258285 K, F = -4.679921550171384e-5, relative_change = 1.127568457431425e-9 Iter 115: T = 653.2594641759828 K, F = -1.9571990740041567e-5, relative_change = 4.715626006309301e-10 Iter 120: T = 653.2594632350704 K, F = -8.185239773639275e-6, relative_change = 1.9721310071014993e-10 Iter 125: T = 653.2594628415695 K, F = -3.423164560423242e-6, relative_change = 8.24768629640394e-11 Iter 130: T = 653.2594626770028 K, F = -1.4316078022491574e-6, relative_change = 3.449279711267256e-11 Iter 135: T = 653.2594626081791 K, F = -5.98716487609785e-7, relative_change = 1.4425323970049675e-11 Iter 140: T = 653.2594625793962 K, F = -2.5039029100115684e-7, relative_change = 6.032840488198648e-12 Iter 145: T = 653.2594625673588 K, F = -1.0471697031722016e-7, relative_change = 2.5230242588907932e-12 Iter 150: T = 653.2594625623246 K, F = -4.379361862039133e-8, relative_change = 1.0551523963422285e-12 Iter 155: T = 653.2594625602192 K, F = -1.8314309402356344e-8, relative_change = 4.4126034939135964e-13 Converged in 159 iterations to T = 653.2594625594593 K Iter 1: T = 970.3780878399866 K, F = -6749.380863371901, relative_change = 0.02962191216001338 Iter 2: T = 942.9211557196633 K, F = -5716.515940288286, relative_change = 0.028295086692900425 Iter 3: T = 917.5842387201735 K, F = -4839.960741370135, relative_change = 0.0268706634120983 Iter 5: T = 873.0533824493195 K, F = -3465.3325204183257, relative_change = 0.023774426468665077 Iter 10: T = 794.0465480800881 K, F = -1491.4765232401624, relative_change = 0.015468766235873921 Iter 15: T = 751.0258995445827 K, F = -634.8527509333379, relative_change = 0.008464025209637247 Iter 20: T = 730.1524683929422 K, F = -267.9656213005447, relative_change = 0.004070247069566396 Iter 25: T = 720.7600227099799 K, F = -112.55226090049864, relative_change = 0.0018168095748694146 Iter 30: T = 716.6995657511254 K, F = -47.16051557113439, relative_change = 0.0007818910585005328 Iter 35: T = 714.9768474448214 K, F = -19.73918477402196, relative_change = 0.0003310247281524476 Iter 40: T = 714.25197340517 K, F = -8.258006863855327, relative_change = 0.00013915590288609935 Iter 45: T = 713.9480421488901 K, F = -3.4540966897298686, relative_change = 5.832309267198681e-5 Iter 50: T = 713.8207973666281 K, F = -1.444632026034531, relative_change = 2.4413597612678448e-5 Iter 55: T = 713.7675580535606 K, F = -0.6041776882624433, relative_change = 1.0213943223982064e-5 Iter 60: T = 713.7452885315398 K, F = -0.2526770053633158, relative_change = 4.272272931613291e-6 Iter 65: T = 713.7359744156848 K, F = -0.10567301015186426, relative_change = 1.7868345037028994e-6 Iter 70: T = 713.7320790124918 K, F = -0.04419379685622693, relative_change = 7.472963337439398e-7 Iter 75: T = 713.7304498858432 K, F = -0.01848238797139412, relative_change = 3.1253189029024074e-7 Iter 80: T = 713.7297685616855 K, F = -0.007729557882722449, relative_change = 1.307052053751008e-7 Iter 85: T = 713.7294836230975 K, F = -0.0032325938555274325, relative_change = 5.4662589154061174e-8 Iter 90: T = 713.7293644582567 K, F = -0.001351909432038556, relative_change = 2.2860567056567573e-8 Iter 95: T = 713.729314622076 K, F = -0.0005653846838663545, relative_change = 9.560565574032631e-9 Iter 100: T = 713.7292937799864 K, F = -0.00023645062830968122, relative_change = 3.9983432798627445e-9 Iter 105: T = 713.729285063575 K, F = -9.888647795364136e-5, relative_change = 1.672155030465864e-9 Iter 110: T = 713.7292814182675 K, F = -4.135550518258313e-5, relative_change = 6.993152060944671e-10 Iter 115: T = 713.7292798937564 K, F = -1.7295366727343442e-5, relative_change = 2.92461983404976e-10 Iter 120: T = 713.7292792561876 K, F = -7.233129741379685e-6, relative_change = 1.2231110867640956e-10 Iter 125: T = 713.7292789895488 K, F = -3.024980789301246e-6, relative_change = 5.1151958827133934e-11 Iter 130: T = 713.7292788780372 K, F = -1.265083690693558e-6, relative_change = 2.139237020487671e-11 Iter 135: T = 713.7292788314018 K, F = -5.29073991506479e-7, relative_change = 8.9465596457057e-12 Iter 140: T = 713.7292788118982 K, F = -2.212653076316684e-7, relative_change = 3.741562247036761e-12 Iter 145: T = 713.7292788037416 K, F = -9.253680266496644e-8, relative_change = 1.5647830698698009e-12 Iter 150: T = 713.7292788003305 K, F = -3.869925402355534e-8, relative_change = 6.543984206291804e-13 Iter 155: T = 713.7292787989039 K, F = -1.6185519036149287e-8, relative_change = 2.736946321490707e-13 Converged in 157 iterations to T = 713.729278798602 K Iter 1: T = 974.3648238048185 K, F = -5840.999281420028, relative_change = 0.025635176195181564 Iter 2: T = 950.9192306752187 K, F = -4941.760664923188, relative_change = 0.02406243796655806 Iter 3: T = 929.5888972370741 K, F = -4179.158525849495, relative_change = 0.02243127780999715 Iter 5: T = 892.9223197901955 K, F = -2984.7872843781815, relative_change = 0.019077792100453142 Iter 10: T = 831.1221398633432 K, F = -1276.4112737834444, relative_change = 0.011221274258186215 Iter 15: T = 799.7272401331446 K, F = -540.4981110603926, relative_change = 0.005668343329060626 Iter 20: T = 785.2024781662432 K, F = -227.42147993583592, relative_change = 0.002598272182104127 Iter 25: T = 778.8346610164871 K, F = -95.37118346701564, relative_change = 0.0011323089635728895 Iter 30: T = 776.1156864453521 K, F = -39.932602351444366, relative_change = 0.0004820367528476553 Iter 35: T = 774.9684341326071 K, F = -16.708677389078925, relative_change = 0.0002031181187564531 Iter 40: T = 774.4868367061961 K, F = -6.989244519798661, relative_change = 8.521604590229778e-5 Iter 45: T = 774.2851094714281 K, F = -2.923244386759157, relative_change = 3.5685745481583265e-5 Iter 50: T = 774.2006890553181 K, F = -1.2225810387077671, relative_change = 1.493250747948191e-5 Iter 55: T = 774.1653736795556 K, F = -0.5113059221550661, relative_change = 6.2464062694870615e-6 Iter 60: T = 774.1506026616075 K, F = -0.2138356303160327, relative_change = 2.612575971808114e-6 Iter 65: T = 774.1444249470476 K, F = -0.08942885699577496, relative_change = 1.0926549508248079e-6 Iter 70: T = 774.1418413008378 K, F = -0.03740025844044226, relative_change = 4.5696912927535814e-7 Iter 75: T = 774.1407607800068 K, F = -0.015641242152612533, relative_change = 1.911113079146611e-7 Iter 80: T = 774.1403088916943 K, F = -0.0065413555611012475, relative_change = 7.992526930116505e-8 Iter 85: T = 774.140119906326 K, F = -0.0027356732421038865, relative_change = 3.342574374596066e-8 Iter 90: T = 774.1400408703392 K, F = -0.001144091261542024, relative_change = 1.39790525166287e-8 Iter 95: T = 774.140007816537 K, F = -0.00047847263418343555, relative_change = 5.846207960493388e-9 Iter 100: T = 774.1399939930409 K, F = -0.00020010297167261104, relative_change = 2.4449542184714402e-9 Iter 105: T = 774.1399882118893 K, F = -8.368545211079326e-5, relative_change = 1.0225090848363255e-9 Iter 110: T = 774.1399857941427 K, F = -3.499825617314656e-5, relative_change = 4.276255253449574e-10 Iter 115: T = 774.1399847830122 K, F = -1.4636687919011848e-5, relative_change = 1.7883809320773e-10 Iter 120: T = 774.1399843601453 K, F = -6.121237496992116e-6, relative_change = 7.479222423393231e-11 Iter 125: T = 774.1399841832973 K, F = -2.5599736482861957e-6, relative_change = 3.1278989491571827e-11 Iter 130: T = 774.1399841093373 K, F = -1.070611429954127e-6, relative_change = 1.3081245467016167e-11 Iter 135: T = 774.1399840784064 K, F = -4.4774395624447294e-7, relative_change = 5.470751044916523e-12 Iter 140: T = 774.1399840654708 K, F = -1.8725042572054207e-7, relative_change = 2.2879157785747674e-12 Iter 145: T = 774.1399840600609 K, F = -7.83114197933088e-8, relative_change = 9.568465989020677e-13 Iter 150: T = 774.1399840577984 K, F = -3.274983995105174e-8, relative_change = 4.0015329890449107e-13 Converged in 154 iterations to T = 774.1399840569818 K Iter 1: T = 970.4070453455533 K, F = -6742.782868182831, relative_change = 0.02959295465444669 Iter 2: T = 942.979625713348 K, F = -5710.882617774348, relative_change = 0.028263829867845532 Iter 3: T = 917.6726001892399 K, F = -4835.149980474702, relative_change = 0.02683729831910604 Iter 5: T = 873.2017638772975 K, F = -3461.823105078112, relative_change = 0.02373777619260973 Iter 10: T = 794.3337547388862 K, F = -1489.8885712477584, relative_change = 0.015432252549494329 Iter 15: T = 751.4140949998467 K, F = -634.1477422700428, relative_change = 0.00843805451517183 Iter 20: T = 730.5987601493387 K, F = -267.66007333684445, relative_change = 0.00405591599181665 Iter 25: T = 721.2348091366241 K, F = -112.42217081859616, relative_change = 0.0018099861592163308 Iter 30: T = 717.1871684619515 K, F = -47.105665866268815, relative_change = 0.0007788697078035238 Iter 35: T = 715.4699825224501 K, F = -19.716164846194005, relative_change = 0.0003297299162508571 Iter 40: T = 714.7474535693385 K, F = -8.2483652051604, relative_change = 0.00013860878266904313 Iter 45: T = 714.4445086390136 K, F = -3.450061886094704, relative_change = 5.809328727021534e-5 Iter 50: T = 714.3176773334469 K, F = -1.442944176084893, relative_change = 2.4317315707887578e-5 Iter 55: T = 714.2646111137833 K, F = -0.6034717309914857, relative_change = 1.0173646393034198e-5 Iter 60: T = 714.2424140117014 K, F = -0.2523817519049714, relative_change = 4.255414961217161e-6 Iter 65: T = 714.2331301880163 K, F = -0.10554952923323457, relative_change = 1.77978336232788e-6 Iter 70: T = 714.2292474542953 K, F = -0.04414215524300469, relative_change = 7.443472983495324e-7 Iter 75: T = 714.2276236263331 K, F = -0.018460790759567525, relative_change = 3.112985398202742e-7 Iter 80: T = 714.2269445181774 K, F = -0.0077205256569025105, relative_change = 1.3018939844755092e-7 Iter 85: T = 714.2266605063529 K, F = -0.003228816468610951, relative_change = 5.444687166059751e-8 Iter 90: T = 714.2265417290964 K, F = -0.0013503296826571365, relative_change = 2.2770351259958816e-8 Iter 95: T = 714.2264920550084 K, F = -0.0005647240124813102, relative_change = 9.522836202397827e-9 Iter 100: T = 714.226471280708 K, F = -0.00023617432951228423, relative_change = 3.982564433081179e-9 Iter 105: T = 714.2264625926467 K, F = -9.877092543353339e-5, relative_change = 1.6655561095411634e-9 Iter 110: T = 714.2264589591956 K, F = -4.130717938932715e-5, relative_change = 6.965554525709305e-10 Iter 115: T = 714.226457439643 K, F = -1.7275155669405073e-5, relative_change = 2.9130781078058255e-10 Iter 120: T = 714.2264568041479 K, F = -7.224676051631462e-6, relative_change = 1.2182839989353797e-10 Iter 125: T = 714.2264565383763 K, F = -3.021444943462903e-6, relative_change = 5.095007732527082e-11 Iter 130: T = 714.2264564272274 K, F = -1.263603282675163e-6, relative_change = 2.130791267527788e-11 Iter 135: T = 714.2264563807437 K, F = -5.284542485828325e-7, relative_change = 8.911228025090898e-12 Iter 140: T = 714.2264563613036 K, F = -2.2100506213984517e-7, relative_change = 3.7267682282131646e-12 Iter 145: T = 714.2264563531735 K, F = -9.242690002242426e-8, relative_change = 1.558578030382462e-12 Iter 150: T = 714.2264563497735 K, F = -3.865424902382841e-8, relative_change = 6.518195817042505e-13 Iter 155: T = 714.2264563483515 K, F = -1.6165891292274637e-8, relative_change = 2.726024891496672e-13 Converged in 157 iterations to T = 714.2264563480505 K Iter 1: T = 969.4183019976615 K, F = -6968.068980537725, relative_change = 0.030581698002338547 Iter 2: T = 940.9800416688747 K, F = -5903.2791652022715, relative_change = 0.029335386251925107 Iter 3: T = 914.6456467472724 K, F = -4999.503862717362, relative_change = 0.027986135470946857 Iter 5: T = 868.099903222995 K, F = -3581.8135235328004, relative_change = 0.025011974477668907 Iter 10: T = 784.3592272579995 K, F = -1544.3474459308688, relative_change = 0.016736590939871312 Iter 15: T = 737.8165495306213 K, F = -658.4148483171579, relative_change = 0.00938867937848311 Iter 20: T = 714.8814642062819 K, F = -278.20750949846234, relative_change = 0.004588998197067016 Iter 25: T = 704.4673250464558 K, F = -116.920263247438, relative_change = 0.0020659712820103957 Iter 30: T = 699.9449533336685 K, F = -49.00370985520616, relative_change = 0.0008926688783731713 Iter 35: T = 698.0223738292159 K, F = -20.513041681369966, relative_change = 0.00037858408170052027 Iter 40: T = 697.2126955558055 K, F = -8.582180145301972, relative_change = 0.00015926737936996623 Iter 45: T = 696.8730808818624 K, F = -3.589764546053444, relative_change = 6.677318492477362e-5 Iter 50: T = 696.7308745746054 K, F = -1.501386567963667, relative_change = 2.795442425331373e-5 Iter 55: T = 696.671371453972 K, F = -0.6279160273252253, relative_change = 1.1695968127140943e-5 Iter 60: T = 696.6464811560558 K, F = -0.2626051718484987, relative_change = 4.892285076322653e-6 Iter 65: T = 696.6360707944892 K, F = -0.10982517709254469, relative_change = 2.0461680155362393e-6 Iter 70: T = 696.6317168922213 K, F = -0.045930298254043156, relative_change = 8.557591828429093e-7 Iter 75: T = 696.6298960094823 K, F = -0.01920861632194859, relative_change = 3.5789348206857527e-7 Iter 80: T = 696.6291344895353 K, F = -0.008033275728812406, relative_change = 1.4967616294459185e-7 Iter 85: T = 696.6288160119176 K, F = -0.003359612368548759, relative_change = 6.259650481450208e-8 Iter 90: T = 696.6286828206204 K, F = -0.0014050301062119575, relative_change = 2.6178631407554396e-8 Iter 95: T = 696.6286271184023 K, F = -0.0005876003863947155, relative_change = 1.0948220766550943e-8 Iter 100: T = 696.6286038230647 K, F = -0.0002457415021411835, relative_change = 4.578677461058011e-9 Iter 105: T = 696.6285940806755 K, F = -0.0001027720309447755, relative_change = 1.9148577222238183e-9 Iter 110: T = 696.6285900062919 K, F = -4.2980490938759885e-5, relative_change = 8.008163944437217e-10 Iter 115: T = 696.628588302336 K, F = -1.7974955539790116e-5, relative_change = 3.349110012216081e-10 Iter 120: T = 696.6285875897212 K, F = -7.517339841056625e-6, relative_change = 1.4006375812057113e-10 Iter 125: T = 696.6285872916972 K, F = -3.1438410392770066e-6, relative_change = 5.857633166812194e-11 Iter 130: T = 696.62858716706 K, F = -1.3147919319944634e-6, relative_change = 2.4497322665650538e-11 Iter 135: T = 696.6285871149353 K, F = -5.498625610389496e-7, relative_change = 1.0245089170799331e-11 Iter 140: T = 696.628587093136 K, F = -2.2995970461181514e-7, relative_change = 4.284630099816601e-12 Iter 145: T = 696.6285870840194 K, F = -9.61720242331765e-8, relative_change = 1.7918858893605612e-12 Iter 150: T = 696.6285870802067 K, F = -4.021990529512465e-8, relative_change = 7.49380928042982e-13 Iter 155: T = 696.6285870786122 K, F = -1.6820896897584703e-8, relative_change = 3.1340847859461983e-13 Converged in 157 iterations to T = 696.6285870782748 K Iter 1: T = 963.5751786190096 K, F = -8299.430200608795, relative_change = 0.03642482138099035 Iter 2: T = 929.0289143091993 K, F = -7042.319075094192, relative_change = 0.03585217331907802 Iter 3: T = 896.3277203179448 K, F = -5974.700096518416, relative_change = 0.03519932855434342 Iter 5: T = 836.3418242763078 K, F = -4298.1062669602115, relative_change = 0.033623854046024026 Iter 10: T = 716.7270013091332 K, F = -1878.2181280792217, relative_change = 0.027891538693170143 Iter 15: T = 637.1692899740918 K, F = -813.281396125142, relative_change = 0.019971980864436977 Iter 20: T = 590.5893754681946 K, F = -348.20416863238995, relative_change = 0.011967246217702641 Iter 25: T = 566.6342768250568 K, F = -147.5786356484594, relative_change = 0.006128213895323154 Iter 30: T = 555.463620248155 K, F = -62.127300735574536, relative_change = 0.0028309155605492856 Iter 35: T = 550.5459671768033 K, F = -26.06010964667532, relative_change = 0.0012383319716112431 Iter 40: T = 548.4421481491893 K, F = -10.912772077642797, relative_change = 0.0005280562922607255 Iter 45: T = 547.5537072088085 K, F = -4.566362622580544, relative_change = 0.00022267010147227793 Iter 50: T = 547.1806202060175 K, F = -1.9101496267318199, relative_change = 9.344738931476343e-5 Iter 55: T = 547.0243211195584 K, F = -0.7989249613411885, relative_change = 3.9137788603854874e-5 Iter 60: T = 546.9589076674372 K, F = -0.33413354463738465, relative_change = 1.6377876825980417e-5 Iter 65: T = 546.9315426956847 K, F = -0.1397410159284753, relative_change = 6.851171848876292e-6 Iter 70: T = 546.9200968878723 K, F = -0.05844177756927224, relative_change = 2.8655477581064138e-6 Iter 75: T = 546.9153098607217 K, F = -0.024441122056776676, relative_change = 1.1984597996579993e-6 Iter 80: T = 546.9133078244337 K, F = -0.010221581852847106, relative_change = 5.012195595227637e-7 Iter 85: T = 546.9124705411891 K, F = -0.00427478982705895, relative_change = 2.0961764250352023e-7 Iter 90: T = 546.9121203779797 K, F = -0.0017877685452338532, relative_change = 8.766488768988628e-8 Iter 95: T = 546.9119739353065 K, F = -0.0007476662236539366, relative_change = 3.666255302187747e-8 Iter 100: T = 546.9119126911902 K, F = -0.00031268295555059167, relative_change = 1.5332726269947188e-8 Iter 105: T = 546.9118870781621 K, F = -0.00013076774847606276, relative_change = 6.4123307771373005e-9 Iter 110: T = 546.9118763664866 K, F = -5.468863485577624e-5, relative_change = 2.6817135970556156e-9 Iter 115: T = 546.9118718867358 K, F = -2.2871440341243332e-5, relative_change = 1.1215247025442222e-9 Iter 120: T = 546.9118700132505 K, F = -9.565109979486897e-6, relative_change = 4.690350559231497e-10 Iter 125: T = 546.9118692297365 K, F = -4.000242963791978e-6, relative_change = 1.9615605037987766e-10 Iter 130: T = 546.9118689020615 K, F = -1.6729495413703166e-6, relative_change = 8.203481099182968e-11 Iter 135: T = 546.9118687650239 K, F = -6.99647177165863e-7, relative_change = 3.430792297610102e-11 Iter 140: T = 546.9118687077131 K, F = -2.92600333073878e-7, relative_change = 1.4347959975415461e-11 Iter 145: T = 546.9118686837452 K, F = -1.2236866761550225e-7, relative_change = 6.000474186456791e-12 Iter 150: T = 546.9118686737215 K, F = -5.117634660489756e-8, relative_change = 2.5094850893656817e-12 Iter 155: T = 546.9118686695294 K, F = -2.140282071017019e-8, relative_change = 1.0495094512932471e-12 Iter 160: T = 546.9118686677763 K, F = -8.950472113467e-9, relative_change = 4.3889565791204207e-13 Converged in 164 iterations to T = 546.9118686671435 K Iter 1: T = 966.8964503590985 K, F = -7542.675275284514, relative_change = 0.03310354964090154 Iter 2: T = 935.8503999183515 K, F = -6394.4530044182075, relative_change = 0.032108971368357636 Iter 3: T = 906.831451371916 K, F = -5419.563987643837, relative_change = 0.031008106155606917 Iter 5: T = 854.74397018266 K, F = -3889.4128660591223, relative_change = 0.028487696586239328 Iter 10: T = 757.1893074923527 K, F = -1685.6783309522698, relative_change = 0.02069755654446142 Iter 15: T = 699.4022527916109 K, F = -722.4252741792772, relative_change = 0.012593330475465415 Iter 20: T = 669.3762032967472 K, F = -306.415078323295, relative_change = 0.00652402114089174 Iter 25: T = 655.2792258385196 K, F = -129.05098078269586, relative_change = 0.0030340735560115896 Iter 30: T = 649.0508660933635 K, F = -54.14393795542191, relative_change = 0.0013315753257516908 Iter 35: T = 646.3817981900364 K, F = -22.67521309573526, relative_change = 0.0005686574800749215 Iter 40: T = 645.2538129819915 K, F = -9.488665257010211, relative_change = 0.0002399436477214675 Iter 45: T = 644.7799821912255 K, F = -3.969263525691484, relative_change = 0.00010072373183098541 Iter 50: T = 644.581451350685 K, F = -1.6601671776116045, relative_change = 4.219006924050191e-5 Iter 55: T = 644.4983586026807 K, F = -0.6943321725937407, relative_change = 1.7655996297239142e-5 Iter 60: T = 644.4635968772773 K, F = -0.29038333220493784, relative_change = 7.3859802813906465e-6 Iter 65: T = 644.4490571230095 K, F = -0.12144270907676225, relative_change = 3.089260663473869e-6 Iter 70: T = 644.4429760767724 K, F = -0.05078895422058133, relative_change = 1.2920278911606336e-6 Iter 75: T = 644.4404328498533 K, F = -0.021240575700698094, relative_change = 5.403523715950784e-7 Iter 80: T = 644.439369231356 K, F = -0.008883067406672496, relative_change = 2.2598371746113694e-7 Iter 85: T = 644.4389244115395 K, F = -0.0037150057454909957, relative_change = 9.450942216707563e-8 Iter 90: T = 644.438738382255 K, F = -0.0015536599222329417, relative_change = 3.952502724310831e-8 Iter 95: T = 644.4386605825297 K, F = -0.0006497591607689257, relative_change = 1.6529848601049462e-8 Iter 100: T = 644.4386280457454 K, F = -0.000271737044826581, relative_change = 6.912981857282801e-9 Iter 105: T = 644.438614438472 K, F = -0.00011364367837896072, relative_change = 2.8910918874050556e-9 Iter 110: T = 644.4386087477474 K, F = -4.7527143133330174e-5, relative_change = 1.2090891959950617e-9 Iter 115: T = 644.4386063678184 K, F = -1.9876418793807193e-5, relative_change = 5.056555487418428e-10 Iter 120: T = 644.4386053725037 K, F = -8.31255621069893e-6, relative_change = 2.1147120347382624e-10 Iter 125: T = 644.4386049562512 K, F = -3.4764112587515328e-6, relative_change = 8.843980795855679e-11 Iter 130: T = 644.4386047821694 K, F = -1.4538764290250583e-6, relative_change = 3.698657689596579e-11 Iter 135: T = 644.4386047093664 K, F = -6.080289820520335e-7, relative_change = 1.5468240809722618e-11 Iter 140: T = 644.4386046789192 K, F = -2.5428513816816434e-7, relative_change = 6.4690070185945694e-12 Iter 145: T = 644.4386046661858 K, F = -1.0634538444298514e-7, relative_change = 2.7054236963175164e-12 Iter 150: T = 644.4386046608605 K, F = -4.447438634036516e-8, relative_change = 1.131427182471148e-12 Iter 155: T = 644.4386046586336 K, F = -1.8600815110403346e-8, relative_change = 4.73204232011532e-13 Converged in 160 iterations to T = 644.4386046577022 K Iter 1: T = 965.1086531609621 K, F = -7950.026567514044, relative_change = 0.03489134683903784 Iter 2: T = 932.1878565615335 K, F = -6743.051202105946, relative_change = 0.03411097443961892 Iter 3: T = 901.2080778745152 K, F = -5718.113624614804, relative_change = 0.03323340726759763 Iter 5: T = 844.9588029317231 K, F = -4108.884325198161, relative_change = 0.03116731115023215 Iter 10: T = 736.1653936807021 K, F = -1788.3010123227093, relative_change = 0.02422310568029616 Iter 15: T = 667.9672742171352 K, F = -770.1743989201321, relative_change = 0.015920205125288068 Iter 20: T = 630.5602826894665 K, F = -328.013985272105, relative_change = 0.008788013479632944 Iter 25: T = 612.3116471149256 K, F = -138.50322450730124, relative_change = 0.0042500902749901155 Iter 30: T = 604.0744133854774 K, F = -58.1861962090625, relative_change = 0.0019027051163571366 Iter 35: T = 600.5078607279465 K, F = -24.382812590003148, relative_change = 0.000819980076684397 Iter 40: T = 598.9936373730068 K, F = -10.205911155942863, relative_change = 0.00034735830639928195 Iter 45: T = 598.3563011895823 K, F = -4.2697770405702915, relative_change = 0.00014605949583533382 Iter 50: T = 598.089039534406 K, F = -1.7859428774672386, relative_change = 6.122312147211861e-5 Iter 55: T = 597.9771409702952 K, F = -0.7469501513645693, relative_change = 2.5628685230305764e-5 Iter 60: T = 597.9303214761106 K, F = -0.3123917901835381, relative_change = 1.0722503630151788e-5 Iter 65: T = 597.9107371221942 K, F = -0.13064743241869156, relative_change = 4.485028331652498e-6 Iter 70: T = 597.90254603224 K, F = -0.05463857100733682, relative_change = 1.8758234890979143e-6 Iter 75: T = 597.8991203017785 K, F = -0.02285054743052134, relative_change = 7.845147131722685e-7 Iter 80: T = 597.8976875996048 K, F = -0.009556379612547239, relative_change = 3.280974323792015e-7 Iter 85: T = 597.8970884228106 K, F = -0.003996593441926322, relative_change = 1.3721496591566896e-7 Iter 90: T = 597.8968378392839 K, F = -0.0016714233436858628, relative_change = 5.738506007407352e-8 Iter 95: T = 597.8967330421492 K, F = -0.000699009243857962, relative_change = 2.3999138863226467e-8 Iter 100: T = 597.8966892147166 K, F = -0.0002923340203959679, relative_change = 1.0036730214948155e-8 Iter 105: T = 597.8966708855575 K, F = -0.00012225758012285315, relative_change = 4.197481106905673e-9 Iter 110: T = 597.8966632200836 K, F = -5.1129580085407245e-5, relative_change = 1.7554368350552254e-9 Iter 115: T = 597.8966600142908 K, F = -2.13830002183113e-5, relative_change = 7.341446403963325e-10 Iter 120: T = 597.89665867359 K, F = -8.942625956243067e-6, relative_change = 3.070280559278635e-10 Iter 125: T = 597.8966581128929 K, F = -3.739912876776774e-6, relative_change = 1.2840279696830962e-10 Iter 130: T = 597.8966578784026 K, F = -1.5640756933499311e-6, relative_change = 5.3699564853061084e-11 Iter 135: T = 597.896657780336 K, F = -6.541149326633189e-7, relative_change = 2.2457792435931716e-11 Iter 140: T = 597.8966577393234 K, F = -2.735581291490874e-7, relative_change = 9.392098206020431e-12 Iter 145: T = 597.8966577221714 K, F = -1.1440608804758057e-7, relative_change = 3.9279154956884785e-12 Iter 150: T = 597.8966577149982 K, F = -4.784523649492556e-8, relative_change = 1.6426752198350942e-12 Iter 155: T = 597.8966577119984 K, F = -2.0009737589088417e-8, relative_change = 6.869962926668707e-13 Iter 160: T = 597.8966577107437 K, F = -8.367774084749868e-9, relative_change = 2.872916123242573e-13 Converged in 162 iterations to T = 597.8966577104783 K Iter 1: T = 979.9624017318077 K, F = -4565.5858260842715, relative_change = 0.020037598268192205 Iter 2: T = 961.9762192849665 K, F = -3856.7532436147976, relative_change = 0.018353951554728697 Iter 3: T = 945.9218372323189 K, F = -3256.4522253781956, relative_change = 0.01668895938465165 Iter 5: T = 919.0892869069424 K, F = -2318.422357253724, relative_change = 0.013504482633051516 Iter 10: T = 876.4163933888512 K, F = -984.445186711467, relative_change = 0.007116519453400622 Iter 15: T = 856.1781758629666 K, F = -414.8892437004641, relative_change = 0.003343313668078237 Iter 20: T = 847.1873310474218 K, F = -174.12672217752063, relative_change = 0.0014746890902793237 Iter 25: T = 843.3244297759919 K, F = -72.93442912817328, relative_change = 0.0006312077970548278 Iter 30: T = 841.6900399444323 K, F = -30.522124709713847, relative_change = 0.00026659848201683036 Iter 35: T = 841.0031471857196 K, F = -12.768257621526827, relative_change = 0.00011195958679472887 Iter 40: T = 840.7152855435319 K, F = -5.340459242507498, relative_change = 4.690464958915244e-5 Iter 45: T = 840.5947939341733 K, F = -2.233552680300768, relative_change = 1.9630430593599744e-5 Iter 50: T = 840.5443846103601 K, F = -0.9341174541004986, relative_change = 8.212192333041265e-6 Iter 55: T = 840.523299627441 K, F = -0.39066240749822345, relative_change = 3.434876425465866e-6 Iter 60: T = 840.5144810756468 K, F = -0.16338026719988696, relative_change = 1.4365832285725298e-6 Iter 65: T = 840.5107929539929 K, F = -0.06832768085769847, relative_change = 6.008097110985919e-7 Iter 70: T = 840.5092505203347 K, F = -0.02857546996722915, relative_change = 2.512681485764752e-7 Iter 75: T = 840.508605453161 K, F = -0.011950605917870005, relative_change = 1.0508375188779119e-7 Iter 80: T = 840.508335677841 K, F = -0.004997886658221873, relative_change = 4.394735194025983e-8 Iter 85: T = 840.5082228544888 K, F = -0.0020901759834532907, relative_change = 1.8379320010972208e-8 Iter 90: T = 840.5081756703994 K, F = -0.0008741365740800866, relative_change = 7.686453317689392e-9 Iter 95: T = 840.508155937447 K, F = -0.0003655743577195558, relative_change = 3.214566959195882e-9 Iter 100: T = 840.5081476848901 K, F = -0.00015288756273168502, relative_change = 1.3443703592085115e-9 Iter 105: T = 840.5081442335722 K, F = -6.393940521509656e-5, relative_change = 5.622317558166673e-10 Iter 110: T = 840.5081427901899 K, F = -2.674022422732847e-5, relative_change = 2.3513204870474887e-10 Iter 115: T = 840.5081421865502 K, F = -1.1183082119670118e-5, relative_change = 9.833503998577884e-11 Iter 120: T = 840.5081419341009 K, F = -4.676901037337089e-6, relative_change = 4.1124910490001316e-11 Iter 125: T = 840.5081418285234 K, F = -1.9559355501908016e-6, relative_change = 1.719892591948343e-11 Iter 130: T = 840.5081417843697 K, F = -8.179975010680351e-7, relative_change = 7.192812884523821e-12 Iter 135: T = 840.508141765904 K, F = -3.4209521815320443e-7, relative_change = 3.008110525901338e-12 Iter 140: T = 840.5081417581816 K, F = -1.4306985796075367e-7, relative_change = 1.2580413956474594e-12 Iter 145: T = 840.5081417549518 K, F = -5.983055695324424e-8, relative_change = 5.261018529413016e-13 Converged in 150 iterations to T = 840.5081417536012 K Iter 1: T = 976.3572841001193 K, F = -5387.015307816694, relative_change = 0.023642715899880727 Iter 2: T = 954.8778104714153 K, F = -4555.176993532203, relative_change = 0.021999604016372992 Iter 3: T = 935.4706081953883 K, F = -3850.045420143563, relative_change = 0.02032427820942427 Iter 5: T = 902.4545963874556 K, F = -2746.5206594799474, relative_change = 0.016969982615673125 Iter 10: T = 848.0342965968808 K, F = -1171.2986419332262, relative_change = 0.009563970157482029 Iter 15: T = 821.1385419501419 K, F = -495.0231051001062, relative_change = 0.004689265250693982 Iter 20: T = 808.9045879427078 K, F = -208.06267549930985, relative_change = 0.002114627622676655 Iter 25: T = 803.5873043972738 K, F = -87.20790668975569, relative_change = 0.00091440554587088 Iter 30: T = 801.3258885384552 K, F = -36.50622161333177, relative_change = 0.0003879357710507238 Iter 35: T = 800.3733481214864 K, F = -15.273504368376061, relative_change = 0.00016322549367728497 Iter 40: T = 799.9737815588088 K, F = -6.3886459786902146, relative_change = 6.843686750264708e-5 Iter 45: T = 799.8064665425836 K, F = -2.671998052363077, relative_change = 2.865166505136741e-5 Iter 50: T = 799.7364563277478 K, F = -1.1174947580990449, relative_change = 1.1987820060872189e-5 Iter 55: T = 799.7071707288615 K, F = -0.46735547324909077, relative_change = 5.0143861221594455e-6 Iter 60: T = 799.6949220059406 K, F = -0.19545465831406128, relative_change = 2.0972400191234568e-6 Iter 65: T = 799.6897992450632 K, F = -0.08174165037812631, relative_change = 8.771194845383876e-7 Iter 70: T = 799.6876568105356 K, F = -0.0341853655250991, relative_change = 3.6682685667903914e-7 Iter 75: T = 799.6867608127523 K, F = -0.01429673356564054, relative_change = 1.5341224911508692e-7 Iter 80: T = 799.6863860947159 K, F = -0.005979065667285566, relative_change = 6.415898805539121e-8 Iter 85: T = 799.686229382972 K, F = -0.0025005168328856575, relative_change = 2.6832081838555254e-8 Iter 90: T = 799.6861638442167 K, F = -0.001045746030098993, relative_change = 1.1221501747994876e-8 Iter 95: T = 799.6861364351209 K, F = -0.0004373434847891877, relative_change = 4.692966875959934e-9 Iter 100: T = 799.6861249723087 K, F = -0.00018290226911488183, relative_change = 1.96265493583193e-9 Iter 105: T = 799.6861201784235 K, F = -7.649191269376576e-5, relative_change = 8.208057505854697e-10 Iter 110: T = 799.6861181735635 K, F = -3.198983252916676e-5, relative_change = 3.4327078365468284e-10 Iter 115: T = 799.686117335107 K, F = -1.3378529180596566e-5, relative_change = 1.4355993313529265e-10 Iter 120: T = 799.6861169844547 K, F = -5.595060955321252e-6, relative_change = 6.003848161991495e-11 Iter 125: T = 799.6861168378076 K, F = -2.3399220412390065e-6, relative_change = 2.510881788589141e-11 Iter 130: T = 799.6861167764781 K, F = -9.785858648969636e-7, relative_change = 1.0500834576252349e-11 Iter 135: T = 799.6861167508292 K, F = -4.0925562561078266e-7, relative_change = 4.391567238760662e-12 Iter 140: T = 799.6861167401025 K, F = -1.7115417272339783e-7, relative_change = 1.8365906556214188e-12 Iter 145: T = 799.6861167356166 K, F = -7.157797354828688e-8, relative_change = 7.68076146078328e-13 Iter 150: T = 799.6861167337405 K, F = -2.993639791615266e-8, relative_change = 3.2123615686955934e-13 Converged in 153 iterations to T = 799.6861167331913 K Iter 1: T = 980.8052709396956 K, F = -4373.537275291431, relative_change = 0.0191947290603044 Iter 2: T = 963.6240490616468 K, F = -3693.659669304315, relative_change = 0.01751746487005285 Iter 3: T = 948.3308530280425 K, F = -3118.020243665777, relative_change = 0.01587050058422318 Iter 5: T = 922.8713544443383 K, F = -2218.871786406955, relative_change = 0.012752856795884516 Iter 10: T = 882.6899903218551 K, F = -941.3122951003617, relative_change = 0.006626400422043428 Iter 15: T = 863.7919749753125 K, F = -396.49250306399995, relative_change = 0.003087082709000857 Iter 20: T = 855.4345184621249 K, F = -166.35979430901065, relative_change = 0.001356009314960827 Iter 25: T = 851.85146437062 K, F = -69.67246087374672, relative_change = 0.0005793173321097515 Iter 30: T = 850.3369186140947 K, F = -29.155450703028905, relative_change = 0.0002444825899042765 Iter 35: T = 849.7006525649765 K, F = -12.196258730249552, relative_change = 0.00010263639786203997 Iter 40: T = 849.4340533563617 K, F = -5.101165177730164, relative_change = 4.299251329031241e-5 Iter 45: T = 849.3224697317364 K, F = -2.1334634937090056, relative_change = 1.799203453612203e-5 Iter 50: T = 849.2757885999542 K, F = -0.8922565885705258, relative_change = 7.526593703190212e-6 Iter 55: T = 849.2562632757806 K, F = -0.3731552785091652, relative_change = 3.1480805643955604e-6 Iter 60: T = 849.2480970766408 K, F = -0.15605850416595723, relative_change = 1.3166294709594082e-6 Iter 65: T = 849.2446817914813 K, F = -0.06526561941612763, relative_change = 5.506414649891064e-7 Iter 70: T = 849.2432534638963 K, F = -0.02729487708044709, relative_change = 2.3028681247675078e-7 Iter 75: T = 849.2426561176987 K, F = -0.011415046291433972, relative_change = 9.630904073063026e-8 Iter 80: T = 849.2424062999402 K, F = -0.004773909161223555, relative_change = 4.027765145010983e-8 Iter 85: T = 849.2423018230924 K, F = -0.0019965059060473855, relative_change = 1.6844605414394567e-8 Iter 90: T = 849.2422581296132 K, F = -0.0008349626275829802, relative_change = 7.044616998225307e-9 Iter 95: T = 849.2422398564761 K, F = -0.0003491913456441509, relative_change = 2.9461432882274242e-9 Iter 100: T = 849.2422322144315 K, F = -0.0001460359906455544, relative_change = 1.2321123575394313e-9 Iter 105: T = 849.2422290184372 K, F = -6.107399726840157e-5, relative_change = 5.152841280731419e-10 Iter 110: T = 849.2422276818342 K, F = -2.5541877015422543e-5, relative_change = 2.1549799447432035e-10 Iter 115: T = 849.2422271228507 K, F = -1.0681916599919461e-5, relative_change = 9.012382332938265e-11 Iter 120: T = 849.2422268890773 K, F = -4.4673068941847305e-6, relative_change = 3.769087448411263e-11 Iter 125: T = 849.2422267913104 K, F = -1.8682815698944921e-6, relative_change = 1.5762777856640433e-11 Iter 130: T = 849.2422267504231 K, F = -7.813402049805518e-7, relative_change = 6.5922033824318895e-12 Iter 135: T = 849.2422267333236 K, F = -3.2676619921012673e-7, relative_change = 2.7569415091823424e-12 Iter 140: T = 849.2422267261724 K, F = -1.3666043674476214e-7, relative_change = 1.1530104143282275e-12 Iter 145: T = 849.2422267231816 K, F = -5.7152975907470704e-8, relative_change = 4.822022964506197e-13 Converged in 150 iterations to T = 849.2422267219308 K Iter 1: T = 967.366397655187 K, F = -7435.597336835438, relative_change = 0.032633602344812926 Iter 2: T = 936.8095510904109 K, F = -6302.873318922382, relative_change = 0.03158766589251319 Iter 3: T = 908.297990142385 K, F = -5341.191027647428, relative_change = 0.030434746224394835 Iter 5: T = 857.2715043956905 K, F = -3831.918459238217, relative_change = 0.027814082006515136 Iter 10: T = 762.4578177330752 K, F = -1659.0555989773636, relative_change = 0.019879775783834083 Iter 15: T = 707.0268966913742 K, F = -710.2333736423092, relative_change = 0.011889244260465856 Iter 20: T = 678.5561431292354 K, F = -300.9888002972986, relative_change = 0.006079591823208261 Iter 25: T = 665.290764522406 K, F = -126.70272528028798, relative_change = 0.002806158016682325 Iter 30: T = 659.4535092065632 K, F = -53.14571446772259, relative_change = 0.001227013173483718 Iter 35: T = 656.9567860258123 K, F = -22.2547104600914, relative_change = 0.0005231363085409776 Iter 40: T = 655.9025166596276 K, F = -9.312258863256599, relative_change = 0.00022057849452398117 Iter 45: T = 655.4598095541147 K, F = -3.895391306177943, relative_change = 9.256659707116297e-5 Iter 50: T = 655.2743471921436 K, F = -1.6292558814759708, relative_change = 3.876836325268555e-5 Iter 55: T = 655.1967290100785 K, F = -0.6814017101443256, relative_change = 1.6223191425492506e-5 Iter 60: T = 655.1642584210929 K, F = -0.2849751350591929, relative_change = 6.7864477630681375e-6 Iter 65: T = 655.1506771288468 K, F = -0.11918084487749447, relative_change = 2.8384736318343886e-6 Iter 70: T = 655.1449969721103 K, F = -0.049842999581847014, relative_change = 1.1871360724148806e-6 Iter 75: T = 655.142621410581 K, F = -0.020844963372745495, relative_change = 4.964836658947611e-7 Iter 80: T = 655.1416279132584 K, F = -0.008717617116639709, relative_change = 2.0763700446764401e-7 Iter 85: T = 655.1412124192182 K, F = -0.003645812374574009, relative_change = 8.683655590050369e-8 Iter 90: T = 655.1410386543694 K, F = -0.0015247224116803348, relative_change = 3.6316133834141945e-8 Iter 95: T = 655.1409659837857 K, F = -0.0006376571450050217, relative_change = 1.518784945410572e-8 Iter 100: T = 655.1409355920712 K, F = -0.00026667583695971775, relative_change = 6.351741513544187e-9 Iter 105: T = 655.1409228818918 K, F = -0.00011152702075833965, relative_change = 2.6563744249984095e-9 Iter 110: T = 655.1409175663426 K, F = -4.6641932214985804e-5, relative_change = 1.1109275564973117e-9 Iter 115: T = 655.1409153433165 K, F = -1.9506212832476333e-5, relative_change = 4.646031731425411e-10 Iter 120: T = 655.1409144136203 K, F = -8.157729817159787e-6, relative_change = 1.9430256487249873e-10 Iter 125: T = 655.1409140248104 K, F = -3.4116598536249043e-6, relative_change = 8.125964903992046e-11 Iter 130: T = 655.1409138622054 K, F = -1.4267971977788285e-6, relative_change = 3.39837629347683e-11 Iter 135: T = 655.140913794202 K, F = -5.967032297715669e-7, relative_change = 1.4212406040996617e-11 Iter 140: T = 655.1409137657623 K, F = -2.495485788012175e-7, relative_change = 5.943801797364705e-12 Iter 145: T = 655.1409137538684 K, F = -1.0436465935903527e-7, relative_change = 2.4857799347650714e-12 Iter 150: T = 655.1409137488943 K, F = -4.3646608383074437e-8, relative_change = 1.0395843191503156e-12 Iter 155: T = 655.140913746814 K, F = -1.8253123790223924e-8, relative_change = 4.3475683383160055e-13 Converged in 159 iterations to T = 655.1409137460631 K Iter 1: T = 973.5587911649286 K, F = -6024.6545851539095, relative_change = 0.026441208835071405 Iter 2: T = 949.3105538589125 K, F = -5098.266943615428, relative_change = 0.02490680329330857 Iter 3: T = 927.187512900866 K, F = -4312.512676056682, relative_change = 0.023304324246809675 Iter 5: T = 888.9932437728781 K, F = -3081.527433170731, relative_change = 0.019973490429435643 Iter 10: T = 823.9968950541688 K, F = -1319.3533323761326, relative_change = 0.011968894598986172 Iter 15: T = 790.5690414799624 K, F = -559.1806188442837, relative_change = 0.006129346916641974 Iter 20: T = 774.9806160932118 K, F = -235.40297373741475, relative_change = 0.0028315155498363277 Iter 25: T = 768.1180231206696 K, F = -98.74295212127123, relative_change = 0.0012386107272241663 Iter 30: T = 765.182118828929 K, F = -41.34901193378029, relative_change = 0.0005281782711194139 Iter 35: T = 763.9422850541924 K, F = -17.302168091544683, relative_change = 0.0002227221020777875 Iter 40: T = 763.4216353687303 K, F = -7.237649567574597, relative_change = 9.346931261811042e-5 Iter 45: T = 763.2035170309791 K, F = -3.027165519813354, relative_change = 3.914698822469816e-5 Iter 50: T = 763.1122312966758 K, F = -1.2660482623222877, relative_change = 1.6381729663228887e-5 Iter 55: T = 763.074042946856 K, F = -0.5294855132991627, relative_change = 6.85278410521468e-6 Iter 60: T = 763.0580700989723 K, F = -0.22143874124858653, relative_change = 2.866222189909187e-6 Iter 65: T = 763.051389709165 K, F = -0.09260860181441555, relative_change = 1.1987418842761556e-6 Iter 70: T = 763.048595828435 K, F = -0.03873007147283014, relative_change = 5.013375357968227e-7 Iter 75: T = 763.0474273833154 K, F = -0.01619738685372607, relative_change = 2.0966698244007735e-7 Iter 80: T = 763.0469387237177 K, F = -0.00677394209203841, relative_change = 8.768552242699526e-8 Iter 85: T = 763.0467343601068 K, F = -0.0028329437382337286, relative_change = 3.6671182759150926e-8 Iter 90: T = 763.0466488927462 K, F = -0.0011847709470368395, relative_change = 1.5336335314441384e-8 Iter 95: T = 763.0466131492652 K, F = -0.0004954853663582393, relative_change = 6.413840106108066e-9 Iter 100: T = 763.0465982009129 K, F = -0.0002072178990052409, relative_change = 2.6823447987542837e-9 Iter 105: T = 763.046591949333 K, F = -8.66610007064228e-5, relative_change = 1.121788680819856e-9 Iter 110: T = 763.0465893348476 K, F = -3.624266474255844e-5, relative_change = 4.691454218482979e-10 Iter 115: T = 763.0465882414386 K, F = -1.5157115554109701e-5, relative_change = 1.9620222380615304e-10 Iter 120: T = 763.0465877841618 K, F = -6.338885447654263e-6, relative_change = 8.205409666443106e-11 Iter 125: T = 763.0465875929233 K, F = -2.6509967411270097e-6, relative_change = 3.431599212659562e-11 Iter 130: T = 763.046587512945 K, F = -1.1086788790359847e-6, relative_change = 1.4351362682827694e-11 Iter 135: T = 763.0465874794971 K, F = -4.636627163323581e-7, relative_change = 6.001910861479954e-12 Iter 140: T = 763.046587465509 K, F = -1.9391063921236906e-7, relative_change = 2.51008832660285e-12 Iter 145: T = 763.0465874596588 K, F = -8.109473881301454e-8, relative_change = 1.0497358890553394e-12 Iter 150: T = 763.0465874572122 K, F = -3.391521674611653e-8, relative_change = 4.3901763203310354e-13 Converged in 154 iterations to T = 763.0465874563292 K Iter 1: T = 969.9199792022762 K, F = -6853.761352248032, relative_change = 0.030080020797723792 Iter 2: T = 941.9954192749532 K, F = -5805.646762056928, relative_change = 0.02879058120886423 Iter 3: T = 916.1840392005416 K, F = -4916.088795049973, relative_change = 0.027400749033661322 Iter 5: T = 870.6976975108103 K, F = -3520.8897059495034, relative_change = 0.024359547397965253 Iter 10: T = 789.4639711766669 K, F = -1516.6534606816463, relative_change = 0.0160596499329858 Iter 15: T = 744.8057031207718 K, F = -646.0508996176542, relative_change = 0.008889369387961097 Iter 20: T = 722.9823601545554 K, F = -272.82565116051506, relative_change = 0.00430680322286787 Iter 25: T = 713.1217280579975 K, F = -114.62312466792446, relative_change = 0.0019299041697840975 Iter 30: T = 708.850179398408 K, F = -48.03398926267758, relative_change = 0.0008320641215287923 Iter 35: T = 707.0362396230416 K, F = -20.10583711029511, relative_change = 0.00035254459061940835 Iter 40: T = 706.2726797906599 K, F = -8.411586794902645, relative_change = 0.00014825232398141933 Iter 45: T = 705.9524742933523 K, F = -3.5183682357049424, relative_change = 6.214441248800926e-5 Iter 50: T = 705.8184066236712 K, F = -1.4715186272062875, relative_change = 2.6014722680852696e-5 Iter 55: T = 705.7623109492141 K, F = -0.6154232948494814, relative_change = 1.0884079249650327e-5 Iter 60: T = 705.7388463464041 K, F = -0.25738028139721814, relative_change = 4.552623968453327e-6 Iter 65: T = 705.7290323431329 K, F = -0.10764001642955817, relative_change = 1.9040967779739631e-6 Iter 70: T = 705.7249278652451 K, F = -0.04501642938274897, relative_change = 7.963396375446842e-7 Iter 75: T = 705.7232112982974 K, F = -0.018826423943544612, relative_change = 3.330428789263956e-7 Iter 80: T = 705.7224934050788 K, F = -0.00787343804932572, relative_change = 1.392832320547335e-7 Iter 85: T = 705.7221931727881 K, F = -0.003292766296611238, relative_change = 5.825003743861592e-8 Iter 90: T = 705.7220676119235 K, F = -0.0013770742731623598, relative_change = 2.436088343077427e-8 Iter 95: T = 705.7220151008466 K, F = -0.0005759089217473035, relative_change = 1.018801625522004e-8 Iter 100: T = 705.7219931400831 K, F = -0.00024085199181023143, relative_change = 4.260750751644742e-9 Iter 105: T = 705.7219839558287 K, F = -0.00010072717923448327, relative_change = 1.7818969567194111e-9 Iter 110: T = 705.7219801148638 K, F = -4.212530975300499e-5, relative_change = 7.452106151022206e-10 Iter 115: T = 705.7219785085264 K, F = -1.7617307251582837e-5, relative_change = 3.116559757696763e-10 Iter 120: T = 705.7219778367369 K, F = -7.367768148802689e-6, relative_change = 1.3033824915895765e-10 Iter 125: T = 705.7219775557866 K, F = -3.081289976059054e-6, relative_change = 5.450903628896994e-11 Iter 130: T = 705.7219774382897 K, F = -1.2886321891780739e-6, relative_change = 2.279632860408728e-11 Iter 135: T = 705.7219773891511 K, F = -5.389212744955074e-7, relative_change = 9.533695163273748e-12 Iter 140: T = 705.7219773686008 K, F = -2.2538432498109273e-7, relative_change = 3.987123075182627e-12 Iter 145: T = 705.7219773600063 K, F = -9.4258670091385e-8, relative_change = 1.6674669749580224e-12 Iter 150: T = 705.721977356412 K, F = -3.941946391528006e-8, relative_change = 6.973433232947816e-13 Iter 155: T = 705.721977354909 K, F = -1.648599290415831e-8, relative_change = 2.916426541067244e-13 Converged in 157 iterations to T = 705.7219773545909 K Iter 1: T = 973.523063454548 K, F = -6032.795177949937, relative_change = 0.026476936545451923 Iter 2: T = 949.239151170776 K, F = -5105.20570469128, relative_change = 0.024944362589213294 Iter 3: T = 927.0807735575523 K, F = -4318.426520628627, relative_change = 0.023343303514076395 Iter 5: T = 888.8180866142987 K, F = -3085.8202521619983, relative_change = 0.02001379232166694 Iter 10: T = 823.6770390183558 K, F = -1321.2626712619667, relative_change = 0.012003176615400209 Iter 15: T = 790.155876393752 K, F = -560.012877841973, relative_change = 0.00615078617201727 Iter 20: T = 774.5181857347229 K, F = -235.7589710174151, relative_change = 0.002842450566428419 Iter 25: T = 767.6325653039302 K, F = -98.8934395963244, relative_change = 0.0012436140265648836 Iter 30: T = 764.6865418912676 K, F = -41.41224737357586, relative_change = 0.0005303538333304819 Iter 35: T = 763.4423851492452 K, F = -17.328667849835274, relative_change = 0.00022364712566020216 Iter 40: T = 762.9199111912757 K, F = -7.248741631916488, relative_change = 9.385887194921638e-5 Iter 45: T = 762.7010270275442 K, F = -3.031806032203864, relative_change = 3.931038306233097e-5 Iter 50: T = 762.6094205071794 K, F = -1.2679892742396066, relative_change = 1.645014693981605e-5 Iter 55: T = 762.571097911684 K, F = -0.5302973191699201, relative_change = 6.881411669544885e-6 Iter 60: T = 762.5550689050559 K, F = -0.2217782571700888, relative_change = 2.878197141568516e-6 Iter 65: T = 762.548365026262 K, F = -0.09275059300498645, relative_change = 1.203750400353468e-6 Iter 70: T = 762.5455613216798 K, F = -0.03878945416026347, relative_change = 5.034322354456841e-7 Iter 75: T = 762.5443887680243 K, F = -0.016222221450756136, relative_change = 2.1054302456030172e-7 Iter 80: T = 762.5438983901734 K, F = -0.006784328226779546, relative_change = 8.805189611856864e-8 Iter 85: T = 762.5436933079658 K, F = -0.002837287343955719, relative_change = 3.6824405014543886e-8 Iter 90: T = 762.543607540079 K, F = -0.0011865874966101586, relative_change = 1.5400414784662158e-8 Iter 95: T = 762.5435716709144 K, F = -0.0004962450708539956, relative_change = 6.4406389410206015e-9 Iter 100: T = 762.5435566699995 K, F = -0.0002075356148710794, relative_change = 2.693552372587621e-9 Iter 105: T = 762.5435503964375 K, F = -8.679387312038322e-5, relative_change = 1.1264758204141991e-9 Iter 110: T = 762.5435477727588 K, F = -3.629823354844852e-5, relative_change = 4.711056393254907e-10 Iter 115: T = 762.543546675505 K, F = -1.5180353508337241e-5, relative_change = 1.9702198962885172e-10 Iter 120: T = 762.5435462166204 K, F = -6.348604484229803e-6, relative_change = 8.239694087140227e-11 Iter 125: T = 762.5435460247095 K, F = -2.6550635742195183e-6, relative_change = 3.4459402399433466e-11 Iter 130: T = 762.5435459444499 K, F = -1.1103789626654148e-6, relative_change = 1.4411329310928268e-11 Iter 135: T = 762.5435459108845 K, F = -4.643730234787924e-7, relative_change = 6.026980689369726e-12 Iter 140: T = 762.543545896847 K, F = -1.9420826757876597e-7, relative_change = 2.5205802648637642e-12 Iter 145: T = 762.5435458909764 K, F = -8.122044115044247e-8, relative_change = 1.0541396801853862e-12 Iter 150: T = 762.5435458885212 K, F = -3.396694803203815e-8, relative_change = 4.408484764271706e-13 Converged in 154 iterations to T = 762.543545887635 K Iter 1: T = 964.3075990939758 K, F = -8132.54749867603, relative_change = 0.03569240090602424 Iter 2: T = 930.5397099122023 K, F = -6899.352460367466, relative_change = 0.03501775700357487 Iter 3: T = 898.665326743093 K, F = -5852.090223549345, relative_change = 0.03425365175669569 Iter 5: T = 840.4840414004244 K, F = -4207.615705465067, relative_change = 0.03243147455763001 Iter 10: T = 726.1878548341773 K, F = -1835.0364023952527, relative_change = 0.026053970871239857 Iter 15: T = 652.3953426464974 K, F = -792.4039883166621, relative_change = 0.01785876669382655 Iter 20: T = 610.6337974121443 K, F = -338.32102248468993, relative_change = 0.010245744399222535 Iter 25: T = 589.7589991633193 K, F = -143.09750863407083, relative_change = 0.00508501355184005 Iter 30: T = 580.1983291851192 K, F = -60.17128737453942, relative_change = 0.0023082167157909075 Iter 35: T = 576.0285139154888 K, F = -25.22553582143378, relative_change = 0.0010012183457036626 Iter 40: T = 574.2523046801249 K, F = -10.56065752903515, relative_change = 0.0004253476734321352 Iter 45: T = 573.5036261049954 K, F = -4.418549253344532, relative_change = 0.0001790715133132553 Iter 50: T = 573.1894827173732 K, F = -1.8482341199826775, relative_change = 7.509932078155924e-5 Iter 55: T = 573.0579217389259 K, F = -0.7730138984589876, relative_change = 3.144422093208155e-5 Iter 60: T = 573.0028693743026 K, F = -0.32329420391439206, relative_change = 1.3156794068798651e-5 Iter 65: T = 572.9798402166416 K, F = -0.13520734469316303, relative_change = 5.503456515114674e-6 Iter 70: T = 572.9702081677801 K, F = -0.05654564947302676, relative_change = 2.301808606640946e-6 Iter 75: T = 572.9661797584637 K, F = -0.023648122436090907, relative_change = 9.626783725741473e-7 Iter 80: T = 572.9644949995892 K, F = -0.009889937106337732, relative_change = 4.0260963072663e-7 Iter 85: T = 572.9637904080624 K, F = -0.00413609153740313, relative_change = 1.683772119003235e-7 Iter 90: T = 572.963495738554 K, F = -0.001729763177970356, relative_change = 7.04175455616201e-8 Iter 95: T = 572.963372504086 K, F = -0.0007234076712006043, relative_change = 2.9449490807551605e-8 Iter 100: T = 572.9633209659318 K, F = -0.000302537736580899, relative_change = 1.231613440463242e-8 Iter 105: T = 572.9632994120552 K, F = -0.00012652489648445897, relative_change = 5.150755496922941e-9 Iter 110: T = 572.9632903979659 K, F = -5.2914223386324455e-5, relative_change = 2.1541076496352483e-9 Iter 115: T = 572.9632866281659 K, F = -2.2129360203515525e-5, relative_change = 9.008735749760998e-10 Iter 120: T = 572.9632850515903 K, F = -9.254762359689472e-6, relative_change = 3.767560781275618e-10 Iter 125: T = 572.9632843922477 K, F = -3.870452498500043e-6, relative_change = 1.5756390658440183e-10 Iter 130: T = 572.9632841165028 K, F = -1.6186698129083688e-6, relative_change = 6.589512204975798e-11 Iter 135: T = 572.963284001183 K, F = -6.769476138535069e-7, relative_change = 2.7558150107688694e-11 Iter 140: T = 572.9632839529547 K, F = -2.831069305098133e-7, relative_change = 1.1525121192511239e-11 Iter 145: T = 572.9632839327851 K, F = -1.1839830632576209e-7, relative_change = 4.819927322739529e-12 Iter 150: T = 572.96328392435 K, F = -4.951540671926935e-8, relative_change = 2.0157438832177335e-12 Iter 155: T = 572.9632839208223 K, F = -2.0707724479596124e-8, relative_change = 8.429996181387214e-13 Iter 160: T = 572.963283919347 K, F = -8.65991989229542e-9, relative_change = 3.52540385091546e-13 Converged in 163 iterations to T = 572.9632839189151 K Iter 1: T = 963.602607156877 K, F = -8293.180582164447, relative_change = 0.036397392843123016 Iter 2: T = 929.0855590247289 K, F = -7036.964112049837, relative_change = 0.035820833065189656 Iter 3: T = 896.4154822936888 K, F = -5970.106521026572, relative_change = 0.03516369016146832 Iter 5: T = 836.497837959539 K, F = -4294.713667336772, relative_change = 0.03357855393686282 Iter 10: T = 717.0874475036187 K, F = -1876.5928784186763, relative_change = 0.027819650411696494 Iter 15: T = 637.7583200474928 K, F = -812.4890569607982, relative_change = 0.019885909692705657 Iter 20: T = 591.3763794622911 K, F = -347.8248454890859, relative_change = 0.011894229183014476 Iter 25: T = 567.5517203693605 K, F = -147.40496963443616, relative_change = 0.006082643603358685 Iter 30: T = 556.450576762162 K, F = -62.05104079368141, relative_change = 0.0028076999692612996 Iter 35: T = 551.5655431450405 K, F = -26.02747365788646, relative_change = 0.0012277158367867784 Iter 40: T = 549.4760819294529 K, F = -10.898983804692088, relative_change = 0.00052344131990814 Iter 45: T = 548.5937789827714 K, F = -4.560571043523943, relative_change = 0.00022070808807241694 Iter 50: T = 548.2232829312833 K, F = -1.9077230614810194, relative_change = 9.262115684515518e-5 Iter 55: T = 548.0680716520209 K, F = -0.7979093588470747, relative_change = 3.879124463075479e-5 Iter 60: T = 548.0031138790855 K, F = -0.33370867012287353, relative_change = 1.6232771890186595e-5 Iter 65: T = 547.9759396084136 K, F = -0.13956330427358082, relative_change = 6.790456389139683e-6 Iter 70: T = 547.9645735769325 K, F = -0.0583674522237026, relative_change = 2.8401504303347516e-6 Iter 75: T = 547.9598199171962 K, F = -0.02441003757307522, relative_change = 1.1878373896301538e-6 Iter 80: T = 547.9578318362592 K, F = -0.010208581821771284, relative_change = 4.967769756288884e-7 Iter 85: T = 547.9570003894314 K, F = -0.004269353035548262, relative_change = 2.077596719392685e-7 Iter 90: T = 547.9566526671027 K, F = -0.0017854948110053448, relative_change = 8.688785720022624e-8 Iter 95: T = 547.9565072452388 K, F = -0.000746715321099295, relative_change = 3.63375887537349e-8 Iter 100: T = 547.9564464280376 K, F = -0.00031228527689886043, relative_change = 1.5196822190890855e-8 Iter 105: T = 547.9564209935505 K, F = -0.00013060143386919854, relative_change = 6.355494010762469e-9 Iter 110: T = 547.9564103565431 K, F = -5.4619079545015214e-5, relative_change = 2.6579437508374397e-9 Iter 115: T = 547.9564059080194 K, F = -2.2842352107615982e-5, relative_change = 1.1115838987261472e-9 Iter 120: T = 547.9564040475935 K, F = -9.552944501611815e-6, relative_change = 4.6487767174907983e-10 Iter 125: T = 547.9564032695412 K, F = -3.995155126501615e-6, relative_change = 1.9441737840371805e-10 Iter 130: T = 547.9564029441503 K, F = -1.6708209616411729e-6, relative_change = 8.130763932239459e-11 Iter 135: T = 547.9564028080682 K, F = -6.987577419181878e-7, relative_change = 3.400384830280219e-11 Iter 140: T = 547.9564027511569 K, F = -2.922290260887195e-7, relative_change = 1.4220824874772329e-11 Iter 145: T = 547.956402727356 K, F = -1.2221379305787927e-7, relative_change = 5.947324849891966e-12 Iter 150: T = 547.9564027174022 K, F = -5.11113741885616e-8, relative_change = 2.487247455825938e-12 Iter 155: T = 547.9564027132393 K, F = -2.1375706843462794e-8, relative_change = 1.0402121506000368e-12 Iter 160: T = 547.9564027114983 K, F = -8.939182449818617e-9, relative_change = 4.350099984514119e-13 Converged in 164 iterations to T = 547.95640271087 K Iter 1: T = 969.4449740604473 K, F = -6961.9917256602785, relative_change = 0.030555025939552657 Iter 2: T = 941.0340671637543 K, F = -5898.087810533893, relative_change = 0.02930636359658043 Iter 3: T = 914.7275694395508 K, F = -4995.067800994067, relative_change = 0.027954883507555067 Iter 5: T = 868.238497264284 K, F = -3578.572266595414, relative_change = 0.024976976037100043 Iter 10: T = 784.6329548122584 K, F = -1542.8717752265022, relative_change = 0.01669978149927572 Iter 15: T = 738.1929840952455 K, F = -657.7547549844546, relative_change = 0.009361191616640735 Iter 20: T = 715.3190189143924 K, F = -277.9197321222554, relative_change = 0.004573334635053017 Iter 25: T = 704.9354682586296 K, F = -116.79731928498965, relative_change = 0.0020583855816436085 Iter 30: T = 700.4269940089749 K, F = -48.95178681252472, relative_change = 0.0008892832516333824 Iter 35: T = 698.510441106587 K, F = -20.491233830853407, relative_change = 0.0003771281000610197 Iter 40: T = 697.7033224933788 K, F = -8.573043228715681, relative_change = 0.0001586512425928019 Iter 45: T = 697.3647853011894 K, F = -3.585940446906637, relative_change = 6.6514228456279e-5 Iter 50: T = 697.223030844223 K, F = -1.499786769394712, relative_change = 2.784590034131526e-5 Iter 55: T = 697.1637169094416 K, F = -0.6272468823074513, relative_change = 1.165054264888503e-5 Iter 60: T = 697.1389057692571 K, F = -0.26232531163210654, relative_change = 4.873280686704796e-6 Iter 65: T = 697.1285285190407 K, F = -0.10970813344812486, relative_change = 2.0382189434311686e-6 Iter 70: T = 697.1241884654968 K, F = -0.04588134872125993, relative_change = 8.524345743918101e-7 Iter 75: T = 697.1223733746627 K, F = -0.019188144959567333, relative_change = 3.565030541283708e-7 Iter 80: T = 697.121614276995 K, F = -0.008024714345959083, relative_change = 1.4909466290512812e-7 Iter 85: T = 697.1212968124097 K, F = -0.003356031893551825, relative_change = 6.23533134240268e-8 Iter 90: T = 697.1211640447757 K, F = -0.0014035327069554793, relative_change = 2.6076925639704807e-8 Iter 95: T = 697.1211085197389 K, F = -0.0005869741552497754, relative_change = 1.0905686150035485e-8 Iter 100: T = 697.1210852985007 K, F = -0.00024547960423493276, relative_change = 4.560888960189516e-9 Iter 105: T = 697.1210755871007 K, F = -0.00010266250284596268, relative_change = 1.907418371357967e-9 Iter 110: T = 697.121071525677 K, F = -4.293468374028109e-5, relative_change = 7.977051458518893e-10 Iter 115: T = 697.1210698271412 K, F = -1.795579675134551e-5, relative_change = 3.336098087788849e-10 Iter 120: T = 697.1210691167933 K, F = -7.509328412980132e-6, relative_change = 1.39519602653009e-10 Iter 125: T = 697.1210688197173 K, F = -3.1404900853182482e-6, relative_change = 5.83487504649468e-11 Iter 130: T = 697.1210686954765 K, F = -1.3133912567520056e-6, relative_change = 2.4402159117253204e-11 Iter 135: T = 697.1210686435176 K, F = -5.492748827995442e-7, relative_change = 1.0205255307613436e-11 Iter 140: T = 697.1210686217877 K, F = -2.297131336259639e-7, relative_change = 4.267956263655203e-12 Iter 145: T = 697.1210686127 K, F = -9.606856199440017e-8, relative_change = 1.7849063066520861e-12 Iter 150: T = 697.1210686088995 K, F = -4.01766667712522e-8, relative_change = 7.464625722857061e-13 Iter 155: T = 697.12106860731 K, F = -1.6802135238691562e-8, relative_change = 3.121753519701269e-13 Converged in 157 iterations to T = 697.1210686069736 K Iter 1: T = 966.4623388854808 K, F = -7641.587987494927, relative_change = 0.03353766111451925 Iter 2: T = 934.9630612408711 K, F = -6479.069344661332, relative_change = 0.032592348793367885 Iter 3: T = 905.4724652486318 K, F = -5491.999354461075, relative_change = 0.031541990496501186 Iter 5: T = 852.3929169558896 K, F = -3942.595073195294, relative_change = 0.029121048286637453 Iter 10: T = 752.2312542432896 K, F = -1710.3966104976237, relative_change = 0.02149043022848912 Iter 15: T = 692.1401280723271 K, F = -733.8109465026884, relative_change = 0.013299003633482255 Iter 20: T = 660.5542843495678 K, F = -311.51114989763636, relative_change = 0.006981078424126615 Iter 25: T = 645.608890509804 K, F = -131.2646128895738, relative_change = 0.0032720555594616166 Iter 30: T = 638.9777812354392 K, F = -55.0867838193631, relative_change = 0.0014415803226283047 Iter 35: T = 636.1304501646598 K, F = -23.07274918402134, relative_change = 0.0006167110813331379 Iter 40: T = 634.9260681945472 K, F = -9.655503176451784, relative_change = 0.00026041614371827206 Iter 45: T = 634.4199547187592 K, F = -4.039140668738297, relative_change = 0.00010935267868707551 Iter 50: T = 634.2078639403696 K, F = -1.6894088502381186, relative_change = 4.581063597193515e-5 Iter 55: T = 634.1190899010173 K, F = -0.7065645834842604, relative_change = 1.9172238527310935e-5 Iter 60: T = 634.0819503750413 K, F = -0.2954996317794507, relative_change = 8.020454881234064e-6 Iter 65: T = 634.066415878136 K, F = -0.12358250451727615, relative_change = 3.3546692211222445e-6 Iter 70: T = 634.0599187630004 K, F = -0.05168385934685754, relative_change = 1.4030360642429614e-6 Iter 75: T = 634.0572015213645 K, F = -0.021614838706681072, relative_change = 5.867792647255863e-7 Iter 80: T = 634.0560651261319 K, F = -0.00903958918939124, relative_change = 2.454003395976428e-7 Iter 85: T = 634.0555898699176 K, F = -0.0037804651174767057, relative_change = 1.0262974510515602e-7 Iter 90: T = 634.055391111716 K, F = -0.001581035828342181, relative_change = 4.292105367661295e-8 Iter 95: T = 634.0553079885964 K, F = -0.0006612080941795218, relative_change = 1.7950109229866385e-8 Iter 100: T = 634.0552732255035 K, F = -0.0002765251259768675, relative_change = 7.50695213117027e-9 Iter 105: T = 634.055258687161 K, F = -0.00011564611059916574, relative_change = 3.139497389719071e-9 Iter 110: T = 634.0552526070521 K, F = -4.8364584957549805e-5, relative_change = 1.3129753726655265e-9 Iter 115: T = 634.055250064278 K, F = -2.022664667838958e-5, relative_change = 5.491019821777045e-10 Iter 120: T = 634.0552490008595 K, F = -8.459026124285618e-6, relative_change = 2.2964103358715233e-10 Iter 125: T = 634.0552485561251 K, F = -3.5376664727637674e-6, relative_change = 9.603864275494518e-11 Iter 130: T = 634.0552483701318 K, F = -1.479494186329422e-6, relative_change = 4.016450247960871e-11 Iter 135: T = 634.0552482923473 K, F = -6.18742559632679e-7, relative_change = 1.6797286068948273e-11 Iter 140: T = 634.0552482598168 K, F = -2.5876571058125464e-7, relative_change = 7.024830600161222e-12 Iter 145: T = 634.0552482462122 K, F = -1.0821811358141531e-7, relative_change = 2.937846417705313e-12 Iter 150: T = 634.0552482405226 K, F = -4.5258105374479385e-8, relative_change = 1.2286423996126485e-12 Iter 155: T = 634.0552482381431 K, F = -1.8927789280365204e-8, relative_change = 5.138413163516896e-13 Converged in 160 iterations to T = 634.055248237148 K Iter 1: T = 966.4314765000217 K, F = -7648.620011379465, relative_change = 0.033568523499978235 Iter 2: T = 934.8999288352059 K, F = -6485.085726415602, relative_change = 0.03262678051320194 Iter 3: T = 905.3756933959563 K, F = -5497.150436936991, relative_change = 0.0315801023496 Iter 5: T = 852.2251723133721 K, F = -3946.3786199748993, relative_change = 0.02916648806550329 Iter 10: T = 751.8753334482261 K, F = -1712.158626678737, relative_change = 0.021548234737360856 Iter 15: T = 691.6154365825699 K, F = -734.6251266100852, relative_change = 0.013351366152643452 Iter 20: T = 659.9137802883871 K, F = -311.8767115455639, relative_change = 0.007015468509497179 Iter 25: T = 644.9048020441345 K, F = -131.42374338999022, relative_change = 0.0032901113205500293 Iter 30: T = 638.2433536974697 K, F = -55.15463812823344, relative_change = 0.0014499610609596837 Iter 35: T = 635.382561198718 K, F = -23.101373869780772, relative_change = 0.0006203789172177698 Iter 40: T = 634.1724039107308 K, F = -9.667519138687776, relative_change = 0.0002619800370198282 Iter 45: T = 633.6638488442005 K, F = -4.044173836655743, relative_change = 0.00011001207065422923 Iter 50: T = 633.4507323042009 K, F = -1.6915151802090844, relative_change = 4.608734627924662e-5 Iter 55: T = 633.3615284595809 K, F = -0.7074457211712813, relative_change = 1.928812793718555e-5 Iter 60: T = 633.3242090402359 K, F = -0.29586817703905777, relative_change = 8.068950270390701e-6 Iter 65: T = 633.308599284622 K, F = -0.12373664206388141, relative_change = 3.374955656977137e-6 Iter 70: T = 633.3020706909944 K, F = -0.0517483228247389, relative_change = 1.4115209835974182e-6 Iter 75: T = 633.2993402839073 K, F = -0.021641798332601825, relative_change = 5.903279149307118e-7 Iter 80: T = 633.2981983825911 K, F = -0.009050864066804665, relative_change = 2.468844547014926e-7 Iter 85: T = 633.2977208236433 K, F = -0.0037851804119071186, relative_change = 1.0325042449910525e-7 Iter 90: T = 633.297521102407 K, F = -0.0015830078229835953, relative_change = 4.318063007058216e-8 Iter 95: T = 633.2974375765341 K, F = -0.000662032806377777, relative_change = 1.8058667330872645e-8 Iter 100: T = 633.2974026450048 K, F = -0.0002768700314142447, relative_change = 7.552352475656715e-9 Iter 105: T = 633.29738803622 K, F = -0.00011579035334868815, relative_change = 3.158484337740767e-9 Iter 110: T = 633.2973819266514 K, F = -4.842490840240021e-5, relative_change = 1.320915925612217e-9 Iter 115: T = 633.2973793715569 K, F = -2.0251875294752253e-5, relative_change = 5.524228335530874e-10 Iter 120: T = 633.2973783029859 K, F = -8.469575861813627e-6, relative_change = 2.3102982148889657e-10 Iter 125: T = 633.2973778560967 K, F = -3.542078542417837e-6, relative_change = 9.661945172405317e-11 Iter 130: T = 633.2973776692022 K, F = -1.4813391547296995e-6, relative_change = 4.040739792595188e-11 Iter 135: T = 633.2973775910408 K, F = -6.195144637843875e-7, relative_change = 1.6898876529254792e-11 Iter 140: T = 633.2973775583527 K, F = -2.5908822287590283e-7, relative_change = 7.067308586944731e-12 Iter 145: T = 633.2973775446821 K, F = -1.0835342673098936e-7, relative_change = 2.955622971740758e-12 Iter 150: T = 633.297377538965 K, F = -4.5315064756135115e-8, relative_change = 1.236086853971218e-12 Iter 155: T = 633.297377536574 K, F = -1.895181489519615e-8, relative_change = 5.169602951543248e-13 Converged in 160 iterations to T = 633.297377535574 K Iter 1: T = 976.3937015595047 K, F = -5378.717555053776, relative_change = 0.023606298440495294 Iter 2: T = 954.9499272782837 K, F = -4548.115004782339, relative_change = 0.021962221025157023 Iter 3: T = 935.5774010870113 K, F = -3844.0369983578375, relative_change = 0.02028643140115872 Iter 5: T = 902.6265026823435 K, F = -2742.177008356284, relative_change = 0.016932803331985415 Iter 10: T = 848.3346834041445 K, F = -1169.3904428119608, relative_change = 0.009535952887221416 Iter 15: T = 821.5149709215284 K, F = -494.2005514132236, relative_change = 0.004673201546883963 Iter 20: T = 809.3190181480363 K, F = -207.7132932006722, relative_change = 0.002106822408922979 Iter 25: T = 804.0189938444689 K, F = -87.06074303978028, relative_change = 0.0009109165325356852 Iter 30: T = 801.7650617486336 K, F = -36.44448381708615, relative_change = 0.0003864343015817666 Iter 35: T = 800.8156998058455 K, F = -15.247650574672234, relative_change = 0.000162589921675434 Iter 40: T = 800.4174712014403 K, F = -6.377827560473181, relative_change = 6.816970961004425e-5 Iter 45: T = 800.2507172665457 K, F = -2.6674725981533527, relative_change = 2.853969826875408e-5 Iter 50: T = 800.1809419713651 K, F = -1.1156019729844955, relative_change = 1.1940952462705034e-5 Iter 55: T = 800.151754665756 K, F = -0.46656385533645217, relative_change = 4.994778223155199e-6 Iter 60: T = 800.1395470584956 K, F = -0.19512358855521073, relative_change = 2.0890384826372054e-6 Iter 65: T = 800.1344414941194 K, F = -0.08160319205262012, relative_change = 8.736892802763501e-7 Iter 70: T = 800.1323062516261 K, F = -0.03412746042476822, relative_change = 3.6539226514906735e-7 Iter 75: T = 800.1314132616816 K, F = -0.014272516932196888, relative_change = 1.5281227897626832e-7 Iter 80: T = 800.1310398015669 K, F = -0.005968937976638, relative_change = 6.390807218101426e-8 Iter 85: T = 800.1308836159025 K, F = -0.0024962813123375893, relative_change = 2.6727145630693984e-8 Iter 90: T = 800.13081829716 K, F = -0.0010439746861604648, relative_change = 1.117761615213265e-8 Iter 95: T = 800.1307909800762 K, F = -0.0004366026866451378, relative_change = 4.6746133793193205e-9 Iter 100: T = 800.1307795557444 K, F = -0.0001825924585727723, relative_change = 1.9549792842352945e-9 Iter 105: T = 800.1307747779523 K, F = -7.636234604535552e-5, relative_change = 8.175956993268105e-10 Iter 110: T = 800.1307727798226 K, F = -3.193564533621185e-5, relative_change = 3.419282924736186e-10 Iter 115: T = 800.1307719441809 K, F = -1.335586832917901e-5, relative_change = 1.4299849672456398e-10 Iter 120: T = 800.1307715947055 K, F = -5.5855833402951305e-6, relative_change = 5.980367602965871e-11 Iter 125: T = 800.1307714485507 K, F = -2.335956159615904e-6, relative_change = 2.5010595491942127e-11 Iter 130: T = 800.1307713874271 K, F = -9.76925770168613e-7, relative_change = 1.0459740509961346e-11 Iter 135: T = 800.1307713618645 K, F = -4.085625588956532e-7, relative_change = 4.37439412417875e-12 Iter 140: T = 800.1307713511738 K, F = -1.7086682979616796e-7, relative_change = 1.8294355174034727e-12 Iter 145: T = 800.1307713467029 K, F = -7.145896563365284e-8, relative_change = 7.650962444059379e-13 Iter 150: T = 800.1307713448331 K, F = -2.9884414054492936e-8, relative_change = 3.1996618978278647e-13 Converged in 153 iterations to T = 800.1307713442856 K Iter 1: T = 965.2750212269918 K, F = -7912.119445412306, relative_change = 0.03472497877300822 Iter 2: T = 932.5296029803551 K, F = -6710.597743684426, relative_change = 0.03392340786464467 Iter 3: T = 901.7343657997818 K, F = -5690.304545263916, relative_change = 0.03302333468251515 Iter 5: T = 845.8810072381834 K, F = -4088.4100527487494, relative_change = 0.030909835592174664 Iter 10: T = 738.1919628985712 K, F = -1778.6559810441784, relative_change = 0.023864103824437037 Iter 15: T = 671.0746925569408 K, F = -765.628595100054, relative_change = 0.015558061306192174 Iter 20: T = 634.4756923428912 K, F = -325.9290465471737, relative_change = 0.008527588030478673 Iter 25: T = 616.699157115408 K, F = -137.58167378057615, relative_change = 0.004105351937528669 Iter 30: T = 608.6953329417196 K, F = -57.78993658612442, relative_change = 0.00183353252369492 Iter 35: T = 605.2341555045826 K, F = -24.214984399415417, relative_change = 0.0007892976933845084 Iter 40: T = 603.7654940768762 K, F = -10.13533745877768, relative_change = 0.0003341992262903372 Iter 45: T = 603.1474845158803 K, F = -4.240193438895879, relative_change = 0.00014049734536334202 Iter 50: T = 602.8883539137599 K, F = -1.773558521906775, relative_change = 5.8886546542534515e-5 Iter 55: T = 602.7798643861407 K, F = -0.7417687352708526, relative_change = 2.4649670723652946e-5 Iter 60: T = 602.7344720887883 K, F = -0.31022448689068893, relative_change = 1.031274717249558e-5 Iter 65: T = 602.7154848678084 K, F = -0.12974097498507353, relative_change = 4.313607113474484e-6 Iter 70: T = 602.7075435518594 K, F = -0.054259468257489896, relative_change = 1.8041232600264665e-6 Iter 75: T = 602.7042222878961 K, F = -0.02269200013515915, relative_change = 7.545271018552431e-7 Iter 80: T = 602.7028332762634 K, F = -0.009490072891693235, relative_change = 3.15555954517184e-7 Iter 85: T = 602.7022523716208 K, F = -0.003968863117753463, relative_change = 1.3196991748375073e-7 Iter 90: T = 602.7020094297692 K, F = -0.0016598261818128734, relative_change = 5.519150903452546e-8 Iter 95: T = 602.7019078284817 K, F = -0.0006941591711488448, relative_change = 2.3081768039311345e-8 Iter 100: T = 602.7018653375918 K, F = -0.0002903056623410616, relative_change = 9.653074519894368e-9 Iter 105: T = 602.701847567391 K, F = -0.00012140929552784119, relative_change = 4.0370316314204855e-9 Iter 110: T = 602.7018401356803 K, F = -5.077481778831272e-5, relative_change = 1.6883349551886236e-9 Iter 115: T = 602.7018370276501 K, F = -2.1234634783262596e-5, relative_change = 7.060818454319463e-10 Iter 120: T = 602.7018357278346 K, F = -8.880577836267722e-6, relative_change = 2.952918623521142e-10 Iter 125: T = 602.7018351842363 K, F = -3.71396392090384e-6, relative_change = 1.2349459098739118e-10 Iter 130: T = 602.7018349568971 K, F = -1.553224708350509e-6, relative_change = 5.164693424567315e-11 Iter 135: T = 602.701834861821 K, F = -6.495766672887093e-7, relative_change = 2.1599349577568676e-11 Iter 140: T = 602.7018348220591 K, F = -2.7166114530130514e-7, relative_change = 9.033120093952854e-12 Iter 145: T = 602.7018348054302 K, F = -1.1361225799033647e-7, relative_change = 3.777769432461207e-12 Iter 150: T = 602.7018347984758 K, F = -4.751500354283067e-8, relative_change = 1.5799415587050498e-12 Iter 155: T = 602.7018347955674 K, F = -1.9871608136767804e-8, relative_change = 6.607592800872136e-13 Iter 160: T = 602.701834794351 K, F = -8.310717170001425e-9, relative_change = 2.7634318553971567e-13 Converged in 162 iterations to T = 602.7018347940935 K Iter 1: T = 964.6020947314529 K, F = -8065.446387539198, relative_change = 0.03539790526854713 Iter 2: T = 931.1461382551922 K, F = -6841.883032220038, relative_change = 0.03468368631894255 Iter 3: T = 899.6018118710215 K, F = -5802.820828986245, relative_change = 0.03387688042532124 Iter 5: T = 842.1357937600776 K, F = -4171.289796448084, relative_change = 0.03196196277695058 Iter 10: T = 729.8992382949332 K, F = -1817.7968711650738, relative_change = 0.0253604303333527 Iter 15: T = 658.2425971949874 K, F = -784.1630423659658, relative_change = 0.017105840420849745 Iter 20: T = 618.1787847634681 K, F = -334.4768826973301, relative_change = 0.009666471625970929 Iter 25: T = 598.3447418650602 K, F = -141.3758660392827, relative_change = 0.004748110784049213 Iter 30: T = 589.313741968833 K, F = -59.42535508258081, relative_change = 0.0021432432200079806 Iter 35: T = 585.3865669465628 K, F = -24.908443756363166, relative_change = 0.000927202146341149 Iter 40: T = 583.7159704767892 K, F = -10.427096908323373, relative_change = 0.0003934436807248675 Iter 45: T = 583.0122207894251 K, F = -4.362522660081115, relative_change = 0.00016555717317880085 Iter 50: T = 582.7170030207424 K, F = -1.8247731065580681, relative_change = 6.941700369360645e-5 Iter 55: T = 582.5933809295108 K, F = -0.7631969492585802, relative_change = 2.9062449162498503e-5 Iter 60: T = 582.5416529099099 K, F = -0.31918771460233886, relative_change = 1.2159769063001831e-5 Iter 65: T = 582.5200147700991 K, F = -0.1334898001086576, relative_change = 5.086324241529716e-6 Iter 70: T = 582.5109645905118 K, F = -0.05582732352446487, relative_change = 2.127330122914918e-6 Iter 75: T = 582.5071795484425 K, F = -0.023347704996510343, relative_change = 8.89704351462727e-7 Iter 80: T = 582.5055965726048 K, F = -0.009764298079585454, relative_change = 3.720901428224321e-7 Iter 85: T = 582.50493454865 K, F = -0.004083547644532004, relative_change = 1.5561344352479729e-7 Iter 90: T = 582.5046576815294 K, F = -0.0017077886686079347, relative_change = 6.507955827654234e-8 Iter 95: T = 582.5045418922537 K, F = -0.000714217664353034, relative_change = 2.7217076065577548e-8 Iter 100: T = 582.5044934677715 K, F = -0.0002986943657743435, relative_change = 1.1382511098417004e-8 Iter 105: T = 582.5044732160703 K, F = -0.00012491755220167544, relative_change = 4.760302913603619e-9 Iter 110: T = 582.5044647465663 K, F = -5.224201227516101e-5, relative_change = 1.9908156706379117e-9 Iter 115: T = 582.5044612045184 K, F = -2.1848232796772837e-5, relative_change = 8.32582888608132e-10 Iter 120: T = 582.5044597231918 K, F = -9.137192094277324e-6, relative_change = 3.4819611958955565e-10 Iter 125: T = 582.5044591036832 K, F = -3.821282169191864e-6, relative_change = 1.456197501571382e-10 Iter 130: T = 582.5044588445974 K, F = -1.5981061096681515e-6, relative_change = 6.089992902996645e-11 Iter 135: T = 582.5044587362446 K, F = -6.683473627311365e-7, relative_change = 2.5469089159660826e-11 Iter 140: T = 582.5044586909302 K, F = -2.79511005341071e-7, relative_change = 1.0651483219271027e-11 Iter 145: T = 582.5044586719791 K, F = -1.168946616725286e-7, relative_change = 4.4545706738839565e-12 Iter 150: T = 582.5044586640536 K, F = -4.888641486067158e-8, relative_change = 1.862942130016503e-12 Iter 155: T = 582.504458660739 K, F = -2.0445203752217367e-8, relative_change = 7.79116888329041e-13 Iter 160: T = 582.5044586593528 K, F = -8.550131158635565e-9, relative_change = 3.258246610760395e-13 Converged in 163 iterations to T = 582.504458658947 K Iter 1: T = 964.3189478065962 K, F = -8129.961683710049, relative_change = 0.03568105219340379 Iter 2: T = 930.563090334021 K, F = -6897.137649463707, relative_change = 0.035004867994510455 Iter 3: T = 898.7014515628614 K, F = -5850.1912522759385, relative_change = 0.034239095771274417 Iter 5: T = 840.5478385538838 K, F = -4206.2152229985595, relative_change = 0.032413277368921654 Iter 10: T = 726.3318356858432 K, F = -1834.3707792536409, relative_change = 0.026026783785265812 Iter 15: T = 652.6234483862812 K, F = -792.0848622681056, relative_change = 0.01782880868667669 Iter 20: T = 610.9296269154084 K, F = -338.1716093936672, relative_change = 0.010222367021329583 Iter 25: T = 590.0967725649027 K, F = -143.0303920432806, relative_change = 0.0050712835236091025 Iter 30: T = 580.5575843302119 K, F = -60.14215660977175, relative_change = 0.0023014574490761337 Iter 35: T = 576.3976416185685 K, F = -25.21314174182533, relative_change = 0.0009981780845479556 Iter 40: T = 574.6257359405354 K, F = -10.555435053221814, relative_change = 0.0004240357310291631 Iter 45: T = 573.8788893324963 K, F = -4.4163581384727255, relative_change = 0.00017851551618979693 Iter 50: T = 573.5655178459174 K, F = -1.8473165301477597, relative_change = 7.486549574256497e-5 Iter 55: T = 573.4342807007916 K, F = -0.772629933705453, relative_change = 3.1346203664991015e-5 Iter 60: T = 573.3793639453586 K, F = -0.3231335871175587, relative_change = 1.311576194895783e-5 Iter 65: T = 573.3563915323035 K, F = -0.13514016615285035, relative_change = 5.486289366546597e-6 Iter 70: T = 573.3467832201785 K, F = -0.056517553437290896, relative_change = 2.294627870694554e-6 Iter 75: T = 573.3427647388048 K, F = -0.02363637213491923, relative_change = 9.596750880149516e-7 Iter 80: T = 573.3410841320817 K, F = -0.009885022954701672, relative_change = 4.013535836548849e-7 Iter 85: T = 573.3403812770636 K, F = -0.004134036374211114, relative_change = 1.6785191143335964e-7 Iter 90: T = 573.3400873337888 K, F = -0.0017289036843172179, relative_change = 7.019785753218195e-8 Iter 95: T = 573.3399644030413 K, F = -0.0007230482205310973, relative_change = 2.935761445008104e-8 Iter 100: T = 573.3399129919067 K, F = -0.00030238740965743416, relative_change = 1.2277710566218837e-8 Iter 105: T = 573.3398914911513 K, F = -0.00012646202742389034, relative_change = 5.1346861606975325e-9 Iter 110: T = 573.3398824992779 K, F = -5.288793084140542e-5, relative_change = 2.1473872621521694e-9 Iter 115: T = 573.3398787387689 K, F = -2.2118364260026446e-5, relative_change = 8.980630249499903e-10 Iter 120: T = 573.3398771660791 K, F = -9.25016432051784e-6, relative_change = 3.7558069673663075e-10 Iter 125: T = 573.3398765083614 K, F = -3.868528829886753e-6, relative_change = 1.570723190275834e-10 Iter 130: T = 573.339876233296 K, F = -1.6178649460130146e-6, relative_change = 6.56895193751408e-11 Iter 135: T = 573.3398761182603 K, F = -6.766103236022225e-7, relative_change = 2.7472136727899295e-11 Iter 140: T = 573.339876070151 K, F = -2.8296657889059773e-7, relative_change = 1.1489178152688152e-11 Iter 145: T = 573.3398760500312 K, F = -1.1834007412891978e-7, relative_change = 4.80491441719803e-12 Iter 150: T = 573.3398760416169 K, F = -4.949166354517587e-8, relative_change = 2.009490102709266e-12 Iter 155: T = 573.3398760380979 K, F = -2.069828936024365e-8, relative_change = 8.404043152776936e-13 Iter 160: T = 573.3398760366262 K, F = -8.656437566756381e-9, relative_change = 3.514738517520304e-13 Converged in 163 iterations to T = 573.3398760361953 K Iter 1: T = 980.0153493214589 K, F = -4553.521667416117, relative_change = 0.019984650678541147 Iter 2: T = 962.0798633602242 K, F = -3846.5057891805795, relative_change = 0.01830122964263041 Iter 3: T = 946.0735455511996 K, F = -3247.7522973117843, relative_change = 0.01663720281299712 Iter 5: T = 919.3280242441954 K, F = -2312.162896872951, relative_change = 0.013456648682484999 Iter 10: T = 876.8142515721512 K, F = -981.7298549999282, relative_change = 0.00708492145025214 Iter 15: T = 856.6623353916177 K, F = -413.7301377366843, relative_change = 0.003326665718669481 Iter 20: T = 847.7124647751808 K, F = -173.63713403785016, relative_change = 0.0014669482251845009 Iter 25: T = 843.8677068679154 K, F = -72.72876661701947, relative_change = 0.000627817299234609 Iter 30: T = 842.2410945167336 K, F = -30.435949644992373, relative_change = 0.00026515234029562203 Iter 35: T = 841.5574886452556 K, F = -12.732189002589806, relative_change = 0.00011134975346490423 Iter 40: T = 841.2710076904895 K, F = -5.325369782449511, relative_change = 4.664872048160213e-5 Iter 45: T = 841.1510945691153 K, F = -2.2272411879707787, relative_change = 1.9523241807506536e-5 Iter 50: T = 841.100927363127 K, F = -0.931477755076604, relative_change = 8.167337343198458e-6 Iter 55: T = 841.0799436695548 K, F = -0.3895584262738401, relative_change = 3.41611274463145e-6 Iter 60: T = 841.0711674839109 K, F = -0.16291856424296158, relative_change = 1.4287351954121057e-6 Iter 65: T = 841.0674970812904 K, F = -0.06813459032445857, relative_change = 5.975274233750527e-7 Iter 70: T = 841.065962058119 K, F = -0.02849471704892892, relative_change = 2.498954309878534e-7 Iter 75: T = 841.0653200901303 K, F = -0.011916834059055637, relative_change = 1.0450966053160035e-7 Iter 80: T = 841.0650516109318 K, F = -0.004983762859905427, relative_change = 4.370725930264527e-8 Iter 85: T = 841.064939329634 K, F = -0.0020842692396039197, relative_change = 1.827891024853969e-8 Iter 90: T = 841.0648923722385 K, F = -0.0008716663061203445, relative_change = 7.644460758217086e-9 Iter 95: T = 841.0648727340921 K, F = -0.0003645412628812128, relative_change = 3.197005171687629e-9 Iter 100: T = 841.0648645211843 K, F = -0.00015245550930775842, relative_change = 1.3370258020119452e-9 Iter 105: T = 841.0648610864481 K, F = -6.375871546016043e-5, relative_change = 5.591601754374431e-10 Iter 110: T = 841.0648596500004 K, F = -2.6664657303943073e-5, relative_change = 2.338474743364603e-10 Iter 115: T = 841.0648590492607 K, F = -1.1151476881909872e-5, relative_change = 9.779779590262622e-11 Iter 120: T = 841.0648587980243 K, F = -4.663681450800539e-6, relative_change = 4.0900211887524435e-11 Iter 125: T = 841.0648586929541 K, F = -1.9504065489339695e-6, relative_change = 1.710495067195688e-11 Iter 130: T = 841.0648586490125 K, F = -8.15682258181738e-7, relative_change = 7.1534854111751945e-12 Iter 135: T = 841.0648586306356 K, F = -3.4112906832639567e-7, relative_change = 2.9916818581958423e-12 Iter 140: T = 841.0648586229503 K, F = -1.4266392911466141e-7, relative_change = 1.251154264465871e-12 Iter 145: T = 841.0648586197361 K, F = -5.966447624849991e-8, relative_change = 5.232539462501033e-13 Converged in 150 iterations to T = 841.064858618392 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 1 ray tracing: 12%|███▌ | ETA: 0:00:15 Bin 1 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 1 ray tracing: 24%|███████▏ | ETA: 0:00:13 Bin 1 ray tracing: 30%|█████████ | ETA: 0:00:12 Bin 1 ray tracing: 36%|██████████▉ | ETA: 0:00:11 Bin 1 ray tracing: 43%|████████████▉ | ETA: 0:00:09 Bin 1 ray tracing: 50%|██████████████▉ | ETA: 0:00:08 Bin 1 ray tracing: 56%|████████████████▉ | ETA: 0:00:07 Bin 1 ray tracing: 63%|██████████████████▉ | ETA: 0:00:06 Bin 1 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:05 Bin 1 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 1 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:02 Bin 1 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 10%|███ | ETA: 0:00:11 Bin 2 ray tracing: 20%|█████▉ | ETA: 0:00:09 Bin 2 ray tracing: 29%|████████▉ | ETA: 0:00:08 Bin 2 ray tracing: 38%|███████████▌ | ETA: 0:00:08 Bin 2 ray tracing: 45%|█████████████▍ | ETA: 0:00:07 Bin 2 ray tracing: 51%|███████████████▍ | ETA: 0:00:06 Bin 2 ray tracing: 57%|█████████████████▏ | ETA: 0:00:06 Bin 2 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 2 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 2 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 2 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:03 Bin 2 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 2 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 9%|██▋ | ETA: 0:00:14 Bin 3 ray tracing: 15%|████▋ | ETA: 0:00:13 Bin 3 ray tracing: 21%|██████▍ | ETA: 0:00:13 Bin 3 ray tracing: 27%|████████▎ | ETA: 0:00:12 Bin 3 ray tracing: 33%|██████████ | ETA: 0:00:11 Bin 3 ray tracing: 39%|███████████▊ | ETA: 0:00:10 Bin 3 ray tracing: 45%|█████████████▋ | ETA: 0:00:09 Bin 3 ray tracing: 53%|███████████████▉ | ETA: 0:00:08 Bin 3 ray tracing: 60%|██████████████████ | ETA: 0:00:06 Bin 3 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 3 ray tracing: 73%|██████████████████████ | ETA: 0:00:04 Bin 3 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 3 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 3 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 3 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 4 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 4 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 4 ray tracing: 28%|████████▎ | ETA: 0:00:11 Bin 4 ray tracing: 35%|██████████▍ | ETA: 0:00:10 Bin 4 ray tracing: 42%|████████████▌ | ETA: 0:00:09 Bin 4 ray tracing: 48%|██████████████▌ | ETA: 0:00:08 Bin 4 ray tracing: 55%|████████████████▌ | ETA: 0:00:07 Bin 4 ray tracing: 62%|██████████████████▌ | ETA: 0:00:06 Bin 4 ray tracing: 68%|████████████████████▌ | ETA: 0:00:05 Bin 4 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:04 Bin 4 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 4 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 4 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██ | ETA: 0:00:14 Bin 5 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 5 ray tracing: 20%|██████▏ | ETA: 0:00:12 Bin 5 ray tracing: 27%|████████▏ | ETA: 0:00:11 Bin 5 ray tracing: 34%|██████████▏ | ETA: 0:00:10 Bin 5 ray tracing: 40%|████████████▏ | ETA: 0:00:09 Bin 5 ray tracing: 47%|██████████████▏ | ETA: 0:00:08 Bin 5 ray tracing: 54%|████████████████▏ | ETA: 0:00:07 Bin 5 ray tracing: 60%|██████████████████ | ETA: 0:00:06 Bin 5 ray tracing: 67%|████████████████████ | ETA: 0:00:05 Bin 5 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:04 Bin 5 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 5 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 5 ray tracing: 93%|███████████████████████████▊ | ETA: 0:00:01 Bin 5 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 6%|██ | ETA: 0:00:14 Bin 6 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 6 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 6 ray tracing: 25%|███████▋ | ETA: 0:00:12 Bin 6 ray tracing: 32%|█████████▌ | ETA: 0:00:11 Bin 6 ray tracing: 38%|███████████▍ | ETA: 0:00:10 Bin 6 ray tracing: 45%|█████████████▍ | ETA: 0:00:09 Bin 6 ray tracing: 51%|███████████████▌ | ETA: 0:00:08 Bin 6 ray tracing: 58%|█████████████████▍ | ETA: 0:00:07 Bin 6 ray tracing: 64%|███████████████████▍ | ETA: 0:00:06 Bin 6 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:05 Bin 6 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:04 Bin 6 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 90%|███████████████████████████ | ETA: 0:00:02 Bin 6 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██ | ETA: 0:00:15 Bin 7 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 7 ray tracing: 20%|█████▉ | ETA: 0:00:12 Bin 7 ray tracing: 26%|███████▉ | ETA: 0:00:11 Bin 7 ray tracing: 33%|█████████▉ | ETA: 0:00:10 Bin 7 ray tracing: 40%|███████████▉ | ETA: 0:00:09 Bin 7 ray tracing: 46%|█████████████▉ | ETA: 0:00:08 Bin 7 ray tracing: 53%|███████████████▊ | ETA: 0:00:07 Bin 7 ray tracing: 59%|█████████████████▊ | ETA: 0:00:06 Bin 7 ray tracing: 66%|███████████████████▊ | ETA: 0:00:05 Bin 7 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 7 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 7 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██ | ETA: 0:00:14 Bin 8 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 8 ray tracing: 20%|██████▏ | ETA: 0:00:12 Bin 8 ray tracing: 27%|████████ | ETA: 0:00:11 Bin 8 ray tracing: 34%|██████████▏ | ETA: 0:00:10 Bin 8 ray tracing: 40%|████████████▏ | ETA: 0:00:09 Bin 8 ray tracing: 48%|██████████████▍ | ETA: 0:00:08 Bin 8 ray tracing: 56%|████████████████▊ | ETA: 0:00:06 Bin 8 ray tracing: 65%|███████████████████▌ | ETA: 0:00:05 Bin 8 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:04 Bin 8 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 8 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 9 ray tracing: 14%|████▍ | ETA: 0:00:12 Bin 9 ray tracing: 22%|██████▌ | ETA: 0:00:11 Bin 9 ray tracing: 29%|████████▊ | ETA: 0:00:10 Bin 9 ray tracing: 37%|███████████ | ETA: 0:00:09 Bin 9 ray tracing: 44%|█████████████▏ | ETA: 0:00:08 Bin 9 ray tracing: 51%|███████████████▍ | ETA: 0:00:07 Bin 9 ray tracing: 59%|█████████████████▋ | ETA: 0:00:06 Bin 9 ray tracing: 67%|████████████████████ | ETA: 0:00:05 Bin 9 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:04 Bin 9 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 9 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 9 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 10 ray tracing: 15%|████▎ | ETA: 0:00:12 Bin 10 ray tracing: 22%|██████▍ | ETA: 0:00:11 Bin 10 ray tracing: 29%|████████▌ | ETA: 0:00:10 Bin 10 ray tracing: 37%|██████████▋ | ETA: 0:00:09 Bin 10 ray tracing: 44%|████████████▊ | ETA: 0:00:08 Bin 10 ray tracing: 52%|██████████████▉ | ETA: 0:00:07 Bin 10 ray tracing: 59%|█████████████████▏ | ETA: 0:00:06 Bin 10 ray tracing: 67%|███████████████████▍ | ETA: 0:00:05 Bin 10 ray tracing: 75%|█████████████████████▊ | ETA: 0:00:03 Bin 10 ray tracing: 83%|████████████████████████▎ | ETA: 0:00:02 Bin 10 ray tracing: 92%|██████████████████████████▋ | ETA: 0:00:01 Bin 10 ray tracing: 99%|████████████████████████████▋| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2886884519843 K, F = -7453.303452705717, relative_change = 0.03271131154801567 Iter 2: T = 936.6510513966929 K, F = -6318.015126954014, relative_change = 0.03167372618026048 Iter 3: T = 908.0558182286486 K, F = -5354.147562251929, relative_change = 0.03052922764075728 Iter 5: T = 856.8548090838991 K, F = -3841.420016720318, relative_change = 0.027924619238015855 Iter 10: T = 761.5935418470464 K, F = -1663.4483191619709, relative_change = 0.020012213730357734 Iter 15: T = 705.7823946888492 K, F = -712.2401991759372, relative_change = 0.012001678061602362 Iter 20: T = 677.0632955234016 K, F = -301.8799506975027, relative_change = 0.0061498010240122756 Iter 25: T = 663.6660701237068 K, F = -127.08780156557036, relative_change = 0.002841937194785153 Iter 30: T = 657.7670441428066 K, F = -53.30928034571618, relative_change = 0.001243376995293148 Iter 35: T = 655.2431503079097 K, F = -22.323588137006087, relative_change = 0.0005302503731129412 Iter 40: T = 654.1772687252072 K, F = -9.34114945306903, relative_change = 0.0002236030654112505 Iter 45: T = 653.7296604878273 K, F = -3.9074887723918126, relative_change = 9.384030427743977e-5 Iter 50: T = 653.5421404948405 K, F = -1.6343178372188918, relative_change = 3.930259295652017e-5 Iter 55: T = 653.463660395192 K, F = -0.6835191451640898, relative_change = 1.6446884657864882e-5 Iter 60: T = 653.4308290980771 K, F = -0.28586075301937286, relative_change = 6.8800465794729195e-6 Iter 65: T = 653.4170969106889 K, F = -0.11955123511815541, relative_change = 2.8776261107737496e-6 Iter 70: T = 653.411353640332 K, F = -0.04999790369426965, relative_change = 1.203511565036538e-6 Iter 75: T = 653.4089516826261 K, F = -0.02090974655896949, relative_change = 5.033323475858979e-7 Iter 80: T = 653.4079471458788 K, F = -0.008744710295886582, relative_change = 2.1050124958035777e-7 Iter 85: T = 653.4075270349791 K, F = -0.0036571430773605362, relative_change = 8.803442517676732e-8 Iter 90: T = 653.4073513392977 K, F = -0.0015294610498592376, relative_change = 3.681709845075714e-8 Iter 95: T = 653.4072778612156 K, F = -0.000639638900306494, relative_change = 1.539735907369148e-8 Iter 100: T = 653.4072471317953 K, F = -0.000267504631562665, relative_change = 6.439360999344467e-9 Iter 105: T = 653.4072342803834 K, F = -0.00011187363264225647, relative_change = 2.6930179494166917e-9 Iter 110: T = 653.4072289057691 K, F = -4.678688965370492e-5, relative_change = 1.1262523223148026e-9 Iter 115: T = 653.4072266580412 K, F = -1.9566836371387453e-5, relative_change = 4.710121879796552e-10 Iter 120: T = 653.4072257180144 K, F = -8.183084061919033e-6, relative_change = 1.9698290933031366e-10 Iter 125: T = 653.407225324884 K, F = -3.422263816887927e-6, relative_change = 8.238061346756072e-11 Iter 130: T = 653.4072251604722 K, F = -1.4312311260034072e-6, relative_change = 3.44525450473588e-11 Iter 135: T = 653.4072250917133 K, F = -5.985582938738965e-7, relative_change = 1.4408474088372582e-11 Iter 140: T = 653.4072250629573 K, F = -2.5032337097607993e-7, relative_change = 6.0257753373283345e-12 Iter 145: T = 653.4072250509313 K, F = -1.0468787542405877e-7, relative_change = 2.5200428367639375e-12 Iter 150: T = 653.4072250459019 K, F = -4.378094714541092e-8, relative_change = 1.053893412180387e-12 Iter 155: T = 653.4072250437986 K, F = -1.830960549842331e-8, relative_change = 4.407481763840387e-13 Converged in 159 iterations to T = 653.4072250430395 K Iter 1: T = 970.2959818765488 K, F = -6768.08878524413, relative_change = 0.029704018123451147 Iter 2: T = 942.7553400063064 K, F = -5732.489103662521, relative_change = 0.028383753395514393 Iter 3: T = 917.3336044845414 K, F = -4853.602033203335, relative_change = 0.026965358288604267 Iter 5: T = 872.6323252178906 K, F = -3475.2846527973206, relative_change = 0.02387856020736193 Iter 10: T = 793.2306274985931 K, F = -1495.9812419123039, relative_change = 0.015572828897734533 Iter 15: T = 749.9220349679979 K, F = -636.8535363649053, relative_change = 0.0085382391947829 Iter 20: T = 728.882651528333 K, F = -268.8330230742472, relative_change = 0.004111270646950886 Iter 25: T = 719.4087227734078 K, F = -112.9216311478633, relative_change = 0.001836359708583999 Iter 30: T = 715.3115968900338 K, F = -47.316265936642424, relative_change = 0.0007905513269021938 Iter 35: T = 713.573045993214 K, F = -19.80455428490947, relative_change = 0.00033473680248012464 Iter 40: T = 712.841460056391 K, F = -8.285386654188867, relative_change = 0.00014072455541099807 Iter 45: T = 712.5347057008574 K, F = -3.46555455642596, relative_change = 5.8981991237382014e-5 Iter 50: T = 712.4062774279547 K, F = -1.449425125660937, relative_change = 2.468966113175951e-5 Iter 55: T = 712.3525426673107 K, F = -0.6061824444609001, relative_change = 1.0329484659739942e-5 Iter 60: T = 712.3300658560462 K, F = -0.2535154576680964, relative_change = 4.320609209840749e-6 Iter 65: T = 712.3206650341032 K, F = -0.10602366779713135, relative_change = 1.80705201916504e-6 Iter 70: T = 712.3167333667208 K, F = -0.04434044727484099, relative_change = 7.557520136320312e-7 Iter 75: T = 712.3150890734885 K, F = -0.01854371913857178, relative_change = 3.160682394210462e-7 Iter 80: T = 712.3144014064027 K, F = -0.007755207346378912, relative_change = 1.3218416330393816e-7 Iter 85: T = 712.314113815112 K, F = -0.0032433207730973024, relative_change = 5.528110954065311e-8 Iter 90: T = 712.3139935408768 K, F = -0.0013563955586015641, relative_change = 2.3119240118848044e-8 Iter 95: T = 712.3139432407337 K, F = -0.0005672608344292618, relative_change = 9.668745792676969e-9 Iter 100: T = 712.3139222046094 K, F = -0.00023723525746055518, relative_change = 4.04358556196139e-9 Iter 105: T = 712.3139134070503 K, F = -9.921461701167811e-5, relative_change = 1.6910758576493968e-9 Iter 110: T = 712.313909727806 K, F = -4.1492738501403004e-5, relative_change = 7.072281503116945e-10 Iter 115: T = 712.3139081891021 K, F = -1.7352758504229904e-5, relative_change = 2.9577125707321686e-10 Iter 120: T = 712.3139075455978 K, F = -7.2571316307445954e-6, relative_change = 1.2369508593577453e-10 Iter 125: T = 712.3139072764766 K, F = -3.0350199550222e-6, relative_change = 5.173077655614319e-11 Iter 130: T = 712.3139071639268 K, F = -1.2692823431192934e-6, relative_change = 2.16344413878747e-11 Iter 135: T = 712.3139071168571 K, F = -5.308286098459902e-7, relative_change = 9.047774525966002e-12 Iter 140: T = 712.3139070971721 K, F = -2.2199904115005609e-7, relative_change = 3.783890378767255e-12 Iter 145: T = 712.3139070889395 K, F = -9.28415205825317e-8, relative_change = 1.582448891138402e-12 Iter 150: T = 712.3139070854966 K, F = -3.8826653336876404e-8, relative_change = 6.617857412874969e-13 Iter 155: T = 712.3139070840567 K, F = -1.6238950295566212e-8, relative_change = 2.767868161580288e-13 Converged in 157 iterations to T = 712.3139070837519 K Iter 1: T = 974.4727994864156 K, F = -5816.396919656731, relative_change = 0.02552720051358443 Iter 2: T = 951.1344089177757 K, F = -4920.8002919139235, relative_change = 0.023949760917842074 Iter 3: T = 929.9096148574594 K, F = -4161.303882118814, relative_change = 0.022315241527710524 Iter 5: T = 893.4454083375618 K, F = -2971.8435962518397, relative_change = 0.01895974302464534 Iter 10: T = 832.0637032169774 K, F = -1270.6778230827308, relative_change = 0.011124741039840005 Iter 15: T = 800.9310718266195 K, F = -538.0086340367928, relative_change = 0.005609717105304832 Iter 20: T = 786.542201825593 K, F = -226.35929572602407, relative_change = 0.0025688671463933413 Iter 25: T = 780.2372700579165 K, F = -94.92276274281177, relative_change = 0.0011189639850268443 Iter 30: T = 777.5458001656689 K, F = -39.744287526164335, relative_change = 0.0004762551476319461 Iter 35: T = 776.4102738021943 K, F = -16.629781936964125, relative_change = 0.00020066370670352788 Iter 40: T = 775.9336203024193 K, F = -6.956224756490237, relative_change = 8.418309565286827e-5 Iter 45: T = 775.7339677442732 K, F = -2.909430780041987, relative_change = 3.525261107575535e-5 Iter 50: T = 775.6504162241633 K, F = -1.2168032615980442, relative_change = 1.4751165131081982e-5 Iter 55: T = 775.6154644486112 K, F = -0.5088894534191419, relative_change = 6.170531646572647e-6 Iter 60: T = 775.6008455306877 K, F = -0.21282501090261408, relative_change = 2.5808381584797197e-6 Iter 65: T = 775.5947314328358 K, F = -0.08900619980735525, relative_change = 1.0793807441656498e-6 Iter 70: T = 775.5921743930581 K, F = -0.037223497440121434, relative_change = 4.5141750961174336e-7 Iter 75: T = 775.5911049995588 K, F = -0.015567318465649849, relative_change = 1.8878952140014675e-7 Iter 80: T = 775.5906577648649 K, F = -0.006510439770733956, relative_change = 7.895426470767177e-8 Iter 85: T = 775.5904707257017 K, F = -0.0027227438841059826, relative_change = 3.301965700613681e-8 Iter 90: T = 775.5903925036422 K, F = -0.001138684048324845, relative_change = 1.3809222008824283e-8 Iter 95: T = 775.5903597902344 K, F = -0.00047621127387620366, relative_change = 5.775182794880752e-9 Iter 100: T = 775.5903461090952 K, F = -0.00019915724386432299, relative_change = 2.4152506417531844e-9 Iter 105: T = 775.5903403874792 K, F = -8.328993899242576e-5, relative_change = 1.010086712215494e-9 Iter 110: T = 775.5903379946309 K, F = -3.483284651717433e-5, relative_change = 4.2243032421563804e-10 Iter 115: T = 775.5903369939132 K, F = -1.4567513114460695e-5, relative_change = 1.7666541615331742e-10 Iter 120: T = 775.590336575401 K, F = -6.092306554683624e-6, relative_change = 7.388357004556704e-11 Iter 125: T = 775.5903364003742 K, F = -2.5478738544526536e-6, relative_change = 3.0898973140191946e-11 Iter 130: T = 775.590336327176 K, F = -1.065551216039573e-6, relative_change = 1.2922318882138413e-11 Iter 135: T = 775.5903362965637 K, F = -4.4562786127855247e-7, relative_change = 5.404287696927652e-12 Iter 140: T = 775.5903362837612 K, F = -1.8636706256014435e-7, relative_change = 2.2601397060223833e-12 Iter 145: T = 775.590336278407 K, F = -7.79398254824315e-8, relative_change = 9.452040067554313e-13 Iter 150: T = 775.5903362761678 K, F = -3.259556580204048e-8, relative_change = 3.952980290662477e-13 Converged in 154 iterations to T = 775.5903362753596 K Iter 1: T = 970.3649927152736 K, F = -6752.364599994434, relative_change = 0.029635007284726365 Iter 2: T = 942.8947126737772 K, F = -5719.063462267415, relative_change = 0.02830922410404465 Iter 3: T = 917.5442743044277 K, F = -4842.1363107090365, relative_change = 0.02688575726282631 Iter 5: T = 872.9862612434903 K, F = -3466.9196373645505, relative_change = 0.023791013420543645 Iter 10: T = 793.9165728498173 K, F = -1492.1947602986336, relative_change = 0.015485310432207954 Iter 15: T = 750.8501589743164 K, F = -635.1716778714671, relative_change = 0.008475804311552648 Iter 20: T = 729.95038189319 K, F = -268.103859144234, relative_change = 0.004076751224522329 Iter 25: T = 720.545008985906 K, F = -112.61112095509309, relative_change = 0.0018199074351675836 Iter 30: T = 716.4787364716883 K, F = -47.18533345300048, relative_change = 0.0007832629814265336 Iter 35: T = 714.753507553828 K, F = -19.749600764705928, relative_change = 0.00033161271181064825 Iter 40: T = 714.0275692620872 K, F = -8.262369520608312, relative_change = 0.0001394043615381402 Iter 45: T = 713.7231903818262 K, F = -3.455922362014527, relative_change = 5.842745337275071e-5 Iter 50: T = 713.5957579502553 K, F = -1.445395747026325, relative_change = 2.4457321995676063e-5 Iter 55: T = 713.5424400814829 K, F = -0.6044971210623877, relative_change = 1.0232243214201765e-5 Iter 60: T = 713.5201376927772 K, F = -0.25281060219787993, relative_change = 4.279928644670555e-6 Iter 65: T = 713.5108098292759 K, F = -0.10572888303148997, relative_change = 1.7900366409833273e-6 Iter 70: T = 713.506908676232 K, F = -0.044217163753557664, relative_change = 7.486355804543716e-7 Iter 75: T = 713.5052771448535 K, F = -0.018492160319451556, relative_change = 3.130919922998865e-7 Iter 80: T = 713.504594814996 K, F = -0.007733644801448669, relative_change = 1.3093944901183667e-7 Iter 85: T = 713.5043094558101 K, F = -0.003234303054258314, relative_change = 5.47605530311652e-8 Iter 90: T = 713.5041901150698 K, F = -0.0013526242402879252, relative_change = 2.2901536802442307e-8 Iter 95: T = 713.5041402053258 K, F = -0.0005656836235136131, relative_change = 9.577699593974413e-9 Iter 100: T = 713.5041193324713 K, F = -0.0002365756505511296, relative_change = 4.005508969389502e-9 Iter 105: T = 713.5041106031936 K, F = -9.893876379252209e-5, relative_change = 1.6751518085327666e-9 Iter 110: T = 713.5041069525051 K, F = -4.137737132192676e-5, relative_change = 7.005684873537344e-10 Iter 115: T = 713.5041054257437 K, F = -1.7304510092186476e-5, relative_change = 2.929860983402842e-10 Iter 120: T = 713.5041047872338 K, F = -7.2369528817395334e-6, relative_change = 1.2253028756271017e-10 Iter 125: T = 713.5041045202014 K, F = -3.026579511455907e-6, relative_change = 5.124361932307683e-11 Iter 130: T = 713.5041044085253 K, F = -1.2657533188242809e-6, relative_change = 2.1430721059724127e-11 Iter 135: T = 713.504104361821 K, F = -5.293541087691978e-7, relative_change = 8.96259964850384e-12 Iter 140: T = 713.5041043422887 K, F = -2.213819775276349e-7, relative_change = 3.748262271631827e-12 Iter 145: T = 713.50410433412 K, F = -9.25847892796483e-8, relative_change = 1.567571472973608e-12 Iter 150: T = 713.5041043307039 K, F = -3.8720437411932096e-8, relative_change = 6.55583423385624e-13 Iter 155: T = 713.504104329275 K, F = -1.619378597883525e-8, relative_change = 2.741802097103531e-13 Converged in 157 iterations to T = 713.5041043289727 K Iter 1: T = 969.3265562984277 K, F = -6988.9733253808345, relative_change = 0.03067344370157234 Iter 2: T = 940.7941703320532 K, F = -5921.136777375025, relative_change = 0.029435266970639123 Iter 3: T = 914.3637374741049 K, F = -5014.763943711981, relative_change = 0.02809374642342825 Iter 5: T = 867.6227574417993 K, F = -3592.9645839432224, relative_change = 0.025132630938125126 Iter 10: T = 783.4156374507678 K, F = -1549.4262794763092, relative_change = 0.016863928677466132 Iter 15: T = 736.5174372230852 K, F = -660.687836486477, relative_change = 0.009484073354673099 Iter 20: T = 713.3703080423935 K, F = -279.1988543087304, relative_change = 0.004643474356595633 Iter 25: T = 702.8499038233365 K, F = -117.34388595211979, relative_change = 0.0020923840016462266 Iter 30: T = 698.2792188344313 K, F = -49.18263987130918, relative_change = 0.0009044637233088481 Iter 35: T = 696.335681811427 K, F = -20.588196848122493, relative_change = 0.0003836576423028706 Iter 40: T = 695.5171011004587 K, F = -8.61366890243403, relative_change = 0.00016141460885710828 Iter 45: T = 695.1737387530334 K, F = -3.6029437502554913, relative_change = 6.767568412567793e-5 Iter 50: T = 695.0299607915673 K, F = -1.5069000645119444, relative_change = 2.833265198454127e-5 Iter 55: T = 694.969799626014 K, F = -0.6302221520365998, relative_change = 1.1854286285821754e-5 Iter 60: T = 694.9446339926735 K, F = -0.26356967580613455, relative_change = 4.958519921535477e-6 Iter 65: T = 694.9341084592369 K, F = -0.11022855379971302, relative_change = 2.0738724707291163e-6 Iter 70: T = 694.9297063866399 K, F = -0.04609899689304342, relative_change = 8.673462606103488e-7 Iter 75: T = 694.9278653577808 K, F = -0.019279168402512092, relative_change = 3.6273946647391345e-7 Iter 80: T = 694.927095412361 K, F = -0.008062781502430783, relative_change = 1.5170283423971053e-7 Iter 85: T = 694.9267734110882 K, F = -0.0033719520455085528, relative_change = 6.344408695306308e-8 Iter 90: T = 694.9266387461524 K, F = -0.00141019070699, relative_change = 2.6533101056148827e-8 Iter 95: T = 694.9265824276404 K, F = -0.0005897586104109953, relative_change = 1.1096464307312124e-8 Iter 100: T = 694.9265588745612 K, F = -0.00024664409630426043, relative_change = 4.6406746838094405e-9 Iter 105: T = 694.9265490243814 K, F = -0.00010314950673495638, relative_change = 1.9407857071356944e-9 Iter 110: T = 694.9265449049185 K, F = -4.313835592117954e-5, relative_change = 8.116597898932395e-10 Iter 115: T = 694.9265431821099 K, F = -1.8040975827360306e-5, relative_change = 3.394458251746498e-10 Iter 120: T = 694.9265424616108 K, F = -7.544952228766277e-6, relative_change = 1.41960311479116e-10 Iter 125: T = 694.9265421602894 K, F = -3.1553882872126238e-6, relative_change = 5.936948193086724e-11 Iter 130: T = 694.9265420342731 K, F = -1.3196204891041674e-6, relative_change = 2.4829015550514227e-11 Iter 135: T = 694.9265419815717 K, F = -5.518811337923424e-7, relative_change = 1.0383792439609094e-11 Iter 140: T = 694.9265419595314 K, F = -2.3080431132971313e-7, relative_change = 4.342645393416075e-12 Iter 145: T = 694.9265419503139 K, F = -9.652529564529999e-8, relative_change = 1.816149482189915e-12 Iter 150: T = 694.926541946459 K, F = -4.036952239161451e-8, relative_change = 7.595634563932172e-13 Iter 155: T = 694.9265419448467 K, F = -1.6882259701311852e-8, relative_change = 3.1764427149283285e-13 Converged in 158 iterations to T = 694.9265419443747 K Iter 1: T = 963.4842605727235 K, F = -8320.145963940462, relative_change = 0.036515739427276414 Iter 2: T = 928.8411155183267 K, F = -7060.069848473685, relative_change = 0.03595610895999892 Iter 3: T = 896.0366903187809 K, F = -5989.927613381696, relative_change = 0.03531758516228011 Iter 5: T = 835.8241811959497 K, F = -4309.353929706679, relative_change = 0.03377437666356936 Iter 10: T = 715.5286970992946 K, F = -1883.610026960998, relative_change = 0.028131624053361216 Iter 15: T = 635.2057152680105 K, F = -815.913962931581, relative_change = 0.020261528628146213 Iter 20: T = 587.9586364660521 K, F = -349.467122539162, relative_change = 0.012214769198018246 Iter 25: T = 563.5614035798366 K, F = -148.15794206329457, relative_change = 0.0062835951867524975 Iter 30: T = 552.1542175229035 K, F = -62.381986946291306, relative_change = 0.002910341431039112 Iter 35: T = 547.1253415452651 K, F = -26.169170493228044, relative_change = 0.0012747123338302888 Iter 40: T = 544.9725188095668 K, F = -10.958861608838781, relative_change = 0.0005438830649819045 Iter 45: T = 544.063119680565 K, F = -4.585724243330228, relative_change = 0.0002294008660944009 Iter 50: T = 543.6811842438173 K, F = -1.9182622055215115, relative_change = 9.628219739643286e-5 Iter 55: T = 543.5211698665471 K, F = -0.8023204327282027, relative_change = 4.032685074709505e-5 Iter 60: T = 543.4542000394546 K, F = -0.3355540436160386, relative_change = 1.6875772992606224e-5 Iter 65: T = 543.4261837181286 K, F = -0.1403351682512998, relative_change = 7.05950588920151e-6 Iter 70: T = 543.4144654285021 K, F = -0.05869027363445414, relative_change = 2.952694427450953e-6 Iter 75: T = 543.4095644322679 K, F = -0.024545048609002834, relative_change = 1.2349088813938605e-6 Iter 80: T = 543.4075147303104 K, F = -0.010265045620566127, relative_change = 5.164635786981622e-7 Iter 85: T = 543.4066575122873 K, F = -0.004292966970833145, relative_change = 2.1599297443721496e-7 Iter 90: T = 543.4062990120411 K, F = -0.0017953704585773056, relative_change = 9.033114538008465e-8 Iter 95: T = 543.4061490827063 K, F = -0.0007508454369029027, relative_change = 3.777761691803572e-8 Iter 100: T = 543.4060863804241 K, F = -0.00031401254048266103, relative_change = 1.579905982702229e-8 Iter 105: T = 543.4060601575732 K, F = -0.00013132379601976663, relative_change = 6.6073570931455535e-9 Iter 110: T = 543.4060491908625 K, F = -5.4921180206279896e-5, relative_change = 2.7632759291503174e-9 Iter 115: T = 543.406044604453 K, F = -2.2968693622060776e-5, relative_change = 1.1556350486606263e-9 Iter 120: T = 543.4060426863616 K, F = -9.605782387622774e-6, relative_change = 4.833004073347298e-10 Iter 125: T = 543.4060418841929 K, F = -4.017252474980415e-6, relative_change = 2.0212198161715172e-10 Iter 130: T = 543.4060415487163 K, F = -1.6800627259117018e-6, relative_change = 8.452981497064447e-11 Iter 135: T = 543.4060414084161 K, F = -7.026219218386753e-7, relative_change = 3.535135932982299e-11 Iter 140: T = 543.4060413497408 K, F = -2.9384493946404966e-7, relative_change = 1.478436371640673e-11 Iter 145: T = 543.4060413252021 K, F = -1.2288926215520135e-7, relative_change = 6.1829873682620684e-12 Iter 150: T = 543.4060413149397 K, F = -5.139345965465836e-8, relative_change = 2.5857841955572322e-12 Iter 155: T = 543.4060413106479 K, F = -2.1493241741943336e-8, relative_change = 1.0813999521174533e-12 Iter 160: T = 543.406041308853 K, F = -8.988711913682224e-9, relative_change = 4.522534455208484e-13 Converged in 165 iterations to T = 543.4060413081024 K Iter 1: T = 966.8515674502315 K, F = -7552.901888764519, relative_change = 0.0331484325497685 Iter 2: T = 935.7587168767278 K, F = -6403.200619225433, relative_change = 0.03215886659366069 Iter 3: T = 906.6911363237053 K, F = -5427.051375156604, relative_change = 0.031063114912828226 Iter 5: T = 854.5016219203575 K, F = -3894.908170977989, relative_change = 0.028552680240532577 Iter 10: T = 756.6808218595596 K, F = -1688.228288489246, relative_change = 0.0207778207937975 Iter 15: T = 698.6614245741429 K, F = -723.5968015443962, relative_change = 0.01266371807763576 Iter 20: T = 668.479857433089 K, F = -306.93810682862346, relative_change = 0.006569081075116909 Iter 25: T = 654.298946192192 K, F = -129.27778615980816, relative_change = 0.0030573725022117427 Iter 30: T = 648.0309124335388 K, F = -54.24045349824646, relative_change = 0.001342307711852917 Iter 35: T = 645.3443199657237 K, F = -22.715890324949683, relative_change = 0.0005733383551351277 Iter 40: T = 644.2088311910096 K, F = -9.505733547496439, relative_change = 0.00024193650589058539 Iter 45: T = 643.7318308771463 K, F = -3.9764117222742854, relative_change = 0.00010156345858209042 Iter 50: T = 643.5319689364687 K, F = -1.6631584038355143, relative_change = 4.254236221578018e-5 Iter 55: T = 643.4483185276094 K, F = -0.6955834485789691, relative_change = 1.7803524105527717e-5 Iter 60: T = 643.4133234101954 K, F = -0.29090668494398875, relative_change = 7.447712271752451e-6 Iter 65: T = 643.3986860185646 K, F = -0.12166159092402146, relative_change = 3.1150836867196595e-6 Iter 70: T = 643.3925641339606 K, F = -0.05088049488093965, relative_change = 1.302828431865283e-6 Iter 75: T = 643.3900038270294 K, F = -0.021278859388645932, relative_change = 5.44869469332407e-7 Iter 80: T = 643.3889330653063 K, F = -0.008899078153827122, relative_change = 2.2787285364484847e-7 Iter 85: T = 643.3884852580793 K, F = -0.0037217016406544956, relative_change = 9.529948708239498e-8 Iter 90: T = 643.388297979419 K, F = -0.0015564602258803517, relative_change = 3.9855442771819774e-8 Iter 95: T = 643.388219657189 K, F = -0.000650930281029416, relative_change = 1.6668032480811537e-8 Iter 100: T = 643.388186901887 K, F = -0.00027222682222766137, relative_change = 6.97077205824225e-9 Iter 105: T = 643.3881732032268 K, F = -0.00011384850874407437, relative_change = 2.9152604345858026e-9 Iter 110: T = 643.3881674742831 K, F = -4.761280614945518e-5, relative_change = 1.2191967849445997e-9 Iter 115: T = 643.3881650783704 K, F = -1.991224393194102e-5, relative_change = 5.098826592381413e-10 Iter 120: T = 643.3881640763711 K, F = -8.327537914187833e-6, relative_change = 2.132390112630559e-10 Iter 125: T = 643.388163657323 K, F = -3.4826752454697463e-6, relative_change = 8.917908700624531e-11 Iter 130: T = 643.3881634820722 K, F = -1.4564969529340388e-6, relative_change = 3.729577393914079e-11 Iter 135: T = 643.3881634087801 K, F = -6.091239092564926e-7, relative_change = 1.5597524997984512e-11 Iter 140: T = 643.3881633781284 K, F = -2.547418187504036e-7, relative_change = 6.523043713294104e-12 Iter 145: T = 643.3881633653097 K, F = -1.065366646568755e-7, relative_change = 2.7280299877743316e-12 Iter 150: T = 643.3881633599486 K, F = -4.4555030553894426e-8, relative_change = 1.140897923297275e-12 Iter 155: T = 643.3881633577066 K, F = -1.863283144443173e-8, relative_change = 4.771214032664358e-13 Converged in 160 iterations to T = 643.388163356769 K Iter 1: T = 965.1958297054967 K, F = -7930.163308915523, relative_change = 0.0348041702945032 Iter 2: T = 932.3669546265828 K, F = -6726.04530106683, relative_change = 0.03401265739920439 Iter 3: T = 901.4839288993793 K, F = -5703.541033718486, relative_change = 0.03312325214225584 Iter 5: T = 845.4423394369554 K, F = -4098.154529658893, relative_change = 0.031032180310764913 Iter 10: T = 737.2292098740035 K, F = -1783.244475903728, relative_change = 0.02403412307674924 Iter 15: T = 669.6006920099562 K, F = -767.7895245495147, relative_change = 0.015728863614291426 Iter 20: T = 632.6207947802028 K, F = -326.91928128338185, relative_change = 0.008649966574292263 Iter 25: T = 614.6222755850921 K, F = -138.0190695708047, relative_change = 0.004173204341043458 Iter 30: T = 606.5088668157962 K, F = -57.9779427101073, relative_change = 0.0018659193671623586 Iter 35: T = 602.9982534085849 K, F = -24.294596438030062, relative_change = 0.0008036548746607397 Iter 40: T = 601.5082242254167 K, F = -10.168812559834215, relative_change = 0.0003403551625409268 Iter 45: T = 600.881152147891 K, F = -4.25422529546972, relative_change = 0.0001430990844569603 Iter 50: T = 600.6182090225859 K, F = -1.7794324846519136, relative_change = 5.997944712558019e-5 Iter 55: T = 600.5081210933035 K, F = -0.7442262922277447, relative_change = 2.5107582329982194e-5 Iter 60: T = 600.4620596307396 K, F = -0.3112524409385992, relative_change = 1.0504399811653494e-5 Iter 65: T = 600.4427924352437 K, F = -0.1301709081609968, relative_change = 4.393784537400818e-6 Iter 70: T = 600.4347340093235 K, F = -0.05443927678513971, relative_change = 1.8376589655398962e-6 Iter 75: T = 600.431363764848 K, F = -0.022767199142761207, relative_change = 7.68552930201062e-7 Iter 80: T = 600.4299542683289 K, F = -0.009521522177050212, relative_change = 3.2142186259442163e-7 Iter 85: T = 600.4293647965483 K, F = -0.003982015614303669, relative_change = 1.3442313468306444e-7 Iter 90: T = 600.429118271797 K, F = -0.001665326716642046, relative_change = 5.621747797933382e-8 Iter 95: T = 600.4290151720949 K, F = -0.0006964595614099567, relative_change = 2.3510841250314667e-8 Iter 100: T = 600.4289720545495 K, F = -0.00029126771349491376, relative_change = 9.832518202058478e-9 Iter 105: T = 600.4289540222737 K, F = -0.00012181163806213036, relative_change = 4.112077186135839e-9 Iter 110: T = 600.4289464809601 K, F = -5.094308162589822e-5, relative_change = 1.719719885589458e-9 Iter 115: T = 600.4289433270925 K, F = -2.13050045539398e-5, relative_change = 7.192073926601344e-10 Iter 120: T = 600.4289420081075 K, F = -8.910007048390511e-6, relative_change = 3.0078111406416913e-10 Iter 125: T = 600.4289414564922 K, F = -3.726271436244044e-6, relative_change = 1.2579025725952176e-10 Iter 130: T = 600.4289412258001 K, F = -1.5583718580569617e-6, relative_change = 5.2607009619017566e-11 Iter 135: T = 600.4289411293219 K, F = -6.517293094088217e-7, relative_change = 2.2000865774130757e-11 Iter 140: T = 600.4289410889735 K, F = -2.72560283343104e-7, relative_change = 9.20100128157287e-12 Iter 145: T = 600.4289410720994 K, F = -1.1398856036848315e-7, relative_change = 3.847988699274752e-12 Iter 150: T = 600.4289410650425 K, F = -4.767188288568036e-8, relative_change = 1.609291897665127e-12 Iter 155: T = 600.4289410620911 K, F = -1.9936266637543554e-8, relative_change = 6.730019967362859e-13 Iter 160: T = 600.4289410608568 K, F = -8.337006585090734e-9, relative_change = 2.8143795328551443e-13 Converged in 162 iterations to T = 600.4289410605955 K Iter 1: T = 980.0298195272364 K, F = -4550.224617264978, relative_change = 0.019970180472763575 Iter 2: T = 962.1081855178597 K, F = -3843.70528281306, relative_change = 0.018286825209075857 Iter 3: T = 946.1149975232863 K, F = -3245.3747582175706, relative_change = 0.01662306613259399 Iter 5: T = 919.3932423706501 K, F = -2310.452367607627, relative_change = 0.013443590582915681 Iter 10: T = 876.9228944268375 K, F = -980.987910777548, relative_change = 0.0070763052855312555 Iter 15: T = 856.7945132364156 K, F = -413.4134441797393, relative_change = 0.003322129244698086 Iter 20: T = 847.8558120551398 K, F = -173.50337307667036, relative_change = 0.001464839606510993 Iter 25: T = 844.0159990062533 K, F = -72.67257839048801, relative_change = 0.0006268938687363875 Iter 30: T = 842.3915061735439 K, F = -30.412406300913517, relative_change = 0.0002647584981447337 Iter 35: T = 841.7087960108914 K, F = -12.72233495896867, relative_change = 0.0001111836762678605 Iter 40: T = 841.4226913009616 K, F = -5.321247307682988, relative_change = 4.657902361160601e-5 Iter 45: T = 841.3029358196635 K, F = -2.2255168750283065, relative_change = 1.949405136082301e-5 Iter 50: T = 841.2528345914776 K, F = -0.9307565839577334, relative_change = 8.155122125020072e-6 Iter 55: T = 841.2318784995113 K, F = -0.3892568164007917, relative_change = 3.4110028950368354e-6 Iter 60: T = 841.2231138587458 K, F = -0.16279242608056732, relative_change = 1.4265979679464835e-6 Iter 65: T = 841.2194482846038 K, F = -0.06808183760618536, relative_change = 5.966335695324176e-7 Iter 70: T = 841.2179152808076 K, F = -0.028472655194257346, relative_change = 2.4952160370002044e-7 Iter 75: T = 841.2172741573538 K, F = -0.01190760751977038, relative_change = 1.0435332026858539e-7 Iter 80: T = 841.2170060313514 K, F = -0.004979904207718766, relative_change = 4.3641875706889266e-8 Iter 85: T = 841.2168938977647 K, F = -0.0020826555054909157, relative_change = 1.8251566015373278e-8 Iter 90: T = 841.2168470021438 K, F = -0.0008709914211295633, relative_change = 7.63302504863961e-9 Iter 95: T = 841.2168273898324 K, F = -0.0003642590183787764, relative_change = 3.192222624320648e-9 Iter 100: T = 841.2168191877289 K, F = -0.00015233747149134835, relative_change = 1.335025685202371e-9 Iter 105: T = 841.2168157575113 K, F = -6.370934914601278e-5, relative_change = 5.583236896091373e-10 Iter 110: T = 841.2168143229533 K, F = -2.66440095075815e-5, relative_change = 2.3349762655630893e-10 Iter 115: T = 841.216813723004 K, F = -1.1142843725719942e-5, relative_change = 9.765150290680554e-11 Iter 120: T = 841.216813472098 K, F = -4.6600696836929245e-6, relative_change = 4.083901920466927e-11 Iter 125: T = 841.2168133671662 K, F = -1.948898910697494e-6, relative_change = 1.7079384106147426e-11 Iter 130: T = 841.2168133232824 K, F = -8.150532246897768e-7, relative_change = 7.142806134519496e-12 Iter 135: T = 841.2168133049297 K, F = -3.408632953671997e-7, relative_change = 2.9871919571399438e-12 Iter 140: T = 841.2168132972544 K, F = -1.425546114486309e-7, relative_change = 1.2492925890783267e-12 Iter 145: T = 841.2168132940444 K, F = -5.961694471423584e-8, relative_change = 5.22459473316853e-13 Converged in 150 iterations to T = 841.216813292702 K Iter 1: T = 976.3851405604478 K, F = -5380.668186832513, relative_change = 0.023614859439552237 Iter 2: T = 954.9329748542655 K, F = -4549.7751213132115, relative_change = 0.02197100797116674 Iter 3: T = 935.5522985378706 K, F = -3845.4494328192436, relative_change = 0.020295326296960875 Iter 5: T = 902.5860983771045 K, F = -2743.19807580863, relative_change = 0.01694153921121422 Iter 10: T = 848.2640955835468 K, F = -1169.8389809403047, relative_change = 0.009542532359098733 Iter 15: T = 821.4265255379389 K, F = -494.39389066616627, relative_change = 0.004676972469360374 Iter 20: T = 809.2216507218294 K, F = -207.79541240696128, relative_change = 0.002108654296180423 Iter 25: T = 803.9175747217926 K, F = -87.09533207756351, relative_change = 0.000911735327447259 Iter 30: T = 801.6618858690075 K, F = -36.45899445104724, relative_change = 0.000386786648721054 Iter 35: T = 800.711777820955 K, F = -15.25372714308006, relative_change = 0.00016273906753139084 Iter 40: T = 800.3132351514852 K, F = -6.380370273750668, relative_change = 6.823240146858019e-5 Iter 45: T = 800.1463495119599 K, F = -2.6685362404365165, relative_change = 2.856597255638584e-5 Iter 50: T = 800.0765190733449 K, F = -1.1160468445481329, relative_change = 1.1951950466610737e-5 Iter 55: T = 800.0473086950607 K, F = -0.46674991357921036, relative_change = 4.999379432487683e-6 Iter 60: T = 800.0350914366012 K, F = -0.19520140166691546, relative_change = 2.0909630629689854e-6 Iter 65: T = 800.0299818356406 K, F = -0.08163573465866436, relative_change = 8.744942151753002e-7 Iter 70: T = 800.0278449049405 K, F = -0.03414107017337775, relative_change = 3.6572890771948984e-7 Iter 75: T = 800.0269512089573 K, F = -0.014278208697113604, relative_change = 1.5295306850583928e-7 Iter 80: T = 800.026577453567 K, F = -0.005971318343022558, relative_change = 6.396695233564558e-8 Iter 85: T = 800.0264211444144 K, F = -0.002497276809994675, relative_change = 2.6751770061340895e-8 Iter 90: T = 800.0263557740277 K, F = -0.0010443910149954272, relative_change = 1.1187914389417011e-8 Iter 95: T = 800.0263284353456 K, F = -0.00043677679989195806, relative_change = 4.678920221812409e-9 Iter 100: T = 800.0263170019813 K, F = -0.0001826652739649326, relative_change = 1.9567804483768844e-9 Iter 105: T = 800.0263122204117 K, F = -7.63927997506908e-5, relative_change = 8.183489831322298e-10 Iter 110: T = 800.0263102207022 K, F = -3.194838107656306e-5, relative_change = 3.4224332087843345e-10 Iter 115: T = 800.0263093843996 K, F = -1.3361194943661836e-5, relative_change = 1.431302493927274e-10 Iter 120: T = 800.026309034648 K, F = -5.5878126210551216e-6, relative_change = 5.9858793996236e-11 Iter 125: T = 800.0263088883777 K, F = -2.336888719089991e-6, relative_change = 2.50336491282508e-11 Iter 130: T = 800.0263088272058 K, F = -9.773172288118914e-7, relative_change = 1.0469397366728479e-11 Iter 135: T = 800.0263088016228 K, F = -4.087264786623024e-7, relative_change = 4.378434958394092e-12 Iter 140: T = 800.0263087909237 K, F = -1.709336968636066e-7, relative_change = 1.831107386074611e-12 Iter 145: T = 800.0263087864492 K, F = -7.148675074120092e-8, relative_change = 7.657935193235927e-13 Iter 150: T = 800.026308784578 K, F = -2.989710801148959e-8, relative_change = 3.2026929920002336e-13 Converged in 153 iterations to T = 800.0263087840301 K Iter 1: T = 980.911022269814 K, F = -4349.441734128474, relative_change = 0.019088977730186023 Iter 2: T = 963.8304836415326 K, F = -3673.202263729805, relative_change = 0.017412933732518624 Iter 3: T = 948.6321990684285 K, F = -3100.661021412401, relative_change = 0.015768628229812946 Iter 5: T = 923.3431286151346 K, F = -2206.3955770771163, relative_change = 0.012660016370476885 Iter 10: T = 883.4682374440945 K, F = -935.9142967500992, relative_change = 0.006566795205782642 Iter 15: T = 864.7334552235698 K, F = -394.192461086371, relative_change = 0.003056210285408695 Iter 20: T = 856.4527224266274 K, F = -165.38925533840836, relative_change = 0.0013417762725535058 Iter 25: T = 852.9034779863846 K, F = -69.26495392839128, relative_change = 0.0005731072948790498 Iter 30: T = 851.4033942711604 K, F = -28.984735356622465, relative_change = 0.00024183826278697087 Iter 35: T = 850.7732344800373 K, F = -12.124811983204951, relative_change = 0.00010152208496173816 Iter 40: T = 850.5091992618482 K, F = -5.071276231003084, relative_change = 4.2525008640503044e-5 Iter 45: T = 850.3986897360165 K, F = -2.1209619904536057, relative_change = 1.7796257747456872e-5 Iter 50: T = 850.3524581219755 K, F = -0.8870280324747257, relative_change = 7.444671837742773e-6 Iter 55: T = 850.333120846948 K, F = -0.3709685852419977, relative_change = 3.1138118684997062e-6 Iter 60: T = 850.3250333019104 K, F = -0.1551439944133406, relative_change = 1.3022964946606014e-6 Iter 65: T = 850.3216509125332 K, F = -0.064883159027179, relative_change = 5.446469985202551e-7 Iter 70: T = 850.3202363426542 K, F = -0.02713492731896805, relative_change = 2.2777981223579507e-7 Iter 75: T = 850.3196447501455 K, F = -0.011348153347841228, relative_change = 9.526057582714157e-8 Iter 80: T = 850.3193973386574 K, F = -0.004745933723308227, relative_change = 3.983916957995937e-8 Iter 85: T = 850.319293868142 K, F = -0.001984806242658177, relative_change = 1.6661226832847867e-8 Iter 90: T = 850.3192505955235 K, F = -0.0008300696867162838, relative_change = 6.967925831372678e-9 Iter 95: T = 850.3192324983953 K, F = -0.0003471450566794321, relative_change = 2.9140700973592024e-9 Iter 100: T = 850.3192249299599 K, F = -0.00014518020843512502, relative_change = 1.2186989672416092e-9 Iter 105: T = 850.3192217647496 K, F = -6.0716096073054615e-5, relative_change = 5.096744638142308e-10 Iter 110: T = 850.319220441021 K, F = -2.5392196770335218e-5, relative_change = 2.1315195157377e-10 Iter 115: T = 850.3192198874218 K, F = -1.0619320613303174e-5, relative_change = 8.914269768002593e-11 Iter 120: T = 850.3192196559 K, F = -4.441125770915377e-6, relative_change = 3.728053299125049e-11 Iter 125: T = 850.3192195590749 K, F = -1.857332643018239e-6, relative_change = 1.5591170906433706e-11 Iter 130: T = 850.3192195185813 K, F = -7.767557337334807e-7, relative_change = 6.5203890350286825e-12 Iter 135: T = 850.3192195016464 K, F = -3.248458417814959e-7, relative_change = 2.7268820467495216e-12 Iter 140: T = 850.3192194945642 K, F = -1.3585547664618502e-7, relative_change = 1.140423587391829e-12 Iter 145: T = 850.3192194916022 K, F = -5.681291725956328e-8, relative_change = 4.769096727779235e-13 Converged in 150 iterations to T = 850.3192194903636 K Iter 1: T = 967.2983356383338 K, F = -7451.10533211914, relative_change = 0.03270166436166617 Iter 2: T = 936.6707305103248 K, F = -6316.135318022555, relative_change = 0.031663039208888334 Iter 3: T = 908.0858897053224 K, F = -5352.539012369255, relative_change = 0.03051749123134074 Iter 5: T = 856.9065664264281 K, F = -3840.2403292007752, relative_change = 0.027910878447917332 Iter 10: T = 761.7009841651131 K, F = -1662.902782858304, relative_change = 0.019995713413232155 Iter 15: T = 705.9372368118119 K, F = -711.9908682893032, relative_change = 0.01198763693982229 Iter 20: T = 677.2491517221066 K, F = -301.7691907525757, relative_change = 0.0061410174187583304 Iter 25: T = 663.8684110351644 K, F = -127.0399291068924, relative_change = 0.002837456384179234 Iter 30: T = 657.9771130500155 K, F = -53.28894333492424, relative_change = 0.0012413266362963703 Iter 35: T = 655.4566194825921 K, F = -22.315023708130603, relative_change = 0.000529358791258538 Iter 40: T = 654.3921912984 K, F = -9.337557030314574, relative_change = 0.00022322396911097201 Iter 45: T = 653.9451965265802 K, F = -3.9059844872076015, relative_change = 9.368065265729467e-5 Iter 50: T = 653.7579340895039 K, F = -1.633688394670063, relative_change = 3.923562927813723e-5 Iter 55: T = 653.6795618780825 K, F = -0.6832558464845602, relative_change = 1.641884535068584e-5 Iter 60: T = 653.6467757318294 K, F = -0.2857506281630645, relative_change = 6.86831419965085e-6 Iter 65: T = 653.6330624324478 K, F = -0.11950517780225245, relative_change = 2.8727184382367256e-6 Iter 70: T = 653.6273270622215 K, F = -0.04997864166121713, relative_change = 1.2014589338489598e-6 Iter 75: T = 653.6249284086092 K, F = -0.020901690891226232, relative_change = 5.024738805227026e-7 Iter 80: T = 653.623925253702 K, F = -0.0087413413079801, relative_change = 2.1014222273053231e-7 Iter 85: T = 653.6235057207097 K, F = -0.00365573412637038, relative_change = 8.78842749163483e-8 Iter 90: T = 653.6233302667168 K, F = -0.0015288718103880217, relative_change = 3.6754303669455627e-8 Iter 95: T = 653.6232568897118 K, F = -0.0006393924730592748, relative_change = 1.537109751104468e-8 Iter 100: T = 653.6232262025632 K, F = -0.0002674015718418521, relative_change = 6.428378073447707e-9 Iter 105: T = 653.6232133688296 K, F = -0.00011183053095087381, relative_change = 2.688424736466346e-9 Iter 110: T = 653.6232080016088 K, F = -4.676886330468033e-5, relative_change = 1.1243313686453568e-9 Iter 115: T = 653.6232057569729 K, F = -1.9559296953408634e-5, relative_change = 4.702088081478523e-10 Iter 120: T = 653.6232048182394 K, F = -8.179931676954855e-6, relative_change = 1.9664694288419e-10 Iter 125: T = 653.6232044256498 K, F = -3.420945321463975e-6, relative_change = 8.224010514156698e-11 Iter 130: T = 653.6232042614641 K, F = -1.4306797112562109e-6, relative_change = 3.439378270096966e-11 Iter 135: T = 653.6232041927997 K, F = -5.983272134968409e-7, relative_change = 1.4383887611931261e-11 Iter 140: T = 653.6232041640835 K, F = -2.502280171956528e-7, relative_change = 6.015523941182955e-12 Iter 145: T = 653.623204152074 K, F = -1.0464827049361247e-7, relative_change = 2.5157621583220576e-12 Iter 150: T = 653.6232041470514 K, F = -4.3764600499152095e-8, relative_change = 1.0521084132068658e-12 Iter 155: T = 653.6232041449509 K, F = -1.8302719839713433e-8, relative_change = 4.4000048689119e-13 Converged in 159 iterations to T = 653.6232041441929 K Iter 1: T = 973.4781248638931 K, F = -6043.034478578321, relative_change = 0.026521875136106952 Iter 2: T = 949.1493285477104 K, F = -5113.933519927295, relative_change = 0.024991620966916067 Iter 3: T = 926.9464800319113 K, F = -4325.8653465368925, relative_change = 0.02339236603556536 Iter 5: T = 888.5976510490789 K, F = -3091.220372010308, relative_change = 0.020064557680091983 Iter 10: T = 823.2742262549447 K, F = -1323.66497846735, relative_change = 0.012046439426076068 Iter 15: T = 789.6352980079762 K, F = -561.0602139215273, relative_change = 0.006177879892536675 Iter 20: T = 773.9353729563761 K, F = -236.20702321448448, relative_change = 0.00285628088426791 Iter 25: T = 767.0206488478236 K, F = -99.08285300177502, relative_change = 0.00124994459196739 Iter 30: T = 764.0618332490656 K, F = -41.49184205395688, relative_change = 0.0005331070179356415 Iter 35: T = 762.8122110296455 K, F = -17.36202363381139, relative_change = 0.00022481783797558734 Iter 40: T = 762.2874305647135 K, F = -7.262703517193385, relative_change = 9.435191541917855e-5 Iter 45: T = 762.0675781161358 K, F = -3.037647186145031, relative_change = 3.951718562179338e-5 Iter 50: T = 761.9755660014351 K, F = -1.2704324873476436, relative_change = 1.653674055415927e-5 Iter 55: T = 761.9370736683221 K, F = -0.5313191653261904, relative_change = 6.917644772861542e-6 Iter 60: T = 761.9209736555758 K, F = -0.22220561685328943, relative_change = 2.8933535165261477e-6 Iter 65: T = 761.9142400777076 K, F = -0.0929293219247237, relative_change = 1.210089547395336e-6 Iter 70: T = 761.9114239520113 K, F = -0.03886420107826305, relative_change = 5.060834421535019e-7 Iter 75: T = 761.9102462035917 K, F = -0.016253481567021222, relative_change = 2.1165180832567137e-7 Iter 80: T = 761.9097536532096 K, F = -0.006797401591908447, relative_change = 8.851560578766171e-8 Iter 85: T = 761.9095476624204 K, F = -0.002842754785841617, relative_change = 3.7018334503192107e-8 Iter 90: T = 761.9094615145533 K, F = -0.001188874045436994, relative_change = 1.548151849320316e-8 Iter 95: T = 761.9094254864762 K, F = -0.0004972013309199053, relative_change = 6.474557470602593e-9 Iter 100: T = 761.9094104191023 K, F = -0.00020793553695186429, relative_change = 2.7077375445613876e-9 Iter 105: T = 761.9094041177462 K, F = -8.696112526795918e-5, relative_change = 1.1324082286713449e-9 Iter 110: T = 761.9094014824439 K, F = -3.6368181469903504e-5, relative_change = 4.735866573672609e-10 Iter 115: T = 761.9094003803289 K, F = -1.5209607782784573e-5, relative_change = 1.98059596828773e-10 Iter 120: T = 761.9093999194113 K, F = -6.360839812202812e-6, relative_change = 8.283089152055152e-11 Iter 125: T = 761.90939972665 K, F = -2.6601798704950497e-6, relative_change = 3.464087715600636e-11 Iter 130: T = 761.909399646035 K, F = -1.1125211319962247e-6, relative_change = 1.4487256412170715e-11 Iter 135: T = 761.9093996123208 K, F = -4.6527119812456164e-7, relative_change = 6.058764149274046e-12 Iter 140: T = 761.9093995982211 K, F = -1.94580102585995e-7, relative_change = 2.5338231864899358e-12 Iter 145: T = 761.9093995923243 K, F = -8.137535112417993e-8, relative_change = 1.0596702784842992e-12 Iter 150: T = 761.9093995898584 K, F = -3.403269266399889e-8, relative_change = 4.431739146458821e-13 Converged in 154 iterations to T = 761.9093995889682 K Iter 1: T = 969.984645694716 K, F = -6839.02703043191, relative_change = 0.030015354305283997 Iter 2: T = 942.1261803595055 K, F = -5793.0637699992, relative_change = 0.02872052197821954 Iter 3: T = 916.3819558719564 K, F = -4905.340107127638, relative_change = 0.027325665101170824 Iter 5: T = 871.0311744613823 K, F = -3513.0429082994865, relative_change = 0.0242763417892525 Iter 10: T = 790.1153391073357 K, F = -1513.0931006802623, relative_change = 0.01597470311394049 Iter 15: T = 745.6928995656085 K, F = -644.4649671194053, relative_change = 0.00882762719439414 Iter 20: T = 724.0072683462408 K, F = -272.1365526884451, relative_change = 0.004272248180918245 Iter 25: T = 714.2147790923246 K, F = -114.32930327948795, relative_change = 0.001913329104606139 Iter 30: T = 709.9740144089208 K, F = -47.91001771933243, relative_change = 0.0008246994823066776 Iter 35: T = 708.1733894889895 K, F = -20.053790885963146, relative_change = 0.00034938367634915305 Iter 40: T = 707.4154784794242 K, F = -8.389784804148835, relative_change = 0.00014691582542682318 Iter 45: T = 707.0976497025628 K, F = -3.50924409833285, relative_change = 6.158289418668084e-5 Iter 50: T = 706.9645785285223 K, F = -1.4677017010412416, relative_change = 2.577943572098608e-5 Iter 55: T = 706.9089000430795 K, F = -0.6138268175585176, relative_change = 1.078559998182252e-5 Iter 60: T = 706.885609991218 K, F = -0.2567125817184605, relative_change = 4.511424854060871e-6 Iter 65: T = 706.875869000804 K, F = -0.1073607705345887, relative_change = 1.8868643827904482e-6 Iter 70: T = 706.8717950601384 K, F = -0.04489964438040217, relative_change = 7.891324183985183e-7 Iter 75: T = 706.8700912646368 K, F = -0.018777582880478483, relative_change = 3.300286593593004e-7 Iter 80: T = 706.8693787126621 K, F = -0.007853012101944334, relative_change = 1.38022636413661e-7 Iter 85: T = 706.869080714156 K, F = -0.0032842239154425856, relative_change = 5.772283900029452e-8 Iter 90: T = 706.8689560874889 K, F = -0.0013735017435158037, relative_change = 2.4140402299121462e-8 Iter 95: T = 706.8689039671052 K, F = -0.000574414847549054, relative_change = 1.0095808352527312e-8 Iter 100: T = 706.8688821697342 K, F = -0.0002402271513616272, relative_change = 4.222188280196724e-9 Iter 105: T = 706.8688730538126 K, F = -0.0001004658652813406, relative_change = 1.7657697000174782e-9 Iter 110: T = 706.8688692414253 K, F = -4.201602502273971e-5, relative_change = 7.384660013395039e-10 Iter 115: T = 706.8688676470393 K, F = -1.7571604001398455e-5, relative_change = 3.0883531405840486e-10 Iter 120: T = 706.8688669802481 K, F = -7.348654239902608e-6, relative_change = 1.291586101131785e-10 Iter 125: T = 706.868866701388 K, F = -3.0732971211255844e-6, relative_change = 5.4015711233168266e-11 Iter 130: T = 706.8688665847653 K, F = -1.2852899273774199e-6, relative_change = 2.2590022014281024e-11 Iter 135: T = 706.8688665359923 K, F = -5.375225120562988e-7, relative_change = 9.447397918451741e-12 Iter 140: T = 706.868866515595 K, F = -2.2479872074931961e-7, relative_change = 3.9510214347023955e-12 Iter 145: T = 706.8688665070645 K, F = -9.401365252958982e-8, relative_change = 1.6523668599281343e-12 Iter 150: T = 706.868866503497 K, F = -3.9318794442522176e-8, relative_change = 6.91059980785907e-13 Iter 155: T = 706.868866502005 K, F = -1.644343106121937e-8, relative_change = 2.8900675400784036e-13 Converged in 157 iterations to T = 706.8688665016892 K Iter 1: T = 973.5317486923781 K, F = -6030.816238248569, relative_change = 0.026468251307621884 Iter 2: T = 949.2565095898448 K, F = -5103.518912439505, relative_change = 0.024935231064769216 Iter 3: T = 927.1067237172009 K, F = -4316.988870470928, relative_change = 0.02333382562971764 Iter 5: T = 888.8606743633227 K, F = -3084.776650624981, relative_change = 0.02000399037501993 Iter 10: T = 823.754826566933 K, F = -1320.7984730019768, relative_change = 0.011994833597488942 Iter 15: T = 790.2563728366173 K, F = -559.8105263430103, relative_change = 0.006145566169954651 Iter 20: T = 774.6306756539292 K, F = -235.67241190899054, relative_change = 0.0028397873980730176 Iter 25: T = 767.7506621014129 K, F = -98.85684845588587, relative_change = 0.0012423953357463752 Iter 30: T = 764.8071027491387 K, F = -41.39687147439374, relative_change = 0.0005298238837643444 Iter 35: T = 763.5639987086633 K, F = -17.322224320515925, relative_change = 0.0002234217914959612 Iter 40: T = 763.0419689924094 K, F = -7.24604454406478, relative_change = 9.376397492455996e-5 Iter 45: T = 762.8232713216136 K, F = -3.030677668796044, relative_change = 3.927057974107913e-5 Iter 50: T = 762.7317429188499 K, F = -1.267517307491113, relative_change = 1.6433480317281615e-5 Iter 55: T = 762.6934530148044 K, F = -0.5300999244869238, relative_change = 6.874437916451368e-6 Iter 60: T = 762.6774376839361 K, F = -0.22169570215917955, relative_change = 2.875280009541125e-6 Iter 65: T = 762.6707395251739 K, F = -0.0927160671277506, relative_change = 1.202530311509377e-6 Iter 70: T = 762.6679382128937 K, F = -0.03877501495705393, relative_change = 5.029219605653625e-7 Iter 75: T = 762.6667666597481 K, F = -0.016216182791855882, relative_change = 2.1032961816620604e-7 Iter 80: T = 762.6662767003257 K, F = -0.006781802784905033, relative_change = 8.796264642356404e-8 Iter 85: T = 762.6660717931107 K, F = -0.0028362311760185, relative_change = 3.678707965467523e-8 Iter 90: T = 762.6659860984081 K, F = -0.0011861457955997246, relative_change = 1.5384804869735547e-8 Iter 95: T = 762.6659502598498 K, F = -0.0004960603447833334, relative_change = 6.434110666592026e-9 Iter 100: T = 762.6659352717348 K, F = -0.0002074583608417946, relative_change = 2.690822177783809e-9 Iter 105: T = 762.6659290035259 K, F = -8.676156367826149e-5, relative_change = 1.125334008776502e-9 Iter 110: T = 762.665926382086 K, F = -3.628472314087805e-5, relative_change = 4.706281432308193e-10 Iter 115: T = 762.6659252857685 K, F = -1.5174703712372839e-5, relative_change = 1.9682230048669044e-10 Iter 120: T = 762.6659248272754 K, F = -6.346240367660627e-6, relative_change = 8.231341157331879e-11 Iter 125: T = 762.6659246355281 K, F = -2.6540723214729667e-6, relative_change = 3.442443635093572e-11 Iter 130: T = 762.6659245553373 K, F = -1.1099655837787381e-6, relative_change = 1.4396721332914967e-11 Iter 135: T = 762.6659245218004 K, F = -4.642019989509194e-7, relative_change = 6.020895530585978e-12 Iter 140: T = 762.6659245077749 K, F = -1.9413404928059208e-7, relative_change = 2.5180004230744473e-12 Iter 145: T = 762.6659245019093 K, F = -8.118930194811469e-8, relative_change = 1.0530594577279832e-12 Iter 150: T = 762.6659244994562 K, F = -3.395544834194908e-8, relative_change = 4.404164731122109e-13 Converged in 154 iterations to T = 762.6659244985707 K Iter 1: T = 964.2806821553752 K, F = -8138.680548740782, relative_change = 0.03571931784462478 Iter 2: T = 930.4842525589024 K, F = -6904.605613338461, relative_change = 0.03504833211107215 Iter 3: T = 898.5796340322535 K, F = -5856.594316962318, relative_change = 0.034288187509792734 Iter 5: T = 840.3326802896414 K, F = -4210.937577834302, relative_change = 0.03247466829352902 Iter 10: T = 725.8460494648134 K, F = -1836.6155450176764, relative_change = 0.026118603798501897 Iter 15: T = 651.8534115234391 K, F = -793.1614011606906, relative_change = 0.017930134441544093 Iter 20: T = 609.9304705851349 K, F = -338.6758230985663, relative_change = 0.010301546816685271 Iter 25: T = 588.9555685218616 K, F = -143.25695332896947, relative_change = 0.005117833466491429 Iter 30: T = 579.343583493497 K, F = -60.24050900271959, relative_change = 0.002324386358307071 Iter 35: T = 575.1501739094738 K, F = -25.25499077852473, relative_change = 0.0010084939847493167 Iter 40: T = 573.3636774415247 K, F = -10.573069619795987, relative_change = 0.00042848778907834544 Iter 45: T = 572.6106193177011 K, F = -4.423756932021902, relative_change = 0.0001804023773542872 Iter 50: T = 572.2946305294398 K, F = -1.8504150015842036, relative_change = 7.565903321550286e-5 Iter 55: T = 572.1622953425832 K, F = -0.7739264906160594, relative_change = 3.167885004719795e-5 Iter 60: T = 572.1069187663663 K, F = -0.32367595221885476, relative_change = 1.3255015332835602e-5 Iter 65: T = 572.0837539444968 K, F = -0.1353670123853312, relative_change = 5.544550728554582e-6 Iter 70: T = 572.0740651461083 K, F = -0.05661242720645829, relative_change = 2.3189976559953275e-6 Iter 75: T = 572.070013001164 K, F = -0.02367605017189281, relative_change = 9.698675558739264e-7 Iter 80: T = 572.0683183153644 K, F = -0.009901616904595512, relative_change = 4.056163235665334e-7 Iter 85: T = 572.0676095722088 K, F = -0.004140976183467704, relative_change = 1.696346625860554e-7 Iter 90: T = 572.0673131664272 K, F = -0.0017318059979803402, relative_change = 7.09434292276601e-8 Iter 95: T = 572.0671892058269 K, F = -0.0007242620032604785, relative_change = 2.9669422116292212e-8 Iter 100: T = 572.0671373639951 K, F = -0.0003028950286419474, relative_change = 1.2408112393710911e-8 Iter 105: T = 572.0671156831169 K, F = -0.00012667431980323274, relative_change = 5.189221784745068e-9 Iter 110: T = 572.0671066159139 K, F = -5.297671351733868e-5, relative_change = 2.170194693288002e-9 Iter 115: T = 572.0671028239012 K, F = -2.2155495189857266e-5, relative_change = 9.076014047158699e-10 Iter 120: T = 572.0671012380362 K, F = -9.26569315551351e-6, relative_change = 3.7956977095458687e-10 Iter 125: T = 572.0671005748084 K, F = -3.875023298904878e-6, relative_change = 1.587406025044326e-10 Iter 130: T = 572.0671002974386 K, F = -1.6205809951208572e-6, relative_change = 6.638721481732677e-11 Iter 135: T = 572.0671001814393 K, F = -6.777463239515669e-7, relative_change = 2.7763926010934518e-11 Iter 140: T = 572.067100132927 K, F = -2.834412595742464e-7, relative_change = 1.1611191214671911e-11 Iter 145: T = 572.0671001126385 K, F = -1.1853826137331325e-7, relative_change = 4.855928248978715e-12 Iter 150: T = 572.0671001041537 K, F = -4.957445653985815e-8, relative_change = 2.030821113518199e-12 Iter 155: T = 572.0671001006052 K, F = -2.0732706940140844e-8, relative_change = 8.49316804145186e-13 Iter 160: T = 572.0671000991213 K, F = -8.670721696191208e-9, relative_change = 3.551967266982632e-13 Converged in 163 iterations to T = 572.0671000986868 K Iter 1: T = 963.5536130385905 K, F = -8304.343938621474, relative_change = 0.03644638696140956 Iter 2: T = 928.9843739746137 K, F = -7046.52944744375, relative_change = 0.03587681951081246 Iter 3: T = 896.2587057118646 K, F = -5978.311883257255, relative_change = 0.0352273613847065 Iter 5: T = 836.219110002145 K, F = -4300.773894137559, relative_change = 0.033659506898401345 Iter 10: T = 716.443256713254 K, F = -1879.4964292642474, relative_change = 0.02794823614743633 Iter 15: T = 636.7050826801689 K, F = -813.9049736438249, relative_change = 0.020040067392322718 Iter 20: T = 589.9684490042829 K, F = -348.50295574189414, relative_change = 0.012025187919688353 Iter 25: T = 565.909847094409 K, F = -147.71553474798975, relative_change = 0.00616446149243031 Iter 30: T = 554.6839454793361 K, F = -62.18744474495077, relative_change = 0.002849407108582421 Iter 35: T = 549.7403464628572 K, F = -26.08585505635989, relative_change = 0.001246793556652802 Iter 40: T = 547.6251025192969 K, F = -10.923650398390397, relative_change = 0.0005317357630685383 Iter 45: T = 546.7317765517136 K, F = -4.570932139072619, relative_change = 0.00022423459832273253 Iter 50: T = 546.3566273420734 K, F = -1.9120642100733214, relative_change = 9.410625805691419e-5 Iter 55: T = 546.1994624137235 K, F = -0.7997262885116596, relative_change = 3.941414215895339e-5 Iter 60: T = 546.1336862582187 K, F = -0.3344687788923147, relative_change = 1.6493592744674154e-5 Iter 65: T = 546.1061694947825 K, F = -0.13988123409556308, relative_change = 6.8995904206746376e-6 Iter 70: T = 546.0946601875307 K, F = -0.058500421841226447, relative_change = 2.8858013218208863e-6 Iter 75: T = 546.0898466009463 K, F = -0.024465648379135813, relative_change = 1.2069308408982798e-6 Iter 80: T = 546.0878334566245 K, F = -0.010231839156054884, relative_change = 5.04762382877525e-7 Iter 85: T = 546.0869915277693 K, F = -0.0042790795708306795, relative_change = 2.110993167180778e-7 Iter 90: T = 546.0866394216931 K, F = -0.0017895625711044083, relative_change = 8.828454563466885e-8 Iter 95: T = 546.0864921664867 K, F = -0.0007484165078040228, relative_change = 3.692170211233243e-8 Iter 100: T = 546.0864305825587 K, F = -0.0003129967339094153, relative_change = 1.5441105661911603e-8 Iter 105: T = 546.0864048274171 K, F = -0.0001308989737369981, relative_change = 6.457656324724851e-9 Iter 110: T = 546.0863940563081 K, F = -5.474351419046397e-5, relative_change = 2.7006692547220285e-9 Iter 115: T = 546.0863895517015 K, F = -2.289439172487029e-5, relative_change = 1.1294521950122034e-9 Iter 120: T = 546.0863876678211 K, F = -9.574708100063e-6, relative_change = 4.723504073742677e-10 Iter 125: T = 546.08638687996 K, F = -4.004257307982373e-6, relative_change = 1.975425844716803e-10 Iter 130: T = 546.086386550467 K, F = -1.6746280504242872e-6, relative_change = 8.261465950262449e-11 Iter 135: T = 546.0863864126691 K, F = -7.003494488788675e-7, relative_change = 3.455043721907538e-11 Iter 140: T = 546.0863863550403 K, F = -2.928950213476611e-7, relative_change = 1.4449431020665604e-11 Iter 145: T = 546.0863863309391 K, F = -1.2249160599719922e-7, relative_change = 6.042895518316417e-12 Iter 150: T = 546.0863863208599 K, F = -5.1227351610672045e-8, relative_change = 2.527206096862095e-12 Iter 155: T = 546.0863863166446 K, F = -2.1424259810665092e-8, relative_change = 1.0569260036659899e-12 Iter 160: T = 546.0863863148817 K, F = -8.959389369289639e-9, relative_change = 4.419948079981031e-13 Converged in 164 iterations to T = 546.0863863142455 K Iter 1: T = 969.3066525803139 K, F = -6993.508406486384, relative_change = 0.030693347419686122 Iter 2: T = 940.7538391776437 K, F = -5925.011000979801, relative_change = 0.029456945670043647 Iter 3: T = 914.3025554448192 K, F = -5018.074749956598, relative_change = 0.028117114840527112 Iter 5: T = 867.5191584177795 K, F = -3595.384131235096, relative_change = 0.025158862033546888 Iter 10: T = 783.2105139586972 K, F = -1550.5286929632782, relative_change = 0.016891702474172713 Iter 15: T = 736.2347245222198 K, F = -661.1814465736531, relative_change = 0.009504942612448795 Iter 20: T = 713.0412205503497 K, F = -279.41422141575, relative_change = 0.004655416348761686 Iter 25: T = 702.4975457864925 K, F = -117.43593789667997, relative_change = 0.002098180401693607 Iter 30: T = 697.9162739732326 K, F = -49.22152518911502, relative_change = 0.000907053490912521 Iter 35: T = 695.9681431890801 K, F = -20.60453049533211, relative_change = 0.00038477188492062534 Iter 40: T = 695.1476108650902 K, F = -8.62051257589992, relative_change = 0.00016188622366159513 Iter 45: T = 694.8034268987667 K, F = -3.6058081059248535, relative_change = 6.78739160267202e-5 Iter 50: T = 694.659304368667 K, F = -1.5080983672296497, relative_change = 2.841573027307858e-5 Iter 55: T = 694.5989989322925 K, F = -0.63072336573398, relative_change = 1.188906135687837e-5 Iter 60: T = 694.5737729337271 K, F = -0.2637793014680794, relative_change = 4.97306865298361e-6 Iter 65: T = 694.5632221496796 K, F = -0.11031622387369305, relative_change = 2.0799578655785137e-6 Iter 70: T = 694.5588095160742 K, F = -0.04613566193755514, relative_change = 8.698914101646991e-7 Iter 75: T = 694.5569640703175 K, F = -0.019294502225745025, relative_change = 3.638039072037741e-7 Iter 80: T = 694.5561922776709 K, F = -0.008069194303561011, relative_change = 1.5214800113797542e-7 Iter 85: T = 694.5558695038609 K, F = -0.0033746339576083972, relative_change = 6.363026194958553e-8 Iter 90: T = 694.5557345158401 K, F = -0.0014113123155852225, relative_change = 2.661096182813595e-8 Iter 95: T = 694.5556780622098 K, F = -0.0005902276815248353, relative_change = 1.112902665673978e-8 Iter 100: T = 694.5556544526227 K, F = -0.0002468402689871363, relative_change = 4.654292680767113e-9 Iter 105: T = 694.5556445788104 K, F = -0.00010323154820301994, relative_change = 1.9464809113892567e-9 Iter 110: T = 694.555640449464 K, F = -4.317266499720418e-5, relative_change = 8.140415614449669e-10 Iter 115: T = 694.555638722522 K, F = -1.8055323379395638e-5, relative_change = 3.404418932929255e-10 Iter 120: T = 694.5556380002943 K, F = -7.550951520385318e-6, relative_change = 1.4237685974782717e-10 Iter 125: T = 694.55563769825 K, F = -3.157898145644822e-6, relative_change = 5.954370400836118e-11 Iter 130: T = 694.5556375719315 K, F = -1.3206695607115293e-6, relative_change = 2.4901866322827416e-11 Iter 135: T = 694.5556375191036 K, F = -5.523199302359671e-7, relative_change = 1.0414260678303229e-11 Iter 140: T = 694.5556374970104 K, F = -2.3098563806112082e-7, relative_change = 4.355346451194159e-12 Iter 145: T = 694.5556374877707 K, F = -9.660105737552271e-8, relative_change = 1.82145987941209e-12 Iter 150: T = 694.5556374839066 K, F = -4.040041245989556e-8, relative_change = 7.617694092445339e-13 Iter 155: T = 694.5556374822906 K, F = -1.6896600785187843e-8, relative_change = 3.185936185996336e-13 Converged in 158 iterations to T = 694.5556374818175 K Iter 1: T = 966.4631483242214 K, F = -7641.403556107912, relative_change = 0.03353685167577867 Iter 2: T = 934.9647169499234 K, F = -6478.911552190307, relative_change = 0.03259144586000414 Iter 3: T = 905.4750030370417 K, F = -5491.864257728129, relative_change = 0.031540991203479994 Iter 5: T = 852.3973153758106 K, F = -3942.495845523626, relative_change = 0.029119857264505142 Iter 10: T = 752.2405828801552 K, F = -1710.350405996562, relative_change = 0.02148891679363439 Iter 15: T = 692.1538739797788 K, F = -733.789601366182, relative_change = 0.013297634377159105 Iter 20: T = 660.5710585413902 K, F = -311.50156820323195, relative_change = 0.006980180030618391 Iter 25: T = 645.6273262070439 K, F = -131.26044257349923, relative_change = 0.003271584159910413 Iter 30: T = 638.9970094213334 K, F = -55.08500571295515, relative_change = 0.001441361584082991 Iter 35: T = 636.1500299150449 K, F = -23.071999109169816, relative_change = 0.0006166153633021663 Iter 40: T = 634.9457987637641 K, F = -9.655188318096846, relative_change = 0.0002603753338369459 Iter 45: T = 634.4397490464429 K, F = -4.039008783858159, relative_change = 0.00010933547224908436 Iter 50: T = 634.2276850538905 K, F = -1.6893536579120942, relative_change = 4.5803415458605136e-5 Iter 55: T = 634.1389222380278 K, F = -0.7065414949951423, relative_change = 1.9169214507966368e-5 Iter 60: T = 634.1017874095891 K, F = -0.29548997477631517, relative_change = 8.01918944442067e-6 Iter 65: T = 634.0862548779047 K, F = -0.12357846564746616, relative_change = 3.354139868067161e-6 Iter 70: T = 634.0797585847624 K, F = -0.05168217020892918, relative_change = 1.402814659330965e-6 Iter 75: T = 634.0770416869141 K, F = -0.02161413228221032, relative_change = 5.866866664771565e-7 Iter 80: T = 634.0759054354611 K, F = -0.009039293753631772, relative_change = 2.453616132082215e-7 Iter 85: T = 634.0754302393777 K, F = -0.0037803415620809577, relative_change = 1.0261354913057726e-7 Iter 90: T = 634.0752315063237 K, F = -0.0015809841569153216, relative_change = 4.291428033067966e-8 Iter 95: T = 634.0751483937212 K, F = -0.0006611864841323811, relative_change = 1.7947276520145798e-8 Iter 100: T = 634.0751136350268 K, F = -0.00027651608982864895, relative_change = 7.505767496360455e-9 Iter 105: T = 634.0750990985235 K, F = -0.00011564233197808305, relative_change = 3.139001972150845e-9 Iter 110: T = 634.075093019184 K, F = -4.836300556554374e-5, relative_change = 1.3127682067837103e-9 Iter 115: T = 634.0750904767316 K, F = -2.0225987081401442e-5, relative_change = 5.490153680002558e-10 Iter 120: T = 634.0750894134475 K, F = -8.458749053585901e-6, relative_change = 2.2960477740159314e-10 Iter 125: T = 634.0750889687694 K, F = -3.537549930210382e-6, relative_change = 9.602346184281555e-11 Iter 130: T = 634.0750887827998 K, F = -1.4794454594180273e-6, relative_change = 4.015815398282597e-11 Iter 135: T = 634.075088705025 K, F = -6.187220474296318e-7, relative_change = 1.6794627412309236e-11 Iter 140: T = 634.0750886724986 K, F = -2.58756499671442e-7, relative_change = 7.02370155000945e-12 Iter 145: T = 634.0750886588957 K, F = -1.0821407903094382e-7, relative_change = 2.9373692860477455e-12 Iter 150: T = 634.0750886532069 K, F = -4.5256376368651985e-8, relative_change = 1.2284417253207968e-12 Iter 155: T = 634.0750886508278 K, F = -1.8926926914630826e-8, relative_change = 5.137536104315728e-13 Converged in 160 iterations to T = 634.0750886498328 K Iter 1: T = 966.495407397122 K, F = -7634.053295661201, relative_change = 0.03350459260287803 Iter 2: T = 935.0306993493322 K, F = -6472.62300375407, relative_change = 0.03255546566178496 Iter 3: T = 905.576131417226 K, F = -5486.480267893797, relative_change = 0.03150117739728011 Iter 5: T = 852.572563540579 K, F = -3938.5414601943958, relative_change = 0.02907242159317596 Iter 10: T = 752.6121044620722 K, F = -1708.5093428752807, relative_change = 0.021428709764498538 Iter 15: T = 692.7010612515124 K, F = -732.9392790660213, relative_change = 0.013243233083669901 Iter 20: T = 661.2385546703816 K, F = -311.1199522312275, relative_change = 0.006944523077967083 Iter 25: T = 646.3607856272447 K, F = -131.09437506631022, relative_change = 0.003252886054764182 Iter 30: T = 639.7619193411527 K, F = -55.014205107018995, relative_change = 0.0014326879930529985 Iter 35: T = 636.9288893770292 K, F = -23.04213381318589, relative_change = 0.000612820412137919 Iter 40: T = 635.7306419994328 K, F = -9.642652000593385, relative_change = 0.000258757435405746 Iter 45: T = 635.2271218262745 K, F = -4.033757728594644, relative_change = 0.00010865334462222773 Iter 50: T = 635.0161205154286 K, F = -1.6871561576436798, relative_change = 4.55171703973719e-5 Iter 55: T = 634.9278029693127 K, F = -0.7056222205268867, relative_change = 1.9049332914165338e-5 Iter 60: T = 634.8908545058875 K, F = -0.29510547881012084, relative_change = 7.969023664427249e-6 Iter 65: T = 634.8753999401688 K, F = -0.12341765707270691, relative_change = 3.3331547127895285e-6 Iter 70: T = 634.8689362578548 K, F = -0.051614916782912634, relative_change = 1.3940375023133905e-6 Iter 75: T = 634.8662329990367 K, F = -0.021586005859108748, relative_change = 5.83015794649763e-7 Iter 80: T = 634.8651024517276 K, F = -0.00902753090538072, relative_change = 2.43826382775755e-7 Iter 85: T = 634.8646296412097 K, F = -0.003775422190482214, relative_change = 1.0197149251667367e-7 Iter 90: T = 634.8644319058318 K, F = -0.0015789268153895142, relative_change = 4.264576372289364e-8 Iter 95: T = 634.8643492104701 K, F = -0.0006603260790262189, relative_change = 1.7834979516032083e-8 Iter 100: T = 634.8643146262708 K, F = -0.0002761562568630582, relative_change = 7.458803488463866e-9 Iter 105: T = 634.8643001627437 K, F = -0.00011549184650028188, relative_change = 3.119361084866412e-9 Iter 110: T = 634.8642941139235 K, F = -4.830006936906717e-5, relative_change = 1.304554115170955e-9 Iter 115: T = 634.8642915842346 K, F = -2.01996653841352e-5, relative_change = 5.455801088090182e-10 Iter 120: T = 634.8642905262886 K, F = -8.447741860817537e-6, relative_change = 2.2816813410193413e-10 Iter 125: T = 634.8642900838429 K, F = -3.5329463210498346e-6, relative_change = 9.542263316186224e-11 Iter 130: T = 634.8642898988068 K, F = -1.4775200877226169e-6, relative_change = 3.990687791536632e-11 Iter 135: T = 634.8642898214225 K, F = -6.179168370867849e-7, relative_change = 1.668954080468061e-11 Iter 140: T = 634.8642897890595 K, F = -2.584205124889216e-7, relative_change = 6.9797737011515234e-12 Iter 145: T = 634.8642897755249 K, F = -1.0807487316188968e-7, relative_change = 2.9190335947482e-12 Iter 150: T = 634.8642897698645 K, F = -4.5197520670559044e-8, relative_change = 1.220756290360485e-12 Iter 155: T = 634.8642897674973 K, F = -1.8902589049574203e-8, relative_change = 5.105469093088454e-13 Converged in 160 iterations to T = 634.8642897665073 K Iter 1: T = 976.4912552550982 K, F = -5356.489852715289, relative_change = 0.023508744744901854 Iter 2: T = 955.1430693397573 K, F = -4529.198301040604, relative_change = 0.021862137321203085 Iter 3: T = 935.863349283168 K, F = -3827.9430998498287, relative_change = 0.020185164584732233 Iter 5: T = 903.0865965710567 K, F = -2730.543373125765, relative_change = 0.01683343918184601 Iter 10: T = 849.1378734638043 K, F = -1164.2810426096478, relative_change = 0.009461273360689082 Iter 15: T = 822.5208560244861 K, F = -491.99856201692256, relative_change = 0.0046304610454249405 Iter 20: T = 810.426085046839 K, F = -206.7781141587033, relative_change = 0.00208607527947472 Iter 25: T = 805.1719890656304 K, F = -86.66686103497689, relative_change = 0.0009016465734559168 Iter 30: T = 802.9379667474881 K, F = -36.27924808489225, relative_change = 0.000382445848930759 Iter 35: T = 801.9970598539289 K, F = -15.178456067123417, relative_change = 0.00016090175478583225 Iter 40: T = 801.6023901775857 K, F = -6.348873546644841, relative_change = 6.746012714260595e-5 Iter 45: T = 801.4371286717364 K, F = -2.655360867471897, relative_change = 2.8242314369311356e-5 Iter 50: T = 801.3679782377468 K, F = -1.1105362092505353, relative_change = 1.1816472863961285e-5 Iter 55: T = 801.3390523808292 K, F = -0.46444520611159024, relative_change = 4.9427000929182956e-6 Iter 60: T = 801.3269541362835 K, F = -0.19423752903908964, relative_change = 2.0672554139093907e-6 Iter 65: T = 801.3218943125058 K, F = -0.08123262873918224, relative_change = 8.645787508051192e-7 Iter 70: T = 801.3197781999426 K, F = -0.03397248595973412, relative_change = 3.6158202972789023e-7 Iter 75: T = 801.3188932104797 K, F = -0.014207704677784982, relative_change = 1.5121877495349628e-7 Iter 80: T = 801.3185230962823 K, F = -0.0059418327046062425, relative_change = 6.324164662118778e-8 Iter 85: T = 801.3183683099239 K, F = -0.0024849455588816793, relative_change = 2.644843792381139e-8 Iter 90: T = 801.3183035763886 K, F = -0.0010392339369139636, relative_change = 1.106105714976228e-8 Iter 95: T = 801.3182765040457 K, F = -0.0004346200501841313, relative_change = 4.6258670122881635e-9 Iter 100: T = 801.3182651820675 K, F = -0.00018176329565755545, relative_change = 1.934592961448973e-9 Iter 105: T = 801.3182604470809 K, F = -7.601558209624493e-5, relative_change = 8.09069915294142e-10 Iter 110: T = 801.3182584668529 K, F = -3.17906232660814e-5, relative_change = 3.3836269441578686e-10 Iter 115: T = 801.3182576386979 K, F = -1.3295219460029983e-5, relative_change = 1.4150733264424657e-10 Iter 120: T = 801.3182572923535 K, F = -5.5602178641311895e-6, relative_change = 5.918003857391773e-11 Iter 125: T = 801.3182571475082 K, F = -2.325350037635232e-6, relative_change = 2.474980448721197e-11 Iter 130: T = 801.3182570869321 K, F = -9.724880656314383e-7, relative_change = 1.0350652207039357e-11 Iter 135: T = 801.3182570615985 K, F = -4.067059227175207e-7, relative_change = 4.328764234749149e-12 Iter 140: T = 801.3182570510037 K, F = -1.7008892005954124e-7, relative_change = 1.8103371325590009e-12 Iter 145: T = 801.3182570465729 K, F = -7.113307143313818e-8, relative_change = 7.571030524898001e-13 Iter 150: T = 801.3182570447198 K, F = -2.9749216201579998e-8, relative_change = 3.166350326488294e-13 Converged in 153 iterations to T = 801.3182570441771 K Iter 1: T = 965.1740242249466 K, F = -7935.131708401238, relative_change = 0.034825975775053336 Iter 2: T = 932.3221616785612 K, F = -6730.298916727317, relative_change = 0.03403724273740795 Iter 3: T = 901.4149461881948 K, F = -5707.185935891242, relative_change = 0.03315078924512612 Iter 5: T = 845.3214550715209 K, F = -4100.838102813042, relative_change = 0.03106593630826507 Iter 10: T = 736.9635105994021 K, F = -1784.508738123955, relative_change = 0.02408121343850443 Iter 15: T = 669.1931921222358 K, F = -768.3854548391407, relative_change = 0.015776394528694712 Iter 20: T = 632.1072404197091 K, F = -327.1926414189505, relative_change = 0.008684164350600269 Iter 25: T = 614.0467329968201 K, F = -138.13990746398824, relative_change = 0.004192216678297779 Iter 30: T = 605.9026706748365 K, F = -58.02990485501476, relative_change = 0.0018750071177955376 Iter 35: T = 602.3782170373588 K, F = -24.316604575350766, relative_change = 0.0008076861619450989 Iter 40: T = 600.8822033793764 K, F = -10.178067341360675, relative_change = 0.00034208415961129726 Iter 45: T = 600.2525927375217 K, F = -4.258104801745854, relative_change = 0.00014382991627347668 Iter 50: T = 599.9885815845498 K, F = -1.7810565358528776, relative_change = 6.0286460253612984e-5 Iter 55: T = 599.878045871002 K, F = -0.744905769835492, relative_change = 2.523621977889266e-5 Iter 60: T = 599.8317969428026 K, F = -0.3115366556332648, relative_change = 1.0558239748459639e-5 Iter 65: T = 599.8124513124551 K, F = -0.1302897787239755, relative_change = 4.4163084325722e-6 Iter 70: T = 599.8043600781086 K, F = -0.05448899137665342, relative_change = 1.8470800206140474e-6 Iter 75: T = 599.8009761117016 K, F = -0.022787990640844413, relative_change = 7.724931541256135e-7 Iter 80: T = 599.7995608763222 K, F = -0.009530217475829883, relative_change = 3.230697508615478e-7 Iter 85: T = 599.7989690044494 K, F = -0.0039856520996767175, relative_change = 1.351123081409161e-7 Iter 90: T = 599.7987214759454 K, F = -0.0016668475398976534, relative_change = 5.650569976815516e-8 Iter 95: T = 599.7986179564607 K, F = -0.0006970955879685437, relative_change = 2.363137925155426e-8 Iter 100: T = 599.7985746633572 K, F = -0.00029153370740758744, relative_change = 9.88292866966041e-9 Iter 105: T = 599.7985565576608 K, F = -0.0001219228801919714, relative_change = 4.1331594621494684e-9 Iter 110: T = 599.7985489856418 K, F = -5.0989603818885065e-5, relative_change = 1.728536726085652e-9 Iter 115: T = 599.7985458189329 K, F = -2.132446129315957e-5, relative_change = 7.228947211800273e-10 Iter 120: T = 599.7985444945774 K, F = -8.918144034197883e-6, relative_change = 3.0232319701710206e-10 Iter 125: T = 599.7985439407162 K, F = -3.7296741796088995e-6, relative_change = 1.2643516660471294e-10 Iter 130: T = 599.7985437090848 K, F = -1.5597945401402136e-6, relative_change = 5.287670542176508e-11 Iter 135: T = 599.7985436122137 K, F = -6.523243696321401e-7, relative_change = 2.2113658351374172e-11 Iter 140: T = 599.7985435717012 K, F = -2.728098795201639e-7, relative_change = 9.24819729781133e-12 Iter 145: T = 599.7985435547583 K, F = -1.1409300548770318e-7, relative_change = 3.867728789911596e-12 Iter 150: T = 599.7985435476727 K, F = -4.771557138294469e-8, relative_change = 1.6175477925784633e-12 Iter 155: T = 599.7985435447092 K, F = -1.9954600971594516e-8, relative_change = 6.76456758635467e-13 Iter 160: T = 599.7985435434699 K, F = -8.345764246353582e-9, relative_change = 2.829196453748244e-13 Converged in 162 iterations to T = 599.7985435432076 K Iter 1: T = 964.5459147488783 K, F = -8078.247050009771, relative_change = 0.03545408525112168 Iter 2: T = 931.0304978538726 K, F = -6852.845608628365, relative_change = 0.03474735249252656 Iter 3: T = 899.4233128571592 K, F = -5812.218455137424, relative_change = 0.03394860326226839 Iter 5: T = 841.8212970975967 K, F = -4178.216978731435, relative_change = 0.032051098348079884 Iter 10: T = 729.1951917285072 K, F = -1821.0803095788867, relative_change = 0.02549084013120688 Iter 15: T = 657.1385274021791 K, F = -785.7287676974327, relative_change = 0.017245640890889542 Iter 20: T = 616.7601516130322 K, F = -335.20502197830876, relative_change = 0.009772741070847617 Iter 25: T = 596.734940025397 K, F = -141.70117339865027, relative_change = 0.004809402756115169 Iter 30: T = 587.6071691074667 K, F = -59.56609726286463, relative_change = 0.002173120009446218 Iter 35: T = 583.6357849410473 K, F = -24.96823023256977, relative_change = 0.0009405775816915994 Iter 40: T = 581.9459700032016 K, F = -10.452271247583509, relative_change = 0.00039920353093652293 Iter 45: T = 581.2340490442023 K, F = -4.3730814562913185, relative_change = 0.00016799601285188797 Iter 50: T = 580.9353900541944 K, F = -1.8291943229632472, relative_change = 7.044227494885427e-5 Iter 55: T = 580.8103245872471 K, F = -0.7650469033793478, relative_change = 2.949216555740817e-5 Iter 60: T = 580.7579921906613 K, F = -0.31996155370635376, relative_change = 1.2339645641665423e-5 Iter 65: T = 580.7361011635509 K, F = -0.13381345795170346, relative_change = 5.1615794963279026e-6 Iter 70: T = 580.7269452007886 K, F = -0.05596268618763345, relative_change = 2.158807794684011e-6 Iter 75: T = 580.7231159149636 K, F = -0.023404316170354766, relative_change = 9.028695688928727e-7 Iter 80: T = 580.7215144351644 K, F = -0.009787973704506514, relative_change = 3.775961477565195e-7 Iter 85: T = 580.7208446725107 K, F = -0.00409344910072873, relative_change = 1.5791614743422535e-7 Iter 90: T = 580.7205645689523 K, F = -0.0017119295804930434, relative_change = 6.604258125143409e-8 Iter 95: T = 580.720447426156 K, F = -0.0007159494440129865, relative_change = 2.761982459806775e-8 Iter 100: T = 580.7203984356147 K, F = -0.000299418616495184, relative_change = 1.1550945474787093e-8 Iter 105: T = 580.7203779471809 K, F = -0.00012522044277668565, relative_change = 4.8307442159986805e-9 Iter 110: T = 580.7203693786724 K, F = -5.236868533498029e-5, relative_change = 2.0202750920123375e-9 Iter 115: T = 580.7203657952197 K, F = -2.1901209672714472e-5, relative_change = 8.449031974657907e-10 Iter 120: T = 580.7203642965768 K, F = -9.159347178155919e-6, relative_change = 3.533486016640098e-10 Iter 125: T = 580.7203636698265 K, F = -3.8305476162125984e-6, relative_change = 1.477745765526698e-10 Iter 130: T = 580.7203634077122 K, F = -1.6019811175937981e-6, relative_change = 6.180110666280469e-11 Iter 135: T = 580.7203632980928 K, F = -6.699681301958194e-7, relative_change = 2.5845979991519724e-11 Iter 140: T = 580.7203632522486 K, F = -2.8018890518843875e-7, relative_change = 1.0809106453991089e-11 Iter 145: T = 580.7203632330761 K, F = -1.1717887188344989e-7, relative_change = 4.520517683218181e-12 Iter 150: T = 580.7203632250579 K, F = -4.90058841284835e-8, relative_change = 1.8905453025649247e-12 Iter 155: T = 580.7203632217045 K, F = -2.049455605224182e-8, relative_change = 7.906374379901128e-13 Iter 160: T = 580.720363220302 K, F = -8.570343712488437e-9, relative_change = 3.306260734968804e-13 Converged in 163 iterations to T = 580.7203632198914 K Iter 1: T = 964.2446212815646 K, F = -8146.897053141263, relative_change = 0.035755378718435336 Iter 2: T = 930.4099480162602 K, F = -6911.643426852542, relative_change = 0.03508930464173624 Iter 3: T = 898.4648049762669 K, F = -5862.628720005018, relative_change = 0.034334481384366025 Iter 5: T = 840.1297973964344 K, F = -4215.388363362962, relative_change = 0.03253260940734633 Iter 10: T = 725.3874425163964 K, F = -1838.7320521062002, relative_change = 0.026205526295849442 Iter 15: T = 651.1253677859956 K, F = -794.1772396247143, relative_change = 0.018026442773612966 Iter 20: T = 608.9844933668627 K, F = -339.15208987011505, relative_change = 0.010377100016170829 Iter 25: T = 587.874094533293 K, F = -143.47113533458332, relative_change = 0.005162373232052322 Iter 30: T = 578.1925467731431 K, F = -60.33353356907732, relative_change = 0.002346358253475417 Iter 35: T = 573.9671279075922 K, F = -25.294582524731737, relative_change = 0.0010183864259836488 Iter 40: T = 572.166670251291 K, F = -10.58975483924919, relative_change = 0.0004327584541515799 Iter 45: T = 571.4076675501502 K, F = -4.430757749228049, relative_change = 0.0001822126081698248 Iter 50: T = 571.0891737420632 K, F = -1.8533468674543734, relative_change = 7.64203870071607e-5 Iter 55: T = 570.9557875846295 K, F = -0.7751533417676773, relative_change = 3.199801295201991e-5 Iter 60: T = 570.8999708932596 K, F = -0.3241891604031293, relative_change = 1.3388625581939972e-5 Iter 65: T = 570.8766219071927 K, F = -0.1355816639484957, relative_change = 5.600451331992436e-6 Iter 70: T = 570.8668560711477 K, F = -0.056702200862820684, relative_change = 2.3423800157934465e-6 Iter 75: T = 570.8627717049883 K, F = -0.023713595253107428, relative_change = 9.796470481793183e-7 Iter 80: T = 570.8610635433413 K, F = -0.009917318823288584, relative_change = 4.097063482987203e-7 Iter 85: T = 570.8603491643288 K, F = -0.004147542932916359, relative_change = 1.7134518146676947e-7 Iter 90: T = 570.8600504015478 K, F = -0.0017345522941981106, relative_change = 7.165879243540318e-8 Iter 95: T = 570.8599254552194 K, F = -0.0007254105379159159, relative_change = 2.996859622392954e-8 Iter 100: T = 570.8598732011437 K, F = -0.0003033753594727795, relative_change = 1.2533230686935256e-8 Iter 105: T = 570.8598513478602 K, F = -0.0001268752003673601, relative_change = 5.2415477882915964e-9 Iter 110: T = 570.8598422085552 K, F = -5.3060724342191e-5, relative_change = 2.1920780634369174e-9 Iter 115: T = 570.8598383863886 K, F = -2.2190628853113736e-5, relative_change = 9.167532648000946e-10 Iter 120: T = 570.8598367879129 K, F = -9.280387069043883e-6, relative_change = 3.8339721302576797e-10 Iter 125: T = 570.859836119411 K, F = -3.881168871122664e-6, relative_change = 1.6034130103586118e-10 Iter 130: T = 570.8598358398357 K, F = -1.6231511301145751e-6, relative_change = 6.705664536362745e-11 Iter 135: T = 570.8598357229139 K, F = -6.788212129626991e-7, relative_change = 2.8043891011011775e-11 Iter 140: T = 570.8598356740158 K, F = -2.8389140860340945e-7, relative_change = 1.1728301315652604e-11 Iter 145: T = 570.859835653566 K, F = -1.1872646543675813e-7, relative_change = 4.904902786147479e-12 Iter 150: T = 570.8598356450137 K, F = -4.965290850700299e-8, relative_change = 2.051292341583463e-12 Iter 155: T = 570.859835641437 K, F = -2.0765699770830537e-8, relative_change = 8.578857148476805e-13 Iter 160: T = 570.8598356399413 K, F = -8.684147123627639e-9, relative_change = 3.587649751901763e-13 Converged in 163 iterations to T = 570.8598356395033 K Iter 1: T = 980.2048962093006 K, F = -4510.333228715733, relative_change = 0.019795103790699382 Iter 2: T = 962.4507550968976 K, F = -3809.8233774532896, relative_change = 0.018112683563470015 Iter 3: T = 946.6162289750723 K, F = -3216.6117126146287, relative_change = 0.016452297468696128 Iter 5: T = 920.1814035753716 K, F = -2289.7611464873758, relative_change = 0.01328609346209299 Iter 10: T = 878.2343628044252 K, F = -972.015682203682, relative_change = 0.006972710452678317 Iter 15: T = 858.389028232103 K, F = -409.5845062540589, relative_change = 0.0032676895760091825 Iter 20: T = 849.5845063888672 K, F = -171.88633768047302, relative_change = 0.0014395594280555471 Iter 25: T = 845.8040641049851 K, F = -71.99335537320059, relative_change = 0.0006158276871137497 Iter 30: T = 844.2050132581455 K, F = -30.127812750297746, relative_change = 0.000260039671144679 Iter 35: T = 843.5330537654988 K, F = -12.603219799073159, relative_change = 0.00010919397825566534 Iter 40: T = 843.2514647041309 K, F = -5.271415260521272, relative_change = 4.5744044082141936e-5 Iter 45: T = 843.1336011664916 K, F = -2.204673596109198, relative_change = 1.9144350123352164e-5 Iter 50: T = 843.0842917757734 K, F = -0.922039164276584, relative_change = 8.008784806799338e-6 Iter 55: T = 843.0636669454425 K, F = -0.385610997879952, relative_change = 3.349787464640361e-6 Iter 60: T = 843.0550408607526 K, F = -0.16126768558030302, relative_change = 1.4009942468353457e-6 Iter 65: T = 843.0514332356528 K, F = -0.06744417018359106, relative_change = 5.859253158371024e-7 Iter 70: T = 843.0499244674043 K, F = -0.028205974585681748, relative_change = 2.450432016199142e-7 Iter 75: T = 843.0492934796449 K, F = -0.011796078419989753, relative_change = 1.0248038459702685e-7 Iter 80: T = 843.0490295925284 K, F = -0.00493326139232253, relative_change = 4.285858912369395e-8 Iter 85: T = 843.0489192316974 K, F = -0.002063148921297664, relative_change = 1.792398577740283e-8 Iter 90: T = 843.0488730774646 K, F = -0.0008628335349918359, relative_change = 7.496027010518875e-9 Iter 95: T = 843.0488537752105 K, F = -0.0003608472918374961, relative_change = 3.134928385908791e-9 Iter 100: T = 843.0488457027769 K, F = -0.00015091064559480394, relative_change = 1.3110645386048236e-9 Iter 105: T = 843.0488423267888 K, F = -6.311263655534027e-5, relative_change = 5.483028780182599e-10 Iter 110: T = 843.0488409149101 K, F = -2.639445904284443e-5, relative_change = 2.2930681971487972e-10 Iter 115: T = 843.0488403244457 K, F = -1.1038478489044934e-5, relative_change = 9.589885517813631e-11 Iter 120: T = 843.0488400775064 K, F = -4.616426266368379e-6, relative_change = 4.010607032624948e-11 Iter 125: T = 843.0488399742333 K, F = -1.9306437069044335e-6, relative_change = 1.677282986047012e-11 Iter 130: T = 843.0488399310433 K, F = -8.074171569116828e-7, relative_change = 7.0145882195538235e-12 Iter 135: T = 843.0488399129807 K, F = -3.376716746217312e-7, relative_change = 2.9335861033472215e-12 Iter 140: T = 843.0488399054267 K, F = -1.412171359849168e-7, relative_change = 1.2268503959107618e-12 Iter 145: T = 843.0488399022676 K, F = -5.905918865067861e-8, relative_change = 5.130877954307555e-13 Converged in 150 iterations to T = 843.0488399009464 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014085596392587464 Iteration 10: d = 9.469842961609427e-6 Iteration 20: d = 8.820436939097195e-8 Iteration 30: d = 1.197591621594604e-9 Iteration 40: d = 1.7011918512537367e-11 Iteration 50: d = 2.4231511575185674e-13 Iteration 60: d = 3.4395712039387097e-15 Converged after 62 iterations. d = 1.4671869516415024e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.520727306779 Iteration 2: convergence error = 4823.31571865415 Iteration 3: convergence error = 1096.9411439538828 Iteration 4: convergence error = 317.473363399308 Iteration 5: convergence error = 94.01862235025237 Iteration 6: convergence error = 28.245583533433773 Iteration 7: convergence error = 8.494615010134794 Iteration 8: convergence error = 2.544549991520171 Iteration 9: convergence error = 0.7604083002206607 Iteration 10: convergence error = 0.2269265288848601 Iteration 11: convergence error = 0.06766775432538452 Iteration 12: convergence error = 0.020168937161315625 Iteration 13: convergence error = 0.0060099730874298984 Iteration 14: convergence error = 0.0017905969491494034 Iteration 15: convergence error = 0.0005334406462225161 Iteration 16: convergence error = 0.00015891060661488154 Iteration 17: convergence error = 4.7337711748696165e-5 Iteration 18: convergence error = 1.410114214195346e-5 Iteration 19: convergence error = 4.200458533887286e-6 Iteration 20: convergence error = 1.251227104148711e-6 Iteration 21: convergence error = 3.7270638131303713e-7 Iteration 22: convergence error = 1.1088877727161162e-7 Iteration 23: convergence error = 3.2114257919602096e-8 Iteration 24: convergence error = 9.247287380276248e-9 Iteration 25: convergence error = 2.6693669497035444e-9 Iteration 26: convergence error = 7.605649443576112e-10 Iteration 27: convergence error = 2.2373569663614035e-10 Iteration 28: convergence error = 6.116351869422942e-11 Iteration 29: convergence error = 2.000888343900442e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013013271624070398 Iteration 10: d = 1.1503796400468762e-5 Iteration 20: d = 1.1568751283781629e-7 Iteration 30: d = 1.3250160230451172e-9 Iteration 40: d = 1.6056531994579287e-11 Iteration 50: d = 2.008255301780743e-13 Iteration 60: d = 2.571516010740682e-15 Converged after 61 iterations. d = 1.6458473525373155e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12292.331217882629 Iteration 2: convergence error = 8315.042301416383 Iteration 3: convergence error = 1947.0457165969835 Iteration 4: convergence error = 477.7690745697216 Iteration 5: convergence error = 121.5590175452196 Iteration 6: convergence error = 32.399106602664006 Iteration 7: convergence error = 8.810950229576292 Iteration 8: convergence error = 2.4099004918618903 Iteration 9: convergence error = 0.6599567409648444 Iteration 10: convergence error = 0.1807587166176745 Iteration 11: convergence error = 0.049506727729522026 Iteration 12: convergence error = 0.013558371155568238 Iteration 13: convergence error = 0.003713109045747842 Iteration 14: convergence error = 0.0010168601907025732 Iteration 15: convergence error = 0.00027847211367770797 Iteration 16: convergence error = 7.626070760125003e-5 Iteration 17: convergence error = 2.0884272544208216e-5 Iteration 18: convergence error = 5.7192344229406444e-6 Iteration 19: convergence error = 1.566231276228791e-6 Iteration 20: convergence error = 4.289190655981656e-7 Iteration 21: convergence error = 1.1833003554784227e-7 Iteration 22: convergence error = 3.172544893459417e-8 Iteration 23: convergence error = 8.470578904962167e-9 Iteration 24: convergence error = 2.254637365695089e-9 Iteration 25: convergence error = 6.000391294946894e-10 Iteration 26: convergence error = 1.6007106751203537e-10 Iteration 27: convergence error = 4.229150363244116e-11 Iteration 28: convergence error = 1.1596057447604835e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013013271624070398 Iteration 10: d = 1.1503796400468762e-5 Iteration 20: d = 1.1568751283781629e-7 Iteration 30: d = 1.3250160230451172e-9 Iteration 40: d = 1.6056531994579287e-11 Iteration 50: d = 2.008255301780743e-13 Iteration 60: d = 2.571516010740682e-15 Converged after 61 iterations. d = 1.6458473525373155e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.742335137023 Iteration 2: convergence error = 5724.137136689893 Iteration 3: convergence error = 2016.229338292887 Iteration 4: convergence error = 897.4405453802292 Iteration 5: convergence error = 408.4141653554925 Iteration 6: convergence error = 192.5343562622088 Iteration 7: convergence error = 90.8470360991787 Iteration 8: convergence error = 42.8865286115838 Iteration 9: convergence error = 20.245606592772674 Iteration 10: convergence error = 9.555320562258657 Iteration 11: convergence error = 4.508641629802696 Iteration 12: convergence error = 2.1268973129112965 Iteration 13: convergence error = 1.0031610856913176 Iteration 14: convergence error = 0.47308555251265716 Iteration 15: convergence error = 0.22308509172080448 Iteration 16: convergence error = 0.10509598624730643 Iteration 17: convergence error = 0.0490638546275477 Iteration 18: convergence error = 0.02238625933523508 Iteration 19: convergence error = 0.01017669912744168 Iteration 20: convergence error = 0.0046164854115886556 Iteration 21: convergence error = 0.0020916140238114167 Iteration 22: convergence error = 0.0009469762785556668 Iteration 23: convergence error = 0.0004285606773919426 Iteration 24: convergence error = 0.00019389911722100805 Iteration 25: convergence error = 8.771491320658242e-5 Iteration 26: convergence error = 3.9676301184954355e-5 Iteration 27: convergence error = 1.7945879790204344e-5 Iteration 28: convergence error = 8.116768640320515e-6 Iteration 29: convergence error = 3.671066679089563e-6 Iteration 30: convergence error = 1.6603376025159378e-6 Iteration 31: convergence error = 7.509224815294147e-7 Iteration 32: convergence error = 3.396216925466433e-7 Iteration 33: convergence error = 1.5360137695097364e-7 Iteration 34: convergence error = 6.946856956346892e-8 Iteration 35: convergence error = 3.142349669360556e-8 Iteration 36: convergence error = 1.4208126231096685e-8 Iteration 37: convergence error = 6.4251253206748515e-9 Iteration 38: convergence error = 2.9008333513047546e-9 Iteration 39: convergence error = 1.312855602009222e-9 Iteration 40: convergence error = 5.934452929068357e-10 Iteration 41: convergence error = 2.696651790756732e-10 Iteration 42: convergence error = 1.2232703738845885e-10 Iteration 43: convergence error = 5.820766091346741e-11 Iteration 44: convergence error = 2.4556356947869062e-11 Iteration 45: convergence error = 1.2278178473934531e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013013271624070398 Iteration 10: d = 1.1503796400468762e-5 Iteration 20: d = 1.1568751283781629e-7 Iteration 30: d = 1.3250160230451172e-9 Iteration 40: d = 1.6056531994579287e-11 Iteration 50: d = 2.008255301780743e-13 Iteration 60: d = 2.571516010740682e-15 Converged after 61 iterations. d = 1.6458473525373155e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10827.017818041952 Iteration 2: convergence error = 7341.583404749275 Iteration 3: convergence error = 1734.6955230750118 Iteration 4: convergence error = 502.9887054161086 Iteration 5: convergence error = 156.1450761653964 Iteration 6: convergence error = 48.46753659592878 Iteration 7: convergence error = 15.01843553761546 Iteration 8: convergence error = 4.645865686131401 Iteration 9: convergence error = 1.4354850260228886 Iteration 10: convergence error = 0.44321679570430206 Iteration 11: convergence error = 0.13678846583798077 Iteration 12: convergence error = 0.04220627845097624 Iteration 13: convergence error = 0.013021004883739806 Iteration 14: convergence error = 0.004016777531887783 Iteration 15: convergence error = 0.0012390579549901304 Iteration 16: convergence error = 0.00038220326268856297 Iteration 17: convergence error = 0.00011789376276283292 Iteration 18: convergence error = 3.636500241555041e-5 Iteration 19: convergence error = 1.1216928669455228e-5 Iteration 20: convergence error = 3.4599124774103984e-6 Iteration 21: convergence error = 1.0672165444702841e-6 Iteration 22: convergence error = 3.290165295766201e-7 Iteration 23: convergence error = 1.0023859431385063e-7 Iteration 24: convergence error = 2.98027771350462e-8 Iteration 25: convergence error = 8.827100828057155e-9 Iteration 26: convergence error = 2.6134330255445093e-9 Iteration 27: convergence error = 7.66249286243692e-10 Iteration 28: convergence error = 2.2464519133791327e-10 Iteration 29: convergence error = 6.730260793119669e-11 Iteration 30: convergence error = 1.9099388737231493e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 94%|███████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013013271624070398 Iteration 10: d = 1.1503796400468762e-5 Iteration 20: d = 1.1568751283781629e-7 Iteration 30: d = 1.3250160230451172e-9 Iteration 40: d = 1.6056531994579287e-11 Iteration 50: d = 2.008255301780743e-13 Iteration 60: d = 2.571516010740682e-15 Converged after 61 iterations. d = 1.6458473525373155e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.8063053003325 Iteration 2: convergence error = 5512.7438670251795 Iteration 3: convergence error = 937.0326269238965 Iteration 4: convergence error = 170.77870581790148 Iteration 5: convergence error = 30.9771004876211 Iteration 6: convergence error = 5.630706634614171 Iteration 7: convergence error = 1.0246625314866833 Iteration 8: convergence error = 0.18660658306998812 Iteration 9: convergence error = 0.0340012483427472 Iteration 10: convergence error = 0.0061984897083675605 Iteration 11: convergence error = 0.0011306555038572697 Iteration 12: convergence error = 0.00020620897203116328 Iteration 13: convergence error = 3.7605380839522695e-5 Iteration 14: convergence error = 6.857645530544687e-6 Iteration 15: convergence error = 1.2505101949500386e-6 Iteration 16: convergence error = 2.2802669263910502e-7 Iteration 17: convergence error = 4.158846422797069e-8 Iteration 18: convergence error = 7.575636118417606e-9 Iteration 19: convergence error = 1.39925759867765e-9 Iteration 20: convergence error = 2.519300323911011e-10 Iteration 21: convergence error = 4.5929482439532876e-11 Iteration 22: convergence error = 8.185452315956354e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013013271624070398 Iteration 10: d = 1.1503796400468762e-5 Iteration 20: d = 1.1568751283781629e-7 Iteration 30: d = 1.3250160230451172e-9 Iteration 40: d = 1.6056531994579287e-11 Iteration 50: d = 2.008255301780743e-13 Iteration 60: d = 2.571516010740682e-15 Converged after 61 iterations. d = 1.6458473525373155e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4998955761303 Iteration 2: convergence error = 2711.536623026051 Iteration 3: convergence error = 205.03105549474776 Iteration 4: convergence error = 19.226350964275586 Iteration 5: convergence error = 1.5884283521117748 Iteration 6: convergence error = 0.12925196828592822 Iteration 7: convergence error = 0.01052830621116169 Iteration 8: convergence error = 0.0008594838815498033 Iteration 9: convergence error = 7.026798244559444e-5 Iteration 10: convergence error = 5.751710935235769e-6 Iteration 11: convergence error = 4.71181493611064e-7 Iteration 12: convergence error = 3.8595183316764095e-8 Iteration 13: convergence error = 3.162420406336604e-9 Iteration 14: convergence error = 2.5792943908996416e-10 Iteration 15: convergence error = 2.114575181622058e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014085596392587464 Iteration 10: d = 9.469842961609427e-6 Iteration 20: d = 8.820436939097195e-8 Iteration 30: d = 1.197591621594604e-9 Iteration 40: d = 1.7011918512537367e-11 Iteration 50: d = 2.4231511575185674e-13 Iteration 60: d = 3.4395712039387097e-15 Converged after 62 iterations. d = 1.4671869516415024e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.283056968105 Iteration 2: convergence error = 3610.6269983050306 Iteration 3: convergence error = 593.0863641342305 Iteration 4: convergence error = 103.9059483358069 Iteration 5: convergence error = 18.4551822487158 Iteration 6: convergence error = 3.2496929094984353 Iteration 7: convergence error = 0.5701686627448908 Iteration 8: convergence error = 0.0998869086186005 Iteration 9: convergence error = 0.01748809533091844 Iteration 10: convergence error = 0.0030610127919317165 Iteration 11: convergence error = 0.0005357254676709999 Iteration 12: convergence error = 9.375638433084532e-5 Iteration 13: convergence error = 1.6407857856393093e-5 Iteration 14: convergence error = 2.8714416657749098e-6 Iteration 15: convergence error = 5.025131031288765e-7 Iteration 16: convergence error = 8.794063433015253e-8 Iteration 17: convergence error = 1.5398427422042005e-8 Iteration 18: convergence error = 2.675960786291398e-9 Iteration 19: convergence error = 4.749836080009118e-10 Iteration 20: convergence error = 8.162714948412031e-11 Iteration 21: convergence error = 1.3869794202037156e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 9m49.5s Testing RayTraceHeatTransfer tests passed Testing completed after 601.26s PkgEval succeeded after 687.03s