Package evaluation to test StructuralIdentifiability on Julia 1.13.0-DEV.1353 (74c32ec0b5*) started at 2025-10-21T15:00:18.632 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.86s ################################################################################ # Installation # Installing StructuralIdentifiability... Resolving package versions... Installed StructuralIdentifiability ─ v0.5.17 Updating `~/.julia/environments/v1.13/Project.toml` [220ca800] + StructuralIdentifiability v0.5.17 Updating `~/.julia/environments/v1.13/Manifest.toml` [c3fe647b] + AbstractAlgebra v0.47.3 [a9b6321e] + Atomix v1.1.2 [861a8166] + Combinatorics v1.0.3 [864edb3b] + DataStructures v0.19.1 [e2ba6199] + ExprTools v0.1.10 [0b43b601] + Groebner v0.10.0 [18e54dd8] + IntegerMathUtils v0.1.3 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [1914dd2f] + MacroTools v0.5.16 [2edaba10] + Nemo v0.52.2 [bac558e1] + OrderedCollections v1.8.1 [3e851597] + ParamPunPam v0.5.5 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.11.0 [fb686558] + RandomExtensions v0.4.4 [73480bc8] + RationalFunctionFields v0.2.2 [220ca800] + StructuralIdentifiability v0.5.17 [a759f4b9] + TimerOutputs v0.5.29 [013be700] + UnsafeAtomics v0.3.0 [e134572f] + FLINT_jll v301.300.102+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Installation completed after 6.41s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 247.66s ################################################################################ # Testing # Testing StructuralIdentifiability Status `/tmp/jl_ZExqOs/Project.toml` [c3fe647b] AbstractAlgebra v0.47.3 [4c88cf16] Aqua v0.8.14 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [864edb3b] DataStructures v0.19.1 [0b43b601] Groebner v0.10.0 [c8e1da08] IterTools v1.10.0 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.52.2 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [27ebfcd6] Primes v0.5.7 [73480bc8] RationalFunctionFields v0.2.2 [276daf66] SpecialFunctions v2.6.1 [220ca800] StructuralIdentifiability v0.5.17 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_ZExqOs/Manifest.toml` [c3fe647b] AbstractAlgebra v0.47.3 [4c88cf16] Aqua v0.8.14 [a9b6321e] Atomix v1.1.2 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [864edb3b] DataStructures v0.19.1 [ab62b9b5] DeepDiffs v1.2.0 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 [0b43b601] Groebner v0.10.0 [615f187c] IfElse v0.1.1 [18e54dd8] IntegerMathUtils v0.1.3 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.52.2 [bac558e1] OrderedCollections v1.8.1 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.11.0 [fb686558] RandomExtensions v0.4.4 [73480bc8] RationalFunctionFields v0.2.2 [431bcebd] SciMLPublic v1.0.0 [276daf66] SpecialFunctions v2.6.1 [aedffcd0] Static v1.3.0 [220ca800] StructuralIdentifiability v0.5.17 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [013be700] UnsafeAtomics v0.3.0 [e134572f] FLINT_jll v301.300.102+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.2+0 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.46.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Resolving package versions... Updating `/tmp/jl_ZExqOs/Project.toml` ⌅ [861a8166] ↓ Combinatorics v1.0.3 ⇒ v1.0.2 [loaded: v1.0.3] [961ee093] + ModelingToolkit v10.26.0 Updating `/tmp/jl_ZExqOs/Manifest.toml` [47edcb42] + ADTypes v1.18.0 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.4.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.21.0 [4c555306] + ArrayLayouts v1.12.0 [e2ed5e7c] + Bijections v0.2.2 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] + BlockArrays v1.7.2 [70df07ce] + BracketingNonlinearSolve v1.5.0 [d360d2e6] + ChainRulesCore v1.26.0 [fb6a15b2] + CloseOpenIntervals v0.1.13 ⌅ [861a8166] ↓ Combinatorics v1.0.3 ⇒ v1.0.2 [loaded: v1.0.3] [a80b9123] + CommonMark v0.9.1 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 [187b0558] + ConstructionBase v1.6.0 [9a962f9c] + DataAPI v1.16.0 [2b5f629d] + DiffEqBase v6.190.2 [459566f4] + DiffEqCallbacks v4.10.1 [77a26b50] + DiffEqNoiseProcess v5.24.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.9 [8d63f2c5] + DispatchDoctor v0.4.26 [31c24e10] + Distributions v0.25.122 [5b8099bc] + DomainSets v0.7.16 [7c1d4256] + DynamicPolynomials v0.6.4 [06fc5a27] + DynamicQuantities v1.10.0 [4e289a0a] + EnumX v1.0.5 [f151be2c] + EnzymeCore v0.8.14 [55351af7] + ExproniconLite v0.10.14 [7034ab61] + FastBroadcast v0.3.5 [9aa1b823] + FastClosures v0.3.2 [a4df4552] + FastPower v1.1.3 [1a297f60] + FillArrays v1.14.0 [64ca27bc] + FindFirstFunctions v1.4.2 [6a86dc24] + FiniteDiff v2.29.0 [1fa38f19] + Format v1.3.7 [f6369f11] + ForwardDiff v1.2.2 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [c27321d9] + Glob v1.3.1 [86223c79] + Graphs v1.13.1 [34004b35] + HypergeometricFunctions v0.3.28 [3263718b] + ImplicitDiscreteSolve v1.2.0 [d25df0c9] + Inflate v0.1.5 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [82899510] + IteratorInterfaceExtensions v1.0.0 [ae98c720] + Jieko v0.2.1 [98e50ef6] + JuliaFormatter v2.1.6 ⌅ [70703baa] + JuliaSyntax v0.4.10 [ccbc3e58] + JumpProcesses v9.19.1 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.10 [10f19ff3] + LayoutPointers v0.1.17 [87fe0de2] + LineSearch v0.1.4 [d3d80556] + LineSearches v7.4.0 [d8e11817] + MLStyle v0.4.17 [d125e4d3] + ManualMemory v0.1.8 [bb5d69b7] + MaybeInplace v0.1.4 [e1d29d7a] + Missings v1.2.0 [961ee093] + ModelingToolkit v10.26.0 [2e0e35c7] + Moshi v0.3.7 [46d2c3a1] + MuladdMacro v0.2.4 [102ac46a] + MultivariatePolynomials v0.5.13 [d8a4904e] + MutableArithmetics v1.6.6 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 [be0214bd] + NonlinearSolveBase v2.0.0 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.13.2 [bbf590c4] + OrdinaryDiffEqCore v1.36.0 [90014a1f] + PDMats v0.11.35 [d96e819e] + Parameters v0.12.3 [e409e4f3] + PoissonRandom v0.4.7 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [85a6dd25] + PositiveFactorizations v0.2.4 [d236fae5] + PreallocationTools v0.4.34 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.39.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [ae5879a3] + ResettableStacks v1.1.1 [79098fc4] + Rmath v0.8.1 ⌃ [7e49a35a] + RuntimeGeneratedFunctions v0.5.12 [9dfe8606] + SCCNonlinearSolve v1.6.0 [94e857df] + SIMDTypes v0.1.0 [0bca4576] + SciMLBase v2.121.1 [19f34311] + SciMLJacobianOperators v0.1.11 [c0aeaf25] + SciMLOperators v1.9.0 [53ae85a6] + SciMLStructures v1.7.0 [efcf1570] + Setfield v1.1.2 [727e6d20] + SimpleNonlinearSolve v2.9.0 [699a6c99] + SimpleTraits v0.9.5 [ce78b400] + SimpleUnPack v1.1.0 [a2af1166] + SortingAlgorithms v1.2.2 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [4c63d2b9] + StatsFuns v1.5.0 [7792a7ef] + StrideArraysCore v0.5.8 [2efcf032] + SymbolicIndexingInterface v0.3.46 ⌃ [19f23fe9] + SymbolicLimits v0.2.3 ⌅ [d1185830] + SymbolicUtils v3.32.0 [0c5d862f] + Symbolics v6.56.0 [ed4db957] + TaskLocalValues v0.1.3 [8ea1fca8] + TermInterface v2.0.0 [1c621080] + TestItems v1.0.0 [8290d209] + ThreadingUtilities v0.5.5 [410a4b4d] + Tricks v0.1.12 [781d530d] + TruncatedStacktraces v1.4.0 [5c2747f8] + URIs v1.6.1 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.25.1 [a7c27f48] + Unityper v0.1.6 [61579ee1] + Ghostscript_jll v9.55.1+0 [aacddb02] + JpegTurbo_jll v3.1.3+0 [f50d1b31] + Rmath_jll v0.5.1+0 [9fa8497b] + Future v1.11.0 [a63ad114] + Mmap v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [4607b0f0] + SuiteSparse Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Resolving package versions... Updating `/tmp/jl_ZExqOs/Project.toml` [0c5d862f] + Symbolics v6.56.0 Manifest No packages added to or removed from `/tmp/jl_ZExqOs/Manifest.toml` WARNING: Method definition defines_strides(Type{var"#s2"} where var"#s2"<:(StaticArraysCore.MArray{S, T, N, L} where L where N where T where S<:Tuple)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:40 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition defines_strides(Type{var"#s2"} where var"#s2"<:(StaticArraysCore.SArray{S, T, N, L} where L where N where T where S<:Tuple)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:39 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition known_first(Type{var"#s1"} where var"#s1"<:(StaticArrays.SOneTo{n} where n)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:20 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition stride_rank(Type{T}) where {N, T<:(StaticArraysCore.StaticArray{var"#s1", var"#s2", N} where var"#s2" where var"#s1")} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:33 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition static_size(StaticArraysCore.StaticArray{S, T, N} where N where T) where {S} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:45 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition device(Type{var"#s1"} where var"#s1"<:(StaticArraysCore.SArray{S, T, N, L} where L where N where T where S<:Tuple)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:30 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition device(Type{var"#s1"} where var"#s1"<:(StaticArraysCore.MArray{S, T, N, L} where L where N where T where S<:Tuple)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:29 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition contiguous_batch_size(Type{var"#s1"} where var"#s1"<:(StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:32 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition dense_dims(Type{var"#s2"} where var"#s2"<:StaticArraysCore.StaticArray{S, T, N}) where {S, T, N} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:36 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition axes_types(Type{var"#s3"} where var"#s3"<:(StaticArraysCore.StaticArray{S, T, N} where N where T)) where {S} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:42 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition static_length(StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:28 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition parent_type(Type{var"#s3"} where var"#s3"<:StaticArraysCore.SizedArray{S, T, M, N, A}) where {S, T, M, N, A} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:64 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition known_last(Type{StaticArrays.SOneTo{N}}) where {N} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:21 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition contiguous_axis(Type{var"#s1"} where var"#s1"<:(StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:31 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition known_length(Type{StaticArrays.Length{L}}) where {L} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:23 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition known_length(Type{A}) where {A<:(StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple)} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:24 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition known_length(Type{StaticArrays.SOneTo{N}}) where {N} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:22 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition static_strides(StaticArraysCore.StaticArray{S, T, N} where N where T) where {S} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:53 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition static_strides(StaticArraysCore.SizedArray{S, T, M, N, A}) where {S, T, M, N, A<:(Base.SubArray{T, N, P, I, L} where L where I where P where N where T)} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:63 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition (::Type{Static.OptionallyStaticUnitRange{F, L} where L<:Union{Int64, Static.StaticInt{N} where N} where F<:Union{Int64, Static.StaticInt{N} where N}})(StaticArrays.SOneTo{N}) where {N} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:17 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `StaticArrayInterfaceStaticArraysExt` └ @ Base loading.jl:2614 [ Info: Testing started [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y ┌ Warning: New variable c, treating as a scalar parameter └ @ StructuralIdentifiability ~/.julia/packages/StructuralIdentifiability/erhUr/src/pb_representation.jl:94 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: a [ Info: Parameters: b [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: a, b [ Info: Parameters: k1, k2 [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y 1.997588 seconds (946.24 k allocations: 47.776 MiB, 99.43% compilation time) 0.002016 seconds (7.31 k allocations: 331.023 KiB) 0.002062 seconds (10.80 k allocations: 486.109 KiB) 0.001959 seconds (10.76 k allocations: 479.641 KiB) 0.002579 seconds (14.53 k allocations: 635.484 KiB) 0.001352 seconds (7.95 k allocations: 360.945 KiB) 0.001193 seconds (7.46 k allocations: 301.258 KiB) 15.001754 seconds (6.78 M allocations: 348.134 MiB, 0.72% gc time, 99.75% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.322946 seconds (112.45 k allocations: 6.029 MiB, 98.00% compilation time) [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.010991 seconds (9.76 k allocations: 518.273 KiB, 90.08% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b [ Info: Inputs: u [ Info: Outputs: y Coefficient extraction for rational functions: Test Failed at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:27 Expression: Set(C) == Set([x // 1, (y + 3) // 1, y ^ 2 // 1, one(R) // 1, 3 * one(R) // 1, -((x ^ 2 + y ^ 2)) // 1]) Evaluated: Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[1//3, -1//3*x^2 - 1//3*y^2, 1//3*y^2, 1//3*x, 1, 1//3*y + 1]) == Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[y^2, 3, y + 3, 1, x, -x^2 - y^2]) Stacktrace: [1] top-level scope @ ~/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:2 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1961 [inlined] [3] macro expansion @ ~/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:27 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:753 [inlined] [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 IOEQS: Dict{QQMPolyRingElem, QQMPolyRingElem}(y2(t)_1 => -a*y2(t)_0 + a*u(t)_0 + y2(t)_1 - u(t)_1, y1(t)_2 => -y1(t)_0 + y1(t)_2) [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a, b, c, d [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, I, W, R [ Info: Parameters: a, bi, bw, gam, k, mu, xi [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a01, a12, a13, a21, a31 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, In [ Info: Parameters: N, a, b, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003658716 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 6.94525355 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.064519992 seconds [ Info: Global identifiability assessed in 54.721363092 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002999381 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Global identifiability assessed in 1.07344663 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Global identifiability assessed in 5.5599e-5 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.032249847 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.539599174 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.201e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:15 ✓ # Computing specializations.. Time: 0:00:17 [ Info: Search for polynomial generators concluded in 13.43929254 [ Info: Selecting generators in 0.012325754 [ Info: Inclusion checked with probability 0.9955 in 0.063595234 seconds [ Info: Global identifiability assessed in 106.906456126 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.570592621 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 1.744902856 seconds [ Info: Dimensions of the Wronskians [676] [ Info: Ranks of the Wronskians computed in 0.136915005 seconds [ Info: Global identifiability assessed in 38.452076409 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013767781 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.030866641 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000274397 seconds [ Info: Global identifiability assessed in 0.089317232 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Note: the input model has nontrivial submodels. If the computation for the full model will be too heavy, you may want to try to first analyze one of the submodels. They can be produced using function `find_submodels` [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 7.160119519 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003621776 seconds [ Info: Dimensions of the Wronskians [2, 3, 2] [ Info: Ranks of the Wronskians computed in 3.066e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.903065254 [ Info: Selecting generators in 0.000451156 [ Info: Inclusion checked with probability 0.9955 in 0.003454778 seconds [ Info: Global identifiability assessed in 9.515027552 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002274038 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001772743 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.526e-5 seconds [ Info: Global identifiability assessed in 0.007352221 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002528916 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001939782 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.752e-5 seconds [ Info: Global identifiability assessed in 0.007760457 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005211141 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003979352 seconds [ Info: Dimensions of the Wronskians [6] [ Info: Ranks of the Wronskians computed in 1.653e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.063401151 [ Info: Selecting generators in 0.016692363 [ Info: Inclusion checked with probability 0.9955 in 0.006461129 seconds [ Info: Global identifiability assessed in 2.306406109 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008775168 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004601967 seconds [ Info: Dimensions of the Wronskians [2, 5] [ Info: Ranks of the Wronskians computed in 2.503e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008003355 [ Info: Selecting generators in 0.004372219 [ Info: Inclusion checked with probability 0.9955 in 0.005239581 seconds [ Info: Global identifiability assessed in 0.058441412 seconds [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: V_m, c, k01, k_m [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k1, k2, k3, k4 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: s, i, r, x1, x2 [ Info: Parameters: M, b0, b1, g, mu, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, E, I, R, Q [ Info: Parameters: beta, gamma, psi, v [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: k01, k12, k13, k14, k21, k31, k41 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x5, x7, x4, x6 [ Info: Parameters: k10, k5, k6, k7, k8, k9 [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, In, L, Q [ Info: Parameters: Ninv, a, b, e, g, s [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, R, W [ Info: Parameters: Dd, T, a, d, dr, e, g, r, rR [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: P3, P0, P5, P4, P1, P2 [ Info: Parameters: Ks, M, Mar, alpa, beta, beta_SA, beta_SI, phi, siga1, siga2 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: C, α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR [ Info: Parameters: EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1 [ Info: Inputs: pro_EGFR [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio [ Info: Parameters: kOHbeta10, kbeta, kbeta10, kcryOH, kcrybeta, kzea [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: EpoR_A, k1, k2, k3, k5, k6, k7 [ Info: Inputs: [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, U, I [ Info: Parameters: N, a, b, d, g [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: alpha [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k01, k02, k12, k21, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: K_M, V_M, b1, c, k02, k12, k21 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: k02, k03, k12, k13, k21, k31, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: a03, a04, a13, a24, a31, a42, a43 [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, I [ Info: Parameters: N, beta, k, mu, nu [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4, p5 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: beta, c, d, k1, k2, mu1, mu2, q1, q2, s [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: A, I, H, R, D, E [ Info: Parameters: N, a, c1, c2, d, h, r1, r2, r3, s [ Info: Inputs: [ Info: Outputs: y [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002325509 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001833532 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.2889e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000135079 [ Info: Selecting generators in 1.152838287 [ Info: Inclusion checked with probability 0.995 in 0.003048411 seconds [ Info: The search for identifiable functions concluded in 2.429786169 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001524976 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001346957 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.475e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.7929e-5 [ Info: Selecting generators in 0.000654544 [ Info: Inclusion checked with probability 0.995 in 0.001791893 seconds [ Info: The search for identifiable functions concluded in 0.011588952 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001308617 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001031731 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.895e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.9659e-5 [ Info: Selecting generators in 0.000626914 [ Info: Inclusion checked with probability 0.995 in 0.001846353 seconds [ Info: The search for identifiable functions concluded in 0.009723139 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00111158 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00101223 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.932e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000522455 [ Info: Selecting generators in 0.000637984 [ Info: Inclusion checked with probability 0.995 in 0.001618474 seconds [ Info: The search for identifiable functions concluded in 0.00957796 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001361197 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00107868 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.674e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000446415 [ Info: Selecting generators in 0.000788833 [ Info: Inclusion checked with probability 0.995 in 0.001926592 seconds [ Info: The search for identifiable functions concluded in 0.010448582 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001214829 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00105491 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.245e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000436165 [ Info: Selecting generators in 0.000697943 [ Info: Inclusion checked with probability 0.995 in 0.001906122 seconds [ Info: The search for identifiable functions concluded in 0.010334613 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001837563 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001223579 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.671e-5 seconds [ Info: The search for identifiable functions concluded in 0.038309131 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001591995 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001125069 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.727e-5 seconds [ Info: The search for identifiable functions concluded in 0.003773855 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001543785 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001156879 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.7239e-5 seconds [ Info: The search for identifiable functions concluded in 0.003743654 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001356577 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00104523 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.639e-5 seconds [ Info: The search for identifiable functions concluded in 0.003346719 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001288048 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00101501 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.655e-5 seconds [ Info: The search for identifiable functions concluded in 0.00325539 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001571195 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001092949 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.732e-5 seconds [ Info: The search for identifiable functions concluded in 0.003611697 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001761513 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001175429 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.747e-5 seconds [ Info: The search for identifiable functions concluded in 0.004399559 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001703324 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001361497 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.76e-5 seconds [ Info: The search for identifiable functions concluded in 0.00426199 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001531506 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00111956 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.3599e-5 seconds [ Info: The search for identifiable functions concluded in 0.003428008 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001405306 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00105162 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.644e-5 seconds [ Info: The search for identifiable functions concluded in 0.003332819 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001391177 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00108985 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.653e-5 seconds [ Info: The search for identifiable functions concluded in 0.003412029 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001485196 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001160239 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.823e-5 seconds [ Info: The search for identifiable functions concluded in 0.003749025 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.325386621 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001915672 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.863e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.6379e-5 [ Info: Selecting generators in 0.000725783 [ Info: Inclusion checked with probability 0.995 in 0.001908952 seconds [ Info: The search for identifiable functions concluded in 0.335026871 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002588105 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001698104 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.887e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.6289e-5 [ Info: Selecting generators in 0.000608454 [ Info: Inclusion checked with probability 0.995 in 0.001819763 seconds [ Info: The search for identifiable functions concluded in 0.012263745 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002388938 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001690924 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.799e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.054e-5 [ Info: Selecting generators in 0.000599435 [ Info: Inclusion checked with probability 0.995 in 0.002058271 seconds [ Info: The search for identifiable functions concluded in 0.011841689 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002402468 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001587725 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.828e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000418746 [ Info: Selecting generators in 0.000618005 [ Info: Inclusion checked with probability 0.995 in 0.001773613 seconds [ Info: The search for identifiable functions concluded in 0.011872299 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002435307 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001596375 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.507e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000426636 [ Info: Selecting generators in 0.000647314 [ Info: Inclusion checked with probability 0.995 in 0.001796283 seconds [ Info: The search for identifiable functions concluded in 0.011573212 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002465207 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001691064 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.855e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000435876 [ Info: Selecting generators in 0.000655974 [ Info: Inclusion checked with probability 0.995 in 0.001765893 seconds [ Info: The search for identifiable functions concluded in 0.012273185 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001432317 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001409017 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.17e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000109869 [ Info: Selecting generators in 0.00216173 [ Info: Inclusion checked with probability 0.995 in 0.003637146 seconds [ Info: The search for identifiable functions concluded in 0.018583536 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001452626 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001409307 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.232e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000119609 [ Info: Selecting generators in 0.002384258 [ Info: Inclusion checked with probability 0.995 in 0.003637496 seconds [ Info: The search for identifiable functions concluded in 0.020258411 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001385657 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001315628 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.379e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000115409 [ Info: Selecting generators in 0.002053571 [ Info: Inclusion checked with probability 0.995 in 0.003592536 seconds [ Info: The search for identifiable functions concluded in 0.01818126 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001404517 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001334528 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.425e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.263298783 [ Info: Selecting generators in 0.003721335 [ Info: Inclusion checked with probability 0.995 in 0.003768564 seconds [ Info: The search for identifiable functions concluded in 0.283741941 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001427047 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001311148 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.253e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.015582844 [ Info: Selecting generators in 0.003577127 [ Info: Inclusion checked with probability 0.995 in 0.003769475 seconds [ Info: The search for identifiable functions concluded in 0.035582837 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001476017 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001389477 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.129e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.016456646 [ Info: Selecting generators in 0.003764445 [ Info: Inclusion checked with probability 0.995 in 0.003671246 seconds [ Info: The search for identifiable functions concluded in 0.036168691 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001372468 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001174899 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.9259e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000105199 [ Info: Selecting generators in 0.002392447 [ Info: Inclusion checked with probability 0.995 in 0.002997362 seconds [ Info: The search for identifiable functions concluded in 1.047870821 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001437407 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001346818 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.866e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000101069 [ Info: Selecting generators in 0.002299649 [ Info: Inclusion checked with probability 0.995 in 0.003334019 seconds [ Info: The search for identifiable functions concluded in 0.015373376 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001546315 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001434027 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.791e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000107229 [ Info: Selecting generators in 0.002412258 [ Info: Inclusion checked with probability 0.995 in 0.003687286 seconds [ Info: The search for identifiable functions concluded in 0.016646944 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001370017 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001150679 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.91e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.23797449 [ Info: Selecting generators in 0.002713894 [ Info: Inclusion checked with probability 0.995 in 0.00315365 seconds [ Info: The search for identifiable functions concluded in 0.253588533 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001330678 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00318639 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.9189e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007396461 [ Info: Selecting generators in 0.005903515 [ Info: Inclusion checked with probability 0.995 in 0.003003612 seconds [ Info: The search for identifiable functions concluded in 0.027964828 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001336547 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001229408 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.783e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006907725 [ Info: Selecting generators in 0.002717894 [ Info: Inclusion checked with probability 0.995 in 0.003359699 seconds [ Info: The search for identifiable functions concluded in 0.027612871 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002399068 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001879052 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.77e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.00010067 [ Info: Selecting generators in 0.000558574 [ Info: Inclusion checked with probability 0.995 in 0.002880073 seconds [ Info: The search for identifiable functions concluded in 0.018822003 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002514316 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001902782 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.584e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000111949 [ Info: Selecting generators in 0.000641664 [ Info: Inclusion checked with probability 0.995 in 0.003547836 seconds [ Info: The search for identifiable functions concluded in 0.018735844 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002367048 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001673054 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.695e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000107959 [ Info: Selecting generators in 0.000605105 [ Info: Inclusion checked with probability 0.995 in 0.003458737 seconds [ Info: The search for identifiable functions concluded in 0.018397538 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002298009 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001878632 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.849e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007084584 [ Info: Selecting generators in 0.000691053 [ Info: Inclusion checked with probability 0.995 in 0.0031053 seconds [ Info: The search for identifiable functions concluded in 0.024983765 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002408437 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001700034 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.513e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007176253 [ Info: Selecting generators in 0.000744763 [ Info: Inclusion checked with probability 0.995 in 0.003302849 seconds [ Info: The search for identifiable functions concluded in 0.025560161 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002240309 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001828403 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.7229e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007215622 [ Info: Selecting generators in 0.000701144 [ Info: Inclusion checked with probability 0.995 in 0.003116891 seconds [ Info: The search for identifiable functions concluded in 0.025162484 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002810153 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00210952 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.96e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000112279 [ Info: Selecting generators in 0.00324929 [ Info: Inclusion checked with probability 0.995 in 0.003593907 seconds [ Info: The search for identifiable functions concluded in 0.022624888 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002785404 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00216127 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.0579e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000130549 [ Info: Selecting generators in 0.00320179 [ Info: Inclusion checked with probability 0.995 in 0.003711345 seconds [ Info: The search for identifiable functions concluded in 0.023290462 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002881003 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002081611 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.0299e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000124839 [ Info: Selecting generators in 0.003294179 [ Info: Inclusion checked with probability 0.995 in 0.003678945 seconds [ Info: The search for identifiable functions concluded in 0.023312461 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002890993 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002043291 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.117e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.01386253 [ Info: Selecting generators in 0.003333539 [ Info: Inclusion checked with probability 0.995 in 0.003571566 seconds [ Info: The search for identifiable functions concluded in 0.037070053 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.38522303 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002385118 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.05e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014278627 [ Info: Selecting generators in 0.003371548 [ Info: Inclusion checked with probability 0.995 in 0.003778554 seconds [ Info: The search for identifiable functions concluded in 0.420415531 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003076852 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002106531 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.333e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014305676 [ Info: Selecting generators in 0.003635586 [ Info: Inclusion checked with probability 0.995 in 0.003649826 seconds [ Info: The search for identifiable functions concluded in 0.038886275 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015650853 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005386709 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.3559e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000127719 [ Info: Selecting generators in 0.009367433 [ Info: Inclusion checked with probability 0.995 in 0.005849885 seconds [ Info: The search for identifiable functions concluded in 0.315679662 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007373791 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005479008 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.974e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000136258 [ Info: Selecting generators in 0.009251164 [ Info: Inclusion checked with probability 0.995 in 0.005586208 seconds [ Info: The search for identifiable functions concluded in 0.047229728 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006635458 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004626646 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.9809e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000135889 [ Info: Selecting generators in 0.00957976 [ Info: Inclusion checked with probability 0.995 in 0.006102883 seconds [ Info: The search for identifiable functions concluded in 0.046217347 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007823137 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006011264 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.783e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00221035 [ Info: Selecting generators in 0.009712059 [ Info: Inclusion checked with probability 0.995 in 0.006130613 seconds [ Info: The search for identifiable functions concluded in 0.051418678 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007330601 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005450679 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.916e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002243639 [ Info: Selecting generators in 0.009138394 [ Info: Inclusion checked with probability 0.995 in 0.005474018 seconds [ Info: The search for identifiable functions concluded in 0.049449487 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00747574 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006298251 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.651e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002032301 [ Info: Selecting generators in 0.009515311 [ Info: Inclusion checked with probability 0.995 in 0.006253762 seconds [ Info: The search for identifiable functions concluded in 0.051093611 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004994674 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003375409 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.0889e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000112609 [ Info: Selecting generators in 0.001917692 [ Info: Inclusion checked with probability 0.995 in 0.003881754 seconds [ Info: The search for identifiable functions concluded in 0.025090375 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004667127 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00318409 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.967e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000108739 [ Info: Selecting generators in 0.001900462 [ Info: Inclusion checked with probability 0.995 in 0.003893754 seconds [ Info: The search for identifiable functions concluded in 0.023863536 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004777065 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003365659 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.082e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000123699 [ Info: Selecting generators in 0.001988792 [ Info: Inclusion checked with probability 0.995 in 0.003875604 seconds [ Info: The search for identifiable functions concluded in 0.025389302 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005050063 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003345789 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.595e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001158289 [ Info: Selecting generators in 0.001997362 [ Info: Inclusion checked with probability 0.995 in 0.003766905 seconds [ Info: The search for identifiable functions concluded in 0.026968267 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004989833 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003331188 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.038e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001311218 [ Info: Selecting generators in 0.002265849 [ Info: Inclusion checked with probability 0.995 in 0.004042753 seconds [ Info: The search for identifiable functions concluded in 0.027927909 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005678876 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003553067 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.37e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001305128 [ Info: Selecting generators in 0.002283769 [ Info: Inclusion checked with probability 0.995 in 0.00432444 seconds [ Info: The search for identifiable functions concluded in 0.029686632 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005856125 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003590196 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.4999e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000114649 [ Info: Selecting generators in 0.002799664 [ Info: Inclusion checked with probability 0.995 in 0.004108471 seconds [ Info: The search for identifiable functions concluded in 0.034056941 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005739666 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003653476 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.73e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000126279 [ Info: Selecting generators in 0.002862684 [ Info: Inclusion checked with probability 0.995 in 0.004123641 seconds [ Info: The search for identifiable functions concluded in 0.033803643 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005642457 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003657725 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.514e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000115668 [ Info: Selecting generators in 0.021478318 [ Info: Inclusion checked with probability 0.995 in 0.004129462 seconds [ Info: The search for identifiable functions concluded in 0.051960063 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005697787 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003765974 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.6269e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.019612677 [ Info: Selecting generators in 0.004195201 [ Info: Inclusion checked with probability 0.995 in 0.003915603 seconds [ Info: The search for identifiable functions concluded in 0.054028584 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005580127 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003579827 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.569e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.464458018 [ Info: Selecting generators in 0.003836875 [ Info: Inclusion checked with probability 0.995 in 0.003759535 seconds [ Info: The search for identifiable functions concluded in 0.497531249 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004450338 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002929292 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.026e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.016162908 [ Info: Selecting generators in 0.003385559 [ Info: Inclusion checked with probability 0.995 in 0.003391718 seconds [ Info: The search for identifiable functions concluded in 0.043524182 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002245019 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001932732 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.3189e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000102699 [ Info: Selecting generators in 0.001676095 [ Info: Inclusion checked with probability 0.995 in 0.003027712 seconds [ Info: The search for identifiable functions concluded in 0.018269229 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002450687 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001974542 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.806e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000115429 [ Info: Selecting generators in 0.001477406 [ Info: Inclusion checked with probability 0.995 in 0.002688945 seconds [ Info: The search for identifiable functions concluded in 0.018003041 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002071991 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001609745 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.59e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.7059e-5 [ Info: Selecting generators in 0.001369617 [ Info: Inclusion checked with probability 0.995 in 0.002622006 seconds [ Info: The search for identifiable functions concluded in 0.015707313 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00213477 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001620945 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.771e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.011354564 [ Info: Selecting generators in 0.002612436 [ Info: Inclusion checked with probability 0.995 in 0.002889323 seconds [ Info: The search for identifiable functions concluded in 0.029360095 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002190059 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001881792 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.743e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.011517232 [ Info: Selecting generators in 0.002703535 [ Info: Inclusion checked with probability 0.995 in 0.002907573 seconds [ Info: The search for identifiable functions concluded in 0.029622243 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002404737 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001867863 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.89e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.011627942 [ Info: Selecting generators in 0.002846823 [ Info: Inclusion checked with probability 0.995 in 0.003105231 seconds [ Info: The search for identifiable functions concluded in 0.031029339 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013548973 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.030434545 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000363836 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 [ Info: Search for polynomial generators concluded in 0.000156168 [ Info: Selecting generators in 0.016409267 [ Info: Inclusion checked with probability 0.995 in 0.029378135 seconds [ Info: The search for identifiable functions concluded in 14.029378462 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014293457 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031018429 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000276257 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000143169 [ Info: Selecting generators in 0.019046531 [ Info: Inclusion checked with probability 0.995 in 0.030871931 seconds [ Info: The search for identifiable functions concluded in 0.174711664 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01599631 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.033557856 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000274968 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000147918 [ Info: Selecting generators in 0.02026278 [ Info: Inclusion checked with probability 0.995 in 0.033552436 seconds [ Info: The search for identifiable functions concluded in 0.183089235 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01600014 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.03527728 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000300307 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.056336506 [ Info: Selecting generators in 0.016449696 [ Info: Inclusion checked with probability 0.995 in 0.026064056 seconds [ Info: The search for identifiable functions concluded in 1.599596657 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01382685 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.028953969 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000318037 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.03202631 [ Info: Selecting generators in 0.013538873 [ Info: Inclusion checked with probability 0.995 in 0.027005187 seconds [ Info: The search for identifiable functions concluded in 0.180059644 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013192086 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.023153253 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000266588 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.043212425 [ Info: Selecting generators in 0.01076894 [ Info: Inclusion checked with probability 0.995 in 0.024781668 seconds [ Info: The search for identifiable functions concluded in 0.174822193 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.548455787 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.376019574 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.226240151 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000131648 [ Info: Selecting generators in 0.979061833 [ Info: Inclusion checked with probability 0.995 in 2.659590819 seconds [ Info: The search for identifiable functions concluded in 16.86832833 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.767170755 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.749624753 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.197063105 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 3   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000173898 [ Info: Selecting generators in 1.000866003 [ Info: Inclusion checked with probability 0.995 in 2.372558146 seconds [ Info: The search for identifiable functions concluded in 18.192493558 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.813507368 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.876928456 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.187676754 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000232798 [ Info: Selecting generators in 0.550705458 [ Info: Inclusion checked with probability 0.995 in 2.654562227 seconds [ Info: The search for identifiable functions concluded in 18.537315543 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.80770913 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.136679694 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.173755945 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.033848803 [ Info: Selecting generators in 1.058385252 [ Info: Inclusion checked with probability 0.995 in 2.497895692 seconds [ Info: The search for identifiable functions concluded in 17.858597252 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.289861719 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.956131531 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.18177745 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.030118848 [ Info: Selecting generators in 1.283416542 [ Info: Inclusion checked with probability 0.995 in 2.749709336 seconds [ Info: The search for identifiable functions concluded in 17.630822177 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.507482539 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.904072992 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.193302503 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.510344971 [ Info: Selecting generators in 0.580167529 [ Info: Inclusion checked with probability 0.995 in 2.843036345 seconds [ Info: The search for identifiable functions concluded in 18.221117517 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014240257 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012421834 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.238e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000129989 [ Info: Selecting generators in 0.007924616 [ Info: Inclusion checked with probability 0.995 in 0.009397032 seconds [ Info: The search for identifiable functions concluded in 0.081509328 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013716102 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01176182 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 2.906e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000117959 [ Info: Selecting generators in 0.008232853 [ Info: Inclusion checked with probability 0.995 in 0.009277703 seconds [ Info: The search for identifiable functions concluded in 0.079347249 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.04386829 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012645842 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 2.809e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000144458 [ Info: Selecting generators in 0.011809789 [ Info: Inclusion checked with probability 0.995 in 0.010480523 seconds [ Info: The search for identifiable functions concluded in 0.12195375 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015832202 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01287522 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.388e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.036076813 [ Info: Selecting generators in 0.015037439 [ Info: Inclusion checked with probability 0.995 in 0.010175755 seconds [ Info: The search for identifiable functions concluded in 0.129780648 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013578223 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011827849 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 2.906e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.03534164 [ Info: Selecting generators in 0.012879629 [ Info: Inclusion checked with probability 0.995 in 0.009276934 seconds [ Info: The search for identifiable functions concluded in 0.121329216 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014075959 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01168675 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.3709e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.033867233 [ Info: Selecting generators in 0.012243375 [ Info: Inclusion checked with probability 0.995 in 0.00862993 seconds [ Info: The search for identifiable functions concluded in 0.118423543 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012376095 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007346921 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.0639e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000288047 [ Info: Selecting generators in 0.041883459 [ Info: Inclusion checked with probability 0.995 in 0.015148268 seconds [ Info: The search for identifiable functions concluded in 0.760049739 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013395074 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007957016 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.826e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000225768 [ Info: Selecting generators in 0.039428172 [ Info: Inclusion checked with probability 0.995 in 0.015107829 seconds [ Info: The search for identifiable functions concluded in 0.496841688 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014119838 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.008472201 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.273e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000255228 [ Info: Selecting generators in 0.054904787 [ Info: Inclusion checked with probability 0.995 in 0.01709574 seconds [ Info: The search for identifiable functions concluded in 1.335487644 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015707863 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010845019 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.295e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 2.971273473 [ Info: Selecting generators in 0.059293236 [ Info: Inclusion checked with probability 0.995 in 0.012572383 seconds [ Info: The search for identifiable functions concluded in 3.493322626 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011827709 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006945175 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.094e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.012433283 [ Info: Selecting generators in 0.084468331 [ Info: Inclusion checked with probability 0.995 in 0.01396307 seconds [ Info: The search for identifiable functions concluded in 1.527362722 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013531413 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.008732539 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.0659e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.273925392 [ Info: Selecting generators in 0.055304374 [ Info: Inclusion checked with probability 0.995 in 0.012146336 seconds [ Info: The search for identifiable functions concluded in 0.773379616 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.020439519 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.013798181 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.4879e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000116468 [ Info: Selecting generators in 0.008646139 [ Info: Inclusion checked with probability 0.995 in 0.0128349 seconds [ Info: The search for identifiable functions concluded in 0.09317418 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.019918864 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01391873 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.0379e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000117939 [ Info: Selecting generators in 0.008245283 [ Info: Inclusion checked with probability 0.995 in 0.012962559 seconds [ Info: The search for identifiable functions concluded in 0.092459036 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.020575718 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014018659 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.7069e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000151059 [ Info: Selecting generators in 0.010228875 [ Info: Inclusion checked with probability 0.995 in 0.015472995 seconds [ Info: The search for identifiable functions concluded in 0.098299332 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.022003944 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016899943 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.4529e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.050040432 [ Info: Selecting generators in 0.016172149 [ Info: Inclusion checked with probability 0.995 in 0.014576654 seconds [ Info: The search for identifiable functions concluded in 0.16490619 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.02143328 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016233528 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.069e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.048204069 [ Info: Selecting generators in 0.016236219 [ Info: Inclusion checked with probability 0.995 in 0.014638883 seconds [ Info: The search for identifiable functions concluded in 0.161602781 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.737695759 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.019135261 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.165e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.058655132 [ Info: Selecting generators in 0.017762754 [ Info: Inclusion checked with probability 0.995 in 0.015668414 seconds [ Info: The search for identifiable functions concluded in 0.906914749 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013064218 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016659735 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.4099e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000147369 [ Info: Selecting generators in 0.075532125 [ Info: Inclusion checked with probability 0.995 in 0.017482776 seconds [ Info: The search for identifiable functions concluded in 0.541998937 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01182735 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015202578 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.6609e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000178369 [ Info: Selecting generators in 0.082954515 [ Info: Inclusion checked with probability 0.995 in 0.018694825 seconds [ Info: The search for identifiable functions concluded in 0.524202354 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011369824 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016407497 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.463e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000224848 [ Info: Selecting generators in 0.840037863 [ Info: Inclusion checked with probability 0.995 in 0.021194562 seconds [ Info: The search for identifiable functions concluded in 1.327640159 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014492424 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.018029982 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 8.066e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.08133548 [ Info: Selecting generators in 0.075062859 [ Info: Inclusion checked with probability 0.995 in 0.015567655 seconds [ Info: The search for identifiable functions concluded in 0.618156045 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010275934 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.013853491 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 5.721e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.097011894 [ Info: Selecting generators in 0.088153276 [ Info: Inclusion checked with probability 0.995 in 0.017388138 seconds [ Info: The search for identifiable functions concluded in 0.590830682 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011929738 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016756904 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.621e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 2.074813601 [ Info: Selecting generators in 0.108329198 [ Info: Inclusion checked with probability 0.995 in 0.018409918 seconds [ Info: The search for identifiable functions concluded in 2.645110366 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.31921223 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.069537851 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 5.9829e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 12   ⌝ # Computing specializations.. Time: 0:00:00 Points: 23   ⌟ # Computing specializations.. Time: 0:00:01 Points: 38   ⌞ # Computing specializations.. Time: 0:00:01 Points: 53   ⌜ # Computing specializations.. Time: 0:00:01 Points: 68   ⌝ # Computing specializations.. Time: 0:00:02 Points: 80   ⌟ # Computing specializations.. Time: 0:00:02 Points: 94   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 16   ⌝ # Computing specializations.. Time: 0:00:00 Points: 33   ⌟ # Computing specializations.. Time: 0:00:01 Points: 49   ⌞ # Computing specializations.. Time: 0:00:01 Points: 61   ⌜ # Computing specializations.. Time: 0:00:01 Points: 76   ⌝ # Computing specializations.. Time: 0:00:02 Points: 92   ⌟ # Computing specializations.. Time: 0:00:02 Points: 108   ⌞ # Computing specializations.. Time: 0:00:03 Points: 122   ⌜ # Computing specializations.. Time: 0:00:03 Points: 137   ⌝ # Computing specializations.. Time: 0:00:03 Points: 152   ⌟ # Computing specializations.. Time: 0:00:04 Points: 166   ⌞ # Computing specializations.. Time: 0:00:04 Points: 182   ⌜ # Computing specializations.. Time: 0:00:04 Points: 197   ⌝ # Computing specializations.. Time: 0:00:05 Points: 211   ⌟ # Computing specializations.. Time: 0:00:05 Points: 227   ⌞ # Computing specializations.. Time: 0:00:05 Points: 242   ⌜ # Computing specializations.. Time: 0:00:06 Points: 256   ⌝ # Computing specializations.. Time: 0:00:06 Points: 272   ⌟ # Computing specializations.. Time: 0:00:07 Points: 287   ⌞ # Computing specializations.. Time: 0:00:07 Points: 302   ⌜ # Computing specializations.. Time: 0:00:07 Points: 318   ⌝ # Computing specializations.. Time: 0:00:08 Points: 334   ⌟ # Computing specializations.. Time: 0:00:08 Points: 349   ⌞ # Computing specializations.. Time: 0:00:09 Points: 362   ⌜ # Computing specializations.. Time: 0:00:09 Points: 377   ⌝ # Computing specializations.. Time: 0:00:09 Points: 390   ⌟ # Computing specializations.. Time: 0:00:10 Points: 404   ⌞ # Computing specializations.. Time: 0:00:10 Points: 420   ⌜ # Computing specializations.. Time: 0:00:10 Points: 435   ⌝ # Computing specializations.. Time: 0:00:11 Points: 450   ⌟ # Computing specializations.. Time: 0:00:11 Points: 465   ⌞ # Computing specializations.. Time: 0:00:11 Points: 480   ⌜ # Computing specializations.. Time: 0:00:12 Points: 493   ⌝ # Computing specializations.. Time: 0:00:12 Points: 508   ⌟ # Computing specializations.. Time: 0:00:12 Points: 521   ⌞ # Computing specializations.. Time: 0:00:13 Points: 535   ⌜ # Computing specializations.. Time: 0:00:13 Points: 549   ⌝ # Computing specializations.. Time: 0:00:13 Points: 563   ⌟ # Computing specializations.. Time: 0:00:14 Points: 577   ⌞ # Computing specializations.. Time: 0:00:14 Points: 592   ⌜ # Computing specializations.. Time: 0:00:15 Points: 609   ⌝ # Computing specializations.. Time: 0:00:15 Points: 624   ⌟ # Computing specializations.. Time: 0:00:15 Points: 639   ✓ # Computing specializations.. Time: 0:00:16 [ Info: Search for polynomial generators concluded in 0.000255028 [ Info: Selecting generators in 0.033918334 [ Info: Inclusion checked with probability 0.995 in 6.324802046 seconds [ Info: The search for identifiable functions concluded in 38.962520876 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.753804615 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.050866046 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 6.835e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 14   ⌝ # Computing specializations.. Time: 0:00:00 Points: 29   ⌟ # Computing specializations.. Time: 0:00:01 Points: 43   ⌞ # Computing specializations.. Time: 0:00:01 Points: 57   ⌜ # Computing specializations.. Time: 0:00:01 Points: 71   ⌝ # Computing specializations.. Time: 0:00:02 Points: 85   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 14   ⌝ # Computing specializations.. Time: 0:00:00 Points: 28   ⌟ # Computing specializations.. Time: 0:00:00 Points: 42   ⌞ # Computing specializations.. Time: 0:00:01 Points: 54   ⌜ # Computing specializations.. Time: 0:00:02 Points: 69   ⌝ # Computing specializations.. Time: 0:00:02 Points: 83   ⌟ # Computing specializations.. Time: 0:00:02 Points: 97   ⌞ # Computing specializations.. Time: 0:00:03 Points: 111   ⌜ # Computing specializations.. Time: 0:00:03 Points: 125   ⌝ # Computing specializations.. Time: 0:00:03 Points: 141   ⌟ # Computing specializations.. Time: 0:00:04 Points: 156   ⌞ # Computing specializations.. Time: 0:00:04 Points: 171   ⌜ # Computing specializations.. Time: 0:00:05 Points: 186   ⌝ # Computing specializations.. Time: 0:00:05 Points: 201   ⌟ # Computing specializations.. Time: 0:00:05 Points: 216   ⌞ # Computing specializations.. Time: 0:00:06 Points: 231   ⌜ # Computing specializations.. Time: 0:00:06 Points: 244   ⌝ # Computing specializations.. Time: 0:00:06 Points: 258   ⌟ # Computing specializations.. Time: 0:00:07 Points: 274   ⌞ # Computing specializations.. Time: 0:00:07 Points: 289   ⌜ # Computing specializations.. Time: 0:00:08 Points: 303   ⌝ # Computing specializations.. Time: 0:00:08 Points: 317   ⌟ # Computing specializations.. Time: 0:00:08 Points: 329   ⌞ # Computing specializations.. Time: 0:00:09 Points: 346   ⌜ # Computing specializations.. Time: 0:00:09 Points: 361   ⌝ # Computing specializations.. Time: 0:00:09 Points: 376   ⌟ # Computing specializations.. Time: 0:00:10 Points: 389   ⌞ # Computing specializations.. Time: 0:00:10 Points: 404   ⌜ # Computing specializations.. Time: 0:00:11 Points: 420   ⌝ # Computing specializations.. Time: 0:00:11 Points: 435   ⌟ # Computing specializations.. Time: 0:00:11 Points: 450   ⌞ # Computing specializations.. Time: 0:00:12 Points: 463   ⌜ # Computing specializations.. Time: 0:00:12 Points: 477   ⌝ # Computing specializations.. Time: 0:00:12 Points: 492   ⌟ # Computing specializations.. Time: 0:00:13 Points: 507   ⌞ # Computing specializations.. Time: 0:00:13 Points: 521   ⌜ # Computing specializations.. Time: 0:00:14 Points: 535   ⌝ # Computing specializations.. Time: 0:00:14 Points: 549   ⌟ # Computing specializations.. Time: 0:00:14 Points: 565   ⌞ # Computing specializations.. Time: 0:00:15 Points: 580   ⌜ # Computing specializations.. Time: 0:00:15 Points: 595   ⌝ # Computing specializations.. Time: 0:00:15 Points: 608   ⌟ # Computing specializations.. Time: 0:00:16 Points: 622   ⌞ # Computing specializations.. Time: 0:00:16 Points: 636   ✓ # Computing specializations.. Time: 0:00:16 [ Info: Search for polynomial generators concluded in 0.000294717 [ Info: Selecting generators in 0.03796984 [ Info: Inclusion checked with probability 0.995 in 6.338692877 seconds [ Info: The search for identifiable functions concluded in 40.690209936 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.910037584 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.052481527 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 8.7149e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 12   ⌝ # Computing specializations.. Time: 0:00:00 Points: 23   ⌟ # Computing specializations.. Time: 0:00:01 Points: 37   ⌞ # Computing specializations.. Time: 0:00:01 Points: 51   ⌜ # Computing specializations.. Time: 0:00:01 Points: 65   ⌝ # Computing specializations.. Time: 0:00:02 Points: 79   ⌟ # Computing specializations.. Time: 0:00:02 Points: 90   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 25   ⌟ # Computing specializations.. Time: 0:00:01 Points: 40   ⌞ # Computing specializations.. Time: 0:00:01 Points: 54   ⌜ # Computing specializations.. Time: 0:00:01 Points: 65   ⌝ # Computing specializations.. Time: 0:00:02 Points: 78   ⌟ # Computing specializations.. Time: 0:00:02 Points: 92   ⌞ # Computing specializations.. Time: 0:00:02 Points: 106   ⌜ # Computing specializations.. Time: 0:00:03 Points: 117   ⌝ # Computing specializations.. Time: 0:00:03 Points: 131   ⌟ # Computing specializations.. Time: 0:00:03 Points: 145   ⌞ # Computing specializations.. Time: 0:00:04 Points: 159   ⌜ # Computing specializations.. Time: 0:00:04 Points: 170   ⌝ # Computing specializations.. Time: 0:00:05 Points: 184   ⌟ # Computing specializations.. Time: 0:00:05 Points: 197   ⌞ # Computing specializations.. Time: 0:00:05 Points: 207   ⌜ # Computing specializations.. Time: 0:00:06 Points: 221   ⌝ # Computing specializations.. Time: 0:00:06 Points: 235   ⌟ # Computing specializations.. Time: 0:00:06 Points: 246   ⌞ # Computing specializations.. Time: 0:00:07 Points: 260   ⌜ # Computing specializations.. Time: 0:00:07 Points: 274   ⌝ # Computing specializations.. Time: 0:00:07 Points: 287   ⌟ # Computing specializations.. Time: 0:00:08 Points: 301   ⌞ # Computing specializations.. Time: 0:00:08 Points: 315   ⌜ # Computing specializations.. Time: 0:00:09 Points: 327   ⌝ # Computing specializations.. Time: 0:00:09 Points: 341   ⌟ # Computing specializations.. Time: 0:00:09 Points: 355   ⌞ # Computing specializations.. Time: 0:00:10 Points: 368   ⌜ # Computing specializations.. Time: 0:00:10 Points: 382   ⌝ # Computing specializations.. Time: 0:00:10 Points: 396   ⌟ # Computing specializations.. Time: 0:00:11 Points: 410   ⌞ # Computing specializations.. Time: 0:00:11 Points: 422   ⌜ # Computing specializations.. Time: 0:00:11 Points: 432   ⌝ # Computing specializations.. Time: 0:00:12 Points: 447   ⌟ # Computing specializations.. Time: 0:00:12 Points: 461   ⌞ # Computing specializations.. Time: 0:00:13 Points: 474   ⌜ # Computing specializations.. Time: 0:00:13 Points: 488   ⌝ # Computing specializations.. Time: 0:00:13 Points: 501   ⌟ # Computing specializations.. Time: 0:00:14 Points: 514   ⌞ # Computing specializations.. Time: 0:00:14 Points: 527   ⌜ # Computing specializations.. Time: 0:00:14 Points: 540   ⌝ # Computing specializations.. Time: 0:00:15 Points: 553   ⌟ # Computing specializations.. Time: 0:00:15 Points: 566   ⌞ # Computing specializations.. Time: 0:00:15 Points: 579   ⌜ # Computing specializations.. Time: 0:00:16 Points: 592   ⌝ # Computing specializations.. Time: 0:00:16 Points: 602   ⌟ # Computing specializations.. Time: 0:00:16 Points: 616   ⌞ # Computing specializations.. Time: 0:00:17 Points: 629   ✓ # Computing specializations.. Time: 0:00:17 [ Info: Search for polynomial generators concluded in 0.000257157 [ Info: Selecting generators in 0.034582416 [ Info: Inclusion checked with probability 0.995 in 5.978596153 seconds [ Info: The search for identifiable functions concluded in 44.242004008 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.991857512 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.052337583 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 7.9149e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 26   ⌟ # Computing specializations.. Time: 0:00:01 Points: 40   ⌞ # Computing specializations.. Time: 0:00:01 Points: 51   ⌜ # Computing specializations.. Time: 0:00:01 Points: 67   ⌝ # Computing specializations.. Time: 0:00:02 Points: 82   ⌟ # Computing specializations.. Time: 0:00:02 Points: 96   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 13   ⌝ # Computing specializations.. Time: 0:00:00 Points: 29   ⌟ # Computing specializations.. Time: 0:00:01 Points: 44   ⌞ # Computing specializations.. Time: 0:00:01 Points: 58   ⌜ # Computing specializations.. Time: 0:00:01 Points: 72   ⌝ # Computing specializations.. Time: 0:00:02 Points: 86   ⌟ # Computing specializations.. Time: 0:00:02 Points: 102   ⌞ # Computing specializations.. Time: 0:00:02 Points: 117   ⌜ # Computing specializations.. Time: 0:00:03 Points: 131   ⌝ # Computing specializations.. Time: 0:00:03 Points: 147   ⌟ # Computing specializations.. Time: 0:00:04 Points: 162   ⌞ # Computing specializations.. Time: 0:00:04 Points: 177   ⌜ # Computing specializations.. Time: 0:00:04 Points: 190   ⌝ # Computing specializations.. Time: 0:00:05 Points: 204   ⌟ # Computing specializations.. Time: 0:00:05 Points: 220   ⌞ # Computing specializations.. Time: 0:00:05 Points: 235   ⌜ # Computing specializations.. Time: 0:00:06 Points: 250   ⌝ # Computing specializations.. Time: 0:00:06 Points: 267   ⌟ # Computing specializations.. Time: 0:00:07 Points: 283   ⌞ # Computing specializations.. Time: 0:00:07 Points: 297   ⌜ # Computing specializations.. Time: 0:00:07 Points: 311   ⌝ # Computing specializations.. Time: 0:00:08 Points: 322   ⌟ # Computing specializations.. Time: 0:00:08 Points: 339   ⌞ # Computing specializations.. Time: 0:00:08 Points: 354   ⌜ # Computing specializations.. Time: 0:00:09 Points: 369   ⌝ # Computing specializations.. Time: 0:00:09 Points: 382   ⌟ # Computing specializations.. Time: 0:00:09 Points: 396   ⌞ # Computing specializations.. Time: 0:00:10 Points: 409   ⌜ # Computing specializations.. Time: 0:00:10 Points: 423   ⌝ # Computing specializations.. Time: 0:00:11 Points: 439   ⌟ # Computing specializations.. Time: 0:00:11 Points: 454   ⌞ # Computing specializations.. Time: 0:00:11 Points: 469   ⌜ # Computing specializations.. Time: 0:00:12 Points: 484   ⌝ # Computing specializations.. Time: 0:00:12 Points: 499   ⌟ # Computing specializations.. Time: 0:00:12 Points: 516   ⌞ # Computing specializations.. Time: 0:00:13 Points: 531   ⌜ # Computing specializations.. Time: 0:00:13 Points: 546   ⌝ # Computing specializations.. Time: 0:00:14 Points: 561   ⌟ # Computing specializations.. Time: 0:00:14 Points: 576   ⌞ # Computing specializations.. Time: 0:00:14 Points: 589   ⌜ # Computing specializations.. Time: 0:00:15 Points: 603   ⌝ # Computing specializations.. Time: 0:00:15 Points: 619   ⌟ # Computing specializations.. Time: 0:00:15 Points: 634   ✓ # Computing specializations.. Time: 0:00:16 [ Info: Search for polynomial generators concluded in 1.616534036 [ Info: Selecting generators in 0.032521984 [ Info: Inclusion checked with probability 0.995 in 6.144937597 seconds [ Info: The search for identifiable functions concluded in 38.252973845 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.607323168 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.050251216 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 9.1149e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 Points: 12   ⌝ # Computing specializations.. Time: 0:00:00 Points: 26   ⌟ # Computing specializations.. Time: 0:00:01 Points: 42   ⌞ # Computing specializations.. Time: 0:00:01 Points: 57   ⌜ # Computing specializations.. Time: 0:00:01 Points: 68   ⌝ # Computing specializations.. Time: 0:00:02 Points: 84   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 12   ⌝ # Computing specializations.. Time: 0:00:00 Points: 27   ⌟ # Computing specializations.. Time: 0:00:01 Points: 40   ⌞ # Computing specializations.. Time: 0:00:01 Points: 51   ⌜ # Computing specializations.. Time: 0:00:01 Points: 66   ⌝ # Computing specializations.. Time: 0:00:02 Points: 80   ⌟ # Computing specializations.. Time: 0:00:02 Points: 93   ⌞ # Computing specializations.. Time: 0:00:02 Points: 108   ⌜ # Computing specializations.. Time: 0:00:03 Points: 123   ⌝ # Computing specializations.. Time: 0:00:03 Points: 134   ⌟ # Computing specializations.. Time: 0:00:03 Points: 150   ⌞ # Computing specializations.. Time: 0:00:04 Points: 165   ⌜ # Computing specializations.. Time: 0:00:04 Points: 176   ⌝ # Computing specializations.. Time: 0:00:04 Points: 192   ⌟ # Computing specializations.. Time: 0:00:05 Points: 207   ⌞ # Computing specializations.. Time: 0:00:05 Points: 220   ⌜ # Computing specializations.. Time: 0:00:06 Points: 236   ⌝ # Computing specializations.. Time: 0:00:06 Points: 251   ⌟ # Computing specializations.. Time: 0:00:06 Points: 265   ⌞ # Computing specializations.. Time: 0:00:07 Points: 280   ⌜ # Computing specializations.. Time: 0:00:07 Points: 295   ⌝ # Computing specializations.. Time: 0:00:07 Points: 309   ⌟ # Computing specializations.. Time: 0:00:08 Points: 324   ⌞ # Computing specializations.. Time: 0:00:08 Points: 338   ⌜ # Computing specializations.. Time: 0:00:09 Points: 352   ⌝ # Computing specializations.. Time: 0:00:09 Points: 366   ⌟ # Computing specializations.. Time: 0:00:09 Points: 377   ⌞ # Computing specializations.. Time: 0:00:10 Points: 393   ⌜ # Computing specializations.. Time: 0:00:10 Points: 408   ⌝ # Computing specializations.. Time: 0:00:10 Points: 422   ⌟ # Computing specializations.. Time: 0:00:11 Points: 438   ⌞ # Computing specializations.. Time: 0:00:11 Points: 453   ⌜ # Computing specializations.. Time: 0:00:12 Points: 468   ⌝ # Computing specializations.. Time: 0:00:12 Points: 484   ⌟ # Computing specializations.. Time: 0:00:12 Points: 499   ⌞ # Computing specializations.. Time: 0:00:13 Points: 513   ⌜ # Computing specializations.. Time: 0:00:13 Points: 527   ⌝ # Computing specializations.. Time: 0:00:13 Points: 538   ⌟ # Computing specializations.. Time: 0:00:14 Points: 553   ⌞ # Computing specializations.. Time: 0:00:14 Points: 567   ⌜ # Computing specializations.. Time: 0:00:14 Points: 581   ⌝ # Computing specializations.. Time: 0:00:15 Points: 594   ⌟ # Computing specializations.. Time: 0:00:15 Points: 608   ⌞ # Computing specializations.. Time: 0:00:15 Points: 624   ⌜ # Computing specializations.. Time: 0:00:16 Points: 639   ✓ # Computing specializations.. Time: 0:00:16 [ Info: Search for polynomial generators concluded in 1.705906938 [ Info: Selecting generators in 0.037503981 [ Info: Inclusion checked with probability 0.995 in 7.778924816 seconds [ Info: The search for identifiable functions concluded in 40.037252207 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.377452532 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.054480072 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 9.8519e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ⌝ # Computing specializations.. Time: 0:00:00 Points: 16   ⌟ # Computing specializations.. Time: 0:00:01 Points: 25   ⌞ # Computing specializations.. Time: 0:00:01 Points: 35   ⌜ # Computing specializations.. Time: 0:00:01 Points: 43   ⌝ # Computing specializations.. Time: 0:00:02 Points: 53   ⌟ # Computing specializations.. Time: 0:00:02 Points: 62   ⌞ # Computing specializations.. Time: 0:00:02 Points: 72   ⌜ # Computing specializations.. Time: 0:00:03 Points: 81   ⌝ # Computing specializations.. Time: 0:00:03 Points: 89   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 29   ⌞ # Computing specializations.. Time: 0:00:01 Points: 39   ⌜ # Computing specializations.. Time: 0:00:01 Points: 48   ⌝ # Computing specializations.. Time: 0:00:02 Points: 58   ⌟ # Computing specializations.. Time: 0:00:02 Points: 68   ⌞ # Computing specializations.. Time: 0:00:02 Points: 78   ⌜ # Computing specializations.. Time: 0:00:03 Points: 86   ⌝ # Computing specializations.. Time: 0:00:03 Points: 95   ⌟ # Computing specializations.. Time: 0:00:04 Points: 104   ⌞ # Computing specializations.. Time: 0:00:04 Points: 114   ⌜ # Computing specializations.. Time: 0:00:04 Points: 123   ⌝ # Computing specializations.. Time: 0:00:05 Points: 133   ⌟ # Computing specializations.. Time: 0:00:05 Points: 142   ⌞ # Computing specializations.. Time: 0:00:05 Points: 155   ⌜ # Computing specializations.. Time: 0:00:06 Points: 167   ⌝ # Computing specializations.. Time: 0:00:06 Points: 176   ⌟ # Computing specializations.. Time: 0:00:07 Points: 183   ⌞ # Computing specializations.. Time: 0:00:07 Points: 193   ⌜ # Computing specializations.. Time: 0:00:07 Points: 203   ⌝ # Computing specializations.. Time: 0:00:08 Points: 212   ⌟ # Computing specializations.. Time: 0:00:08 Points: 221   ⌞ # Computing specializations.. Time: 0:00:08 Points: 231   ⌜ # Computing specializations.. Time: 0:00:09 Points: 240   ⌝ # Computing specializations.. Time: 0:00:09 Points: 250   ⌟ # Computing specializations.. Time: 0:00:10 Points: 258   ⌞ # Computing specializations.. Time: 0:00:10 Points: 268   ⌜ # Computing specializations.. Time: 0:00:10 Points: 277   ⌝ # Computing specializations.. Time: 0:00:11 Points: 287   ⌟ # Computing specializations.. Time: 0:00:11 Points: 296   ⌞ # Computing specializations.. Time: 0:00:11 Points: 304   ⌜ # Computing specializations.. Time: 0:00:12 Points: 313   ⌝ # Computing specializations.. Time: 0:00:12 Points: 322   ⌟ # Computing specializations.. Time: 0:00:13 Points: 331   ⌞ # Computing specializations.. Time: 0:00:13 Points: 339   ⌜ # Computing specializations.. Time: 0:00:13 Points: 353   ⌝ # Computing specializations.. Time: 0:00:14 Points: 365   ⌟ # Computing specializations.. Time: 0:00:14 Points: 376   ⌞ # Computing specializations.. Time: 0:00:15 Points: 385   ⌜ # Computing specializations.. Time: 0:00:15 Points: 394   ⌝ # Computing specializations.. Time: 0:00:15 Points: 403   ⌟ # Computing specializations.. Time: 0:00:16 Points: 412   ⌞ # Computing specializations.. Time: 0:00:16 Points: 421   ⌜ # Computing specializations.. Time: 0:00:16 Points: 430   ⌝ # Computing specializations.. Time: 0:00:17 Points: 439   ⌟ # Computing specializations.. Time: 0:00:17 Points: 449   ⌞ # Computing specializations.. Time: 0:00:17 Points: 459   ⌜ # Computing specializations.. Time: 0:00:18 Points: 471   ⌝ # Computing specializations.. Time: 0:00:18 Points: 482   ⌟ # Computing specializations.. Time: 0:00:19 Points: 491   ⌞ # Computing specializations.. Time: 0:00:19 Points: 498   ⌜ # Computing specializations.. Time: 0:00:19 Points: 507   ⌝ # Computing specializations.. Time: 0:00:20 Points: 516   ⌟ # Computing specializations.. Time: 0:00:20 Points: 526   ⌞ # Computing specializations.. Time: 0:00:20 Points: 535   ⌜ # Computing specializations.. Time: 0:00:21 Points: 543   ⌝ # Computing specializations.. Time: 0:00:21 Points: 551   ⌟ # Computing specializations.. Time: 0:00:22 Points: 559   ⌞ # Computing specializations.. Time: 0:00:22 Points: 569   ⌜ # Computing specializations.. Time: 0:00:22 Points: 578   ⌝ # Computing specializations.. Time: 0:00:23 Points: 586   ⌟ # Computing specializations.. Time: 0:00:23 Points: 595   ⌞ # Computing specializations.. Time: 0:00:23 Points: 602   ⌜ # Computing specializations.. Time: 0:00:24 Points: 611   ⌝ # Computing specializations.. Time: 0:00:24 Points: 620   ⌟ # Computing specializations.. Time: 0:00:25 Points: 630   ⌞ # Computing specializations.. Time: 0:00:25 Points: 639   ✓ # Computing specializations.. Time: 0:00:25 [ Info: Search for polynomial generators concluded in 1.620312178 [ Info: Selecting generators in 0.035993918 [ Info: Inclusion checked with probability 0.995 in 8.362498436 seconds [ Info: The search for identifiable functions concluded in 55.668268985 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002222146 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.6578e-5 [ Info: Selecting generators in 0.000199008 [ Info: Inclusion checked with probability 0.995 in 0.002478214 seconds [ Info: The search for identifiable functions concluded in 0.024663929 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :weak │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001126688 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.5019e-5 [ Info: Selecting generators in 0.000179858 [ Info: Inclusion checked with probability 0.995 in 0.002061378 seconds [ Info: The search for identifiable functions concluded in 0.008055595 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :weak │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000986329 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.5619e-5 [ Info: Selecting generators in 0.000177658 [ Info: Inclusion checked with probability 0.995 in 0.002144018 seconds [ Info: The search for identifiable functions concluded in 0.008029785 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :weak │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00101931 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000508075 [ Info: Selecting generators in 0.000178958 [ Info: Inclusion checked with probability 0.995 in 0.002113407 seconds [ Info: The search for identifiable functions concluded in 0.008373872 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :standard │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t)] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001023689 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000435385 [ Info: Selecting generators in 0.000206658 [ Info: Inclusion checked with probability 0.995 in 0.002150467 seconds [ Info: The search for identifiable functions concluded in 0.008381732 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :standard │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t)] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001006159 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000439625 [ Info: Selecting generators in 0.000251117 [ Info: Inclusion checked with probability 0.995 in 0.002147297 seconds [ Info: The search for identifiable functions concluded in 0.008417551 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :standard │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t)] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001572683 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001983678 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.782e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 Points: 2   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000513304 [ Info: Selecting generators in 0.001144908 [ Info: Inclusion checked with probability 0.995 in 0.002388375 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000108839 [ Info: Selecting generators in 0.000754912 [ Info: Inclusion checked with probability 0.995 in 0.003477684 seconds [ Info: The search for identifiable functions concluded in 0.424868536 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001645943 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001493324 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.81e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000490595 [ Info: Selecting generators in 0.001020269 [ Info: Inclusion checked with probability 0.995 in 0.002109917 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000113739 [ Info: Selecting generators in 0.000723772 [ Info: Inclusion checked with probability 0.995 in 0.003115207 seconds [ Info: The search for identifiable functions concluded in 0.023134295 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001271046 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001089428 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.671e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000452955 [ Info: Selecting generators in 0.000730282 [ Info: Inclusion checked with probability 0.995 in 0.002120188 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.3089e-5 [ Info: Selecting generators in 0.000581954 [ Info: Inclusion checked with probability 0.995 in 0.002794501 seconds [ Info: The search for identifiable functions concluded in 0.028452038 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001418524 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001284316 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.835e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000429976 [ Info: Selecting generators in 0.000804412 [ Info: Inclusion checked with probability 0.995 in 0.002092418 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.253968058 [ Info: Selecting generators in 0.000597894 [ Info: Inclusion checked with probability 0.995 in 0.002710731 seconds [ Info: The search for identifiable functions concluded in 0.273804667 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001275377 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001115688 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.6419e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000422336 [ Info: Selecting generators in 0.000830722 [ Info: Inclusion checked with probability 0.995 in 0.001994279 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000656833 [ Info: Selecting generators in 0.000541415 [ Info: Inclusion checked with probability 0.995 in 0.002596222 seconds [ Info: The search for identifiable functions concluded in 0.019517583 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001350455 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001116928 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.7999e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000480865 [ Info: Selecting generators in 0.00085168 [ Info: Inclusion checked with probability 0.995 in 0.002093478 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000662043 [ Info: Selecting generators in 0.000591734 [ Info: Inclusion checked with probability 0.995 in 0.002705881 seconds [ Info: The search for identifiable functions concluded in 0.020258595 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003020778 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002365435 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.696e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009273212 [ Info: Selecting generators in 0.00285731 [ Info: Inclusion checked with probability 0.995 in 0.003886579 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000154329 [ Info: Selecting generators in 0.004235775 [ Info: Inclusion checked with probability 0.995 in 0.006087866 seconds [ Info: The search for identifiable functions concluded in 0.057439861 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00285649 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002367155 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.942e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008922175 [ Info: Selecting generators in 0.002681492 [ Info: Inclusion checked with probability 0.995 in 0.003690791 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000124518 [ Info: Selecting generators in 0.00375345 [ Info: Inclusion checked with probability 0.995 in 0.005893178 seconds [ Info: The search for identifiable functions concluded in 0.055284804 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00280537 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002220116 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.833e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009195142 [ Info: Selecting generators in 0.002636222 [ Info: Inclusion checked with probability 0.995 in 0.003927508 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000133718 [ Info: Selecting generators in 0.003671491 [ Info: Inclusion checked with probability 0.995 in 0.006169045 seconds [ Info: The search for identifiable functions concluded in 0.056035456 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002699962 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002138727 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.724e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008813056 [ Info: Selecting generators in 0.002630732 [ Info: Inclusion checked with probability 0.995 in 0.003824009 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.032316548 [ Info: Selecting generators in 0.004062227 [ Info: Inclusion checked with probability 0.995 in 0.005868938 seconds [ Info: The search for identifiable functions concluded in 0.086537003 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002624222 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002061268 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.684e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00846374 [ Info: Selecting generators in 0.002603643 [ Info: Inclusion checked with probability 0.995 in 0.003617021 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.029459918 [ Info: Selecting generators in 0.004019297 [ Info: Inclusion checked with probability 0.995 in 0.005732239 seconds [ Info: The search for identifiable functions concluded in 0.082708273 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002376735 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00193898 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.5459e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009514169 [ Info: Selecting generators in 0.002877209 [ Info: Inclusion checked with probability 0.995 in 0.004307084 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.12166089 [ Info: Selecting generators in 0.004496032 [ Info: Inclusion checked with probability 0.995 in 0.006908527 seconds [ Info: The search for identifiable functions concluded in 0.180520886 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002867609 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002147158 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.829e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009190283 [ Info: Selecting generators in 0.002673522 [ Info: Inclusion checked with probability 0.995 in 0.0037408 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000160938 [ Info: Selecting generators in 0.004414723 [ Info: Inclusion checked with probability 0.995 in 0.006227554 seconds [ Info: The search for identifiable functions concluded in 0.056346693 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0027867 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002327765 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.891e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00944451 [ Info: Selecting generators in 0.003212156 [ Info: Inclusion checked with probability 0.995 in 0.004137426 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000149949 [ Info: Selecting generators in 0.004263635 [ Info: Inclusion checked with probability 0.995 in 0.00660769 seconds [ Info: The search for identifiable functions concluded in 0.059562919 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002737951 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002242277 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.7319e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009135493 [ Info: Selecting generators in 0.002762151 [ Info: Inclusion checked with probability 0.995 in 0.004236055 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000134668 [ Info: Selecting generators in 0.004275935 [ Info: Inclusion checked with probability 0.995 in 0.006250404 seconds [ Info: The search for identifiable functions concluded in 0.057305292 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002674322 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002197277 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.733e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00847372 [ Info: Selecting generators in 0.002531893 [ Info: Inclusion checked with probability 0.995 in 0.004399223 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.031059661 [ Info: Selecting generators in 0.004089626 [ Info: Inclusion checked with probability 0.995 in 0.006194104 seconds [ Info: The search for identifiable functions concluded in 0.087590081 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002907899 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002429784 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.831e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009239102 [ Info: Selecting generators in 0.0028765 [ Info: Inclusion checked with probability 0.995 in 0.004073596 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.03022799 [ Info: Selecting generators in 0.004219016 [ Info: Inclusion checked with probability 0.995 in 0.006409922 seconds [ Info: The search for identifiable functions concluded in 0.089067995 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002745081 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002255147 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.655e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008401971 [ Info: Selecting generators in 0.002457654 [ Info: Inclusion checked with probability 0.995 in 0.003427564 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.030476987 [ Info: Selecting generators in 0.004274495 [ Info: Inclusion checked with probability 0.995 in 0.006417612 seconds [ Info: The search for identifiable functions concluded in 0.085554843 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009149093 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006481681 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.878e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002449924 [ Info: Selecting generators in 0.011717826 [ Info: Inclusion checked with probability 0.995 in 0.007523051 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000166248 [ Info: Selecting generators in 0.014693694 [ Info: Inclusion checked with probability 0.995 in 0.012160411 seconds [ Info: The search for identifiable functions concluded in 0.41126805 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008762367 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006505121 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.869e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002487183 [ Info: Selecting generators in 0.011805844 [ Info: Inclusion checked with probability 0.995 in 0.007361412 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000179448 [ Info: Selecting generators in 0.015558925 [ Info: Inclusion checked with probability 0.995 in 0.012580257 seconds [ Info: The search for identifiable functions concluded in 0.130959512 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008201173 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006097486 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.853e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002216276 [ Info: Selecting generators in 0.010075033 [ Info: Inclusion checked with probability 0.995 in 0.006148265 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000161628 [ Info: Selecting generators in 0.01324677 [ Info: Inclusion checked with probability 0.995 in 0.011938443 seconds [ Info: The search for identifiable functions concluded in 0.118233447 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007839027 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005860568 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.511e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002270216 [ Info: Selecting generators in 0.011217741 [ Info: Inclusion checked with probability 0.995 in 0.006405462 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00467246 [ Info: Selecting generators in 0.013025072 [ Info: Inclusion checked with probability 0.995 in 0.011077083 seconds [ Info: The search for identifiable functions concluded in 0.11980752 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.673074586 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007743008 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.527e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002159147 [ Info: Selecting generators in 0.009580778 [ Info: Inclusion checked with probability 0.995 in 0.005987667 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004357504 [ Info: Selecting generators in 0.012210431 [ Info: Inclusion checked with probability 0.995 in 0.009803406 seconds [ Info: The search for identifiable functions concluded in 0.781658725 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007007945 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005037987 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.057e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001981779 [ Info: Selecting generators in 0.008844646 [ Info: Inclusion checked with probability 0.995 in 0.00571926 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004394383 [ Info: Selecting generators in 0.011899984 [ Info: Inclusion checked with probability 0.995 in 0.00940643 seconds [ Info: The search for identifiable functions concluded in 0.106273843 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001824901 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001163148 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.368e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.535e-5 [ Info: Selecting generators in 0.000462415 [ Info: Inclusion checked with probability 0.995 in 0.002375174 seconds [ Info: The search for identifiable functions concluded in 0.011887114 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001682682 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001101838 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.273e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.1279e-5 [ Info: Selecting generators in 0.000459505 [ Info: Inclusion checked with probability 0.995 in 0.002334056 seconds [ Info: The search for identifiable functions concluded in 0.011441808 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001694011 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001111338 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.324e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.6939e-5 [ Info: Selecting generators in 0.000463335 [ Info: Inclusion checked with probability 0.995 in 0.002409935 seconds [ Info: The search for identifiable functions concluded in 0.01139722 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001693862 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001088379 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.218e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004769439 [ Info: Selecting generators in 0.000562424 [ Info: Inclusion checked with probability 0.995 in 0.002491044 seconds [ Info: The search for identifiable functions concluded in 0.016278427 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001631833 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001069538 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.175e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004524612 [ Info: Selecting generators in 0.000549784 [ Info: Inclusion checked with probability 0.995 in 0.002317095 seconds [ Info: The search for identifiable functions concluded in 0.015603035 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001685993 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001095629 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.331e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00473547 [ Info: Selecting generators in 0.000564784 [ Info: Inclusion checked with probability 0.995 in 0.002463814 seconds [ Info: The search for identifiable functions concluded in 0.016505675 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00282821 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00194064 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.496e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002301426 [ Info: Selecting generators in 0.000862201 [ Info: Inclusion checked with probability 0.995 in 0.001841711 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000111148 [ Info: Selecting generators in 0.004469583 [ Info: Inclusion checked with probability 0.995 in 0.003541382 seconds [ Info: The search for identifiable functions concluded in 0.031605465 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002934308 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001940579 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.337e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002280976 [ Info: Selecting generators in 0.000802302 [ Info: Inclusion checked with probability 0.995 in 0.001837791 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000134779 [ Info: Selecting generators in 0.004245855 [ Info: Inclusion checked with probability 0.995 in 0.003638232 seconds [ Info: The search for identifiable functions concluded in 0.03114156 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0028629 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001966959 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.393e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002220696 [ Info: Selecting generators in 0.000686813 [ Info: Inclusion checked with probability 0.995 in 0.001814171 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000101739 [ Info: Selecting generators in 0.004247525 [ Info: Inclusion checked with probability 0.995 in 0.003704831 seconds [ Info: The search for identifiable functions concluded in 0.030946192 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00286936 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001994419 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.5e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002314836 [ Info: Selecting generators in 0.000752222 [ Info: Inclusion checked with probability 0.995 in 0.00183009 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.025164323 [ Info: Selecting generators in 0.004456793 [ Info: Inclusion checked with probability 0.995 in 0.003424973 seconds [ Info: The search for identifiable functions concluded in 0.05662041 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), C, α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002899409 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00189841 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.347e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002229117 [ Info: Selecting generators in 0.000740252 [ Info: Inclusion checked with probability 0.995 in 0.001773271 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.024859906 [ Info: Selecting generators in 0.004340494 [ Info: Inclusion checked with probability 0.995 in 0.003641211 seconds [ Info: The search for identifiable functions concluded in 0.055597281 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), C, α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002969288 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001973449 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.488e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002422404 [ Info: Selecting generators in 0.000838311 [ Info: Inclusion checked with probability 0.995 in 0.0019241 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.026074084 [ Info: Selecting generators in 0.004657181 [ Info: Inclusion checked with probability 0.995 in 0.003652041 seconds [ Info: The search for identifiable functions concluded in 0.058667678 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), C, α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0018277 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001200937 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.253e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000376626 [ Info: Selecting generators in 0.000566624 [ Info: Inclusion checked with probability 0.995 in 0.001577593 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.4129e-5 [ Info: Selecting generators in 0.001307857 [ Info: Inclusion checked with probability 0.995 in 0.002522323 seconds [ Info: The search for identifiable functions concluded in 0.019330685 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001789041 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001217517 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.409e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000377366 [ Info: Selecting generators in 0.000575683 [ Info: Inclusion checked with probability 0.995 in 0.001596333 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000109139 [ Info: Selecting generators in 0.001446105 [ Info: Inclusion checked with probability 0.995 in 0.002931499 seconds [ Info: The search for identifiable functions concluded in 0.020196836 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001791391 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001221577 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.556e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000375396 [ Info: Selecting generators in 0.000571684 [ Info: Inclusion checked with probability 0.995 in 0.001632193 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.4459e-5 [ Info: Selecting generators in 0.001256257 [ Info: Inclusion checked with probability 0.995 in 0.002405435 seconds [ Info: The search for identifiable functions concluded in 0.019302185 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001771511 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001156598 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.436e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000380496 [ Info: Selecting generators in 0.000534864 [ Info: Inclusion checked with probability 0.995 in 0.001618043 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005359333 [ Info: Selecting generators in 0.001471954 [ Info: Inclusion checked with probability 0.995 in 0.002540903 seconds [ Info: The search for identifiable functions concluded in 0.024858277 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001717251 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001178308 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.462e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000374446 [ Info: Selecting generators in 0.000514795 [ Info: Inclusion checked with probability 0.995 in 0.001565394 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005262794 [ Info: Selecting generators in 0.001447445 [ Info: Inclusion checked with probability 0.995 in 0.002546233 seconds [ Info: The search for identifiable functions concluded in 0.02459819 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001762551 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001187077 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.457e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000396496 [ Info: Selecting generators in 0.000544535 [ Info: Inclusion checked with probability 0.995 in 0.001601143 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005075276 [ Info: Selecting generators in 0.001440935 [ Info: Inclusion checked with probability 0.995 in 0.002566013 seconds [ Info: The search for identifiable functions concluded in 0.024343472 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001176267 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001077629 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.758e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004833949 [ Info: Selecting generators in 0.002004748 [ Info: Inclusion checked with probability 0.995 in 0.002522984 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000132188 [ Info: Selecting generators in 0.002699681 [ Info: Inclusion checked with probability 0.995 in 0.003634052 seconds [ Info: The search for identifiable functions concluded in 0.032262108 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001304226 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001144907 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.619e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005967337 [ Info: Selecting generators in 0.002420614 [ Info: Inclusion checked with probability 0.995 in 0.00280727 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000116198 [ Info: Selecting generators in 0.002508564 [ Info: Inclusion checked with probability 0.995 in 0.004030308 seconds [ Info: The search for identifiable functions concluded in 0.035653762 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001380235 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001196947 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.74e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005815779 [ Info: Selecting generators in 0.002220186 [ Info: Inclusion checked with probability 0.995 in 0.002703502 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000117859 [ Info: Selecting generators in 0.002684731 [ Info: Inclusion checked with probability 0.995 in 0.003725741 seconds [ Info: The search for identifiable functions concluded in 0.035256727 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001288666 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001108778 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.675e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005114266 [ Info: Selecting generators in 0.002169817 [ Info: Inclusion checked with probability 0.995 in 0.002473994 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.01505399 [ Info: Selecting generators in 0.002504994 [ Info: Inclusion checked with probability 0.995 in 0.003478373 seconds [ Info: The search for identifiable functions concluded in 0.047413158 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001243506 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001101279 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.533e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005179495 [ Info: Selecting generators in 0.002080748 [ Info: Inclusion checked with probability 0.995 in 0.002499643 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.015049401 [ Info: Selecting generators in 0.002542123 [ Info: Inclusion checked with probability 0.995 in 0.003564402 seconds [ Info: The search for identifiable functions concluded in 0.047880662 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001243097 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001111778 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.492e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005263684 [ Info: Selecting generators in 0.002303115 [ Info: Inclusion checked with probability 0.995 in 0.002567043 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014831233 [ Info: Selecting generators in 0.002550243 [ Info: Inclusion checked with probability 0.995 in 0.003534173 seconds [ Info: The search for identifiable functions concluded in 0.047474756 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005826288 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005218865 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 1.796e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.01318219 [ Info: Selecting generators in 0.004317554 [ Info: Inclusion checked with probability 0.995 in 0.00475346 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000152238 [ Info: Selecting generators in 0.027097842 [ Info: Inclusion checked with probability 0.995 in 0.010677017 seconds [ Info: The search for identifiable functions concluded in 0.127872464 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005571651 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005014717 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 1.853e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.01231042 [ Info: Selecting generators in 0.004125617 [ Info: Inclusion checked with probability 0.995 in 0.004408904 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000196078 [ Info: Selecting generators in 0.028940354 [ Info: Inclusion checked with probability 0.995 in 0.010565408 seconds [ Info: The search for identifiable functions concluded in 0.12644066 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005386262 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005022067 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 1.969e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.012368859 [ Info: Selecting generators in 0.004024687 [ Info: Inclusion checked with probability 0.995 in 0.004542272 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000184419 [ Info: Selecting generators in 0.026659287 [ Info: Inclusion checked with probability 0.995 in 0.009940335 seconds [ Info: The search for identifiable functions concluded in 0.124087995 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005456663 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004995247 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 1.992e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.012868044 [ Info: Selecting generators in 0.004211035 [ Info: Inclusion checked with probability 0.995 in 0.004425343 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.104293995 [ Info: Selecting generators in 0.028124452 [ Info: Inclusion checked with probability 0.995 in 0.010047814 seconds [ Info: The search for identifiable functions concluded in 0.228438699 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y1(t), u(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005500641 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004995827 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 1.785e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.013106412 [ Info: Selecting generators in 0.004139456 [ Info: Inclusion checked with probability 0.995 in 0.004234425 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.096465527 [ Info: Selecting generators in 0.028468589 [ Info: Inclusion checked with probability 0.995 in 0.010098283 seconds [ Info: The search for identifiable functions concluded in 0.221035457 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y1(t), u(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005378803 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005023517 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 1.813e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.0141096 [ Info: Selecting generators in 0.00375088 [ Info: Inclusion checked with probability 0.995 in 0.003875919 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.098776323 [ Info: Selecting generators in 0.025755687 [ Info: Inclusion checked with probability 0.995 in 0.009003424 seconds [ Info: The search for identifiable functions concluded in 1.117724433 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y1(t), u(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.189021777 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.364797284 seconds [ Info: Dimensions of the Wronskians [145, 18, 9] [ Info: Ranks of the Wronskians computed in 0.0019041 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:06 ✓ # Computing specializations.. Time: 0:00:06 [ Info: Search for polynomial generators concluded in 9.592414649 [ Info: Selecting generators in 0.080452657 [ Info: Inclusion checked with probability 0.995 in 7.217650158 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:17 ✓ # Computing specializations.. Time: 0:00:17 [ Info: Search for polynomial generators concluded in 0.000556864 [ Info: Selecting generators in 0.302808546 [ Info: Inclusion checked with probability 0.995 in 20.909261825 seconds [ Info: The search for identifiable functions concluded in 72.706851567 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[reaction_8_k1, reaction_7_k1, reaction_6_k1, reaction_5_k2, reaction_4_k1, reaction_3_k1, reaction_2_k2, reaction_1_k1 - reaction_1_k2 - reaction_9_k1, pS6(t)*reaction_5_k1, reaction_2_k1//reaction_5_k1, a3//reaction_5_k1, a2//reaction_5_k1, a1//reaction_5_k1, pAkt_S6(t)//pS6(t), S6(t)//pS6(t), pAkt(t)//pS6(t), Akt(t)//pS6(t), pEGFR_Akt(t)//pS6(t), pEGFR(t)//pS6(t), (EGF_EGFR(t)*reaction_9_k1)//pS6(t)] │ case = │ (ode = EGFR'(t) = -EGFR(t)*EGFR_turnover - EGF_EGFR(t)*reaction_1_k1 + EGF_EGFR(t)*reaction_1_k2 + pro_EGFR(t)*EGFR_turnover │ pEGFR'(t) = -pEGFR(t)*Akt(t)*reaction_2_k1 - pEGFR(t)*reaction_4_k1 + pEGFR_Akt(t)*reaction_2_k2 + pEGFR_Akt(t)*reaction_3_k1 + EGF_EGFR(t)*reaction_9_k1 │ pEGFR_Akt'(t) = pEGFR(t)*Akt(t)*reaction_2_k1 - pEGFR_Akt(t)*reaction_2_k2 - pEGFR_Akt(t)*reaction_3_k1 │ Akt'(t) = -pEGFR(t)*Akt(t)*reaction_2_k1 + pEGFR_Akt(t)*reaction_2_k2 + pAkt(t)*reaction_7_k1 │ pAkt'(t) = pEGFR_Akt(t)*reaction_3_k1 - pAkt(t)*S6(t)*reaction_5_k1 - pAkt(t)*reaction_7_k1 + pAkt_S6(t)*reaction_5_k2 + pAkt_S6(t)*reaction_6_k1 │ S6'(t) = -pAkt(t)*S6(t)*reaction_5_k1 + pAkt_S6(t)*reaction_5_k2 + pS6(t)*reaction_8_k1 │ pAkt_S6'(t) = pAkt(t)*S6(t)*reaction_5_k1 - pAkt_S6(t)*reaction_5_k2 - pAkt_S6(t)*reaction_6_k1 │ pS6'(t) = pAkt_S6(t)*reaction_6_k1 - pS6(t)*reaction_8_k1 │ EGF_EGFR'(t) = EGF_EGFR(t)*reaction_1_k1 - EGF_EGFR(t)*reaction_1_k2 - EGF_EGFR(t)*reaction_9_k1 │ y1(t) = pEGFR(t)*a1 + pEGFR_Akt(t)*a1 │ y2(t) = pAkt(t)*a2 + pAkt_S6(t)*a2 │ y3(t) = pS6(t)*a3 │ , with_states = true, ident_funcs = RingElem[reaction_8_k1, a3//reaction_5_k1, reaction_3_k1, reaction_2_k2, pAkt(t)*reaction_5_k1, pEGFR(t)*reaction_5_k1, reaction_2_k1//reaction_5_k1, a1//reaction_5_k1, pS6(t)*reaction_5_k1, reaction_5_k2, reaction_6_k1, a2//reaction_5_k1, reaction_7_k1, reaction_4_k1, pAkt_S6(t)*reaction_5_k1, reaction_1_k1 - reaction_1_k2 - reaction_9_k1, pEGFR_Akt(t)*reaction_5_k1, S6(t)*reaction_5_k1, EGF_EGFR(t)*reaction_5_k1*reaction_9_k1, Akt(t)*reaction_5_k1]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 29 variables EGFR(t), pEGFR(t), pEGFR_Akt(t), Akt(t), ..., reaction_9_k1 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.245219947 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.450687314 seconds [ Info: Dimensions of the Wronskians [145, 18, 9] [ Info: Ranks of the Wronskians computed in 0.002045698 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 7.55709638 [ Info: Selecting generators in 0.234898807 [ Info: Inclusion checked with probability 0.995 in 0.15894545 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000420146 [ Info: Selecting generators in 0.247042988 [ Info: Inclusion checked with probability 0.995 in 0.070751142 seconds [ Info: The search for identifiable functions concluded in 11.612406925 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[reaction_8_k1, reaction_7_k1, reaction_6_k1, reaction_5_k2, reaction_4_k1, reaction_3_k1, reaction_2_k2, reaction_1_k1 - reaction_1_k2 - reaction_9_k1, pS6(t)*reaction_5_k1, reaction_2_k1//reaction_5_k1, a3//reaction_5_k1, a2//reaction_5_k1, a1//reaction_5_k1, pAkt_S6(t)//pS6(t), S6(t)//pS6(t), pAkt(t)//pS6(t), Akt(t)//pS6(t), pEGFR_Akt(t)//pS6(t), pEGFR(t)//pS6(t), (EGF_EGFR(t)*reaction_9_k1)//pS6(t)] │ case = │ (ode = EGFR'(t) = -EGFR(t)*EGFR_turnover - EGF_EGFR(t)*reaction_1_k1 + EGF_EGFR(t)*reaction_1_k2 + pro_EGFR(t)*EGFR_turnover │ pEGFR'(t) = -pEGFR(t)*Akt(t)*reaction_2_k1 - pEGFR(t)*reaction_4_k1 + pEGFR_Akt(t)*reaction_2_k2 + pEGFR_Akt(t)*reaction_3_k1 + EGF_EGFR(t)*reaction_9_k1 │ pEGFR_Akt'(t) = pEGFR(t)*Akt(t)*reaction_2_k1 - pEGFR_Akt(t)*reaction_2_k2 - pEGFR_Akt(t)*reaction_3_k1 │ Akt'(t) = -pEGFR(t)*Akt(t)*reaction_2_k1 + pEGFR_Akt(t)*reaction_2_k2 + pAkt(t)*reaction_7_k1 │ pAkt'(t) = pEGFR_Akt(t)*reaction_3_k1 - pAkt(t)*S6(t)*reaction_5_k1 - pAkt(t)*reaction_7_k1 + pAkt_S6(t)*reaction_5_k2 + pAkt_S6(t)*reaction_6_k1 │ S6'(t) = -pAkt(t)*S6(t)*reaction_5_k1 + pAkt_S6(t)*reaction_5_k2 + pS6(t)*reaction_8_k1 │ pAkt_S6'(t) = pAkt(t)*S6(t)*reaction_5_k1 - pAkt_S6(t)*reaction_5_k2 - pAkt_S6(t)*reaction_6_k1 │ pS6'(t) = pAkt_S6(t)*reaction_6_k1 - pS6(t)*reaction_8_k1 │ EGF_EGFR'(t) = EGF_EGFR(t)*reaction_1_k1 - EGF_EGFR(t)*reaction_1_k2 - EGF_EGFR(t)*reaction_9_k1 │ y1(t) = pEGFR(t)*a1 + pEGFR_Akt(t)*a1 │ y2(t) = pAkt(t)*a2 + pAkt_S6(t)*a2 │ y3(t) = pS6(t)*a3 │ , with_states = true, ident_funcs = RingElem[reaction_8_k1, a3//reaction_5_k1, reaction_3_k1, reaction_2_k2, pAkt(t)*reaction_5_k1, pEGFR(t)*reaction_5_k1, reaction_2_k1//reaction_5_k1, a1//reaction_5_k1, pS6(t)*reaction_5_k1, reaction_5_k2, reaction_6_k1, a2//reaction_5_k1, reaction_7_k1, reaction_4_k1, pAkt_S6(t)*reaction_5_k1, reaction_1_k1 - reaction_1_k2 - reaction_9_k1, pEGFR_Akt(t)*reaction_5_k1, S6(t)*reaction_5_k1, EGF_EGFR(t)*reaction_5_k1*reaction_9_k1, Akt(t)*reaction_5_k1]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 29 variables EGFR(t), pEGFR(t), pEGFR_Akt(t), Akt(t), ..., reaction_9_k1 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.202763817 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.420365937 seconds [ Info: Dimensions of the Wronskians [145, 18, 9] [ Info: Ranks of the Wronskians computed in 0.002012898 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 7.297285125 [ Info: Selecting generators in 0.08039831 [ Info: Inclusion checked with probability 0.995 in 0.128290194 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000451536 [ Info: Selecting generators in 0.242485458 [ Info: Inclusion checked with probability 0.995 in 0.068720524 seconds [ Info: The search for identifiable functions concluded in 11.127295257 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[reaction_8_k1, reaction_7_k1, reaction_6_k1, reaction_5_k2, reaction_4_k1, reaction_3_k1, reaction_2_k2, reaction_1_k1 - reaction_1_k2 - reaction_9_k1, pS6(t)*reaction_5_k1, reaction_2_k1//reaction_5_k1, a3//reaction_5_k1, a2//reaction_5_k1, a1//reaction_5_k1, pAkt_S6(t)//pS6(t), S6(t)//pS6(t), pAkt(t)//pS6(t), Akt(t)//pS6(t), pEGFR_Akt(t)//pS6(t), pEGFR(t)//pS6(t), (EGF_EGFR(t)*reaction_9_k1)//pS6(t)] │ case = │ (ode = EGFR'(t) = -EGFR(t)*EGFR_turnover - EGF_EGFR(t)*reaction_1_k1 + EGF_EGFR(t)*reaction_1_k2 + pro_EGFR(t)*EGFR_turnover │ pEGFR'(t) = -pEGFR(t)*Akt(t)*reaction_2_k1 - pEGFR(t)*reaction_4_k1 + pEGFR_Akt(t)*reaction_2_k2 + pEGFR_Akt(t)*reaction_3_k1 + EGF_EGFR(t)*reaction_9_k1 │ pEGFR_Akt'(t) = pEGFR(t)*Akt(t)*reaction_2_k1 - pEGFR_Akt(t)*reaction_2_k2 - pEGFR_Akt(t)*reaction_3_k1 │ Akt'(t) = -pEGFR(t)*Akt(t)*reaction_2_k1 + pEGFR_Akt(t)*reaction_2_k2 + pAkt(t)*reaction_7_k1 │ pAkt'(t) = pEGFR_Akt(t)*reaction_3_k1 - pAkt(t)*S6(t)*reaction_5_k1 - pAkt(t)*reaction_7_k1 + pAkt_S6(t)*reaction_5_k2 + pAkt_S6(t)*reaction_6_k1 │ S6'(t) = -pAkt(t)*S6(t)*reaction_5_k1 + pAkt_S6(t)*reaction_5_k2 + pS6(t)*reaction_8_k1 │ pAkt_S6'(t) = pAkt(t)*S6(t)*reaction_5_k1 - pAkt_S6(t)*reaction_5_k2 - pAkt_S6(t)*reaction_6_k1 │ pS6'(t) = pAkt_S6(t)*reaction_6_k1 - pS6(t)*reaction_8_k1 │ EGF_EGFR'(t) = EGF_EGFR(t)*reaction_1_k1 - EGF_EGFR(t)*reaction_1_k2 - EGF_EGFR(t)*reaction_9_k1 │ y1(t) = pEGFR(t)*a1 + pEGFR_Akt(t)*a1 │ y2(t) = pAkt(t)*a2 + pAkt_S6(t)*a2 │ y3(t) = pS6(t)*a3 │ , with_states = true, ident_funcs = RingElem[reaction_8_k1, a3//reaction_5_k1, reaction_3_k1, reaction_2_k2, pAkt(t)*reaction_5_k1, pEGFR(t)*reaction_5_k1, reaction_2_k1//reaction_5_k1, a1//reaction_5_k1, pS6(t)*reaction_5_k1, reaction_5_k2, reaction_6_k1, a2//reaction_5_k1, reaction_7_k1, reaction_4_k1, pAkt_S6(t)*reaction_5_k1, reaction_1_k1 - reaction_1_k2 - reaction_9_k1, pEGFR_Akt(t)*reaction_5_k1, S6(t)*reaction_5_k1, EGF_EGFR(t)*reaction_5_k1*reaction_9_k1, Akt(t)*reaction_5_k1]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 29 variables EGFR(t), pEGFR(t), pEGFR_Akt(t), Akt(t), ..., reaction_9_k1 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.605076026 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.385741595 seconds [ Info: Dimensions of the Wronskians [145, 18, 9] [ Info: Ranks of the Wronskians computed in 0.00196306 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 7.453779555 [ Info: Selecting generators in 0.078668139 [ Info: Inclusion checked with probability 0.995 in 0.133129433 seconds [ Info: Simplifying generating set. Simplification level: standard ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 49 running 1 of 1 signal (10): User defined signal 1 _ZNK4llvm5Value9hasOneUseEv at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) unknown function (ip: 0x63172e6f) at (unknown file) unknown function (ip: 0x7ffc425e109f) at (unknown file) unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1223 wait_forever at ./task.jl:1145 jfptr_wait_forever_72393.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x0000748839cdeef0 Total snapshots: 445. Utilization: 0% ╎445 @Base/task.jl:1145 wait_forever() 444╎ 445 @Base/task.jl:1223 wait() [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1223 wait_forever at ./task.jl:1145 jfptr_wait_forever_72393.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file) Allocations: 22397631 (Pool: 22397016; Big: 615); GC: 19 [49] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/identifiable_functions.jl:1096 .plt at /home/pkgeval/.julia/artifacts/953e853635c2e3ec3a7208ba2931717022f0051c/lib/libflint.so (unknown line) mpoly_monomial_index_monomial at /workspace/srcdir/flint-3.3.1/src/mpoly/monomial_index.c:137 nmod_mpoly_get_coeff_ui_monomial at /workspace/srcdir/flint-3.3.1/src/nmod_mpoly/get_coeff.c:42 coeff at /home/pkgeval/.julia/packages/Nemo/MU2qD/src/flint/nmod_mpoly.jl:124 coordinate at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/normalforms.jl:47 unknown function (ip: 0x7899f6ae713b) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 abstract_reduce! at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/normalforms.jl:5 abstract_rref at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/normalforms.jl:15 macro expansion at ./timing.jl:461 [inlined] refine_relations at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/normalforms.jl:75 unknown function (ip: 0x7899f6ae20e6) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #polynomial_generators#138 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/normalforms.jl:98 polynomial_generators at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/normalforms.jl:98 unknown function (ip: 0x7899f6aa18c0) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#126 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 unknown function (ip: 0x7899f6805719) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #_find_identifiable_functions#242 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:86 [inlined] #240 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#238 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:49 unknown function (ip: 0x7899f6804ff4) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2979 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3039 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x7899d0136fc2) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:153 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:1961 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:151 [inlined] macro expansion at ./timing.jl:689 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:150 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2979 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3039 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_60572.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_43461.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x789a11dbb249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 1531745062 (Pool: 1531741100; Big: 3962); GC: 658 PkgEval terminated after 2741.56s: test duration exceeded the time limit