Package evaluation to test RayTraceHeatTransfer on Julia 1.13.0-DEV.1353 (74c32ec0b5*) started at 2025-10-21T15:13:44.750 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.49s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.13/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.1 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.9.9 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.46.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.67.1+0 [3f19e933] + p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.53s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 54.49s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_a2sthH/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_a2sthH/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.1 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.46.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:31 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:06 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011989935393354955 Iteration 10: d = 9.190345859599463e-6 Iteration 20: d = 1.532569736329601e-7 Iteration 30: d = 2.7918035806121393e-9 Iteration 40: d = 5.0491753618538736e-11 Iteration 50: d = 9.092100250798519e-13 Iteration 60: d = 1.6334616050540107e-14 Converged after 65 iterations. d = 2.1929869585546356e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012292816192254687 Iteration 10: d = 8.411602133093365e-6 Iteration 20: d = 1.2924034541659144e-7 Iteration 30: d = 2.3377670597131545e-9 Iteration 40: d = 4.2244462125922e-11 Iteration 50: d = 7.581113305621043e-13 Iteration 60: d = 1.3573678678201862e-14 Converged after 65 iterations. d = 1.7770025101067796e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▋ | ETA: 0:00:01 Bin 1 progress: 82%|███████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013477339135456344 Iteration 10: d = 1.2073009840716703e-5 Iteration 20: d = 1.7066509215896957e-7 Iteration 30: d = 2.6880695950299875e-9 Iteration 40: d = 4.414313116836148e-11 Iteration 50: d = 7.43433133659036e-13 Iteration 60: d = 1.2669949394994353e-14 Converged after 65 iterations. d = 1.6617531042918067e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012298477670831566 Iteration 10: d = 1.2554203903934385e-5 Iteration 20: d = 2.2106043319094188e-7 Iteration 30: d = 4.024807813867631e-9 Iteration 40: d = 7.302472877213222e-11 Iteration 50: d = 1.3243407190471992e-12 Iteration 60: d = 2.4083716303513536e-14 Converged after 66 iterations. d = 2.1679770519826397e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011953994557254897 Iteration 10: d = 1.5421923910374923e-5 Iteration 20: d = 2.1922930851590256e-7 Iteration 30: d = 3.3526864985952613e-9 Iteration 40: d = 5.210987529249081e-11 Iteration 50: d = 8.143879628798903e-13 Iteration 60: d = 1.2766406511148046e-14 Converged after 65 iterations. d = 1.6243872895994167e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001271669792663358 Iteration 10: d = 1.8382753598817783e-5 Iteration 20: d = 2.7354811665156025e-7 Iteration 30: d = 4.219585548309932e-9 Iteration 40: d = 6.546767817172012e-11 Iteration 50: d = 1.0173187039339684e-12 Iteration 60: d = 1.5801239416971563e-14 Converged after 65 iterations. d = 1.9849368903508787e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013091559710260176 Iteration 10: d = 1.5661442812599903e-5 Iteration 20: d = 2.1450156027035427e-7 Iteration 30: d = 3.2456615543264113e-9 Iteration 40: d = 5.0136279054071244e-11 Iteration 50: d = 7.79241805253755e-13 Iteration 60: d = 1.2128343820075684e-14 Converged after 65 iterations. d = 1.4624996312481407e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012802312538455986 Iteration 10: d = 1.5684100023993948e-5 Iteration 20: d = 2.0911191746573952e-7 Iteration 30: d = 3.0902974749865447e-9 Iteration 40: d = 4.699302100814755e-11 Iteration 50: d = 7.222534227613286e-13 Iteration 60: d = 1.1165004931115866e-14 Converged after 64 iterations. d = 2.1005030485832397e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011602494798411036 Iteration 10: d = 9.114702371563528e-6 Iteration 20: d = 1.0340442462008465e-7 Iteration 30: d = 1.460592904909555e-9 Iteration 40: d = 2.1910113312659734e-11 Iteration 50: d = 3.3510496717966177e-13 Iteration 60: d = 5.187775898679883e-15 Converged after 63 iterations. d = 1.4823760305846974e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013419298654671818 Iteration 10: d = 1.3692472913622119e-5 Iteration 20: d = 1.6357510393251232e-7 Iteration 30: d = 2.307135244982253e-9 Iteration 40: d = 3.4504688383067874e-11 Iteration 50: d = 5.281847423631788e-13 Iteration 60: d = 8.161289479095516e-15 Converged after 64 iterations. d = 1.5364902071650694e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004045378273875746 Iteration 10: d = 4.238599096949418e-5 Iteration 20: d = 4.958405971312335e-7 Iteration 30: d = 6.59784608115975e-9 Iteration 40: d = 9.043016369153792e-11 Iteration 50: d = 1.2505422719288041e-12 Iteration 60: d = 1.7343498247500723e-14 Converged after 65 iterations. d = 2.0063071460551147e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0032207191011464024 Iteration 10: d = 4.5622259880799346e-5 Iteration 20: d = 6.278167928150582e-7 Iteration 30: d = 9.378476622285964e-9 Iteration 40: d = 1.437927373165905e-10 Iteration 50: d = 2.227998376088698e-12 Iteration 60: d = 3.466723138036249e-14 Converged after 67 iterations. d = 1.8988347470954813e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00226743864179491 Iteration 10: d = 2.001345137670784e-5 Iteration 20: d = 2.631960969909282e-7 Iteration 30: d = 4.19272191873406e-9 Iteration 40: d = 6.928790187298234e-11 Iteration 50: d = 1.1535507080883593e-12 Iteration 60: d = 1.9220196144523494e-14 Converged after 66 iterations. d = 1.654685563145628e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0020618434692808514 Iteration 10: d = 2.09654520023263e-5 Iteration 20: d = 3.20751174379972e-7 Iteration 30: d = 5.400162516652334e-9 Iteration 40: d = 9.284252857908e-11 Iteration 50: d = 1.6093660135001415e-12 Iteration 60: d = 2.8021502026417968e-14 Converged after 67 iterations. d = 1.6585539452409822e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011953994557254897 Iteration 10: d = 1.5421923910374923e-5 Iteration 20: d = 2.1922930851590256e-7 Iteration 30: d = 3.3526864985952613e-9 Iteration 40: d = 5.210987529249081e-11 Iteration 50: d = 8.143879628798903e-13 Iteration 60: d = 1.2766406511148046e-14 Converged after 65 iterations. d = 1.6243872895994167e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 89%|█████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014221964867051147 Iteration 10: d = 1.361721986706835e-5 Iteration 20: d = 1.4428999147462115e-7 Iteration 30: d = 1.840609295522924e-9 Iteration 40: d = 2.4861813426798673e-11 Iteration 50: d = 3.4281627043655934e-13 Iteration 60: d = 4.794028078610688e-15 Converged after 62 iterations. d = 2.0656369218144688e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012448101461215572 Iteration 10: d = 1.1360317551326385e-5 Iteration 20: d = 1.273397491801342e-7 Iteration 30: d = 1.6526587642049888e-9 Iteration 40: d = 2.2097202990905793e-11 Iteration 50: d = 2.975724461314298e-13 Iteration 60: d = 3.971529920965494e-15 Converged after 62 iterations. d = 1.678069821089196e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.688947050397 Iteration 2: convergence error = 4836.20709162333 Iteration 3: convergence error = 1096.216925543594 Iteration 4: convergence error = 321.8636966936824 Iteration 5: convergence error = 95.67494976978946 Iteration 6: convergence error = 28.577319867821643 Iteration 7: convergence error = 8.569609003222467 Iteration 8: convergence error = 2.5724845773415836 Iteration 9: convergence error = 0.770405667426985 Iteration 10: convergence error = 0.23040689523668334 Iteration 11: convergence error = 0.0688549194578627 Iteration 12: convergence error = 0.02056757834725431 Iteration 13: convergence error = 0.006142176747744088 Iteration 14: convergence error = 0.0018339988530442497 Iteration 15: convergence error = 0.0005475703660522413 Iteration 16: convergence error = 0.00016347829114238266 Iteration 17: convergence error = 4.880543770013901e-5 Iteration 18: convergence error = 1.4570335224561859e-5 Iteration 19: convergence error = 4.349781875134795e-6 Iteration 20: convergence error = 1.2985535704501672e-6 Iteration 21: convergence error = 3.8766529542044736e-7 Iteration 22: convergence error = 1.156010966951726e-7 Iteration 23: convergence error = 3.360537448315881e-8 Iteration 24: convergence error = 9.707036952022463e-9 Iteration 25: convergence error = 2.798287823679857e-9 Iteration 26: convergence error = 7.994458428584039e-10 Iteration 27: convergence error = 2.3305801732931286e-10 Iteration 28: convergence error = 6.662048690486699e-11 Iteration 29: convergence error = 1.978150976356119e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014221964867051147 Iteration 10: d = 1.361721986706835e-5 Iteration 20: d = 1.4428999147462115e-7 Iteration 30: d = 1.840609295522924e-9 Iteration 40: d = 2.4861813426798673e-11 Iteration 50: d = 3.4281627043655934e-13 Iteration 60: d = 4.794028078610688e-15 Converged after 62 iterations. d = 2.0656369218144688e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.717764466319 Iteration 2: convergence error = 4819.7058203105535 Iteration 3: convergence error = 1105.3390532610358 Iteration 4: convergence error = 321.5605905425798 Iteration 5: convergence error = 95.43790817829426 Iteration 6: convergence error = 28.470720218902443 Iteration 7: convergence error = 8.559113139825513 Iteration 8: convergence error = 2.566785036283136 Iteration 9: convergence error = 0.7679299056458149 Iteration 10: convergence error = 0.2294358559381635 Iteration 11: convergence error = 0.06849581477831634 Iteration 12: convergence error = 0.020439750655214084 Iteration 13: convergence error = 0.006097874051420149 Iteration 14: convergence error = 0.0018189437123510288 Iteration 15: convergence error = 0.0005425309216207097 Iteration 16: convergence error = 0.0001618114547454752 Iteration 17: convergence error = 4.8259429831887246e-5 Iteration 18: convergence error = 1.4392894172488013e-5 Iteration 19: convergence error = 4.2925016714434605e-6 Iteration 20: convergence error = 1.2801783668692224e-6 Iteration 21: convergence error = 3.8179723560460843e-7 Iteration 22: convergence error = 1.1372230801498517e-7 Iteration 23: convergence error = 3.301056494819932e-8 Iteration 24: convergence error = 9.534915079711936e-9 Iteration 25: convergence error = 2.7321220841258764e-9 Iteration 26: convergence error = 7.873950380599126e-10 Iteration 27: convergence error = 2.2782842279411852e-10 Iteration 28: convergence error = 6.502887117676437e-11 Iteration 29: convergence error = 2.114575181622058e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 12:42:41 Bin 1 ray tracing: 8%|██▌ | ETA: 0:01:03 Bin 1 ray tracing: 16%|████▊ | ETA: 0:00:35 Bin 1 ray tracing: 24%|███████ | ETA: 0:00:25 Bin 1 ray tracing: 31%|█████████▍ | ETA: 0:00:19 Bin 1 ray tracing: 39%|███████████▋ | ETA: 0:00:15 Bin 1 ray tracing: 47%|██████████████▏ | ETA: 0:00:12 Bin 1 ray tracing: 55%|████████████████▌ | ETA: 0:00:09 Bin 1 ray tracing: 64%|███████████████████▏ | ETA: 0:00:07 Bin 1 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:05 Bin 1 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 1 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:02 Bin 1 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 2 ray tracing: 18%|█████▎ | ETA: 0:00:10 Bin 2 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 2 ray tracing: 35%|██████████▍ | ETA: 0:00:08 Bin 2 ray tracing: 43%|████████████▉ | ETA: 0:00:07 Bin 2 ray tracing: 51%|███████████████▍ | ETA: 0:00:06 Bin 2 ray tracing: 59%|█████████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 68%|████████████████████▎ | ETA: 0:00:04 Bin 2 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:03 Bin 2 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 2 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▌ | ETA: 0:00:12 Bin 3 ray tracing: 16%|████▉ | ETA: 0:00:11 Bin 3 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 3 ray tracing: 33%|██████████ | ETA: 0:00:08 Bin 3 ray tracing: 42%|████████████▌ | ETA: 0:00:07 Bin 3 ray tracing: 50%|███████████████ | ETA: 0:00:06 Bin 3 ray tracing: 58%|█████████████████▌ | ETA: 0:00:05 Bin 3 ray tracing: 66%|███████████████████▉ | ETA: 0:00:04 Bin 3 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:03 Bin 3 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:02 Bin 3 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 3 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 4 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 4 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 4 ray tracing: 34%|██████████▍ | ETA: 0:00:08 Bin 4 ray tracing: 43%|█████████████ | ETA: 0:00:07 Bin 4 ray tracing: 52%|███████████████▊ | ETA: 0:00:06 Bin 4 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 4 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:03 Bin 4 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:02 Bin 4 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 4 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 5 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 5 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 5 ray tracing: 35%|██████████▍ | ETA: 0:00:08 Bin 5 ray tracing: 43%|█████████████ | ETA: 0:00:07 Bin 5 ray tracing: 52%|███████████████▋ | ETA: 0:00:06 Bin 5 ray tracing: 61%|██████████████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 5 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 5 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:01 Bin 5 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 10%|██▉ | ETA: 0:00:10 Bin 6 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 6 ray tracing: 28%|████████▍ | ETA: 0:00:08 Bin 6 ray tracing: 37%|███████████▏ | ETA: 0:00:07 Bin 6 ray tracing: 46%|█████████████▊ | ETA: 0:00:06 Bin 6 ray tracing: 55%|████████████████▌ | ETA: 0:00:05 Bin 6 ray tracing: 64%|███████████████████▏ | ETA: 0:00:04 Bin 6 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:03 Bin 6 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 6 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 6 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 7 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 7 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 7 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 7 ray tracing: 43%|████████████▊ | ETA: 0:00:07 Bin 7 ray tracing: 51%|███████████████▍ | ETA: 0:00:06 Bin 7 ray tracing: 60%|██████████████████ | ETA: 0:00:05 Bin 7 ray tracing: 69%|████████████████████▋ | ETA: 0:00:04 Bin 7 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 7 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 8 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 8 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 8 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 8 ray tracing: 42%|████████████▊ | ETA: 0:00:07 Bin 8 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 8 ray tracing: 60%|█████████████████▉ | ETA: 0:00:05 Bin 8 ray tracing: 68%|████████████████████▌ | ETA: 0:00:04 Bin 8 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 8 ray tracing: 86%|█████████████████████████▋ | ETA: 0:00:02 Bin 8 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 9 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 9 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 9 ray tracing: 35%|██████████▍ | ETA: 0:00:08 Bin 9 ray tracing: 43%|████████████▉ | ETA: 0:00:07 Bin 9 ray tracing: 52%|███████████████▌ | ETA: 0:00:06 Bin 9 ray tracing: 61%|██████████████████▏ | ETA: 0:00:05 Bin 9 ray tracing: 69%|████████████████████▊ | ETA: 0:00:04 Bin 9 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 9 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:01 Bin 9 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 9%|██▌ | ETA: 0:00:11 Bin 10 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 10 ray tracing: 26%|███████▋ | ETA: 0:00:09 Bin 10 ray tracing: 35%|██████████▎ | ETA: 0:00:07 Bin 10 ray tracing: 45%|█████████████▏ | ETA: 0:00:06 Bin 10 ray tracing: 55%|████████████████ | ETA: 0:00:05 Bin 10 ray tracing: 65%|██████████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 74%|█████████████████████▌ | ETA: 0:00:03 Bin 10 ray tracing: 84%|████████████████████████▎ | ETA: 0:00:02 Bin 10 ray tracing: 93%|███████████████████████████▏ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 24%|████████▏ | ETA: 0:00:03 Bin 1 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 29%|█████████▌ | ETA: 0:00:03 Bin 2 progress: 58%|███████████████████▏ | ETA: 0:00:02 Bin 2 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 3 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 24%|████████▏ | ETA: 0:00:03 Bin 4 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 4 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 27%|████████▊ | ETA: 0:00:03 Bin 5 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 5 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 27%|████████▊ | ETA: 0:00:03 Bin 6 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 6 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 27%|████████▊ | ETA: 0:00:03 Bin 7 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 7 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 29%|█████████▌ | ETA: 0:00:03 Bin 8 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 8 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 24%|████████▏ | ETA: 0:00:03 Bin 9 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 9 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 9 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 24%|███████▉ | ETA: 0:00:03 Bin 10 progress: 47%|██████████████▉ | ETA: 0:00:02 Bin 10 progress: 71%|██████████████████████▊ | ETA: 0:00:01 Bin 10 progress: 96%|██████████████████████████████▋ | ETA: 0:00:00 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014221964867051147 Iteration 10: d = 1.361721986706835e-5 Iteration 20: d = 1.4428999147462115e-7 Iteration 30: d = 1.840609295522924e-9 Iteration 40: d = 2.4861813426798673e-11 Iteration 50: d = 3.4281627043655934e-13 Iteration 60: d = 4.794028078610688e-15 Converged after 62 iterations. d = 2.0656369218144688e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012402609396871885 Iteration 10: d = 1.1700605969929859e-5 Iteration 20: d = 1.3208063719163764e-7 Iteration 30: d = 1.711569173690844e-9 Iteration 40: d = 2.2823725157052182e-11 Iteration 50: d = 3.0652110422710156e-13 Iteration 60: d = 4.12216551655526e-15 Converged after 62 iterations. d = 1.7252180855031201e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014721282192185076 Iteration 10: d = 1.4785751491841025e-5 Iteration 20: d = 1.4885025376859558e-7 Iteration 30: d = 1.8077858642465674e-9 Iteration 40: d = 2.3847437514247916e-11 Iteration 50: d = 3.2586976216010644e-13 Iteration 60: d = 4.522978294698861e-15 Converged after 62 iterations. d = 1.9093712964880996e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014128349309474155 Iteration 10: d = 1.3249371288582988e-5 Iteration 20: d = 1.4576602931986112e-7 Iteration 30: d = 1.928848139644209e-9 Iteration 40: d = 2.653885805533019e-11 Iteration 50: d = 3.6919123204175535e-13 Iteration 60: d = 5.116726575068728e-15 Converged after 63 iterations. d = 1.4239097890276476e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001170647561853904 Iteration 10: d = 7.2526004189035e-6 Iteration 20: d = 4.58554442956152e-8 Iteration 30: d = 4.3988474316558966e-10 Iteration 40: d = 5.4912602664306204e-12 Iteration 50: d = 7.429064668905017e-14 Converged after 59 iterations. d = 1.5683596024152527e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001468292297217708 Iteration 10: d = 1.1336084516480866e-5 Iteration 20: d = 8.764436025641237e-8 Iteration 30: d = 9.099172756183547e-10 Iteration 40: d = 1.1234076188996957e-11 Iteration 50: d = 1.4995848730077716e-13 Converged after 60 iterations. d = 2.0281941054787896e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012962061695991755 Iteration 10: d = 9.519792231010586e-6 Iteration 20: d = 8.947581131613582e-8 Iteration 30: d = 1.0713996312865616e-9 Iteration 40: d = 1.3570890422957821e-11 Iteration 50: d = 1.7596981082711854e-13 Iteration 60: d = 2.320089449079282e-15 Converged after 61 iterations. d = 1.5098332546884549e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018122659993069644 Iteration 10: d = 2.2490964925401137e-5 Iteration 20: d = 2.475621595614108e-7 Iteration 30: d = 3.046253183290208e-9 Iteration 40: d = 3.9264250875042426e-11 Iteration 50: d = 5.169157159703347e-13 Iteration 60: d = 6.896170933150723e-15 Converged after 63 iterations. d = 1.847210858527653e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016107879992202383 Iteration 10: d = 1.1940877090755772e-5 Iteration 20: d = 1.2153932018781818e-7 Iteration 30: d = 1.5369038134039942e-9 Iteration 40: d = 2.057970584223807e-11 Iteration 50: d = 2.81865547550773e-13 Iteration 60: d = 3.9007540322144566e-15 Converged after 62 iterations. d = 1.6365578004416188e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016524371328702177 Iteration 10: d = 1.705825180688453e-5 Iteration 20: d = 1.789916197355338e-7 Iteration 30: d = 2.205083275936737e-9 Iteration 40: d = 2.908598408239261e-11 Iteration 50: d = 3.964155183350683e-13 Iteration 60: d = 5.466390072745784e-15 Converged after 63 iterations. d = 1.5120434978721254e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8652.477224568403 Iteration 2: convergence error = 4810.320321788671 Iteration 3: convergence error = 1094.486203756241 Iteration 4: convergence error = 320.45247994487204 Iteration 5: convergence error = 95.33576076089685 Iteration 6: convergence error = 28.539230742020436 Iteration 7: convergence error = 8.587321313173334 Iteration 8: convergence error = 2.5845321280266944 Iteration 9: convergence error = 0.7761994263689758 Iteration 10: convergence error = 0.23282346903420148 Iteration 11: convergence error = 0.06978695249154043 Iteration 12: convergence error = 0.02090972226460508 Iteration 13: convergence error = 0.006263596885219158 Iteration 14: convergence error = 0.0018760447237582412 Iteration 15: convergence error = 0.0005618629945729481 Iteration 16: convergence error = 0.00016826709088491043 Iteration 17: convergence error = 5.039150300945039e-5 Iteration 18: convergence error = 1.5090692841113196e-5 Iteration 19: convergence error = 4.5191607114247745e-6 Iteration 20: convergence error = 1.3533278888644418e-6 Iteration 21: convergence error = 4.052753865835257e-7 Iteration 22: convergence error = 1.2123473425162956e-7 Iteration 23: convergence error = 3.539571480359882e-8 Iteration 24: convergence error = 1.0251596904709004e-8 Iteration 25: convergence error = 2.9597231332445517e-9 Iteration 26: convergence error = 8.528786565875635e-10 Iteration 27: convergence error = 2.473825588822365e-10 Iteration 28: convergence error = 7.09405867382884e-11 Iteration 29: convergence error = 2.0691004465334117e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.3563905625879 K, F = -7437.877462403368, relative_change = 0.032643609437412124 Iter 2: T = 936.7891423945142 K, F = -6304.8231881165275, relative_change = 0.031598745267291437 Iter 3: T = 908.2668115133334 K, F = -5342.859453661936, relative_change = 0.030446905915535262 Iter 5: T = 857.2178716348903 K, F = -3833.141910114158, relative_change = 0.02782829782938714 Iter 10: T = 762.3466710570265 K, F = -1659.6210671207944, relative_change = 0.01989677009090869 Iter 15: T = 706.8669882010769 K, F = -710.4916052011099, relative_change = 0.011903637770503532 Iter 20: T = 678.3644417611677 K, F = -301.1034273144355, relative_change = 0.0060885638892510105 Iter 25: T = 665.0822040118856 K, F = -126.75224482149659, relative_change = 0.0028107255594118584 Iter 30: T = 659.2370550719736 K, F = -53.166745843535466, relative_change = 0.001229101116513039 Iter 35: T = 656.7368607974216 K, F = -22.263566268952278, relative_change = 0.0005240438233215483 Iter 40: T = 655.6811081449094 K, F = -9.315973318742895, relative_change = 0.00022096429025632072 Iter 45: T = 655.237775028153 K, F = -3.8969466574530207, relative_change = 9.272905666274494e-5 Iter 50: T = 655.052049855473 K, F = -1.629906685823246, relative_change = 3.8836502331192754e-5 Iter 55: T = 654.9743215861577 K, F = -0.6816739435187653, relative_change = 1.6251722485976032e-5 Iter 60: T = 654.9418049264073 K, F = -0.28508899667561294, relative_change = 6.798385832644935e-6 Iter 65: T = 654.9282043613973 K, F = -0.1192284649779295, relative_change = 2.8434673319455447e-6 Iter 70: T = 654.9225161436125 K, F = -0.04986291519396441, relative_change = 1.1892246823325057e-6 Iter 75: T = 654.9201372106907 K, F = -0.02085329237522965, relative_change = 4.973571798499802e-7 Iter 80: T = 654.9191423033825 K, F = -0.00872110041510632, relative_change = 2.080023241030448e-7 Iter 85: T = 654.9187262196642 K, F = -0.003647269131407338, relative_change = 8.698933787933823e-8 Iter 90: T = 654.9185522082042 K, F = -0.0015253316448446963, relative_change = 3.638002924963482e-8 Iter 95: T = 654.9184794344848 K, F = -0.0006379119342208028, relative_change = 1.5214571323985268e-8 Iter 100: T = 654.9184489996376 K, F = -0.0002667823938264924, relative_change = 6.362916946942599e-9 Iter 105: T = 654.9184362714195 K, F = -0.00011157158352859131, relative_change = 2.661048111675158e-9 Iter 110: T = 654.9184309483265 K, F = -4.6660569724132905e-5, relative_change = 1.1128821679503785e-9 Iter 115: T = 654.9184287221453 K, F = -1.951400826888383e-5, relative_change = 4.6542063904334907e-10 Iter 120: T = 654.9184277911297 K, F = -8.160990466743456e-6, relative_change = 1.9464445088006386e-10 Iter 125: T = 654.9184274017679 K, F = -3.4130233187990022e-6, relative_change = 8.140262561462967e-11 Iter 130: T = 654.9184272389322 K, F = -1.4273668559883212e-6, relative_change = 3.4043544118291426e-11 Iter 135: T = 654.9184271708324 K, F = -5.969428741869898e-7, relative_change = 1.4237440780053687e-11 Iter 140: T = 654.9184271423522 K, F = -2.4964972705765476e-7, relative_change = 5.954293717496387e-12 Iter 145: T = 654.9184271304415 K, F = -1.044068735911452e-7, relative_change = 2.490165716854374e-12 Iter 150: T = 654.9184271254603 K, F = -4.366507261321928e-8, relative_change = 1.0414378202256084e-12 Iter 155: T = 654.918427123377 K, F = -1.8261088086113375e-8, relative_change = 4.355377566893194e-13 Converged in 159 iterations to T = 654.9184271226251 K Iter 1: T = 970.3464388492321 K, F = -6756.592116021279, relative_change = 0.029653561150767897 Iter 2: T = 942.8572448221355 K, F = -5722.67295652327, relative_change = 0.028329257393572747 Iter 3: T = 917.4876445141883 K, F = -4845.218829523589, relative_change = 0.026907148931896854 Iter 5: T = 872.8911386476714 K, F = -3469.168448752808, relative_change = 0.023814528582225252 Iter 10: T = 793.7323155804397 K, F = -1493.2125413022873, relative_change = 0.015508785366740923 Iter 15: T = 750.6009559074702 K, F = -635.6236667956123, relative_change = 0.008492530688394614 Iter 20: T = 729.6637715974283 K, F = -268.2997895954973, relative_change = 0.004085991706996658 Iter 25: T = 720.2400383498075 K, F = -112.69455004723481, relative_change = 0.0018243097128616617 Iter 30: T = 716.1655048339064 K, F = -47.220511531991576, relative_change = 0.000785212813285863 Iter 35: T = 714.4367093448674 K, F = -19.764365058764366, relative_change = 0.00033244842140198573 Iter 40: T = 713.7092591331744 K, F = -8.268553459165195, relative_change = 0.00013975750724066764 Iter 45: T = 713.4042443319942 K, F = -3.4585102042484466, relative_change = 5.857578742618208e-5 Iter 50: T = 713.2765453133784 K, F = -1.4464783022506245, relative_change = 2.451947029928655e-5 Iter 55: T = 713.2231158429169 K, F = -0.6049499091452281, relative_change = 1.0258254220979638e-5 Iter 60: T = 713.200766761473 K, F = -0.2529999724287419, relative_change = 4.29081023198535e-6 Iter 65: T = 713.1914193670847 K, F = -0.10580808147081733, relative_change = 1.7945880585005364e-6 Iter 70: T = 713.1875100453914 K, F = -0.04425028575716694, relative_change = 7.505391439237214e-7 Iter 75: T = 713.1858750976812 K, F = -0.018506012385423265, relative_change = 3.138881038908927e-7 Iter 80: T = 713.1851913390548 K, F = -0.00773943790932341, relative_change = 1.3127239564212442e-7 Iter 85: T = 713.1849053823373 K, F = -0.00323672580085288, relative_change = 5.489979582730489e-8 Iter 90: T = 713.1847857917016 K, F = -0.0013536374612652669, relative_change = 2.295976988803097e-8 Iter 95: T = 713.1847357774484 K, F = -0.0005661073645949477, relative_change = 9.602053381898751e-9 Iter 100: T = 713.1847148608866 K, F = -0.0002367528625563109, relative_change = 4.015693990568225e-9 Iter 105: T = 713.1847061133302 K, F = -9.901287657010371e-5, relative_change = 1.6794113167526146e-9 Iter 110: T = 713.1847024549975 K, F = -4.140836792398961e-5, relative_change = 7.023498943488829e-10 Iter 115: T = 713.184700925039 K, F = -1.7317473376632364e-5, relative_change = 2.937311063073972e-10 Iter 120: T = 713.1847002851922 K, F = -7.2423750391292785e-6, relative_change = 1.228418716378069e-10 Iter 125: T = 713.1847000176004 K, F = -3.0288471410955253e-6, relative_change = 5.137392780288764e-11 Iter 130: T = 713.1846999056905 K, F = -1.2667017295076022e-6, relative_change = 2.148521870423493e-11 Iter 135: T = 713.1846998588884 K, F = -5.297491765254847e-7, relative_change = 8.985364631987169e-12 Iter 140: T = 713.1846998393152 K, F = -2.215466416988221e-7, relative_change = 3.757773389989371e-12 Iter 145: T = 713.1846998311294 K, F = -9.265351907927766e-8, relative_change = 1.5715468572858067e-12 Iter 150: T = 713.1846998277061 K, F = -3.874996234998207e-8, relative_change = 6.572592402059053e-13 Iter 155: T = 713.1846998262744 K, F = -1.6204872443914553e-8, relative_change = 2.748596773856639e-13 Converged in 157 iterations to T = 713.1846998259714 K Iter 1: T = 974.3165121515241 K, F = -5852.007137579393, relative_change = 0.02568348784847592 Iter 2: T = 950.8229289035859 K, F = -4951.13937484035, relative_change = 0.024112886269430766 Iter 3: T = 929.4453242860475 K, F = -4187.147963213953, relative_change = 0.022483265777140427 Iter 5: T = 892.6880271928663 K, F = -2990.579875095789, relative_change = 0.019130757384981587 Iter 10: T = 830.6998830432332 K, F = -1278.9780315237956, relative_change = 0.011264734987761312 Iter 15: T = 799.1868915315088 K, F = -541.6129680017328, relative_change = 0.005694804082875003 Iter 20: T = 784.6008433716856 K, F = -227.89725543202093, relative_change = 0.0026115628958642283 Iter 25: T = 778.2046414562461 K, F = -95.57206256018665, relative_change = 0.0011383448676626146 Iter 30: T = 775.4732471200562 K, F = -40.01696593945703, relative_change = 0.00048465256023879223 Iter 35: T = 774.3206990267564 K, F = -16.74402270267477, relative_change = 0.00020422872968568688 Iter 40: T = 773.8368686138963 K, F = -7.004037572263293, relative_change = 8.568347748427468e-5 Iter 45: T = 773.6342042961974 K, F = -2.92943298944359, relative_change = 3.588175244138891e-5 Iter 50: T = 773.5493914149386 K, F = -1.2251695317393365, relative_change = 1.5014571408108894e-5 Iter 55: T = 773.5139118064105 K, F = -0.5123885213282311, relative_change = 6.280742403627476e-6 Iter 60: T = 773.4990720870032 K, F = -0.21428839679927558, relative_change = 2.626938556364537e-6 Iter 65: T = 773.4928656376361 K, F = -0.08961821119755475, relative_change = 1.098662045606665e-6 Iter 70: T = 773.4902699736555 K, F = -0.03747944895027422, relative_change = 4.5948145380010564e-7 Iter 75: T = 773.4891844267564 K, F = -0.015674360626119155, relative_change = 1.9216200703660058e-7 Iter 80: T = 773.488730436466 K, F = -0.006555206111020451, relative_change = 8.03646868322418e-8 Iter 85: T = 773.4885405720227 K, F = -0.002741465708881563, relative_change = 3.360951385995245e-8 Iter 90: T = 773.4884611683956 K, F = -0.001146513739293975, relative_change = 1.4055907436943422e-8 Iter 95: T = 773.4884279608419 K, F = -0.00047948574594192106, relative_change = 5.878349651600903e-9 Iter 100: T = 773.4884140730449 K, F = -0.00020052666641956485, relative_change = 2.458396251461419e-9 Iter 105: T = 773.488408265002 K, F = -8.386264667681331e-5, relative_change = 1.0281307083983903e-9 Iter 110: T = 773.4884058360092 K, F = -3.507236222755061e-5, relative_change = 4.2997656990629555e-10 Iter 115: T = 773.4884048201752 K, F = -1.4667679494206887e-5, relative_change = 1.7982132243963471e-10 Iter 120: T = 773.4884043953414 K, F = -6.13419926043246e-6, relative_change = 7.520343122028521e-11 Iter 125: T = 773.4884042176708 K, F = -2.565394982112501e-6, relative_change = 3.1450968106887996e-11 Iter 130: T = 773.4884041433668 K, F = -1.0728786110636435e-6, relative_change = 1.3153167925343117e-11 Iter 135: T = 773.4884041122921 K, F = -4.4869187576512815e-7, relative_change = 5.500826961173071e-12 Iter 140: T = 773.4884040992962 K, F = -1.8764830456152737e-7, relative_change = 2.3005115732769924e-12 Iter 145: T = 773.488404093861 K, F = -7.847582916831186e-8, relative_change = 9.620899781221025e-13 Iter 150: T = 773.4884040915881 K, F = -3.2817641160143296e-8, relative_change = 4.0233437481119695e-13 Converged in 154 iterations to T = 773.4884040907676 K Iter 1: T = 970.3543368960628 K, F = -6754.792538537927, relative_change = 0.029645663103937216 Iter 2: T = 942.8731944908641 K, F = -5721.136455451475, relative_change = 0.02832072920197841 Iter 3: T = 917.511751669568 K, F = -4843.906648577652, relative_change = 0.026898042037339823 Iter 5: T = 872.9316337380212 K, F = -3468.211155876256, relative_change = 0.02380451660959501 Iter 10: T = 793.8107651372727 K, F = -1492.7792694959314, relative_change = 0.015498787596970442 Iter 15: T = 750.7070665079744 K, F = -635.4312465545089, relative_change = 0.008485405241865614 Iter 20: T = 729.7858171120275 K, F = -268.2163758066056, relative_change = 0.0040820546023550616 Iter 25: T = 720.3699059013996 K, F = -112.65903104123467, relative_change = 0.0018224338658516751 Iter 30: T = 716.298891991984 K, F = -47.20553473426945, relative_change = 0.0007843819403613392 Iter 35: T = 714.5716160786912 K, F = -19.758079250707546, relative_change = 0.0003320922980341657 Iter 40: T = 713.8448100430973 K, F = -8.26592068095307, relative_change = 0.00013960701910275498 Iter 45: T = 713.5400661866832 K, F = -3.4574084437591384, relative_change = 5.8512576728926916e-5 Iter 50: T = 713.4124807521495 K, F = -1.4460174098165417, relative_change = 2.449298654368591e-5 Iter 55: T = 713.3590988315789 K, F = -0.6047571368791226, relative_change = 1.0247169935695153e-5 Iter 60: T = 713.3367696444155 K, F = -0.25291934899465246, relative_change = 4.286173170180449e-6 Iter 65: T = 713.3274305715138 K, F = -0.10577436312886734, relative_change = 1.7926485247093677e-6 Iter 70: T = 713.3235247302209 K, F = -0.044236184228733766, relative_change = 7.497279623962776e-7 Iter 75: T = 713.3218912381005 K, F = -0.01850011493684911, relative_change = 3.1354885014514736e-7 Iter 80: T = 713.321208088227 K, F = -0.007736971521353775, relative_change = 1.3113051426991387e-7 Iter 85: T = 713.3209223860987 K, F = -0.003235694329052685, relative_change = 5.4840459129634506e-8 Iter 90: T = 713.3208029019354 K, F = -0.001353206086096348, relative_change = 2.2934954509068448e-8 Iter 95: T = 713.3207529322103 K, F = -0.0005659269590830851, relative_change = 9.591675299436544e-9 Iter 100: T = 713.3207320342707 K, F = -0.00023667741476463, relative_change = 4.011353750422212e-9 Iter 105: T = 713.3207232945022 K, F = -9.898132061902931e-5, relative_change = 1.6775961290746785e-9 Iter 110: T = 713.3207196394264 K, F = -4.139516982759606e-5, relative_change = 7.015907438397126e-10 Iter 115: T = 713.3207181108302 K, F = -1.731195415111131e-5, relative_change = 2.934136268725266e-10 Iter 120: T = 713.3207174715529 K, F = -7.240064810676294e-6, relative_change = 1.2270906365707331e-10 Iter 125: T = 713.3207172041996 K, F = -3.027881695816248e-6, relative_change = 5.131839812720083e-11 Iter 130: T = 713.3207170923891 K, F = -1.2662952447728415e-6, relative_change = 2.1461949341059953e-11 Iter 135: T = 713.3207170456288 K, F = -5.295804540450533e-7, relative_change = 8.975654711801995e-12 Iter 140: T = 713.3207170260731 K, F = -2.2147668532479514e-7, relative_change = 3.753722856017911e-12 Iter 145: T = 713.3207170178946 K, F = -9.262444011781668e-8, relative_change = 1.569855885305529e-12 Iter 150: T = 713.3207170144743 K, F = -3.8736911345260694e-8, relative_change = 6.565369591217318e-13 Iter 155: T = 713.3207170130438 K, F = -1.6200364161278458e-8, relative_change = 2.7457371932450893e-13 Converged in 157 iterations to T = 713.320717012741 K Iter 1: T = 969.2407500084499 K, F = -7008.524370175109, relative_change = 0.030759249991550046 Iter 2: T = 940.620281120023 K, F = -5937.839110780965, relative_change = 0.029528751126257687 Iter 3: T = 914.0999180074685 K, F = -5029.037607502175, relative_change = 0.028194547411816363 Iter 5: T = 867.1759184917274 K, F = -3603.3964035231643, relative_change = 0.025245856256967982 Iter 10: T = 782.5302698389727 K, F = -1554.180364368211, relative_change = 0.016984044613975593 Iter 15: T = 735.2963933587608 K, F = -662.8171000024113, relative_change = 0.00957449087795095 Iter 20: T = 711.9483770175317 K, F = -280.1280884469436, relative_change = 0.00469527701648536 Iter 25: T = 701.3270911222461 K, F = -117.74111243431764, relative_change = 0.002117544478368318 Iter 30: T = 696.7104925185714 K, F = -49.35045076012292, relative_change = 0.000915708623850593 Iter 35: T = 694.7470294128976 K, F = -20.658687382559076, relative_change = 0.00038849639892447066 Iter 40: T = 693.9199826479661 K, F = -8.643204283750258, relative_change = 0.0001634627824253225 Iter 45: T = 693.5730560180093 K, F = -3.6153055768770512, relative_change = 6.853660564007315e-5 Iter 50: T = 693.4277832551364 K, F = -1.5120716446479565, relative_change = 2.869346487405902e-5 Iter 55: T = 693.3669962128589 K, F = -0.6323852693265241, relative_change = 1.2005316698234165e-5 Iter 60: T = 693.3415687020207 K, F = -0.26447436991974127, relative_change = 5.021706130162845e-6 Iter 65: T = 693.33093362582 K, F = -0.11060691688828317, relative_change = 2.1003018072394244e-6 Iter 70: T = 693.3264857372004 K, F = -0.04625723446650465, relative_change = 8.784000436598857e-7 Iter 75: T = 693.3246255468459 K, F = -0.019345345525221713, relative_change = 3.673624162586854e-7 Iter 80: T = 693.3238475877398 K, F = -0.008090457615390068, relative_change = 1.536362290541855e-7 Iter 85: T = 693.3235222350266 K, F = -0.0033835265346745524, relative_change = 6.42526595928725e-8 Iter 90: T = 693.3233861684748 K, F = -0.0014150312983144397, relative_change = 2.6871256467296832e-8 Iter 95: T = 693.3233292637897 K, F = -0.0005917830055431894, relative_change = 1.1237885089796187e-8 Iter 100: T = 693.3233054655657 K, F = -0.0002474907221130529, relative_change = 4.699818555741202e-9 Iter 105: T = 693.3232955128634 K, F = -0.00010350357638821972, relative_change = 1.965520396031116e-9 Iter 110: T = 693.3232913505243 K, F = -4.32864319951376e-5, relative_change = 8.220041312446814e-10 Iter 115: T = 693.3232896097844 K, F = -1.8102904161154676e-5, relative_change = 3.4377197426545814e-10 Iter 120: T = 693.3232888817862 K, F = -7.570851532801015e-6, relative_change = 1.437695613998578e-10 Iter 125: T = 693.3232885773286 K, F = -3.1662206366744883e-6, relative_change = 6.012614977448513e-11 Iter 130: T = 693.3232884500007 K, F = -1.3241516362283434e-6, relative_change = 2.514548062488483e-11 Iter 135: T = 693.3232883967507 K, F = -5.53775814093882e-7, relative_change = 1.0516136239942092e-11 Iter 140: T = 693.323288374481 K, F = -2.3159540774031484e-7, relative_change = 4.397968995268643e-12 Iter 145: T = 693.3232883651674 K, F = -9.685540580672836e-8, relative_change = 1.839272531116113e-12 Iter 150: T = 693.3232883612724 K, F = -4.0505010900915295e-8, relative_change = 7.691852953800703e-13 Iter 155: T = 693.3232883596435 K, F = -1.693959716941862e-8, relative_change = 3.216809170696946e-13 Converged in 158 iterations to T = 693.3232883591666 K Iter 1: T = 963.539742565458 K, F = -8307.504339118916, relative_change = 0.036460257434541954 Iter 2: T = 928.9557249833143 K, F = -7049.23748467299, relative_change = 0.035892673705458705 Iter 3: T = 896.214311514603 K, F = -5980.634948695119, relative_change = 0.035245397157436534 Iter 5: T = 836.1401602021749 K, F = -4302.489746355255, relative_change = 0.03368245465503274 Iter 10: T = 716.2605979201041 K, F = -1880.3188145591976, relative_change = 0.02798478460064554 Iter 15: T = 636.4060085800635 K, F = -814.3063262146137, relative_change = 0.020084052819308265 Iter 20: T = 589.5680778084081 K, F = -348.6953842784146, relative_change = 0.012062705186555901 Iter 25: T = 565.4424596822375 K, F = -147.8037516467961, relative_change = 0.006187972475276322 Iter 30: T = 554.1807469774947 K, F = -62.226214894248656, relative_change = 0.0028614131658636936 Iter 35: T = 549.2203188623865 K, F = -26.102454114323418, relative_change = 0.0012522901330284375 Iter 40: T = 547.0976623256769 K, F = -10.930664651024069, relative_change = 0.0005341264446218378 Iter 45: T = 546.2011665015593 K, F = -4.573878631981484, relative_change = 0.0002252512036645956 Iter 50: T = 545.824679068645 K, F = -1.913298781046622, relative_change = 9.453440624261024e-5 Iter 55: T = 545.6669522584888 K, F = -0.8002430075309678, relative_change = 3.959372615132319e-5 Iter 60: T = 545.6009407269768 K, F = -0.3346849482536748, relative_change = 1.6568789440910823e-5 Iter 65: T = 545.5733254580757 K, F = -0.13997165118610838, relative_change = 6.931054781931301e-6 Iter 70: T = 545.5617749426871 K, F = -0.05853823753175433, relative_change = 2.8989629292896173e-6 Iter 75: T = 545.5569441202728 K, F = -0.02448146373451024, relative_change = 1.212435678432444e-6 Iter 80: T = 545.5549237673545 K, F = -0.01023845339392454, relative_change = 5.07064658481897e-7 Iter 85: T = 545.5540788237141 K, F = -0.004281845735986167, relative_change = 2.1206217105883467e-7 Iter 90: T = 545.5537254568075 K, F = -0.0017907194168350904, relative_change = 8.868722549249264e-8 Iter 95: T = 545.5535776743046 K, F = -0.0007489003145840778, relative_change = 3.70901080884697e-8 Iter 100: T = 545.5535158698548 K, F = -0.0003131990675556695, relative_change = 1.5511535124216916e-8 Iter 105: T = 545.5534900224883 K, F = -0.00013098359299201778, relative_change = 6.487110825500042e-9 Iter 110: T = 545.5534792128097 K, F = -5.477890337574065e-5, relative_change = 2.7129875009695113e-9 Iter 115: T = 545.5534746920728 K, F = -2.290919203509767e-5, relative_change = 1.134603839623806e-9 Iter 120: T = 545.5534728014466 K, F = -9.580897587957438e-6, relative_change = 4.745048779125857e-10 Iter 125: T = 545.553472010764 K, F = -4.006845591070229e-6, relative_change = 1.984435981774716e-10 Iter 130: T = 545.5534716800912 K, F = -1.6757110783971463e-6, relative_change = 8.29915027431201e-11 Iter 135: T = 545.5534715417998 K, F = -7.008021183085855e-7, relative_change = 3.470802439870047e-11 Iter 140: T = 545.5534714839647 K, F = -2.930832797842786e-7, relative_change = 1.4515283794074875e-11 Iter 145: T = 545.5534714597774 K, F = -1.2257095913237315e-7, relative_change = 6.070466586846619e-12 Iter 150: T = 545.553471449662 K, F = -5.1260546529707796e-8, relative_change = 2.5387370480106594e-12 Iter 155: T = 545.5534714454317 K, F = -2.1438032182796718e-8, relative_change = 1.0617430016938664e-12 Iter 160: T = 545.5534714436624 K, F = -8.96531787697441e-9, relative_change = 4.4401759605641505e-13 Converged in 164 iterations to T = 545.5534714430238 K Iter 1: T = 966.8440629195229 K, F = -7554.6118032251325, relative_change = 0.03315593708047713 Iter 2: T = 935.7433859206184 K, F = -6404.663261632647, relative_change = 0.03216721102365945 Iter 3: T = 906.6676710205156 K, F = -5428.303323234167, relative_change = 0.031072316767162603 Iter 5: T = 854.4610843976623 K, F = -3895.8270714556797, relative_change = 0.02856355681279459 Iter 10: T = 756.5957100240475 K, F = -1688.6547738624204, relative_change = 0.020791278924860126 Iter 15: T = 698.5373356492959 K, F = -723.7928081934741, relative_change = 0.012675542992454 Iter 20: T = 668.329640928417 K, F = -307.02564286803727, relative_change = 0.006576662403173229 Iter 25: T = 654.1346143664276 K, F = -129.3157535062472, relative_change = 0.0030612960290225767 Iter 30: T = 647.8599049110067 K, F = -54.25661211566688, relative_change = 0.0013441158332391015 Iter 35: T = 645.1703629322017 K, F = -22.722700863982766, relative_change = 0.0005741271145048833 Iter 40: T = 644.0336111083137 K, F = -9.508591337304322, relative_change = 0.00024227234489048705 Iter 45: T = 643.5560772535109 K, F = -3.977608575964664, relative_change = 0.0001017049755534828 Iter 50: T = 643.3559912377514 K, F = -1.6636592399696728, relative_change = 4.260173414583917e-5 Iter 55: T = 643.2722469524159 K, F = -0.6957929564134724, relative_change = 1.782838712446934e-5 Iter 60: T = 643.2372125457111 K, F = -0.29099431275816984, relative_change = 7.458116057897705e-6 Iter 65: T = 643.222558717748 K, F = -0.12169823951964565, relative_change = 3.1194356849184476e-6 Iter 70: T = 643.2164299583845 K, F = -0.05089582204089749, relative_change = 1.304648666288111e-6 Iter 75: T = 643.2138667761915 K, F = -0.02128526943956721, relative_change = 5.456307440497259e-7 Iter 80: T = 643.2127948119721 K, F = -0.008901758921708025, relative_change = 2.281912332190707e-7 Iter 85: T = 643.212346501842 K, F = -0.0037228227707494788, relative_change = 9.543263815470988e-8 Iter 90: T = 643.212159012861 K, F = -0.0015569290960826265, relative_change = 3.991112830448554e-8 Iter 95: T = 643.2120806026721 K, F = -0.0006511263681057144, relative_change = 1.6691320862283597e-8 Iter 100: T = 643.2120478105846 K, F = -0.0002723088273136054, relative_change = 6.980511520028198e-9 Iter 105: T = 643.2120340965403 K, F = -0.00011388280444674104, relative_change = 2.9193335996960235e-9 Iter 110: T = 643.2120283611629 K, F = -4.762714960854231e-5, relative_change = 1.2209002464250427e-9 Iter 115: T = 643.2120259625593 K, F = -1.9918241695005e-5, relative_change = 5.10595045586695e-10 Iter 120: T = 643.2120249594349 K, F = -8.330046804561064e-6, relative_change = 2.1353695394517036e-10 Iter 125: T = 643.2120245399162 K, F = -3.4837252748110004e-6, relative_change = 8.930371021056356e-11 Iter 130: T = 643.2120243644684 K, F = -1.456935451504826e-6, relative_change = 3.734787655800722e-11 Iter 135: T = 643.2120242910942 K, F = -6.093084793934445e-7, relative_change = 1.561934529288056e-11 Iter 140: T = 643.212024260408 K, F = -2.5482014809341536e-7, relative_change = 6.5321984120755815e-12 Iter 145: T = 643.2120242475748 K, F = -1.0656901694439114e-7, relative_change = 2.731848201703176e-12 Iter 150: T = 643.2120242422078 K, F = -4.456824770349144e-8, relative_change = 1.1424867267961565e-12 Iter 155: T = 643.2120242399633 K, F = -1.8639067345116445e-8, relative_change = 4.778040003655066e-13 Converged in 160 iterations to T = 643.2120242390246 K Iter 1: T = 965.1449748525814 K, F = -7941.75063552774, relative_change = 0.03485502514741856 Iter 2: T = 932.2624832333407 K, F = -6735.965680443578, relative_change = 0.034070002410014365 Iter 3: T = 901.3230305497163 K, F = -5712.0418402076275, relative_change = 0.03318749090526294 Iter 5: T = 845.1603473663839 K, F = -4104.413454485003, relative_change = 0.031110952098582167 Iter 10: T = 736.6091376620294 K, F = -1786.1935432818586, relative_change = 0.02414413350672815 Iter 15: T = 668.649215210785 K, F = -769.1799752875547, relative_change = 0.01584005552861998 Iter 20: T = 631.4211777350629 K, F = -327.55728664946446, relative_change = 0.008730064985495627 Iter 25: T = 613.2774981755748 K, F = -138.30116069299558, relative_change = 0.004217770714192031 Iter 30: T = 605.0922706174914 K, F = -58.09926151636186, relative_change = 0.0018872306691216484 Iter 35: T = 601.549222564465 K, F = -24.345983129643205, relative_change = 0.0008131103176906257 Iter 40: T = 600.045167148216 K, F = -10.190422085466304, relative_change = 0.00034441089631642637 Iter 45: T = 599.4121449679111 K, F = -4.263283884127225, relative_change = 0.00014481346975553553 Iter 50: T = 599.1466984565303 K, F = -1.7832246382412293, relative_change = 6.069964958530413e-5 Iter 55: T = 599.0355609414147 K, F = -0.7458128732017205, relative_change = 2.5409346637271418e-5 Iter 60: T = 598.9890600663643 K, F = -0.3119160831378076, relative_change = 1.0630700629967085e-5 Iter 65: T = 598.9696090222068 K, F = -0.13044847139650703, relative_change = 4.4466224449538595e-6 Iter 70: T = 598.9614736943863 K, F = -0.05455536056897303, relative_change = 1.859759453355169e-6 Iter 75: T = 598.9580712861344 K, F = -0.022815747383484575, relative_change = 7.77796150581134e-7 Iter 80: T = 598.9566483379056 K, F = -0.009541825738325183, relative_change = 3.252875808565678e-7 Iter 85: T = 598.9560532403834 K, F = -0.003990506825042983, relative_change = 1.3603984051886117e-7 Iter 90: T = 598.9558043628666 K, F = -0.0016688778456618314, relative_change = 5.689360651559492e-8 Iter 95: T = 598.9557002792075 K, F = -0.0006979446874227357, relative_change = 2.3793606806725175e-8 Iter 100: T = 598.9556567501589 K, F = -0.00029188881030889346, relative_change = 9.950774197344165e-9 Iter 105: T = 598.9556385457877 K, F = -0.00012207138713865584, relative_change = 4.1615332354049535e-9 Iter 110: T = 598.9556309325015 K, F = -5.105171098962469e-5, relative_change = 1.7404029711166133e-9 Iter 115: T = 598.9556277485344 K, F = -2.1350435515987698e-5, relative_change = 7.278573357636036e-10 Iter 120: T = 598.9556264169613 K, F = -8.929007262792332e-6, relative_change = 3.0439863867091814e-10 Iter 125: T = 598.9556258600815 K, F = -3.7342173105359144e-6, relative_change = 1.2730314103301424e-10 Iter 130: T = 598.9556256271876 K, F = -1.5616937188434044e-6, relative_change = 5.323967503107075e-11 Iter 135: T = 598.9556255297887 K, F = -6.531185897107328e-7, relative_change = 2.2265455178767755e-11 Iter 140: T = 598.9556254890554 K, F = -2.731421055446326e-7, relative_change = 9.311683063715789e-12 Iter 145: T = 598.9556254720201 K, F = -1.14230959191719e-7, relative_change = 3.894245766615285e-12 Iter 150: T = 598.9556254648958 K, F = -4.77720406566462e-8, relative_change = 1.6285958589213985e-12 Iter 155: T = 598.9556254619164 K, F = -1.9978873166959232e-8, relative_change = 6.810994393196288e-13 Iter 160: T = 598.9556254606703 K, F = -8.355400094028909e-9, relative_change = 2.8484380834861533e-13 Converged in 162 iterations to T = 598.9556254604066 K Iter 1: T = 980.1379450635482 K, F = -4525.58811096241, relative_change = 0.01986205493645183 Iter 2: T = 962.3197754871258 K, F = -3822.7797905353336, relative_change = 0.018179246774562112 Iter 3: T = 946.4246184140497 K, F = -3227.6103304431404, relative_change = 0.016517541754797575 Iter 5: T = 919.8802030789353 K, F = -2297.672667103131, relative_change = 0.01334621436400686 Iter 10: T = 877.7334996328151 K, F = -975.4457456809906, relative_change = 0.007012184271566942 Iter 15: T = 857.7802956792976 K, F = -411.04812857359366, relative_change = 0.00328841072092682 Iter 20: T = 848.924670848035 K, F = -172.5044144614294, relative_change = 0.0014491764613369137 Iter 25: T = 845.1216238664485 K, F = -72.25296584102985, relative_change = 0.0006200364161342165 Iter 30: T = 843.5128876298872 K, F = -30.236587749857115, relative_change = 0.0002618341588443355 Iter 35: T = 842.8368357582036 K, F = -12.648746754465526, relative_change = 0.00010995059116573227 Iter 40: T = 842.5535278010359 K, F = -5.290461500746428, relative_change = 4.6061551630829785e-5 Iter 45: T = 842.4349440967035 K, F = -2.21264006990572, relative_change = 1.9277325703087193e-5 Iter 50: T = 842.385333295081 K, F = -0.925371032859915, relative_change = 8.064430088887223e-6 Iter 55: T = 842.3645823710901 K, F = -0.3870044590747411, relative_change = 3.373064815351335e-6 Iter 60: T = 842.3559035455233 K, F = -0.16185045363516637, relative_change = 1.4107301327128976e-6 Iter 65: T = 842.352273862334 K, F = -0.06768789177907131, relative_change = 5.899971579345931e-7 Iter 70: T = 842.3507558689147 K, F = -0.028307902043388733, relative_change = 2.467461257629875e-7 Iter 75: T = 842.3501210230415 K, F = -0.011838705735014221, relative_change = 1.0319257329551775e-7 Iter 80: T = 842.349855522409 K, F = -0.00495108865064342, relative_change = 4.3156435901852254e-8 Iter 85: T = 842.3497444867853 K, F = -0.002070604496994033, relative_change = 1.804854904484977e-8 Iter 90: T = 842.3496980503459 K, F = -0.0008659515449120914, relative_change = 7.548120876683894e-9 Iter 95: T = 842.3496786300697 K, F = -0.00036215128041838796, relative_change = 3.1567146641997346e-9 Iter 100: T = 842.3496705082778 K, F = -0.0001514559914648217, relative_change = 1.320175840975007e-9 Iter 105: T = 842.3496671116472 K, F = -6.33407050869561e-5, relative_change = 5.521133195380579e-10 Iter 110: T = 842.3496656911359 K, F = -2.6489840107224438e-5, relative_change = 2.3090039261460137e-10 Iter 115: T = 842.349665097061 K, F = -1.1078368489680912e-5, relative_change = 9.656531077696323e-11 Iter 120: T = 842.3496648486117 K, F = -4.633103254603199e-6, relative_change = 4.0384742273877896e-11 Iter 125: T = 842.3496647447073 K, F = -1.9376186659592065e-6, relative_change = 1.6889377636475003e-11 Iter 130: T = 842.3496647012532 K, F = -8.103349458110642e-7, relative_change = 7.0633366387508136e-12 Iter 135: T = 842.3496646830803 K, F = -3.3889252648577894e-7, relative_change = 2.9539784894453138e-12 Iter 140: T = 842.3496646754801 K, F = -1.4172741269469213e-7, relative_change = 1.2353761023420295e-12 Iter 145: T = 842.3496646723016 K, F = -5.92727780190927e-8, relative_change = 5.166549793953087e-13 Converged in 150 iterations to T = 842.3496646709723 K Iter 1: T = 976.4397085418774 K, F = -5368.234820356213, relative_change = 0.023560291458122575 Iter 2: T = 955.0410219418503 K, F = -4539.193635778419, relative_change = 0.021915010637965384 Iter 3: T = 935.7122787743873 K, F = -3836.4467835503488, relative_change = 0.02023865229177547 Iter 5: T = 902.843558977774 K, F = -2736.6901498614293, relative_change = 0.016885900793173727 Iter 10: T = 848.7137403818489 K, F = -1166.980414630267, relative_change = 0.009500666201937024 Iter 15: T = 821.9898018065727 K, F = -493.1618183548224, relative_change = 0.00465299236780415 Iter 20: T = 809.8416781061962 K, F = -207.27212380827075, relative_change = 0.0020970088115923563 Iter 25: T = 804.5633690270879 K, F = -86.87492512663437, relative_change = 0.0009065309846608678 Iter 30: T = 802.318851343744 K, F = -36.366531274184325, relative_change = 0.000384547249526871 Iter 35: T = 801.3734875749283 K, F = -15.21500682437437, relative_change = 0.00016179117493187896 Iter 40: T = 800.9769419263782 K, F = -6.364167956923742, relative_change = 6.783396996391196e-5 Iter 45: T = 800.8108937409579 K, F = -2.6617586552283914, relative_change = 2.8398989962448542e-5 Iter 50: T = 800.7414139351258 K, F = -1.1132121002163033, relative_change = 1.1882054330324677e-5 Iter 55: T = 800.7123502656291 K, F = -0.4655643411233452, relative_change = 4.970137175358264e-6 Iter 60: T = 800.7001943747817 K, F = -0.1947055726189082, relative_change = 2.07873170193008e-6 Iter 65: T = 800.6951104406318 K, F = -0.08142837154382898, relative_change = 8.693785815597233e-7 Iter 70: T = 800.692984244473 K, F = -0.034054348182139815, relative_change = 3.6358943051079733e-7 Iter 75: T = 800.6920950378689 K, F = -0.014241940480027915, relative_change = 1.520583034268568e-7 Iter 80: T = 800.691723160002 K, F = -0.005956150533062532, relative_change = 6.359274911021738e-8 Iter 85: T = 800.691567636054 K, F = -0.0024909334476035383, relative_change = 2.65952734739629e-8 Iter 90: T = 800.6915025940497 K, F = -0.001041738145310389, relative_change = 1.1122465598173428e-8 Iter 95: T = 800.691475392701 K, F = -0.0004356673387642118, relative_change = 4.65154875365018e-9 Iter 100: T = 800.6914640167712 K, F = -0.00018220128452484108, relative_change = 1.9453333767924158e-9 Iter 105: T = 800.6914592592213 K, F = -7.619875382747221e-5, relative_change = 8.135616808119083e-10 Iter 110: T = 800.6914572695571 K, F = -3.1867226801818305e-5, relative_change = 3.402411929877883e-10 Iter 115: T = 800.6914564374558 K, F = -1.3327255817374706e-5, relative_change = 1.4229294156010598e-10 Iter 120: T = 800.6914560894611 K, F = -5.5736190424093834e-6, relative_change = 5.950862361980493e-11 Iter 125: T = 800.6914559439256 K, F = -2.330952540985365e-6, relative_change = 2.4887201027145687e-11 Iter 130: T = 800.6914558830608 K, F = -9.74831872335713e-7, relative_change = 1.0408121296632057e-11 Iter 135: T = 800.6914558576065 K, F = -4.07686826409126e-7, relative_change = 4.352805915937613e-12 Iter 140: T = 800.6914558469613 K, F = -1.7050033285226363e-7, relative_change = 1.8204043139987784e-12 Iter 145: T = 800.6914558425093 K, F = -7.130697621260396e-8, relative_change = 7.613329836226511e-13 Iter 150: T = 800.6914558406473 K, F = -2.982205271617744e-8, relative_change = 3.184052049089352e-13 Converged in 153 iterations to T = 800.6914558401022 K Iter 1: T = 980.7616175768378 K, F = -4383.483735543658, relative_change = 0.019238382423162243 Iter 2: T = 963.5388141613198 K, F = -3702.104677292836, relative_change = 0.017560641757239884 Iter 3: T = 948.2064011095661 K, F = -3125.1866033810206, relative_change = 0.01591260551875048 Iter 5: T = 922.6764323275 K, F = -2224.0227780253113, relative_change = 0.012791274621483975 Iter 10: T = 882.3681670890189 K, F = -943.5414285549905, relative_change = 0.006651124707993787 Iter 15: T = 863.4024591389709 K, F = -397.4424619547982, relative_change = 0.003099906855644591 Iter 20: T = 855.0131587827289 K, F = -166.76067690494665, relative_change = 0.0013619257778117021 Iter 25: T = 851.4160665469872 K, F = -69.84078861093852, relative_change = 0.0005818995751783394 Iter 30: T = 849.8955149273863 K, F = -29.225968778763864, relative_change = 0.00024558229944021817 Iter 35: T = 849.2567128509144 K, F = -12.225771735242802, relative_change = 0.00010309983984878581 Iter 40: T = 848.9890487415948 K, F = -5.11351164990811, relative_change = 4.3186952945670666e-5 Iter 45: T = 848.8770190061085 K, F = -2.138627598602655, relative_change = 1.8073460815282262e-5 Iter 50: T = 848.830151172805 K, F = -0.8944163949382393, relative_change = 7.560666289366692e-6 Iter 55: T = 848.8105477446068 K, F = -0.3740585556271996, relative_change = 3.162333477192307e-6 Iter 60: T = 848.8023488773687 K, F = -0.15643626899721608, relative_change = 1.3225907954522572e-6 Iter 65: T = 848.7989199293096 K, F = -0.06542360580022577, relative_change = 5.531346646029221e-7 Iter 70: T = 848.7974858876125 K, F = -0.027360948979528343, relative_change = 2.313295162447879e-7 Iter 75: T = 848.7968861516833 K, F = -0.011442678369081971, relative_change = 9.674511504709527e-8 Iter 80: T = 848.7966353345067 K, F = -0.004785465227222785, relative_change = 4.046002346712556e-8 Iter 85: T = 848.7965304396896 K, F = -0.00200133879335862, relative_change = 1.6920875682056608e-8 Iter 90: T = 848.7964865714106 K, F = -0.0008369837980932715, relative_change = 7.076514145188084e-9 Iter 95: T = 848.7964682251701 K, F = -0.00035003662294319504, relative_change = 2.9594830558890416e-9 Iter 100: T = 848.7964605525528 K, F = -0.00014638949737655338, relative_change = 1.2376912222770625e-9 Iter 105: T = 848.7964573437725 K, F = -6.122183596368735e-5, relative_change = 5.176172587909638e-10 Iter 110: T = 848.7964560018222 K, F = -2.5603701576892846e-5, relative_change = 2.1647370936012375e-10 Iter 115: T = 848.7964554406026 K, F = -1.0707771585183323e-5, relative_change = 9.053187229048015e-11 Iter 120: T = 848.7964552058938 K, F = -4.478118912576434e-6, relative_change = 3.786151831905896e-11 Iter 125: T = 848.7964551077359 K, F = -1.8728029314019068e-6, relative_change = 1.5834140164336897e-11 Iter 130: T = 848.7964550666851 K, F = -7.832306931909727e-7, relative_change = 6.622044621944778e-12 Iter 135: T = 848.7964550495171 K, F = -3.2755735945855236e-7, relative_change = 2.769426006471565e-12 Iter 140: T = 848.7964550423374 K, F = -1.3698941803141906e-7, relative_change = 1.1582156406133249e-12 Iter 145: T = 848.7964550393347 K, F = -5.729093643935812e-8, relative_change = 4.843823676610356e-13 Converged in 150 iterations to T = 848.7964550380789 K Iter 1: T = 967.3031694492923 K, F = -7450.003943694105, relative_change = 0.03269683055070766 Iter 2: T = 936.6805906739969 K, F = -6315.193426144827, relative_change = 0.03165768472849063 Iter 3: T = 908.1009565350093 K, F = -5351.733040633503, relative_change = 0.030511611347068483 Iter 5: T = 856.9324970546041 K, F = -3839.649248717933, relative_change = 0.027903995439375422 Iter 10: T = 761.7548034156722 K, F = -1662.6294586174677, relative_change = 0.019987452071801477 Iter 15: T = 706.0147851079755 K, F = -711.8659595265599, relative_change = 0.011980610409620547 Iter 20: T = 677.3422202522587 K, F = -301.7137072090289, relative_change = 0.006136623560065599 Iter 25: T = 663.9697268616017 K, F = -127.01594938103223, relative_change = 0.0028352154256037526 Iter 30: T = 658.0822946690143 K, F = -53.27875663039365, relative_change = 0.0012403013146691224 Iter 35: T = 655.5635019170032 K, F = -22.31073388362106, relative_change = 0.0005289129602036866 Iter 40: T = 654.4998007030887 K, F = -9.335757636705917, relative_change = 0.0002230344078729056 Iter 45: T = 654.0531127747699 K, F = -3.9052310138541513, relative_change = 9.360082204450794e-5 Iter 50: T = 653.8659791614822 K, F = -1.6333731168722336, relative_change = 3.920214554959398e-5 Iter 55: T = 653.787660913259 K, F = -0.6831239644035468, relative_change = 1.6404824927943593e-5 Iter 60: T = 653.7548973504036 K, F = -0.285695468400676, relative_change = 6.862447691761074e-6 Iter 65: T = 653.7411934983544 K, F = -0.11948210843662976, relative_change = 2.870264469595926e-6 Iter 70: T = 653.7354620795854 K, F = -0.0499689936222969, relative_change = 1.2004325630569175e-6 Iter 75: T = 653.7330650786018 K, F = -0.020897655938346527, relative_change = 5.020446239252634e-7 Iter 80: T = 653.7320626148583 K, F = -0.008739653838892858, relative_change = 2.0996269971362878e-7 Iter 85: T = 653.7316433709211 K, F = -0.0036550284054536752, relative_change = 8.78091957467457e-8 Iter 90: T = 653.7314680378151 K, F = -0.0015285766684779434, relative_change = 3.672290455775029e-8 Iter 95: T = 653.7313947113665 K, F = -0.0006392690420263802, relative_change = 1.535796603329023e-8 Iter 100: T = 653.7313640453614 K, F = -0.0002673499533642487, relative_change = 6.4228863746671405e-9 Iter 105: T = 653.7313512204702 K, F = -0.00011180894391166207, relative_change = 2.6861280522200166e-9 Iter 110: T = 653.7313458569473 K, F = -4.675983654650606e-5, relative_change = 1.1233708966100593e-9 Iter 115: T = 653.7313436138579 K, F = -1.9555522128456015e-5, relative_change = 4.698071338240452e-10 Iter 120: T = 653.7313426757711 K, F = -8.17835245386922e-6, relative_change = 1.9647894475873952e-10 Iter 125: T = 653.7313422834519 K, F = -3.4202845795583414e-6, relative_change = 8.216983930160176e-11 Iter 130: T = 653.7313421193794 K, F = -1.4304036839996037e-6, relative_change = 3.436440397199046e-11 Iter 135: T = 653.7313420507624 K, F = -5.982122397441003e-7, relative_change = 1.437161222931679e-11 Iter 140: T = 653.7313420220659 K, F = -2.5017915583624983e-7, relative_change = 6.01037153272872e-12 Iter 145: T = 653.7313420100646 K, F = -1.0462787675136198e-7, relative_change = 2.5136083376298646e-12 Iter 150: T = 653.7313420050456 K, F = -4.3756505863079553e-8, relative_change = 1.0512181015426692e-12 Iter 155: T = 653.7313420029466 K, F = -1.829939882957987e-8, relative_change = 4.396296943245757e-13 Converged in 159 iterations to T = 653.7313420021889 K Iter 1: T = 973.4724523492621 K, F = -6044.326966432954, relative_change = 0.026527547650737972 Iter 2: T = 949.1379894729755 K, F = -5115.035230671083, relative_change = 0.02499758757174963 Iter 3: T = 926.9295255616385 K, F = -4326.804363121806, relative_change = 0.02339856180835066 Iter 5: T = 888.5698162444194 K, F = -3091.9020649581116, relative_change = 0.02007097151214063 Iter 10: T = 823.2233406392847 K, F = -1323.9682748306373, relative_change = 0.012051911743889962 Iter 15: T = 789.5695151934297 K, F = -561.1924580461422, relative_change = 0.0061813100104728255 Iter 20: T = 773.8617130691581 K, F = -236.26360194596208, relative_change = 0.002858032726899138 Iter 25: T = 766.9433041441009 K, F = -99.10677256461553, relative_change = 0.0012507466660348946 Iter 30: T = 763.9828686916967 K, F = -41.501893646189856, relative_change = 0.0005334558820338275 Iter 35: T = 762.7325543434802 K, F = -17.36623599491584, relative_change = 0.00022496618958176836 Iter 40: T = 762.207481782631 K, F = -7.264466710992945, relative_change = 9.441439472931615e-5 Iter 45: T = 761.9875067090934 K, F = -3.0383848445376254, relative_change = 3.954339222222463e-5 Iter 50: T = 761.895443229104 K, F = -1.2707410321668027, relative_change = 1.654771397972563e-5 Iter 55: T = 761.856929400031 K, F = -0.5314482107279119, relative_change = 6.9222363569896425e-6 Iter 60: T = 761.8408203949002 K, F = -0.2222595866300231, relative_change = 2.895274185996344e-6 Iter 65: T = 761.8340830558687 K, F = -0.09295189298223472, relative_change = 1.2108928667445772e-6 Iter 70: T = 761.831265357132 K, F = -0.03887364060724474, relative_change = 5.064194125573888e-7 Iter 75: T = 761.8300869508345 K, F = -0.016257429297655945, relative_change = 2.1179231736624104e-7 Iter 80: T = 761.8295941253177 K, F = -0.0067990525782992695, relative_change = 8.857436869426502e-8 Iter 85: T = 761.8293880194636 K, F = -0.002843445249091525, relative_change = 3.704290993058012e-8 Iter 90: T = 761.8293018234748 K, F = -0.0011891628041326152, relative_change = 1.5491796225048827e-8 Iter 95: T = 761.8292657752727 K, F = -0.0004973220938737644, relative_change = 6.47885575083867e-9 Iter 100: T = 761.8292506994821 K, F = -0.0002079860394611499, relative_change = 2.70953511098287e-9 Iter 105: T = 761.8292443946062 K, F = -8.69822446456503e-5, relative_change = 1.13315997456748e-9 Iter 110: T = 761.8292417578319 K, F = -3.637701496495005e-5, relative_change = 4.739010610697967e-10 Iter 115: T = 761.8292406551013 K, F = -1.5213303439010062e-5, relative_change = 1.981911022319153e-10 Iter 120: T = 761.8292401939262 K, F = -6.3623844888116565e-6, relative_change = 8.28858770450743e-11 Iter 125: T = 761.8292400010572 K, F = -2.66082460209649e-6, relative_change = 3.466385621012819e-11 Iter 130: T = 761.8292399203972 K, F = -1.112789264956504e-6, relative_change = 1.4496846978068005e-11 Iter 135: T = 761.8292398866641 K, F = -4.653811003230146e-7, relative_change = 6.062745940987918e-12 Iter 140: T = 761.8292398725565 K, F = -1.946273868735915e-7, relative_change = 2.535505629811746e-12 Iter 145: T = 761.8292398666566 K, F = -8.139591356481901e-8, relative_change = 1.0603841546149935e-12 Iter 150: T = 761.829239864189 K, F = -3.4038671326008796e-8, relative_change = 4.4343832679094934e-13 Converged in 154 iterations to T = 761.8292398632985 K Iter 1: T = 969.9279556204164 K, F = -6851.943917787262, relative_change = 0.03007204437958362 Iter 2: T = 942.0115497640463 K, F = -5804.094664417556, relative_change = 0.028781937560004946 Iter 3: T = 916.2084563469258 K, F = -4914.762932619985, relative_change = 0.027391483070015092 Iter 5: T = 870.7388478430006 K, F = -3519.9217492247644, relative_change = 0.02434927330944036 Iter 10: T = 789.5443962727874 K, F = -1516.2141861534674, relative_change = 0.016049144113029823 Iter 15: T = 744.9153018578269 K, F = -645.855185419539, relative_change = 0.008881722491273775 Iter 20: T = 723.1090117108573 K, F = -272.74059732046777, relative_change = 0.004302519485653208 Iter 25: T = 713.2568227058758 K, F = -114.58685535063304, relative_change = 0.0019278483633994481 Iter 30: T = 708.9890893912618 K, F = -48.01868547114649, relative_change = 0.0008311504735000298 Iter 35: T = 707.176800070413 K, F = -20.09941207274878, relative_change = 0.000352152411710503 Iter 40: T = 706.4139404833229 K, F = -8.408895342905211, relative_change = 0.00014808649561574069 Iter 45: T = 706.0940296187667 K, F = -3.517241858077682, relative_change = 6.207473986235946e-5 Iter 50: T = 705.9600854820363 K, F = -1.4710474256908659, relative_change = 2.598552828783299e-5 Iter 55: T = 705.9040415256314 K, F = -0.6152262087640147, relative_change = 1.0871859908299258e-5 Iter 60: T = 705.8805985615779 K, F = -0.2572978534458572, relative_change = 4.54751196134773e-6 Iter 65: T = 705.8707936095816 K, F = -0.1076055433421178, relative_change = 1.9019585724087135e-6 Iter 70: T = 705.8666929173406 K, F = -0.04500201219694322, relative_change = 7.954453614029883e-7 Iter 75: T = 705.8649779336472 K, F = -0.018820394483517466, relative_change = 3.326688727188847e-7 Iter 80: T = 705.8642607025735 K, F = -0.007870916453499466, relative_change = 1.3912681657503271e-7 Iter 85: T = 705.8639607472013 K, F = -0.003291711735268099, relative_change = 5.8184622347984746e-8 Iter 90: T = 705.8638353021474 K, F = -0.0013766332411732085, relative_change = 2.4333525978589246e-8 Iter 95: T = 705.8637828395042 K, F = -0.0005757244767854441, relative_change = 1.0176575031617493e-8 Iter 100: T = 705.8637608989961 K, F = -0.00024077485426143852, relative_change = 4.255965885654329e-9 Iter 105: T = 705.8637517232129 K, F = -0.00010069491934072694, relative_change = 1.7798958674953929e-9 Iter 110: T = 705.8637478857906 K, F = -4.2111818591816785e-5, relative_change = 7.443737411494728e-10 Iter 115: T = 705.8637462809348 K, F = -1.7611665928618514e-5, relative_change = 3.11305999965029e-10 Iter 120: T = 705.8637456097649 K, F = -7.365408833837073e-6, relative_change = 1.3019188427956709e-10 Iter 125: T = 705.8637453290737 K, F = -3.08030290618877e-6, relative_change = 5.444781807975883e-11 Iter 130: T = 705.8637452116852 K, F = -1.2882190347784928e-6, relative_change = 2.277072023245387e-11 Iter 135: T = 705.863745162592 K, F = -5.387490642494441e-7, relative_change = 9.522995616729213e-12 Iter 140: T = 705.8637451420606 K, F = -2.2531130960956602e-7, relative_change = 3.982630795095196e-12 Iter 145: T = 705.8637451334741 K, F = -9.422795754776558e-8, relative_change = 1.665585123803549e-12 Iter 150: T = 705.8637451298831 K, F = -3.9406551688436764e-8, relative_change = 6.965551199703583e-13 Iter 155: T = 705.8637451283813 K, F = -1.6480492304182803e-8, relative_change = 2.913112363900494e-13 Converged in 157 iterations to T = 705.8637451280636 K Iter 1: T = 973.5692761755234 K, F = -6022.265565516048, relative_change = 0.02643072382447653 Iter 2: T = 949.3315068318135 K, F = -5096.230650623582, relative_change = 0.0248957829060951 Iter 3: T = 927.2188328905607 K, F = -4310.777186483661, relative_change = 0.02329288955661962 Iter 5: T = 889.0446309112998 K, F = -3080.2676969806216, relative_change = 0.019961672820518847 Iter 10: T = 824.0906971268814 K, F = -1318.7930955801282, relative_change = 0.011958852852283581 Iter 15: T = 790.6901736069066 K, F = -558.9364443500162, relative_change = 0.0061230720611813285 Iter 20: T = 775.116170441022 K, F = -235.2985359911212, relative_change = 0.002828316569994041 Iter 25: T = 768.2603167887113 K, F = -98.69880575352286, relative_change = 0.0012371473723802242 Iter 30: T = 765.3273736152721 K, F = -41.33046177287354, relative_change = 0.0005275420321378662 Iter 35: T = 764.0888047799522 K, F = -17.294394427237876, relative_change = 0.0002224515926354558 Iter 40: T = 763.5686888799112 K, F = -7.234395737583648, relative_change = 9.335539389056524e-5 Iter 45: T = 763.3507946218715 K, F = -3.025804238672557, relative_change = 3.909920709269205e-5 Iter 50: T = 763.2596027487502 K, F = -1.2654788723079646, relative_change = 1.6361722640917816e-5 Iter 55: T = 763.2214536787999 K, F = -0.5292473725449577, relative_change = 6.844412659354072e-6 Iter 60: T = 763.2054972627781 K, F = -0.22133914530912846, relative_change = 2.862720404008322e-6 Iter 65: T = 763.1988237457681 K, F = -0.09256694914163754, relative_change = 1.1972772648504197e-6 Iter 70: T = 763.1960327394632 K, F = -0.03871265174661409, relative_change = 5.007249915886847e-7 Iter 75: T = 763.1948654964871 K, F = -0.01619010170145374, relative_change = 2.094108051289909e-7 Iter 80: T = 763.1943773396443 K, F = -0.006770895352979922, relative_change = 8.75783853306591e-8 Iter 85: T = 763.1941731862923 K, F = -0.002831669555571237, relative_change = 3.6626376629171124e-8 Iter 90: T = 763.1940878068646 K, F = -0.0011842380683155795, relative_change = 1.5317596831307455e-8 Iter 95: T = 763.1940521001583 K, F = -0.0004952625127359056, relative_change = 6.4060034790366905e-9 Iter 100: T = 763.1940371671855 K, F = -0.0002071246981552033, relative_change = 2.6790674167023812e-9 Iter 105: T = 763.1940309220377 K, F = -8.66220245339111e-5, relative_change = 1.1204180602601384e-9 Iter 110: T = 763.1940283102422 K, F = -3.6226366078917493e-5, relative_change = 4.685722331260767e-10 Iter 115: T = 763.1940272179581 K, F = -1.5150301534427868e-5, relative_change = 1.9596253887099287e-10 Iter 120: T = 763.1940267611517 K, F = -6.3360362220210575e-6, relative_change = 8.195386376718037e-11 Iter 125: T = 763.1940265701099 K, F = -2.6498057685842014e-6, relative_change = 3.427408139999334e-11 Iter 130: T = 763.194026490214 K, F = -1.1081818426239565e-6, relative_change = 1.4333848597255254e-11 Iter 135: T = 763.1940264568005 K, F = -4.6345444404405356e-7, relative_change = 5.994581014166241e-12 Iter 140: T = 763.1940264428265 K, F = -1.9382114557764396e-7, relative_change = 2.506991948090031e-12 Iter 145: T = 763.1940264369825 K, F = -8.105868853913734e-8, relative_change = 1.0484587679642897e-12 Iter 150: T = 763.1940264345385 K, F = -3.390070568709547e-8, relative_change = 4.384908361944772e-13 Converged in 154 iterations to T = 763.1940264336563 K Iter 1: T = 964.3291409599188 K, F = -8127.639164029284, relative_change = 0.03567085904008111 Iter 2: T = 930.5840893376933 K, F = -6895.148368284842, relative_change = 0.03499329242361669 Iter 3: T = 898.7338955608209 K, F = -5848.485661792996, relative_change = 0.03422602443110818 Iter 5: T = 840.6051297490759 K, F = -4204.9573844831675, relative_change = 0.03239694021628296 Iter 10: T = 726.4610898406917 K, F = -1833.7730199478367, relative_change = 0.02600239695145294 Iter 15: T = 652.8281346370983 K, F = -791.7983385156705, relative_change = 0.017801967498241682 Iter 20: T = 611.1949783778037 K, F = -338.037499474271, relative_change = 0.010201445255132106 Iter 25: T = 590.3996657579049 K, F = -142.9701639580163, relative_change = 0.005059005356189976 Iter 30: T = 580.8796949457957 K, F = -60.11601936495797, relative_change = 0.002295415532964337 Iter 35: T = 576.728581859001 K, F = -25.202022069875603, relative_change = 0.0009954610384501344 Iter 40: T = 574.96052465066 K, F = -10.550749719503994, relative_change = 0.0004228633697267423 Iter 45: T = 574.2153161992219 K, F = -4.414392410722323, relative_change = 0.00017801869242847567 Iter 50: T = 573.9026349360696 K, F = -1.8464933321070116, relative_change = 7.465655954295735e-5 Iter 55: T = 573.7716873555804 K, F = -0.7722854679536388, relative_change = 3.1258620170975275e-5 Iter 60: T = 573.7168918584262 K, F = -0.32298949334579596, relative_change = 1.3079097735279603e-5 Iter 65: T = 573.6939701848662 K, F = -0.1350798984518015, relative_change = 5.470949695014227e-6 Iter 70: T = 573.6843830974756 K, F = -0.05649234772017239, relative_change = 2.288211541529823e-6 Iter 75: T = 573.6803734933917 K, F = -0.023625830620292804, relative_change = 9.569915109220136e-7 Iter 80: T = 573.6786965994062 K, F = -0.009880614335033566, relative_change = 4.0023124613453673e-7 Iter 85: T = 573.6779952971253 K, F = -0.004132192630928122, relative_change = 1.6738253060473107e-7 Iter 90: T = 573.6777020032285 K, F = -0.0017281326075486159, relative_change = 7.000155582531086e-8 Iter 95: T = 573.6775793440594 K, F = -0.0007227257469269444, relative_change = 2.9275518555888015e-8 Iter 100: T = 573.6775280465022 K, F = -0.00030225254691362835, relative_change = 1.224337703524628e-8 Iter 105: T = 573.6775065932463 K, F = -0.00012640562603077887, relative_change = 5.1203274553439506e-9 Iter 110: T = 573.6774976212378 K, F = -5.286434242590676e-5, relative_change = 2.14138225161463e-9 Iter 115: T = 573.6774938690364 K, F = -2.21084993502485e-5, relative_change = 8.955516595902954e-10 Iter 120: T = 573.677492299821 K, F = -9.24603822199943e-6, relative_change = 3.745303944424624e-10 Iter 125: T = 573.6774916435564 K, F = -3.866803247043471e-6, relative_change = 1.5663307012815993e-10 Iter 130: T = 573.6774913690988 K, F = -1.617143644161434e-6, relative_change = 6.550583472118815e-11 Iter 135: T = 573.6774912543173 K, F = -6.763086734529189e-7, relative_change = 2.739531790256408e-11 Iter 140: T = 573.6774912063142 K, F = -2.8284042291604194e-7, relative_change = 1.1457051504318525e-11 Iter 145: T = 573.677491186239 K, F = -1.1828784690637306e-7, relative_change = 4.791500241001026e-12 Iter 150: T = 573.6774911778431 K, F = -4.94697041109049e-8, relative_change = 2.003875337876279e-12 Iter 155: T = 573.6774911743319 K, F = -2.0689002178109206e-8, relative_change = 8.380519345384733e-13 Iter 160: T = 573.6774911728634 K, F = -8.652433047817709e-9, relative_change = 3.5048516075603754e-13 Converged in 163 iterations to T = 573.6774911724334 K Iter 1: T = 963.5639003767885 K, F = -8301.999958827242, relative_change = 0.03643609962321142 Iter 2: T = 929.0056212639631 K, F = -7044.520985325952, relative_change = 0.03586506208805862 Iter 3: T = 896.2916287879385 K, F = -5976.588956166289, relative_change = 0.03521398765221191 Iter 5: T = 836.2776532737405 K, F = -4299.5013441969695, relative_change = 0.03364249563197223 Iter 10: T = 716.5786481650078 K, F = -1878.88659659541, relative_change = 0.02792117067423527 Iter 15: T = 636.9266409810012 K, F = -813.6074445793014, relative_change = 0.02000754275404664 Iter 20: T = 590.2648837720517 K, F = -348.360366387994, relative_change = 0.011997489358848937 Iter 25: T = 566.2557602208317 K, F = -147.65019115438864, relative_change = 0.0061471241236635 Iter 30: T = 555.0562773574618 K, F = -62.1587340619858, relative_change = 0.0028405597214425002 Iter 35: T = 550.1250883760805 K, F = -26.073564379326815, relative_change = 0.0012427444337501843 Iter 40: T = 548.0153095097958 K, F = -10.918457028927143, relative_change = 0.0005299749028269235 Iter 45: T = 547.1243203759734 K, F = -4.568750602258488, relative_change = 0.00022348586479551148 Iter 50: T = 546.7501576742168 K, F = -1.9111501627699534, relative_change = 9.379093405796561e-5 Iter 55: T = 546.5934069458699 K, F = -0.7993437235880686, relative_change = 3.928188307690697e-5 Iter 60: T = 546.5278043003378 K, F = -0.33430873318213417, relative_change = 1.643821254323682e-5 Iter 65: T = 546.5003601510704 K, F = -0.1398142918793445, relative_change = 6.87641787183393e-6 Iter 70: T = 546.4888812207229 K, F = -0.058472424198236034, relative_change = 2.876108204849083e-6 Iter 75: T = 546.4840803396611 K, F = -0.024453939148371767, relative_change = 1.2028766996526205e-6 Iter 80: T = 546.4820725092097 K, F = -0.010226942167483044, relative_change = 5.030668289725578e-7 Iter 85: T = 546.4812328027257 K, F = -0.004277031583174162, relative_change = 2.1039020469431258e-7 Iter 90: T = 546.4808816260798 K, F = -0.0017887060770249985, relative_change = 8.798798458624974e-8 Iter 95: T = 546.4807347595737 K, F = -0.0007480583112066674, relative_change = 3.679767638573566e-8 Iter 100: T = 546.4806733382051 K, F = -0.00031284693137767494, relative_change = 1.5389236543014418e-8 Iter 105: T = 546.4806476510479 K, F = -0.00013083632482546736, relative_change = 6.435964044368537e-9 Iter 110: T = 546.4806369083708 K, F = -5.4717314104724135e-5, relative_change = 2.6915973038086415e-9 Iter 115: T = 546.4806324156546 K, F = -2.288343375900226e-5, relative_change = 1.125658158228897e-9 Iter 120: T = 546.4806305367471 K, F = -9.570125447361244e-6, relative_change = 4.707637007140074e-10 Iter 125: T = 546.4806297509654 K, F = -4.0023404139499785e-6, relative_change = 1.9687898638842227e-10 Iter 130: T = 546.4806294223422 K, F = -1.6738268114047106e-6, relative_change = 8.2337155983527e-11 Iter 135: T = 546.4806292849081 K, F = -7.000142556168321e-7, relative_change = 3.443437674179366e-11 Iter 140: T = 546.4806292274315 K, F = -2.9275412827267644e-7, relative_change = 1.4400858082270847e-11 Iter 145: T = 546.4806292033941 K, F = -1.224337145833143e-7, relative_change = 6.022632572158145e-12 Iter 150: T = 546.4806291933414 K, F = -5.120364424127111e-8, relative_change = 2.5187566733331105e-12 Iter 155: T = 546.4806291891372 K, F = -2.1414428397203977e-8, relative_change = 1.053396398484706e-12 Iter 160: T = 546.4806291873789 K, F = -8.955790914422224e-9, relative_change = 4.405439977193462e-13 Converged in 164 iterations to T = 546.4806291867443 K Iter 1: T = 969.3314646507873 K, F = -6987.854952626649, relative_change = 0.03066853534921273 Iter 2: T = 940.8041157823603 K, F = -5920.1813815071, relative_change = 0.029429921454890907 Iter 3: T = 914.3788239739617 K, F = -5013.947494889886, relative_change = 0.02808798491110301 Iter 5: T = 867.6483008005451 K, F = -3592.3679331908484, relative_change = 0.02512616526198203 Iter 10: T = 783.4661989830144 K, F = -1549.1544513622305, relative_change = 0.016857087701449787 Iter 15: T = 736.5871072607983 K, F = -660.5661372614791, relative_change = 0.009478936495577073 Iter 20: T = 713.4513937456695 K, F = -279.14576028677675, relative_change = 0.004640536236729072 Iter 25: T = 702.9367161745678 K, F = -117.32119373024999, relative_change = 0.002090958247512277 Iter 30: T = 698.3686361164359 K, F = -49.173054282635924, relative_change = 0.0009038267855470011 Iter 35: T = 696.4262293313988 K, F = -20.58417049924857, relative_change = 0.00038338361495669695 Iter 40: T = 695.6081287766751 K, F = -8.611981901213396, relative_change = 0.00016129862644578355 Iter 45: T = 695.2649685700279 K, F = -3.60223767309261, relative_change = 6.762693416533469e-5 Iter 50: T = 695.1212753814534 K, F = -1.50660467750729, relative_change = 2.831222112733003e-5 Iter 55: T = 695.0611497102161 K, F = -0.6300986006530619, relative_change = 1.1845734311806601e-5 Iter 60: T = 695.0359989282529 K, F = -0.26351800216322935, relative_change = 4.954942062833095e-6 Iter 65: T = 695.025479607105 K, F = -0.11020694274442444, relative_change = 2.072375936354367e-6 Iter 70: T = 695.0210801327828 K, F = -0.046089958801408426, relative_change = 8.667203516457372e-7 Iter 75: T = 695.019240190592 K, F = -0.019275388547603356, relative_change = 3.6247769677671715e-7 Iter 80: T = 695.0184706996366 K, F = -0.008061200720028805, relative_change = 1.5159335780514844e-7 Iter 85: T = 695.0181488884275 K, F = -0.0033712909434647775, relative_change = 6.339830239417972e-8 Iter 90: T = 695.0180143029787 K, F = -0.001409914226365605, relative_change = 2.6513953373349584e-8 Iter 95: T = 695.0179580177092 K, F = -0.0005896429833343042, relative_change = 1.1088456519304772e-8 Iter 100: T = 695.0179344785324 K, F = -0.00024659573935859047, relative_change = 4.637325724086638e-9 Iter 105: T = 695.0179246341669 K, F = -0.00010312928413924727, relative_change = 1.9393851481008748e-9 Iter 110: T = 695.0179205171355 K, F = -4.312989881061213e-5, relative_change = 8.11074063488228e-10 Iter 115: T = 695.0179187953437 K, F = -1.8037439371565434e-5, relative_change = 3.39200875077721e-10 Iter 120: T = 695.0179180752699 K, F = -7.54347392972754e-6, relative_change = 1.4185788337256451e-10 Iter 125: T = 695.0179177741263 K, F = -3.1547701492273816e-6, relative_change = 5.932664724351117e-11 Iter 130: T = 695.0179176481845 K, F = -1.3193621928309085e-6, relative_change = 2.4811105648125896e-11 Iter 135: T = 695.0179175955142 K, F = -5.517740839788843e-7, relative_change = 1.03763205970478e-11 Iter 140: T = 695.0179175734868 K, F = -2.307584997529588e-7, relative_change = 4.339500972980484e-12 Iter 145: T = 695.0179175642746 K, F = -9.650560361951221e-8, relative_change = 1.814824421547663e-12 Iter 150: T = 695.017917560422 K, F = -4.0359402042611237e-8, relative_change = 7.58973839039491e-13 Iter 155: T = 695.0179175588108 K, F = -1.6878491160277065e-8, relative_change = 3.17406417957479e-13 Converged in 158 iterations to T = 695.0179175583391 K Iter 1: T = 966.4676914083635 K, F = -7640.36841006452, relative_change = 0.03353230859163646 Iter 2: T = 934.974009757887 K, F = -6478.02592189896, relative_change = 0.03258637813808664 Iter 3: T = 905.4892464500928 K, F = -5491.106011492286, relative_change = 0.03153538280216936 Iter 5: T = 852.4220010786063 K, F = -3941.9389213356026, relative_change = 0.029113173196474856 Iter 10: T = 752.2929352161484 K, F = -1710.0910850764446, relative_change = 0.021480424921052576 Iter 15: T = 692.2310101965711 K, F = -733.6698071006736, relative_change = 0.01328995309295014 Iter 20: T = 660.6651827433255 K, F = -311.4477953460864, relative_change = 0.006975141044729083 Iter 25: T = 645.730770028934 K, F = -131.23703919053693, relative_change = 0.0032689404002559158 Iter 30: T = 639.104898148557 K, F = -55.07502729961643, relative_change = 0.001440134890155182 Iter 35: T = 636.2598904362619 K, F = -23.067789850801656, relative_change = 0.0006160785853045017 Iter 40: T = 635.0565051603147 K, F = -9.653421405814147, relative_change = 0.0002601464780116197 Iter 45: T = 634.5508130336682 K, F = -4.038268677284806, relative_change = 0.00010923898147652072 Iter 50: T = 634.3388992696748 K, F = -1.6890439318627324, relative_change = 4.576292412189536e-5 Iter 55: T = 634.2501994007699 K, F = -0.7064119279761168, relative_change = 1.915225636533261e-5 Iter 60: T = 634.2130909184648 K, F = -0.2954357820177668, relative_change = 8.012093110516893e-6 Iter 65: T = 634.1975694087184 K, F = -0.12355580049000847, relative_change = 3.351171355114004e-6 Iter 70: T = 634.1910777257244 K, F = -0.051672691176352814, relative_change = 1.4015730620377118e-6 Iter 75: T = 634.1883627560076 K, F = -0.021610168004756125, relative_change = 5.861673929952755e-7 Iter 80: T = 634.1872273109417 K, F = -0.009037635839489633, relative_change = 2.451444428660542e-7 Iter 85: T = 634.1867524521026 K, F = -0.0037796482015455823, relative_change = 1.0252272520551636e-7 Iter 90: T = 634.1865538600887 K, F = -0.001580694184433129, relative_change = 4.2876296541629614e-8 Iter 95: T = 634.1864708064709 K, F = -0.0006610652147079343, relative_change = 1.7931391239970048e-8 Iter 100: T = 634.1864360724445 K, F = -0.00027646537199632615, relative_change = 7.499124037922312e-9 Iter 105: T = 634.186421546258 K, F = -0.00011562112153173931, relative_change = 3.1362236075478432e-9 Iter 110: T = 634.186415471233 K, F = -4.835413434739477e-5, relative_change = 1.3116062408843708e-9 Iter 115: T = 634.1864129305849 K, F = -2.0222277282044843e-5, relative_change = 5.485294267365403e-10 Iter 120: T = 634.1864118680554 K, F = -8.457197407218953e-6, relative_change = 2.294015465163517e-10 Iter 125: T = 634.1864114236929 K, F = -3.536901580614149e-6, relative_change = 9.593848364981126e-11 Iter 130: T = 634.1864112378552 K, F = -1.4791733601859924e-6, relative_change = 4.012258927622796e-11 Iter 135: T = 634.1864111601357 K, F = -6.186088203352647e-7, relative_change = 1.677976923024383e-11 Iter 140: T = 634.1864111276325 K, F = -2.5870966174901255e-7, relative_change = 7.01750165878563e-12 Iter 145: T = 634.1864111140392 K, F = -1.0819521450988745e-7, relative_change = 2.9347960653664362e-12 Iter 150: T = 634.1864111083543 K, F = -4.524829066987479e-8, relative_change = 1.2273602490620067e-12 Iter 155: T = 634.1864111059768 K, F = -1.892298717720564e-8, relative_change = 5.132861796852287e-13 Converged in 160 iterations to T = 634.1864111049825 K Iter 1: T = 966.5474362723866 K, F = -7622.198466939922, relative_change = 0.033452563727613426 Iter 2: T = 935.1371038417432 K, F = -6462.4807756246055, relative_change = 0.03249745563630207 Iter 3: T = 905.7391877013731 K, F = -5477.7971620374465, relative_change = 0.03143701177035662 Iter 5: T = 852.855027459746 K, F = -3932.1644628756053, relative_change = 0.028996041997524386 Iter 10: T = 753.2102513890862 K, F = -1705.5414458496982, relative_change = 0.021332050652811848 Iter 15: T = 693.580982408887 K, F = -731.5693100214816, relative_change = 0.013156179792510596 Iter 20: T = 662.3109693095317 K, F = -310.50548352556586, relative_change = 0.006887613220457638 Iter 25: T = 647.5385564163943 K, F = -130.82708374276106, relative_change = 0.003223089951364132 Iter 30: T = 640.9898740962761 K, F = -54.90027324560011, relative_change = 0.0014188771612703114 Iter 35: T = 638.1790924024464 K, F = -22.99407952340555, relative_change = 0.000606779919088203 Iter 40: T = 636.990386643739 K, F = -9.622481507023076, relative_change = 0.00025618259432967335 Iter 45: T = 636.490899680177 K, F = -4.025309121540677, relative_change = 0.00010756782829393134 Iter 50: T = 636.2815926895711 K, F = -1.6836205498965597, relative_change = 4.506166162167214e-5 Iter 55: T = 636.1939850622315 K, F = -0.7041431839344768, relative_change = 1.8858564603920902e-5 Iter 60: T = 636.1573337291476 K, F = -0.2944868574449676, relative_change = 7.88919493963298e-6 Iter 65: T = 636.1420034678232 K, F = -0.12315892987595262, relative_change = 3.2997611366477034e-6 Iter 70: T = 636.1355917782544 K, F = -0.05150671181847544, relative_change = 1.3800704666342887e-6 Iter 75: T = 636.1329102646763 K, F = -0.021540752872987012, relative_change = 5.77174361064428e-7 Iter 80: T = 636.1317888117053 K, F = -0.009008605499434219, relative_change = 2.4138338131389494e-7 Iter 85: T = 636.1313198045866 K, F = -0.0037675073493114164, relative_change = 1.0094979243792371e-7 Iter 90: T = 636.1311236598424 K, F = -0.00157561673225326, relative_change = 4.221847519703174e-8 Iter 95: T = 636.1310416297039 K, F = -0.0006589417629878636, relative_change = 1.765628213195239e-8 Iter 100: T = 636.131007323709 K, F = -0.00027557731957561504, relative_change = 7.384070074457092e-9 Iter 105: T = 636.1309929765305 K, F = -0.00011524972735788008, relative_change = 3.088106653928787e-9 Iter 110: T = 636.1309869763686 K, F = -4.819881246242996e-5, relative_change = 1.291483143371007e-9 Iter 115: T = 636.1309844670293 K, F = -2.015731987814462e-5, relative_change = 5.401137081409991e-10 Iter 120: T = 636.1309834175936 K, F = -8.43003306028045e-6, relative_change = 2.2588203586718257e-10 Iter 125: T = 636.1309829787069 K, F = -3.525540236137825e-6, relative_change = 9.446655819637203e-11 Iter 130: T = 636.1309827951594 K, F = -1.4744228284957472e-6, relative_change = 3.950703744572035e-11 Iter 135: T = 636.1309827183976 K, F = -6.166214011060767e-7, relative_change = 1.6522319328289034e-11 Iter 140: T = 636.1309826862948 K, F = -2.5787818652700523e-7, relative_change = 6.909824633040928e-12 Iter 145: T = 636.1309826728691 K, F = -1.0784801512953024e-7, relative_change = 2.8897786264036736e-12 Iter 150: T = 636.1309826672544 K, F = -4.510375378741216e-8, relative_change = 1.2085513443559497e-12 Iter 155: T = 636.1309826649061 K, F = -1.8862270467767672e-8, relative_change = 5.054129738130322e-13 Converged in 160 iterations to T = 636.1309826639241 K Iter 1: T = 976.5208103801718 K, F = -5349.755689353078, relative_change = 0.02347918961982821 Iter 2: T = 955.2015721920642 K, F = -4523.467442403857, relative_change = 0.021831831909253238 Iter 3: T = 935.9499451398823 K, F = -3823.0676038301153, relative_change = 0.02015451776110661 Iter 5: T = 903.2258724281525 K, F = -2727.019382264776, relative_change = 0.016803401583883548 Iter 10: T = 849.3807876217986 K, F = -1162.7337187329438, relative_change = 0.009438754583477703 Iter 15: T = 822.8248925187177 K, F = -491.3318524168611, relative_change = 0.004617595058516308 Iter 20: T = 810.7606006068794 K, F = -206.49499940983256, relative_change = 0.0020798355791543798 Iter 25: T = 805.5203322511662 K, F = -86.54762507032167, relative_change = 0.0008988598339495811 Iter 30: T = 803.2923026974325 K, F = -36.22922930225364, relative_change = 0.00038124706600060405 Iter 35: T = 802.3539404695182 K, F = -15.157510332417754, relative_change = 0.00016039439477841518 Iter 40: T = 801.9603418540219 K, F = -6.340108977719302, relative_change = 6.724687723817259e-5 Iter 45: T = 801.7955294867406 K, F = -2.6516945753433365, relative_change = 2.8152943255291848e-5 Iter 50: T = 801.7265670998931 K, F = -1.1090027741303572, relative_change = 1.1779063934359114e-5 Iter 55: T = 801.6977199236737 K, F = -0.46380387933585965, relative_change = 4.927049478569333e-6 Iter 60: T = 801.6856545908348 K, F = -0.19396931399247874, relative_change = 2.0607091334307523e-6 Iter 65: T = 801.6806085322629 K, F = -0.08112045721027428, relative_change = 8.618408420266863e-7 Iter 70: T = 801.6784981766723 K, F = -0.033925574350385124, relative_change = 3.604369728019779e-7 Iter 75: T = 801.6776155948787 K, F = -0.014188085658954352, relative_change = 1.5073989309219702e-7 Iter 80: T = 801.6772464876035 K, F = -0.005933627791500973, relative_change = 6.304137155602995e-8 Iter 85: T = 801.677092122353 K, F = -0.002481514166014387, relative_change = 2.6364680340553265e-8 Iter 90: T = 801.6770275649303 K, F = -0.0010377988870204913, relative_change = 1.1026028696307935e-8 Iter 95: T = 801.6770005662397 K, F = -0.0004340198936134687, relative_change = 4.611217673243167e-9 Iter 100: T = 801.6769892750638 K, F = -0.00018151230115215355, relative_change = 1.9284664123200683e-9 Iter 105: T = 801.6769845529591 K, F = -7.591061217837591e-5, relative_change = 8.06507708298513e-10 Iter 110: T = 801.6769825781186 K, F = -3.174672673944556e-5, relative_change = 3.3729118227566363e-10 Iter 115: T = 801.6769817522165 K, F = -1.3276860670430324e-5, relative_change = 1.410592056043545e-10 Iter 120: T = 801.6769814068144 K, F = -5.55253986633808e-6, relative_change = 5.899262511530845e-11 Iter 125: T = 801.6769812623633 K, F = -2.322139862398487e-6, relative_change = 2.4671435015856534e-11 Iter 130: T = 801.676981201952 K, F = -9.711466766315624e-7, relative_change = 1.0317889339890909e-11 Iter 135: T = 801.6769811766873 K, F = -4.0614427532226216e-7, relative_change = 4.3150553775965916e-12 Iter 140: T = 801.6769811661213 K, F = -1.6985480066900038e-7, relative_change = 1.8046120938225773e-12 Iter 145: T = 801.6769811617025 K, F = -7.103701227251236e-8, relative_change = 7.547284560368577e-13 Iter 150: T = 801.6769811598544 K, F = -2.970774448662894e-8, relative_change = 3.156281410451843e-13 Converged in 153 iterations to T = 801.6769811593134 K Iter 1: T = 965.1750091160133 K, F = -7934.9073000348335, relative_change = 0.03482499088398671 Iter 2: T = 932.3241849177704 K, F = -6730.1067920533915, relative_change = 0.034036132191539434 Iter 3: T = 901.4180621688303 K, F = -5707.021304064434, relative_change = 0.03314954524285556 Iter 5: T = 845.3269159729404 K, F = -4100.716889593044, relative_change = 0.031064411010117445 Iter 10: T = 736.9755171180016 K, F = -1784.451627414652, relative_change = 0.024079083923644825 Iter 15: T = 669.211613013454 K, F = -768.3585297979319, relative_change = 0.015774242987529392 Iter 20: T = 632.130462545983 K, F = -327.1802879703832, relative_change = 0.00868261500582968 Iter 25: T = 614.0727631226047 K, F = -138.13444579412806, relative_change = 0.004191354828704592 Iter 30: T = 605.9300898699266 K, F = -58.02755604216101, relative_change = 0.0018745950378712029 Iter 35: T = 602.4062635154992 K, F = -24.315609712124303, relative_change = 0.0008075033397975395 Iter 40: T = 600.9105211146663 K, F = -10.177648977086388, relative_change = 0.0003420057434462231 Iter 45: T = 600.2810255418378 K, F = -4.25792942643581, relative_change = 0.00014379676959619823 Iter 50: T = 600.0170628015522 K, F = -1.7809831194299566, relative_change = 6.027253560550541e-5 Iter 55: T = 599.9065473857688 K, F = -0.7448750535081842, relative_change = 2.5230385372379723e-5 Iter 60: T = 599.8603069552847 K, F = -0.3115238074723831, relative_change = 1.0555797810391254e-5 Iter 65: T = 599.8409648803503 K, F = -0.13028440508109573, relative_change = 4.415286848914276e-6 Iter 70: T = 599.8328751331941 K, F = -0.05448674398600084, relative_change = 1.8466527233053437e-6 Iter 75: T = 599.8294917887958 K, F = -0.02278705074261922, relative_change = 7.723144429800821e-7 Iter 80: T = 599.8280768135563 K, F = -0.009529824396611097, relative_change = 3.2299500991137793e-7 Iter 85: T = 599.8274850504787 K, F = -0.003985487709123436, relative_change = 1.3508105027629538e-7 Iter 90: T = 599.8272375674744 K, F = -0.0016667787907737042, relative_change = 5.6492627335840694e-8 Iter 95: T = 599.8271340670183 K, F = -0.0006970668364299493, relative_change = 2.3625912200627765e-8 Iter 100: T = 599.8270907818727 K, F = -0.0002915216837294232, relative_change = 9.88064230098768e-9 Iter 105: T = 599.8270726795045 K, F = -0.00012191785028781155, relative_change = 4.132203225748512e-9 Iter 110: T = 599.8270651088774 K, F = -5.098750197252144e-5, relative_change = 1.728136874843491e-9 Iter 115: T = 599.8270619427506 K, F = -2.1323581586074614e-5, relative_change = 7.227274752259219e-10 Iter 120: T = 599.8270606186385 K, F = -8.917776649353115e-6, relative_change = 3.022532703587257e-10 Iter 125: T = 599.827060064879 K, F = -3.7295206340992593e-6, relative_change = 1.2640592580475303e-10 Iter 130: T = 599.8270598332901 K, F = -1.5597297028935309e-6, relative_change = 5.2864455463579246e-11 Iter 135: T = 599.8270597364369 K, F = -6.522972817446515e-7, relative_change = 2.2108536217744016e-11 Iter 140: T = 599.8270596959318 K, F = -2.727990547346515e-7, relative_change = 9.246072231935734e-12 Iter 145: T = 599.827059678992 K, F = -1.1408718725292033e-7, relative_change = 3.866796295341853e-12 Iter 150: T = 599.8270596719077 K, F = -4.771295430971989e-8, relative_change = 1.6171515786957181e-12 Iter 155: T = 599.827059668945 K, F = -1.9954942198641135e-8, relative_change = 6.763397225541163e-13 Iter 160: T = 599.8270596677058 K, F = -8.345081903282647e-9, relative_change = 2.8284273254359107e-13 Converged in 162 iterations to T = 599.8270596674436 K Iter 1: T = 964.5319125467955 K, F = -8081.437465073864, relative_change = 0.03546808745320446 Iter 2: T = 931.0016724663583 K, F = -6855.577952279037, relative_change = 0.03476322519169155 Iter 3: T = 899.3788129824069 K, F = -5814.560801410006, relative_change = 0.03396649052216836 Iter 5: T = 841.7428683621783 K, F = -4179.943687797241, relative_change = 0.03207334589889217 Iter 10: T = 729.0194278665929 K, F = -1821.8990538140054, relative_change = 0.025523480520875438 Iter 15: T = 656.8625270290606 K, F = -786.1194674823665, relative_change = 0.01728075897664045 Iter 20: T = 616.4050861995388 K, F = -335.3868751519199, relative_change = 0.009799527436800232 Iter 25: T = 596.3317066425727 K, F = -141.78247558066457, relative_change = 0.00482488823880771 Iter 30: T = 587.1795161199781 K, F = -59.60128643535872, relative_change = 0.0021806779797574677 Iter 35: T = 583.1969675158962 K, F = -24.98318136441984, relative_change = 0.0009439632077035537 Iter 40: T = 581.5022975098497 K, F = -10.4585672935287, relative_change = 0.00040066186457855086 Iter 45: T = 580.7883119680628 K, F = -4.375722288965129, relative_change = 0.00016861357123353486 Iter 50: T = 580.4887834504489 K, F = -1.830300119711981, relative_change = 7.070190458857732e-5 Iter 55: T = 580.3633532614634 K, F = -0.7655096012079293, relative_change = 2.960098490390184e-5 Iter 60: T = 580.3108681450243 K, F = -0.32015510158722676, relative_change = 1.238519711763054e-5 Iter 65: T = 580.2889132155859 K, F = -0.1338944093592414, relative_change = 5.180637007850168e-6 Iter 70: T = 580.2797305223207 K, F = -0.055996542322753806, relative_change = 2.1667791579603573e-6 Iter 75: T = 580.2758900564679 K, F = -0.023418475435103614, relative_change = 9.062035128549671e-7 Iter 80: T = 580.2742839008706 K, F = -0.009793895317604051, relative_change = 3.78990482236825e-7 Iter 85: T = 580.2736121827112 K, F = -0.00409592559670352, relative_change = 1.5849928162991483e-7 Iter 90: T = 580.2733312613317 K, F = -0.001712965281623846, relative_change = 6.628645612796405e-8 Iter 95: T = 580.273213776512 K, F = -0.0007163825875728946, relative_change = 2.7721816223817428e-8 Iter 100: T = 580.2731646429321 K, F = -0.00029959976231541674, relative_change = 1.1593599626494341e-8 Iter 105: T = 580.2731440946778 K, F = -0.0001252962003951974, relative_change = 4.848582708398489e-9 Iter 110: T = 580.2731355011516 K, F = -5.240036728137998e-5, relative_change = 2.0277353329651935e-9 Iter 115: T = 580.2731319072362 K, F = -2.1914459624183813e-5, relative_change = 8.480231666024351e-10 Iter 120: T = 580.2731304042179 K, F = -9.16488929059156e-6, relative_change = 3.546534419235009e-10 Iter 125: T = 580.2731297756376 K, F = -3.83286563093721e-6, relative_change = 1.4832028542320614e-10 Iter 130: T = 580.2731295127579 K, F = -1.6029503554504387e-6, relative_change = 6.202932156906558e-11 Iter 135: T = 580.2731294028184 K, F = -6.703732383650518e-7, relative_change = 2.594141301379524e-11 Iter 140: T = 580.2731293568405 K, F = -2.803588478594854e-7, relative_change = 1.0849037895480245e-11 Iter 145: T = 580.273129337612 K, F = -1.1724923137945709e-7, relative_change = 4.537189977645662e-12 Iter 150: T = 580.2731293295703 K, F = -4.903493489027966e-8, relative_change = 1.897503399688329e-12 Iter 155: T = 580.2731293262073 K, F = -2.0507085529697378e-8, relative_change = 7.935620715810825e-13 Iter 160: T = 580.2731293248007 K, F = -8.576519272551764e-9, relative_change = 3.3188530818305074e-13 Converged in 163 iterations to T = 580.273129324389 K Iter 1: T = 964.269855653529 K, F = -8141.147377485091, relative_change = 0.035730144346470934 Iter 2: T = 930.461945157418 K, F = -6906.718551603472, relative_change = 0.035060631936065095 Iter 3: T = 898.5451621737086 K, F = -5858.405989384125, relative_change = 0.03430208312099172 Iter 5: T = 840.2717814603361 K, F = -4212.273777270861, relative_change = 0.032492054951142345 Iter 10: T = 725.7084453600947 K, F = -1837.250870554579, relative_change = 0.026144660242367012 Iter 15: T = 651.6350748873012 K, F = -793.4662490946683, relative_change = 0.017958964830903996 Iter 20: T = 609.6469108521457 K, F = -338.8186987966378, relative_change = 0.010324133909622517 Iter 25: T = 588.6314966934077 K, F = -143.32118767447562, relative_change = 0.005131136407151431 Iter 30: T = 578.9987257740368 K, F = -60.268402832894395, relative_change = 0.0023309454306014864 Iter 35: T = 574.7957545595157 K, F = -25.266861541873485, relative_change = 0.0010114463574594592 Iter 40: T = 573.005088287185 K, F = -10.578072147110383, relative_change = 0.00042976221823903257 Iter 45: T = 572.2502548015357 K, F = -4.425855867960869, relative_change = 0.00018094255146542223 Iter 50: T = 571.9335179033911 K, F = -1.8512940069659027, relative_change = 7.588621720193157e-5 Iter 55: T = 571.8008688537217 K, F = -0.7742943129067775, relative_change = 3.177408579418713e-5 Iter 60: T = 571.7453608417384 K, F = -0.3238298169962848, relative_change = 1.3294883460615103e-5 Iter 65: T = 571.7221410212758 K, F = -0.13543136696718805, relative_change = 5.561230954513896e-6 Iter 70: T = 571.7124292164655 K, F = -0.05663934219711125, relative_change = 2.325974732840439e-6 Iter 75: T = 571.7083674490243 K, F = -0.023687306540889963, relative_change = 9.72785663895778e-7 Iter 80: T = 571.7066687388178 K, F = -0.009906324487403556, relative_change = 4.0683674813206087e-7 Iter 85: T = 571.7059583125784 K, F = -0.004142944956627148, relative_change = 1.7014506516368178e-7 Iter 90: T = 571.7056612029062 K, F = -0.0017326293635877565, relative_change = 7.115688681498895e-8 Iter 95: T = 571.7055369479295 K, F = -0.000724606345178902, relative_change = 2.9758692842634163e-8 Iter 100: T = 571.7054849829859 K, F = -0.0003030390363966684, relative_change = 1.2445446504745773e-8 Iter 105: T = 571.7054632506208 K, F = -0.00012673454550155006, relative_change = 5.204835358991261e-9 Iter 110: T = 571.7054541618854 K, F = -5.300190116480641e-5, relative_change = 2.1767244997330453e-9 Iter 115: T = 571.7054503608675 K, F = -2.2166027996706195e-5, relative_change = 9.103322082619552e-10 Iter 120: T = 571.7054487712364 K, F = -9.270098216440648e-6, relative_change = 3.8071183042549954e-10 Iter 125: T = 571.7054481064337 K, F = -3.876865130481022e-6, relative_change = 1.5921820824851467e-10 Iter 130: T = 571.7054478284051 K, F = -1.6213508036710955e-6, relative_change = 6.65869360455313e-11 Iter 135: T = 571.7054477121303 K, F = -6.780682126894533e-7, relative_change = 2.7847449579910834e-11 Iter 140: T = 571.7054476635029 K, F = -2.835764563169363e-7, relative_change = 1.1646145512723154e-11 Iter 145: T = 571.7054476431664 K, F = -1.1859561965810173e-7, relative_change = 4.87058009639583e-12 Iter 150: T = 571.7054476346615 K, F = -4.9599050311321946e-8, relative_change = 2.0369736079629875e-12 Iter 155: T = 571.7054476311044 K, F = -2.0742814632601636e-8, relative_change = 8.518825602006456e-13 Iter 160: T = 571.7054476296169 K, F = -8.67431371176508e-9, relative_change = 3.562436778102148e-13 Converged in 163 iterations to T = 571.7054476291813 K Iter 1: T = 980.048576517591 K, F = -4545.950819170183, relative_change = 0.019951423482408994 Iter 2: T = 962.1448961438449 K, F = -3840.0751618508884, relative_change = 0.018268156092183997 Iter 3: T = 946.1687239506117 K, F = -3242.292933176057, relative_change = 0.016604746600292458 Iter 5: T = 919.4777639939218 K, F = -2308.2351834597544, relative_change = 0.01342667333933902 Iter 10: T = 877.0636658534205 K, F = -980.0262536514136, relative_change = 0.00706514891747058 Iter 15: T = 856.9657596626422 K, F = -413.0029827396518, relative_change = 0.0033162573070529004 Iter 20: T = 848.0415186897899 K, F = -173.33001108897128, relative_change = 0.001462110705380891 Iter 25: T = 844.2081067554096 K, F = -72.59975586328366, relative_change = 0.0006256988886528797 Iter 30: T = 842.5863575202183 K, F = -30.381893169759802, relative_change = 0.00026424885732200784 Iter 35: T = 841.9048067810091 K, F = -12.709563740373206, relative_change = 0.00011096877158079519 Iter 40: T = 841.6191890861486 K, F = -5.3159044262093555, relative_change = 4.6488836064624e-5 Iter 45: T = 841.4996376550715 K, F = -2.2232821016697217, relative_change = 1.945627910191285e-5 Iter 50: T = 841.4496218288157 K, F = -0.9298219196341784, relative_change = 8.13931572414859e-6 Iter 55: T = 841.428701464457 K, F = -0.3888659189198287, relative_change = 3.4043907907894116e-6 Iter 60: T = 841.4199517674164 K, F = -0.16262894639057168, relative_change = 1.4238324133205255e-6 Iter 65: T = 841.4162924432704 K, F = -0.06801346815055709, relative_change = 5.954769301884098e-7 Iter 70: T = 841.4147620533588 K, F = -0.028444062219619815, relative_change = 2.490378743290183e-7 Iter 75: T = 841.4141220230737 K, F = -0.01189564958792011, relative_change = 1.0415101730323405e-7 Iter 80: T = 841.4138543542493 K, F = -0.004974903258878394, relative_change = 4.355726993917897e-8 Iter 85: T = 841.4137424118601 K, F = -0.0020805640471532882, relative_change = 1.821618281144138e-8 Iter 90: T = 841.4136955962003 K, F = -0.0008701167462907833, relative_change = 7.618227344830113e-9 Iter 95: T = 841.4136760173296 K, F = -0.0003638932163785302, relative_change = 3.1860340242472496e-9 Iter 100: T = 841.4136678292116 K, F = -0.00015218448898046688, relative_change = 1.3324375407312744e-9 Iter 105: T = 841.4136644048428 K, F = -6.364537222292022e-5, relative_change = 5.572413158202631e-10 Iter 110: T = 841.4136629727309 K, F = -2.6617253943372887e-5, relative_change = 2.3304496796994794e-10 Iter 115: T = 841.4136623738045 K, F = -1.1131654835017102e-5, relative_change = 9.746220097648334e-11 Iter 120: T = 841.4136621233264 K, F = -4.655390671182147e-6, relative_change = 4.0759853641401814e-11 Iter 125: T = 841.4136620185734 K, F = -1.946939548913562e-6, relative_change = 1.7046253840875302e-11 Iter 130: T = 841.4136619747645 K, F = -8.142332672544939e-7, relative_change = 7.128946027364479e-12 Iter 135: T = 841.4136619564431 K, F = -3.4052241848492315e-7, relative_change = 2.981413361951919e-12 Iter 140: T = 841.4136619487808 K, F = -1.424100288804908e-7, relative_change = 1.2468581801096955e-12 Iter 145: T = 841.4136619455765 K, F = -5.955858362050037e-8, relative_change = 5.214598140881917e-13 Converged in 150 iterations to T = 841.4136619442362 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 1 ray tracing: 12%|███▊ | ETA: 0:00:14 Bin 1 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 1 ray tracing: 26%|███████▊ | ETA: 0:00:12 Bin 1 ray tracing: 33%|█████████▊ | ETA: 0:00:10 Bin 1 ray tracing: 39%|███████████▉ | ETA: 0:00:09 Bin 1 ray tracing: 46%|█████████████▊ | ETA: 0:00:08 Bin 1 ray tracing: 52%|███████████████▋ | ETA: 0:00:08 Bin 1 ray tracing: 58%|█████████████████▌ | ETA: 0:00:07 Bin 1 ray tracing: 65%|███████████████████▍ | ETA: 0:00:06 Bin 1 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:05 Bin 1 ray tracing: 77%|███████████████████████ | ETA: 0:00:04 Bin 1 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:03 Bin 1 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 1 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 2 ray tracing: 12%|███▋ | ETA: 0:00:14 Bin 2 ray tracing: 18%|█████▌ | ETA: 0:00:13 Bin 2 ray tracing: 24%|███████▍ | ETA: 0:00:12 Bin 2 ray tracing: 30%|█████████▏ | ETA: 0:00:12 Bin 2 ray tracing: 37%|███████████ | ETA: 0:00:11 Bin 2 ray tracing: 43%|████████████▊ | ETA: 0:00:10 Bin 2 ray tracing: 49%|██████████████▋ | ETA: 0:00:08 Bin 2 ray tracing: 55%|████████████████▌ | ETA: 0:00:07 Bin 2 ray tracing: 61%|██████████████████▍ | ETA: 0:00:06 Bin 2 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 2 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:04 Bin 2 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:04 Bin 2 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:03 Bin 2 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 2 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 7%|██ | ETA: 0:00:14 Bin 3 ray tracing: 13%|████ | ETA: 0:00:13 Bin 3 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 3 ray tracing: 26%|███████▉ | ETA: 0:00:12 Bin 3 ray tracing: 32%|█████████▊ | ETA: 0:00:11 Bin 3 ray tracing: 39%|███████████▊ | ETA: 0:00:10 Bin 3 ray tracing: 46%|█████████████▊ | ETA: 0:00:09 Bin 3 ray tracing: 52%|███████████████▋ | ETA: 0:00:08 Bin 3 ray tracing: 59%|█████████████████▋ | ETA: 0:00:07 Bin 3 ray tracing: 65%|███████████████████▋ | ETA: 0:00:05 Bin 3 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 3 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 3 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 3 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 3 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 4 ray tracing: 13%|███▊ | ETA: 0:00:14 Bin 4 ray tracing: 19%|█████▋ | ETA: 0:00:13 Bin 4 ray tracing: 25%|███████▋ | ETA: 0:00:12 Bin 4 ray tracing: 32%|█████████▋ | ETA: 0:00:11 Bin 4 ray tracing: 39%|███████████▌ | ETA: 0:00:10 Bin 4 ray tracing: 45%|█████████████▌ | ETA: 0:00:09 Bin 4 ray tracing: 52%|███████████████▌ | ETA: 0:00:08 Bin 4 ray tracing: 58%|█████████████████▌ | ETA: 0:00:07 Bin 4 ray tracing: 65%|███████████████████▌ | ETA: 0:00:05 Bin 4 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:04 Bin 4 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 4 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 4 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 4 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 5 ray tracing: 13%|███▊ | ETA: 0:00:14 Bin 5 ray tracing: 19%|█████▋ | ETA: 0:00:13 Bin 5 ray tracing: 25%|███████▌ | ETA: 0:00:12 Bin 5 ray tracing: 31%|█████████▍ | ETA: 0:00:11 Bin 5 ray tracing: 38%|███████████▎ | ETA: 0:00:10 Bin 5 ray tracing: 44%|█████████████▏ | ETA: 0:00:09 Bin 5 ray tracing: 50%|███████████████ | ETA: 0:00:08 Bin 5 ray tracing: 56%|████████████████▉ | ETA: 0:00:07 Bin 5 ray tracing: 62%|██████████████████▊ | ETA: 0:00:06 Bin 5 ray tracing: 69%|████████████████████▋ | ETA: 0:00:05 Bin 5 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 5 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:03 Bin 5 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 5 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 6 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 6 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 6 ray tracing: 26%|███████▊ | ETA: 0:00:12 Bin 6 ray tracing: 32%|█████████▊ | ETA: 0:00:11 Bin 6 ray tracing: 40%|███████████▉ | ETA: 0:00:09 Bin 6 ray tracing: 47%|██████████████▏ | ETA: 0:00:08 Bin 6 ray tracing: 54%|████████████████▎ | ETA: 0:00:07 Bin 6 ray tracing: 61%|██████████████████▍ | ETA: 0:00:06 Bin 6 ray tracing: 69%|████████████████████▋ | ETA: 0:00:05 Bin 6 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 6 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:03 Bin 6 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 6 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██ | ETA: 0:00:14 Bin 7 ray tracing: 13%|████ | ETA: 0:00:13 Bin 7 ray tracing: 21%|██████▎ | ETA: 0:00:11 Bin 7 ray tracing: 28%|████████▍ | ETA: 0:00:10 Bin 7 ray tracing: 35%|██████████▌ | ETA: 0:00:09 Bin 7 ray tracing: 42%|████████████▌ | ETA: 0:00:09 Bin 7 ray tracing: 48%|██████████████▌ | ETA: 0:00:08 Bin 7 ray tracing: 55%|████████████████▌ | ETA: 0:00:07 Bin 7 ray tracing: 62%|██████████████████▌ | ETA: 0:00:06 Bin 7 ray tracing: 68%|████████████████████▌ | ETA: 0:00:05 Bin 7 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:04 Bin 7 ray tracing: 81%|████████████████████████▌ | ETA: 0:00:03 Bin 7 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 7 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██ | ETA: 0:00:14 Bin 8 ray tracing: 13%|████ | ETA: 0:00:13 Bin 8 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 8 ray tracing: 27%|████████▏ | ETA: 0:00:11 Bin 8 ray tracing: 34%|██████████▎ | ETA: 0:00:10 Bin 8 ray tracing: 41%|████████████▍ | ETA: 0:00:09 Bin 8 ray tracing: 48%|██████████████▌ | ETA: 0:00:08 Bin 8 ray tracing: 56%|████████████████▊ | ETA: 0:00:06 Bin 8 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 8 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:04 Bin 8 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 8 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 8 ray tracing: 93%|███████████████████████████▊ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 7%|██ | ETA: 0:00:14 Bin 9 ray tracing: 13%|████ | ETA: 0:00:13 Bin 9 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 9 ray tracing: 28%|████████▍ | ETA: 0:00:10 Bin 9 ray tracing: 35%|██████████▋ | ETA: 0:00:09 Bin 9 ray tracing: 43%|████████████▊ | ETA: 0:00:08 Bin 9 ray tracing: 50%|███████████████ | ETA: 0:00:07 Bin 9 ray tracing: 57%|█████████████████ | ETA: 0:00:06 Bin 9 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 9 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:04 Bin 9 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 9 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 9 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 9 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 10 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 10 ray tracing: 22%|██████▍ | ETA: 0:00:11 Bin 10 ray tracing: 29%|████████▍ | ETA: 0:00:10 Bin 10 ray tracing: 36%|██████████▍ | ETA: 0:00:09 Bin 10 ray tracing: 42%|████████████▏ | ETA: 0:00:09 Bin 10 ray tracing: 48%|██████████████ | ETA: 0:00:08 Bin 10 ray tracing: 55%|████████████████ | ETA: 0:00:07 Bin 10 ray tracing: 62%|█████████████████▉ | ETA: 0:00:06 Bin 10 ray tracing: 68%|███████████████████▊ | ETA: 0:00:05 Bin 10 ray tracing: 75%|█████████████████████▋ | ETA: 0:00:04 Bin 10 ray tracing: 81%|███████████████████████▌ | ETA: 0:00:03 Bin 10 ray tracing: 87%|█████████████████████████▍ | ETA: 0:00:02 Bin 10 ray tracing: 94%|███████████████████████████▎ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2797577764132 K, F = -7455.338315629853, relative_change = 0.03272024222358674 Iter 2: T = 936.6328333199978 K, F = -6319.755328187639, relative_change = 0.031683620183334316 Iter 3: T = 908.0279784063398 K, F = -5355.636659103889, relative_change = 0.030540094150089667 Iter 5: T = 856.8068890509652 K, F = -3842.5121173047055, relative_change = 0.027937344079535267 Iter 10: T = 761.4940421759644 K, F = -1663.9533891779809, relative_change = 0.02002750347895205 Iter 15: T = 705.6389656728609 K, F = -712.4710611488497, relative_change = 0.012014697471107942 Iter 20: T = 676.891109212039 K, F = -301.98251695607706, relative_change = 0.006157949480067166 Iter 25: T = 663.4785936922171 K, F = -127.13213558067878, relative_change = 0.002846095175902262 Iter 30: T = 657.572398495987 K, F = -53.32811483055098, relative_change = 0.0012452798966670964 Iter 35: T = 655.0453499959391 K, F = -22.331519942801112, relative_change = 0.0005310778859356742 Iter 40: T = 653.9781199456081 K, F = -9.344476540179526, relative_change = 0.00022395492935065842 Iter 45: T = 653.5299425242225 K, F = -3.9088819555535013, relative_change = 9.398848902455527e-5 Iter 50: T = 653.3421835648334 K, F = -1.6349007917542124, relative_change = 3.936474731097823e-5 Iter 55: T = 653.2636033636891 K, F = -0.6837629978242904, relative_change = 1.6472910237465067e-5 Iter 60: T = 653.2307301743855 K, F = -0.2859627445880339, relative_change = 6.8909363721769195e-6 Iter 65: T = 653.2169804621863 K, F = -0.11959389086612959, relative_change = 2.8821813293802903e-6 Iter 70: T = 653.2112298618698 K, F = -0.050015743127673595, relative_change = 1.2054167828326531e-6 Iter 75: T = 653.2088248385344 K, F = -0.020917207272948768, relative_change = 5.04129162306701e-7 Iter 80: T = 653.2078190196775 K, F = -0.008747830463705919, relative_change = 2.108344922255009e-7 Iter 85: T = 653.2073983725796 K, F = -0.0036584479712297724, relative_change = 8.817379216658938e-8 Iter 90: T = 653.2072224526529 K, F = -0.0015300067723825195, relative_change = 3.687538355155068e-8 Iter 95: T = 653.2071488807885 K, F = -0.0006398671280768431, relative_change = 1.542173462799396e-8 Iter 100: T = 653.2071181121474 K, F = -0.00026760007888121384, relative_change = 6.449555145680863e-9 Iter 105: T = 653.2071052443328 K, F = -0.0001119135497465451, relative_change = 2.6972812614766033e-9 Iter 110: T = 653.2070998628586 K, F = -4.6803582724519455e-5, relative_change = 1.128035272676567e-9 Iter 115: T = 653.2070976122618 K, F = -1.9573816379458986e-5, relative_change = 4.717578094198975e-10 Iter 120: T = 653.2070966710354 K, F = -8.186002779408952e-6, relative_change = 1.9729472734121794e-10 Iter 125: T = 653.2070962774033 K, F = -3.4234839279556617e-6, relative_change = 8.251100668569431e-11 Iter 130: T = 653.2070961127816 K, F = -1.431741695090416e-6, relative_change = 3.450708436305813e-11 Iter 135: T = 653.2070960439349 K, F = -5.98771721149749e-7, relative_change = 1.4431280710164185e-11 Iter 140: T = 653.2070960151424 K, F = -2.504136623060482e-7, relative_change = 6.035338222416566e-12 Iter 145: T = 653.207096003101 K, F = -1.0472597289368224e-7, relative_change = 2.5240502507726344e-12 Iter 150: T = 653.2070959980651 K, F = -4.379788420827424e-8, relative_change = 1.0555935415896433e-12 Iter 155: T = 653.2070959959591 K, F = -1.8316238581395083e-8, relative_change = 4.4144833711807147e-13 Converged in 159 iterations to T = 653.2070959951989 K Iter 1: T = 970.2168832078811 K, F = -6786.111492142341, relative_change = 0.02978311679211892 Iter 2: T = 942.5955553905443 K, F = -5747.8778744389765, relative_change = 0.028469230226143775 Iter 3: T = 917.0920178605328 K, F = -4866.744923311587, relative_change = 0.027056713119599507 Iter 5: T = 872.2262174629534 K, F = -3484.874444381002, relative_change = 0.023979182469852492 Iter 10: T = 792.4423763729861 K, F = -1500.3241232589148, relative_change = 0.01567383015221609 Iter 15: T = 748.8541250535255 K, F = -638.7835853261628, relative_change = 0.008610552068131326 Iter 20: T = 727.6531296942865 K, F = -269.6701404815643, relative_change = 0.004151344825235579 Iter 25: T = 718.0997233661902 K, F = -113.27819814365164, relative_change = 0.0018554827563703855 Iter 30: T = 713.9668030040831 K, F = -47.466636545765084, relative_change = 0.0007990276226306709 Iter 35: T = 712.2127915949405 K, F = -19.86766941250264, relative_change = 0.00033837099922364545 Iter 40: T = 711.474650489854 K, F = -8.31182284063936, relative_change = 0.00014226047480603377 Iter 45: T = 711.1651387774585 K, F = -3.4766176574286245, relative_change = 5.962717179910384e-5 Iter 50: T = 711.0355545425579 K, F = -1.4540531051710688, relative_change = 2.4959982615161536e-5 Iter 55: T = 710.9813358531609 K, F = -0.608118141188594, relative_change = 1.0442623832847097e-5 Iter 60: T = 710.9586565710146 K, F = -0.254325027732242, relative_change = 4.367940680176464e-6 Iter 65: T = 710.9491710582641 K, F = -0.10636224641390457, relative_change = 1.8268492852114687e-6 Iter 70: T = 710.9452039695389 K, F = -0.044482046077988, relative_change = 7.640319355392337e-7 Iter 75: T = 710.9435448622169 K, F = -0.018602937654783824, relative_change = 3.1953108362878163e-7 Iter 80: T = 710.9428509996212 K, F = -0.007779973273056573, relative_change = 1.336323804459017e-7 Iter 85: T = 710.9425608172802 K, F = -0.0032536781857759323, relative_change = 5.58867737540501e-8 Iter 90: T = 710.9424394594342 K, F = -0.0013607271517828146, relative_change = 2.3372536537303566e-8 Iter 95: T = 710.942388706112 K, F = -0.0005690723582640889, relative_change = 9.774677450399413e-9 Iter 100: T = 710.9423674804625 K, F = -0.00023799285940873105, relative_change = 4.087887477070649e-9 Iter 105: T = 710.9423586036419 K, F = -9.953145675156705e-5, relative_change = 1.7096034764561535e-9 Iter 110: T = 710.9423548912494 K, F = -4.1625244328602484e-5, relative_change = 7.149766164817501e-10 Iter 115: T = 710.9423533386824 K, F = -1.7408175775224244e-5, relative_change = 2.990117882803122e-10 Iter 120: T = 710.9423526893803 K, F = -7.280305446166757e-6, relative_change = 1.2505027455256395e-10 Iter 125: T = 710.9423524178345 K, F = -3.0447112233655815e-6, relative_change = 5.2297527613761866e-11 Iter 130: T = 710.9423523042708 K, F = -1.2733343264237362e-6, relative_change = 2.1871446013435503e-11 Iter 135: T = 710.9423522567771 K, F = -5.325236304143388e-7, relative_change = 9.146900068187202e-12 Iter 140: T = 710.9423522369146 K, F = -2.2270818056391306e-7, relative_change = 3.825350380549085e-12 Iter 145: T = 710.942352228608 K, F = -9.313969129287614e-8, relative_change = 1.5998152948360125e-12 Iter 150: T = 710.942352225134 K, F = -3.89520522503517e-8, relative_change = 6.690605056963533e-13 Iter 155: T = 710.942352223681 K, F = -1.629028167915436e-8, relative_change = 2.798102659199091e-13 Converged in 157 iterations to T = 710.9423522233735 K Iter 1: T = 974.4411939426658 K, F = -5823.598272864757, relative_change = 0.02555880605733423 Iter 2: T = 951.0714319229915 K, F = -4926.935473890279, relative_change = 0.02398273201599619 Iter 3: T = 929.8157612944204 K, F = -4166.529882245032, relative_change = 0.022349184209637912 Iter 5: T = 893.2923739208849 K, F = -2975.631962520966, relative_change = 0.01899425041588293 Iter 10: T = 831.7884083178194 K, F = -1272.3556029124813, relative_change = 0.011152911743056913 Iter 15: T = 800.5792452355317 K, F = -538.7370137719639, relative_change = 0.005626804683134071 Iter 20: T = 786.1507519860975 K, F = -226.67004153851707, relative_change = 0.002577431792406735 Iter 25: T = 779.8274917106605 K, F = -95.05394297531663, relative_change = 0.001122849603876777 Iter 30: T = 777.1280068743577 K, F = -39.79937550269209, relative_change = 0.00047793830954614286 Iter 35: T = 775.9890638232753 K, F = -16.65286108372365, relative_change = 0.00020137819817592434 Iter 40: T = 775.5109698222938 K, F = -6.965883926486331, relative_change = 8.448378440229756e-5 Iter 45: T = 775.3107127793016 K, F = -2.913471624461526, relative_change = 3.537869377484167e-5 Iter 50: T = 775.22690809631 K, F = -1.2184934125179268, relative_change = 1.4803952494565766e-5 Iter 55: T = 775.1918503819219 K, F = -0.5095963334951877, relative_change = 6.192618121755289e-6 Iter 60: T = 775.177187148068 K, F = -0.2131206433739885, relative_change = 2.5900767656710355e-6 Iter 65: T = 775.1710545148328 K, F = -0.08912983802308638, relative_change = 1.0832447513197643e-6 Iter 70: T = 775.1684897229984 K, F = -0.037275204626401326, relative_change = 4.53033538006481e-7 Iter 75: T = 775.1674170874372 K, F = -0.015588943064727911, relative_change = 1.8946537329786664e-7 Iter 80: T = 775.1669684968641 K, F = -0.006519483443234497, relative_change = 7.923691571532505e-8 Iter 85: T = 775.1667808906542 K, F = -0.0027265260579577566, relative_change = 3.313786533530229e-8 Iter 90: T = 775.1667024314487 K, F = -0.0011402657977331865, relative_change = 1.3858658181883379e-8 Iter 95: T = 775.1666696188636 K, F = -0.00047687278139230127, relative_change = 5.795857613766263e-9 Iter 100: T = 775.1666558962471 K, F = -0.00019943389271215306, relative_change = 2.423897081251909e-9 Iter 105: T = 775.1666501572848 K, F = -8.340563601250128e-5, relative_change = 1.0137027466479374e-9 Iter 110: T = 775.1666477571822 K, F = -3.488123240036334e-5, relative_change = 4.239425931201479e-10 Iter 115: T = 775.1666467534307 K, F = -1.4587748123906508e-5, relative_change = 1.772978584752117e-10 Iter 120: T = 775.1666463336497 K, F = -6.100770698846958e-6, relative_change = 7.414808464989697e-11 Iter 125: T = 775.1666461580924 K, F = -2.551415802520829e-6, relative_change = 3.10096222993845e-11 Iter 130: T = 775.1666460846722 K, F = -1.0670317328598244e-6, relative_change = 1.2968584344296546e-11 Iter 135: T = 775.1666460539668 K, F = -4.462450526876438e-7, relative_change = 5.423612463319746e-12 Iter 140: T = 775.1666460411255 K, F = -1.8662485823384145e-7, relative_change = 2.2682176554474194e-12 Iter 145: T = 775.1666460357552 K, F = -7.80483537798915e-8, relative_change = 9.485909631940664e-13 Iter 150: T = 775.1666460335092 K, F = -3.2640092739733007e-8, relative_change = 3.967040368137943e-13 Converged in 154 iterations to T = 775.1666460326985 K Iter 1: T = 970.3761088140699 K, F = -6749.831786309579, relative_change = 0.029623891185930163 Iter 2: T = 942.9171595363088 K, F = -5716.9009383160965, relative_change = 0.028297223136830613 Iter 3: T = 917.5781992490755 K, F = -4840.289526337427, relative_change = 0.02687294427825872 Iter 5: T = 873.0432394413106 K, F = -3465.572372772339, relative_change = 0.02377693268357018 Iter 10: T = 794.0269091222194 K, F = -1491.585062779862, relative_change = 0.015471265228254778 Iter 15: T = 750.9993480658461 K, F = -634.9009450265517, relative_change = 0.00846580396118128 Iter 20: T = 730.1219382854262 K, F = -267.9865102260311, relative_change = 0.004071229086318111 Iter 25: T = 720.7275406089003 K, F = -112.56115500334413, relative_change = 0.0018172772568343896 Iter 30: T = 716.666205555822 K, F = -47.16426566815032, relative_change = 0.0007820981681469617 Iter 35: T = 714.9431081798973 K, F = -19.74075867254239, relative_change = 0.000331113490323428 Iter 40: T = 714.2180734537279 K, F = -8.258666077946254, relative_change = 0.00013919340997809254 Iter 45: T = 713.914074613065 K, F = -3.4543725555943188, relative_change = 5.833884681657146e-5 Iter 50: T = 713.7868014986769 K, F = -1.444747427079949, relative_change = 2.4420198174907206e-5 Iter 55: T = 713.7335503249293 K, F = -0.6042259557252863, relative_change = 1.0216705759347304e-5 Iter 60: T = 713.7112758405559 K, F = -0.2526971923309203, relative_change = 4.2734286247238524e-6 Iter 65: T = 713.7019596490228 K, F = -0.10568145274661889, relative_change = 1.7873178927145955e-6 Iter 70: T = 713.6980633776928 K, F = -0.04419732767917117, relative_change = 7.474985040638988e-7 Iter 75: T = 713.696433887968 K, F = -0.01848386460890017, relative_change = 3.1261644230429665e-7 Iter 80: T = 713.6957524119655 K, F = -0.007730175431397424, relative_change = 1.3074056638757785e-7 Iter 85: T = 713.6954674098737 K, F = -0.003232852121143992, relative_change = 5.467737759902602e-8 Iter 90: T = 713.6953482184749 K, F = -0.0013520174422415598, relative_change = 2.286675177834792e-8 Iter 95: T = 713.6952983711874 K, F = -0.0005654298553496862, relative_change = 9.563152105830488e-9 Iter 100: T = 713.6952775244526 K, F = -0.00023646952019362732, relative_change = 3.9994250093135125e-9 Iter 105: T = 713.6952688060986 K, F = -9.889437782462096e-5, relative_change = 1.6726074067910106e-9 Iter 110: T = 713.6952651599788 K, F = -4.135881068589864e-5, relative_change = 6.995044237460829e-10 Iter 115: T = 713.695263635128 K, F = -1.7296749428186153e-5, relative_change = 2.92541121561961e-10 Iter 120: T = 713.6952629974171 K, F = -7.2337080134765586e-6, relative_change = 1.2234420537239162e-10 Iter 125: T = 713.6952627307187 K, F = -3.0252225970972546e-6, relative_change = 5.116579970955864e-11 Iter 130: T = 713.6952626191822 K, F = -1.26518344323312e-6, relative_change = 2.1398135384350135e-11 Iter 135: T = 713.6952625725364 K, F = -5.291148734709594e-7, relative_change = 8.948956580553272e-12 Iter 140: T = 713.6952625530286 K, F = -2.2128197663118243e-7, relative_change = 3.742557430296557e-12 Iter 145: T = 713.6952625448702 K, F = -9.25429729514704e-8, relative_change = 1.5651857251681053e-12 Iter 150: T = 713.6952625414582 K, F = -3.870208542533504e-8, relative_change = 6.5457105722242e-13 Iter 155: T = 713.6952625400313 K, F = -1.61848388025021e-8, relative_change = 2.737353021058136e-13 Converged in 157 iterations to T = 713.6952625397292 K Iter 1: T = 969.3926672808398 K, F = -6973.909875150445, relative_change = 0.030607332719160184 Iter 2: T = 940.9281129006719 K, F = -5908.268683470763, relative_change = 0.029363286252217465 Iter 3: T = 914.5668961461935 K, F = -5003.767525175091, relative_change = 0.028016185713925175 Iter 5: T = 867.9666483465119 K, F = -3584.92895265212, relative_change = 0.02504564501798186 Iter 10: T = 784.0958955207875 K, F = -1545.7660775003433, relative_change = 0.01677205758108462 Iter 15: T = 737.4542306038514 K, F = -659.0495668075444, relative_change = 0.009415201545726832 Iter 20: T = 714.4601806328311 K, F = -278.4842737006801, relative_change = 0.0046041258182115755 Iter 25: T = 704.0165140795881 K, F = -117.03851459785949, relative_change = 0.0020733011454640454 Iter 30: T = 699.4807229542257 K, F = -49.05365363865367, relative_change = 0.0008959410997518554 Iter 35: T = 697.5523233513459 K, F = -20.53401872205193, relative_change = 0.0003799914411049681 Iter 40: T = 696.7401729773778 K, F = -8.590969062091986, relative_change = 0.0001598629670603047 Iter 45: T = 696.399517653179 K, F = -3.593443011423856, relative_change = 6.702350954056034e-5 Iter 50: T = 696.256874936527 K, F = -1.5029254438853337, relative_change = 2.8059331547025704e-5 Iter 55: T = 696.1971890941908 K, F = -0.6285596908117654, relative_change = 1.1739879922754181e-5 Iter 60: T = 696.1722223430799 K, F = -0.2628743748644561, relative_change = 4.910656220974764e-6 Iter 65: T = 696.1617800014346 K, F = -0.10993776367853214, relative_change = 2.0538522212189544e-6 Iter 70: T = 696.1574127235895 K, F = -0.04597738377554461, relative_change = 8.589730147189413e-7 Iter 75: T = 696.1555862468272 K, F = -0.019228308130077365, relative_change = 3.5923758083138167e-7 Iter 80: T = 696.1548223873583 K, F = -0.008041511092124143, relative_change = 1.5023828737407525e-7 Iter 85: T = 696.1545029313186 K, F = -0.003363056497307171, relative_change = 6.283159304335339e-8 Iter 90: T = 696.1543693308327 K, F = -0.0014064704817903229, relative_change = 2.6276948292644077e-8 Iter 95: T = 696.1543134574868 K, F = -0.0005882027691236358, relative_change = 1.0989338102844032e-8 Iter 100: T = 696.1542900905815 K, F = -0.0002459934264125163, relative_change = 4.595873239370586e-9 Iter 105: T = 696.1542803182617 K, F = -0.00010287738901526566, relative_change = 1.9220492092287335e-9 Iter 110: T = 696.1542762313608 K, F = -4.3024552201398336e-5, relative_change = 8.038239465356077e-10 Iter 115: T = 696.15427452217 K, F = -1.799338259989014e-5, relative_change = 3.361687976282711e-10 Iter 120: T = 696.1542738073659 K, F = -7.525047134415708e-6, relative_change = 1.4058979992204484e-10 Iter 125: T = 696.1542735084263 K, F = -3.147063737274358e-6, relative_change = 5.879631770628838e-11 Iter 130: T = 696.1542733834063 K, F = -1.31614037979233e-6, relative_change = 2.4589336105894218e-11 Iter 135: T = 696.1542733311214 K, F = -5.504266505917954e-7, relative_change = 1.0283573185421617e-11 Iter 140: T = 696.1542733092554 K, F = -2.3019629391551888e-7, relative_change = 4.300737315865643e-12 Iter 145: T = 696.1542733001105 K, F = -9.627042540927278e-8, relative_change = 1.7986119756982827e-12 Iter 150: T = 696.1542732962862 K, F = -4.0262354450426585e-8, relative_change = 7.522180625916842e-13 Iter 155: T = 696.1542732946868 K, F = -1.683916206474123e-8, relative_change = 3.146045986888722e-13 Converged in 157 iterations to T = 696.1542732943484 K Iter 1: T = 963.5072486837546 K, F = -8314.9081009747, relative_change = 0.03649275131624537 Iter 2: T = 928.8886047695765 K, F = -7055.581587090725, relative_change = 0.03592982197224832 Iter 3: T = 896.1102934919104 K, F = -5986.077265611156, relative_change = 0.035287666475139125 Iter 5: T = 835.9551370553218 K, F = -4306.509712829638, relative_change = 0.03373626477490541 Iter 10: T = 715.8321948256588 K, F = -1882.2460399170704, relative_change = 0.02807065774414475 Iter 15: T = 635.7038164855618 K, F = -815.2474302883253, relative_change = 0.020187694824822935 Iter 20: T = 588.6270356595578 K, F = -349.1469698921533, relative_change = 0.012151373238823584 Iter 25: T = 564.3430375379047 K, F = -148.0109302532562, relative_change = 0.006243665571758596 Iter 30: T = 552.9965634472402 K, F = -62.31730995317543, relative_change = 0.002889891111771565 Iter 35: T = 547.9962699703569 K, F = -26.141464939528593, relative_change = 0.0012653363285131264 Iter 40: T = 545.8560474674335 K, F = -10.947151241095082, relative_change = 0.0005398024220810948 Iter 45: T = 544.9520386124813 K, F = -4.580804521992788, relative_change = 0.00022766514237777648 Iter 50: T = 544.5723791613228 K, F = -1.9162007654584272, relative_change = 9.555110251802461e-5 Iter 55: T = 544.413320470287 K, F = -0.8014576184381105, relative_change = 4.002018245025491e-5 Iter 60: T = 544.3467509978761 K, F = -0.33519308245583485, relative_change = 1.6747359965335016e-5 Iter 65: T = 544.3189022280127 K, F = -0.140184188637764, relative_change = 7.005773885151472e-6 Iter 70: T = 544.307254031127 K, F = -0.058627128421479296, relative_change = 2.9302181366417965e-6 Iter 75: T = 544.3023823521388 K, F = -0.024518639873449183, relative_change = 1.225508166559748e-6 Iter 80: T = 544.300344911638 K, F = -0.010254001057846684, relative_change = 5.125319367858776e-7 Iter 85: T = 544.2994928216135 K, F = -0.004288347982644991, relative_change = 2.1434868846721487e-7 Iter 90: T = 544.299136465977 K, F = -0.0017934387390658724, relative_change = 8.964348074040887e-8 Iter 95: T = 544.2989874335468 K, F = -0.0007500375685143001, relative_change = 3.7490026566666255e-8 Iter 100: T = 544.2989251063615 K, F = -0.00031367467991433307, relative_change = 1.5678785954002864e-8 Iter 105: T = 544.2988990403809 K, F = -0.00013118249976454277, relative_change = 6.557057153012846e-9 Iter 110: T = 544.2988881392752 K, F = -5.4862089009538595e-5, relative_change = 2.7422399185509784e-9 Iter 115: T = 544.2988835803023 K, F = -2.29439812118315e-5, relative_change = 1.1468375487408007e-9 Iter 120: T = 544.2988816736854 K, F = -9.595447454796568e-6, relative_change = 4.79621192157059e-10 Iter 125: T = 544.2988808763154 K, F = -4.0129306209391036e-6, relative_change = 2.005833069222654e-10 Iter 130: T = 544.2988805428456 K, F = -1.6782551584548777e-6, relative_change = 8.388631708896274e-11 Iter 135: T = 544.2988804033847 K, F = -7.018664037461431e-7, relative_change = 3.508226235679522e-11 Iter 140: T = 544.2988803450605 K, F = -2.9352943209381976e-7, relative_change = 1.4671847087204905e-11 Iter 145: T = 544.2988803206686 K, F = -1.2275770619463167e-7, relative_change = 6.135951279571345e-12 Iter 150: T = 544.2988803104676 K, F = -5.133883618224644e-8, relative_change = 2.5661329732963175e-12 Iter 155: T = 544.2988803062013 K, F = -2.147038424826775e-8, relative_change = 1.0731809497062669e-12 Iter 160: T = 544.2988803044173 K, F = -8.97963547963343e-9, relative_change = 4.4884030116866565e-13 Converged in 165 iterations to T = 544.298880303671 K Iter 1: T = 966.8540160099819 K, F = -7552.343982096194, relative_change = 0.03314598399001804 Iter 2: T = 935.7637189407666 K, F = -6402.723393117796, relative_change = 0.03215614410696555 Iter 3: T = 906.6987922590015 K, F = -5426.642895035036, relative_change = 0.031060112818506135 Iter 5: T = 854.5148473917524 K, F = -3894.608358877829, relative_change = 0.028549132150991943 Iter 10: T = 756.70858624031 K, F = -1688.0891437341534, relative_change = 0.020773432053520016 Iter 15: T = 698.7018982934148 K, F = -723.5328567099646, relative_change = 0.01265986335413937 Iter 20: T = 668.528848235924 K, F = -306.90955103413575, relative_change = 0.00656661039843025 Iter 25: T = 654.3525374370296 K, F = -129.2654010633641, relative_change = 0.0030560940820924835 Iter 30: T = 648.0866791840706 K, F = -54.2351826102598, relative_change = 0.0013417186131570917 Iter 35: T = 645.4010478684856 K, F = -22.713668772121057, relative_change = 0.0005730813815206815 Iter 40: T = 644.2659706724932 K, F = -9.504801359501199, relative_change = 0.0002418270931221638 Iter 45: T = 643.7891442172905 K, F = -3.976021318990969, relative_change = 0.00010151735418111481 Iter 50: T = 643.5893552930139 K, F = -1.6629950355664138, relative_change = 4.252301966459253e-5 Iter 55: T = 643.5057354743968 K, F = -0.6955151090198999, relative_change = 1.7795424088812765e-5 Iter 60: T = 643.4707531596373 K, F = -0.29087810154733823, relative_change = 7.444322868431067e-6 Iter 65: T = 643.4561211238837 K, F = -0.12164963648503468, relative_change = 3.1136658688214545e-6 Iter 70: T = 643.450001479461 K, F = -0.05087549530021651, relative_change = 1.3022354259289362e-6 Iter 75: T = 643.447442109451 K, F = -0.021276768488429243, relative_change = 5.446214571039263e-7 Iter 80: T = 643.4463717395685 K, F = -0.008898203710912544, relative_change = 2.2776913019080264e-7 Iter 85: T = 643.4459240962153 K, F = -0.003721335938699555, relative_change = 9.525610841292127e-8 Iter 90: T = 643.4457368860894 K, F = -0.001556307284797942, relative_change = 3.983730123849401e-8 Iter 95: T = 643.4456585925213 K, F = -0.0006508663200445741, relative_change = 1.6660445486421803e-8 Iter 100: T = 643.4456258492061 K, F = -0.000272200072274853, relative_change = 6.967599066949086e-9 Iter 105: T = 643.4456121555588 K, F = -0.00011383732162251192, relative_change = 2.9139334521798322e-9 Iter 110: T = 643.4456064287117 K, F = -4.760812785586932e-5, relative_change = 1.218641832538575e-9 Iter 115: T = 643.4456040336759 K, F = -1.9910288733326897e-5, relative_change = 5.096506052872986e-10 Iter 120: T = 643.4456030320432 K, F = -8.326721582296859e-6, relative_change = 2.1314199822851687e-10 Iter 125: T = 643.4456026131485 K, F = -3.4823348349921623e-6, relative_change = 8.913854032415206e-11 Iter 130: T = 643.4456024379616 K, F = -1.4563536501199792e-6, relative_change = 3.7278792789038016e-11 Iter 135: T = 643.4456023646965 K, F = -6.090651800128022e-7, relative_change = 1.559045404332493e-11 Iter 140: T = 643.4456023340559 K, F = -2.5471771775142926e-7, relative_change = 6.520098347177106e-12 Iter 145: T = 643.4456023212418 K, F = -1.0652588816606468e-7, relative_change = 2.7267803494799845e-12 Iter 150: T = 643.4456023158828 K, F = -4.4549680333627606e-8, relative_change = 1.1403537206354492e-12 Iter 155: T = 643.4456023136416 K, F = -1.8631634179921974e-8, relative_change = 4.769204447670809e-13 Converged in 160 iterations to T = 643.4456023127043 K Iter 1: T = 965.1684933806623 K, F = -7936.391916532613, relative_change = 0.03483150661933767 Iter 2: T = 932.310799668326 K, F = -6731.377831440335, relative_change = 0.03404347939005634 Iter 3: T = 901.397447399605 K, F = -5708.110461011149, relative_change = 0.03315777558269045 Iter 5: T = 845.2907867503932 K, F = -4101.518805724089, relative_change = 0.031074503031050374 Iter 10: T = 736.896075768542 K, F = -1784.8294676236746, relative_change = 0.024093176674567625 Iter 15: T = 669.089719167962 K, F = -768.5366726606803, relative_change = 0.01578848521335519 Iter 20: T = 631.9767857151031 K, F = -327.2620261206688, relative_change = 0.0086928733366025 Iter 25: T = 613.9004950199576 K, F = -138.17058515870127, relative_change = 0.004197062062830862 Iter 30: T = 605.7486241056719 K, F = -58.043098292524924, relative_change = 0.0018773240793129573 Iter 35: T = 602.2206440270202 K, F = -24.322192863881032, relative_change = 0.0008087141428447562 Iter 40: T = 600.7231053851118 K, F = -10.180417367278698, relative_change = 0.0003425250900781541 Iter 45: T = 600.0928478281937 K, F = -4.259089918347336, relative_change = 0.00014401630001984806 Iter 50: T = 599.8285644990972 K, F = -1.7814689303686144, relative_change = 6.036475880975162e-5 Iter 55: T = 599.7179146712942 K, F = -0.7450783095794292, relative_change = 2.526902680278194e-5 Iter 60: T = 599.6716179688065 K, F = -0.31160882632679876, relative_change = 1.057197083961851e-5 Iter 65: T = 599.6522523498643 K, F = -0.13031996356050435, relative_change = 4.42205282982329e-6 Iter 70: T = 599.6441527545057 K, F = -0.054501615418844185, relative_change = 1.8494827269896041e-6 Iter 75: T = 599.6407652911537 K, F = -0.02279327023154676, relative_change = 7.734980524483607e-7 Iter 80: T = 599.639348593263 K, F = -0.00953242547634009, relative_change = 3.234900214946274e-7 Iter 85: T = 599.6387561097422 K, F = -0.003986575512858248, relative_change = 1.352880720736061e-7 Iter 90: T = 599.6385083254384 K, F = -0.0016672337234632795, relative_change = 5.6579206680210595e-8 Iter 95: T = 599.6384046989749 K, F = -0.0006972570951689905, relative_change = 2.366212079313462e-8 Iter 100: T = 599.6383613611313 K, F = -0.0002916012506462007, relative_change = 9.895785124607966e-9 Iter 105: T = 599.6383432367244 K, F = -0.00012195112739099567, relative_change = 4.1385361803219085e-9 Iter 110: T = 599.6383356568804 K, F = -5.1001418388485487e-5, relative_change = 1.7307853766235168e-9 Iter 115: T = 599.6383324868989 K, F = -2.1329402385306118e-5, relative_change = 7.238351370651929e-10 Iter 120: T = 599.6383311611747 K, F = -8.920210933516248e-6, relative_change = 3.0271650630601237e-10 Iter 125: T = 599.6383306067411 K, F = -3.730538628399227e-6, relative_change = 1.2659965483065945e-10 Iter 130: T = 599.6383303748703 K, F = -1.5601562331490904e-6, relative_change = 5.294550214775617e-11 Iter 135: T = 599.6383302778992 K, F = -6.524757059089836e-7, relative_change = 2.2142432393089067e-11 Iter 140: T = 599.6383302373447 K, F = -2.7287313830726134e-7, relative_change = 9.26022986616286e-12 Iter 145: T = 599.6383302203843 K, F = -1.1411902389735218e-7, relative_change = 3.872746141630008e-12 Iter 150: T = 599.6383302132913 K, F = -4.7725976892731836e-8, relative_change = 1.6196299842479433e-12 Iter 155: T = 599.6383302103249 K, F = -1.995921877773199e-8, relative_change = 6.773365638590768e-13 Iter 160: T = 599.6383302090843 K, F = -8.346882851562043e-9, relative_change = 2.8326003199957974e-13 Converged in 162 iterations to T = 599.6383302088218 K Iter 1: T = 980.1113694361362 K, F = -4531.6433929481755, relative_change = 0.019888630563863804 Iter 2: T = 962.2677766175531 K, F = -3827.922847370532, relative_change = 0.018205678839179926 Iter 3: T = 946.3485379016669 K, F = -3231.976358404056, relative_change = 0.016543460253697278 Iter 5: T = 919.7605755679392 K, F = -2300.8134200382933, relative_change = 0.013370115702126003 Iter 10: T = 877.5344618183566 K, F = -976.8076234734399, relative_change = 0.0070279016357053985 Iter 15: T = 857.5383132388524 K, F = -411.62930647600786, relative_change = 0.003296669027048802 Iter 20: T = 848.6623321747988 K, F = -172.74985508702773, relative_change = 0.0014530110803325994 Iter 25: T = 844.8502784972569 K, F = -72.35606081701997, relative_change = 0.0006217149288717786 Iter 30: T = 843.2376827217967 K, F = -30.27978432954217, relative_change = 0.0002625498971939722 Iter 35: T = 842.5599999914883 K, F = -12.666826445406974, relative_change = 0.00011025238098616997 Iter 40: T = 842.2760070204256 K, F = -5.298025170329592, relative_change = 4.6188197802234775e-5 Iter 45: T = 842.1571363128535 K, F = -2.2158037298733104, relative_change = 1.9330366850410458e-5 Iter 50: T = 842.1074053914929 K, F = -0.9266941908027082, relative_change = 8.086625879776202e-6 Iter 55: T = 842.0866042159643 K, F = -0.3875578331014333, relative_change = 3.3823496966037143e-6 Iter 60: T = 842.0779043717995 K, F = -0.16208188363378184, relative_change = 1.4146135896737379e-6 Iter 65: T = 842.074265897891 K, F = -0.06778467898522345, relative_change = 5.916213375277705e-7 Iter 70: T = 842.0727442280021 K, F = -0.028348379684329794, relative_change = 2.4742538959613294e-7 Iter 75: T = 842.0721078445703 K, F = -0.011855633977961633, relative_change = 1.0347665170729575e-7 Iter 80: T = 842.0718417009099 K, F = -0.004958168246919303, relative_change = 4.327524127481941e-8 Iter 85: T = 842.0717303963637 K, F = -0.0020735652678327554, relative_change = 1.8098234926593246e-8 Iter 90: T = 842.0716838474575 K, F = -0.0008671897723635524, relative_change = 7.568900097078037e-9 Iter 95: T = 842.0716643801464 K, F = -0.00036266912355520375, relative_change = 3.1654047984848364e-9 Iter 100: T = 842.071656238684 K, F = -0.00015167255841164184, relative_change = 1.3238101484610644e-9 Iter 105: T = 842.0716528338271 K, F = -6.343127573904539e-5, relative_change = 5.536332283780016e-10 Iter 110: T = 842.0716514098752 K, F = -2.6527718686386592e-5, relative_change = 2.3153604408834708e-10 Iter 115: T = 842.0716508143615 K, F = -1.1094209153350576e-5, relative_change = 9.68311424993764e-11 Iter 120: T = 842.0716505653106 K, F = -4.639730055044922e-6, relative_change = 4.049593409870707e-11 Iter 125: T = 842.0716504611546 K, F = -1.940391909815986e-6, relative_change = 1.6935895411934346e-11 Iter 130: T = 842.0716504175952 K, F = -8.114926144386914e-7, relative_change = 7.0827722892222904e-12 Iter 135: T = 842.0716503993782 K, F = -3.393759169245669e-7, relative_change = 2.962100082615014e-12 Iter 140: T = 842.0716503917596 K, F = -1.4193080799529412e-7, relative_change = 1.2387834172689158e-12 Iter 145: T = 842.0716503885735 K, F = -5.9357406323456985e-8, relative_change = 5.180761787064179e-13 Converged in 150 iterations to T = 842.071650387241 K Iter 1: T = 976.4344370443868 K, F = -5369.435936073941, relative_change = 0.023565562955613198 Iter 2: T = 955.03058496552 K, F = -4540.215838428716, relative_change = 0.021920419095064925 Iter 3: T = 935.6968264833722 K, F = -3837.316453005626, relative_change = 0.020244124938517877 Iter 5: T = 902.8186951903737 K, F = -2737.31880380872, relative_change = 0.016891271121566735 Iter 10: T = 848.670332105275 K, F = -1167.256520270455, relative_change = 0.009504703256090073 Iter 15: T = 821.9354361955584 K, F = -493.2808132061956, relative_change = 0.004655303178914995 Iter 20: T = 809.781842305126 K, F = -207.32266113291814, relative_change = 0.002098130612908358 Iter 25: T = 804.5010500930731 K, F = -86.89621072500306, relative_change = 0.0009070322310787454 Iter 30: T = 802.2554559577939 K, F = -36.375460724025096, relative_change = 0.0003847629170460657 Iter 35: T = 801.3096350500388 K, F = -15.21874614574314, relative_change = 0.0001618824597600754 Iter 40: T = 800.9128969802883 K, F = -6.365732653495554, relative_change = 6.787233956944525e-5 Iter 45: T = 800.7467681033119 K, F = -2.6624131823322217, relative_change = 2.8415070569045024e-5 Iter 50: T = 800.677254512922 K, F = -1.1134858579469562, relative_change = 1.1888785388926282e-5 Iter 55: T = 800.6481767075962 K, F = -0.46567883454337256, relative_change = 4.97295322731728e-6 Iter 60: T = 800.6360149038 K, F = -0.1947534559516263, relative_change = 2.0799095909684658e-6 Iter 65: T = 800.6309284965781 K, F = -0.08144839706759166, relative_change = 8.698712207355179e-7 Iter 70: T = 800.6288012661153 K, F = -0.034062723122774474, relative_change = 3.637954637069626e-7 Iter 75: T = 800.6279116269463 K, F = -0.014245442982882217, relative_change = 1.5214446992836004e-7 Iter 80: T = 800.6275395681747 K, F = -0.005957615322489729, relative_change = 6.362878514249046e-8 Iter 85: T = 800.62738396857 K, F = -0.0024915460409312695, relative_change = 2.6610344211031537e-8 Iter 90: T = 800.6273188949251 K, F = -0.001041994338321084, relative_change = 1.1128768356459197e-8 Iter 95: T = 800.627291680344 K, F = -0.0004357744826817278, relative_change = 4.654184653356153e-9 Iter 100: T = 800.6272802988802 K, F = -0.00018224609189598784, relative_change = 1.9464357257155195e-9 Iter 105: T = 800.627275539016 K, F = -7.621749209563156e-5, relative_change = 8.140226887464889e-10 Iter 110: T = 800.6272735483838 K, F = -3.187506382174021e-5, relative_change = 3.4043399684086e-10 Iter 115: T = 800.6272727158778 K, F = -1.3330532333100109e-5, relative_change = 1.4237356354863428e-10 Iter 120: T = 800.6272723677138 K, F = -5.574990278089942e-6, relative_change = 5.954235093171919e-11 Iter 125: T = 800.6272722221073 K, F = -2.331525220999886e-6, relative_change = 2.4901297779966987e-11 Iter 130: T = 800.6272721612131 K, F = -9.750732336000212e-7, relative_change = 1.0414036587401519e-11 Iter 135: T = 800.6272721357464 K, F = -4.077854723893992e-7, relative_change = 4.355255260405582e-12 Iter 140: T = 800.6272721250959 K, F = -1.7054207834821256e-7, relative_change = 1.8214339013635395e-12 Iter 145: T = 800.6272721206417 K, F = -7.13230331461645e-8, relative_change = 7.617486064564672e-13 Iter 150: T = 800.6272721187789 K, F = -2.982655544769841e-8, relative_change = 3.185553957214779e-13 Converged in 153 iterations to T = 800.6272721182335 K Iter 1: T = 980.8969699549174 K, F = -4352.643567444865, relative_change = 0.019103030045082615 Iter 2: T = 963.8030564598944 K, F = -3675.9205911146632, relative_change = 0.01742681853305002 Iter 3: T = 948.5921675376212 K, F = -3102.9676088137408, relative_change = 0.015782154684322848 Iter 5: T = 923.2804738910282 K, F = -2208.05324630356, relative_change = 0.012672334542296966 Iter 10: T = 883.3649354577962 K, F = -936.6314132930702, relative_change = 0.0065746920412974716 Iter 15: T = 864.6085239064928 K, F = -394.4979901940214, relative_change = 0.003060296869709274 Iter 20: T = 856.3176299786614 K, F = -165.51817178722712, relative_change = 0.0013436594858437982 Iter 25: T = 852.7639089513533 K, F = -69.31908172318074, relative_change = 0.0005739288015088204 Iter 30: T = 851.261910588348 K, F = -29.007410679415692, relative_change = 0.0002421880430815248 Iter 35: T = 850.6309424196394 K, F = -12.13430188011667, relative_change = 0.00010166947622742935 Iter 40: T = 850.366567773985 K, F = -5.075246215879665, relative_change = 4.2586845008629795e-5 Iter 45: T = 850.2559160574424 K, F = -2.122622495299244, relative_change = 1.782215278193243e-5 Iter 50: T = 850.2096249358153 K, F = -0.8877225121532684, relative_change = 7.455507462999592e-6 Iter 55: T = 850.1902627666991 K, F = -0.3712590313624857, relative_change = 3.118344508637957e-6 Iter 60: T = 850.1821648093779 K, F = -0.1552654635724986, relative_change = 1.3041922829758903e-6 Iter 65: T = 850.1787780652359 K, F = -0.0649339590739102, relative_change = 5.454398720105302e-7 Iter 70: T = 850.1773616741029 K, F = -0.027156172538284062, relative_change = 2.281114070196058e-7 Iter 75: T = 850.1767693199172 K, F = -0.011357038353976057, relative_change = 9.539925367461477e-8 Iter 80: T = 850.1765215898856 K, F = -0.004749649539425693, relative_change = 3.9897166479101055e-8 Iter 85: T = 850.1764179861516 K, F = -0.001986360242101304, relative_change = 1.668548186372124e-8 Iter 90: T = 850.1763746578195 K, F = -0.0008307195929198041, relative_change = 6.978069622592727e-9 Iter 95: T = 850.1763565373911 K, F = -0.0003474168599775229, relative_change = 2.9183123928565985e-9 Iter 100: T = 850.1763489592112 K, F = -0.00014529388192019432, relative_change = 1.2204731636708057e-9 Iter 105: T = 850.1763457899256 K, F = -6.076363577256494e-5, relative_change = 5.104164547307271e-10 Iter 110: T = 850.1763444644926 K, F = -2.5412078082487355e-5, relative_change = 2.1346225803592955e-10 Iter 115: T = 850.1763439101807 K, F = -1.062763536952005e-5, relative_change = 8.927247284692542e-11 Iter 120: T = 850.1763436783608 K, F = -4.444603141307013e-6, relative_change = 3.733480684713601e-11 Iter 125: T = 850.176343581411 K, F = -1.8587863390706616e-6, relative_change = 1.561386399879347e-11 Iter 130: T = 850.1763435408653 K, F = -7.773658592391541e-7, relative_change = 6.529897789269305e-12 Iter 135: T = 850.1763435239087 K, F = -3.251040023855012e-7, relative_change = 2.730883896469376e-12 Iter 140: T = 850.1763435168172 K, F = -1.3596092807155458e-7, relative_change = 1.142076093526876e-12 Iter 145: T = 850.1763435138515 K, F = -5.686258019999002e-8, relative_change = 4.776474711143778e-13 Converged in 150 iterations to T = 850.1763435126113 K Iter 1: T = 967.29526451729 K, F = -7451.805089970362, relative_change = 0.03270473548270997 Iter 2: T = 936.664465856535 K, F = -6316.733742328986, relative_change = 0.03166644124536335 Iter 3: T = 908.0763168589503 K, F = -5353.051082108795, relative_change = 0.03052122722670192 Iter 5: T = 856.8900906279824 K, F = -3840.6158716206896, relative_change = 0.027915252182134472 Iter 10: T = 761.666785111993 K, F = -1663.0764446401424, relative_change = 0.02000096436883198 Iter 15: T = 705.8879544085778 K, F = -712.0702352159207, relative_change = 0.011992104272341124 Iter 20: T = 677.1900018572861 K, F = -301.8044465174467, relative_change = 0.006143811531438556 Iter 25: T = 663.8040169811568 K, F = -127.05516692198192, relative_change = 0.0028388816111802636 Iter 30: T = 657.9102606827045 K, F = -53.29541652978165, relative_change = 0.001241978769003152 Iter 35: T = 655.3886855047548 K, F = -22.31774971835942, relative_change = 0.0005296423595692945 Iter 40: T = 654.323795006602 K, F = -9.338700475706057, relative_change = 0.00022334453983855355 Iter 45: T = 653.8766050975596 K, F = -3.906463291138152, relative_change = 9.373142929177079e-5 Iter 50: T = 653.6892607347278 K, F = -1.6338887419395296, relative_change = 3.925692680357071e-5 Iter 55: T = 653.610854205259 K, F = -0.683339652642825, relative_change = 1.6427763131904583e-5 Iter 60: T = 653.5780536970237 K, F = -0.2857856801443061, relative_change = 6.872045631547335e-6 Iter 65: T = 653.5643343895803 K, F = -0.11951983752716266, relative_change = 2.874279301743017e-6 Iter 70: T = 653.5585965064118 K, F = -0.04998477263417167, relative_change = 1.2021117640990554e-6 Iter 75: T = 653.5561968018047 K, F = -0.020904254955409207, relative_change = 5.027469121710098e-7 Iter 80: T = 653.5551932073498 K, F = -0.008742413634072577, relative_change = 2.102564096338769e-7 Iter 85: T = 653.5547734905316 K, F = -0.0036561825859823815, relative_change = 8.793202954382628e-8 Iter 90: T = 653.5545979596604 K, F = -0.0015290593607925063, relative_change = 3.677427525915262e-8 Iter 95: T = 653.5545245505039 K, F = -0.0006394709100767115, relative_change = 1.5379449906357255e-8 Iter 100: T = 653.5544938499091 K, F = -0.00026743437517273705, relative_change = 6.431871147319636e-9 Iter 105: T = 653.5544810105523 K, F = -0.00011184424954086003, relative_change = 2.6898855782288366e-9 Iter 110: T = 653.5544756409797 K, F = -4.677460121865762e-5, relative_change = 1.124942325452961e-9 Iter 115: T = 653.5544733953602 K, F = -1.956169590000556e-5, relative_change = 4.704643003299376e-10 Iter 120: T = 653.5544724562153 K, F = -8.180935132329203e-6, relative_change = 1.9675379727207811e-10 Iter 125: T = 653.5544720634537 K, F = -3.42136445230512e-6, relative_change = 8.228478027024076e-11 Iter 130: T = 653.5544718991962 K, F = -1.4308558810571803e-6, relative_change = 3.441248763566549e-11 Iter 135: T = 653.5544718305017 K, F = -5.98401307783103e-7, relative_change = 1.439172029005639e-11 Iter 140: T = 653.5544718017728 K, F = -2.502582662766706e-7, relative_change = 6.018781915141674e-12 Iter 145: T = 653.554471789758 K, F = -1.0466048966373265e-7, relative_change = 2.5171143069323014e-12 Iter 150: T = 653.5544717847333 K, F = -4.3770405577792104e-8, relative_change = 1.0526906042395583e-12 Iter 155: T = 653.5544717826319 K, F = -1.830515250489384e-8, relative_change = 4.402440826626893e-13 Converged in 159 iterations to T = 653.5544717818734 K Iter 1: T = 973.4936668790784 K, F = -6039.493215634053, relative_change = 0.026506333120921547 Iter 2: T = 949.1803951926505 K, F = -5110.914980652913, relative_change = 0.024975274635708533 Iter 3: T = 926.9929299913192 K, F = -4323.292584332162, relative_change = 0.02337539345914118 Iter 5: T = 888.6739040348567 K, F = -3089.352667134253, relative_change = 0.020046991225334564 Iter 10: T = 823.4136016097923 K, F = -1322.8340487063274, relative_change = 0.012031458957833046 Iter 15: T = 789.8154532726006 K, F = -560.6979277031886, relative_change = 0.00616849342865248 Iter 20: T = 774.1370859123181 K, F = -236.05202944442584, relative_change = 0.00285148802579393 Iter 25: T = 767.2324449753769 K, F = -99.01732804497534, relative_change = 0.0012477504325091437 Iter 30: T = 764.2780616914623 K, F = -41.4643070664451, relative_change = 0.0005321527080610732 Iter 35: T = 763.030333254384 K, F = -17.35048447650027, relative_change = 0.00022441203379251163 Iter 40: T = 762.5063520044619 K, F = -7.257873508621623, relative_change = 9.41810096462062e-5 Iter 45: T = 762.286835073179 K, F = -3.0356264813806684, relative_change = 3.944550040332756e-5 Iter 50: T = 762.1949635000747 K, F = -1.269587275217336, relative_change = 1.650672402413423e-5 Iter 55: T = 762.1565299824374 K, F = -0.5309656648893466, relative_change = 6.90508503618885e-6 Iter 60: T = 762.1404545739053 K, F = -0.22205777479000377, relative_change = 2.8880997532251746e-6 Iter 65: T = 762.1337312870171 K, F = -0.09286749191603016, relative_change = 1.2078921629085608e-6 Iter 70: T = 762.1309194653419 K, F = -0.038838342907448364, relative_change = 5.051644350750388e-7 Iter 75: T = 762.1297435169522 K, F = -0.016242667351143325, relative_change = 2.112674625495032e-7 Iter 80: T = 762.1292517193706 K, F = -0.006792878953078563, relative_change = 8.835486672320489e-8 Iter 85: T = 762.1290460434126 K, F = -0.002840863362846835, relative_change = 3.695111131144622e-8 Iter 90: T = 762.128960027212 K, F = -0.0011880830293233835, relative_change = 1.5453404915116638e-8 Iter 95: T = 762.1289240541994 K, F = -0.000496870521614623, relative_change = 6.462800071169746e-9 Iter 100: T = 762.128909009854 K, F = -0.0002077971875206197, relative_change = 2.7028204453574096e-9 Iter 105: T = 762.1289027181288 K, F = -8.690326518301372e-5, relative_change = 1.1303518297811148e-9 Iter 110: T = 762.1289000868542 K, F = -3.634398249996451e-5, relative_change = 4.72726631262458e-10 Iter 115: T = 762.1288989864238 K, F = -1.5199489179495984e-5, relative_change = 1.976999456825116e-10 Iter 120: T = 762.1288985262105 K, F = -6.3566074635090786e-6, relative_change = 8.268047294439152e-11 Iter 125: T = 762.1288983337438 K, F = -2.6584080214941963e-6, relative_change = 3.45779464946307e-11 Iter 130: T = 762.1288982532519 K, F = -1.1117756586465077e-6, relative_change = 1.446087995041313e-11 Iter 135: T = 762.1288982195894 K, F = -4.649581394344793e-7, relative_change = 6.047716358468377e-12 Iter 140: T = 762.1288982055112 K, F = -1.944501726303116e-7, relative_change = 2.5292158374882656e-12 Iter 145: T = 762.1288981996236 K, F = -8.132120066228765e-8, relative_change = 1.0577458783604199e-12 Iter 150: T = 762.1288981971613 K, F = -3.401107540046411e-8, relative_change = 4.423824848995746e-13 Converged in 154 iterations to T = 762.1288981962725 K Iter 1: T = 970.0535556157242 K, F = -6823.3258393799215, relative_change = 0.02994644438427574 Iter 2: T = 942.2654914667633 K, F = -5779.655552937918, relative_change = 0.028645907216249565 Iter 3: T = 916.592763897109 K, F = -4893.886982995551, relative_change = 0.02724574740574576 Iter 5: T = 871.3861896791665 K, F = -3504.68278324051, relative_change = 0.02418789814854209 Iter 10: T = 790.8078104392396 K, F = -1509.3014387823075, relative_change = 0.015884746501014645 Iter 15: T = 746.6349580407626 K, F = -642.7768728111646, relative_change = 0.008762462665165009 Iter 20: T = 725.0947340556337 K, F = -271.40336009909856, relative_change = 0.004235858080911463 Iter 25: T = 715.3740962024119 K, F = -114.01675357659492, relative_change = 0.0018958941051012551 Iter 30: T = 711.1657684920477 K, F = -47.778159077321675, relative_change = 0.000816956953572884 Iter 35: T = 709.3791690047332 K, F = -19.99843626301221, relative_change = 0.0003460613609362915 Iter 40: T = 708.6272074739729 K, F = -8.366597439625915, relative_change = 0.0001455112256606721 Iter 45: T = 708.3118817734116 K, F = -3.499540270928709, relative_change = 6.099278899520364e-5 Iter 50: T = 708.1798600472498 K, F = -1.4636422871840322, relative_change = 2.553217474435718e-5 Iter 55: T = 708.1246209151396 K, F = -0.6121289194918251, relative_change = 1.068210977206681e-5 Iter 60: T = 708.1015146869466 K, F = -0.2560024649952218, relative_change = 4.468129532489142e-6 Iter 65: T = 708.0918505879359 K, F = -0.107063785033789, relative_change = 1.8687552287596965e-6 Iter 70: T = 708.087808806649 K, F = -0.044775440412203715, relative_change = 7.815585107464335e-7 Iter 75: T = 708.0861184610166 K, F = -0.01872563910752245, relative_change = 3.268610832060739e-7 Iter 80: T = 708.0854115340134 K, F = -0.007831288562857197, relative_change = 1.3669790468500306e-7 Iter 85: T = 708.0851158879509 K, F = -0.0032751388670207993, relative_change = 5.716881801462091e-8 Iter 90: T = 708.0849922451062 K, F = -0.0013697022684161508, relative_change = 2.3908703721065358e-8 Iter 95: T = 708.0849405361691 K, F = -0.0005728258607973213, relative_change = 9.998909155035114e-9 Iter 100: T = 708.0849189108701 K, F = -0.00023956261947777335, relative_change = 4.181663890087037e-9 Iter 105: T = 708.084909866911 K, F = -0.00010018794844324219, relative_change = 1.7488218847215838e-9 Iter 110: T = 708.0849060846192 K, F = -4.1899796671684975e-5, relative_change = 7.313782185076923e-10 Iter 115: T = 708.0849045028195 K, F = -1.7522995294561028e-5, relative_change = 3.0587110763773614e-10 Iter 120: T = 708.0849038412921 K, F = -7.328325900224364e-6, relative_change = 1.2791895064299583e-10 Iter 125: T = 708.0849035646335 K, F = -3.064794163232243e-6, relative_change = 5.34972460783631e-11 Iter 130: T = 708.0849034489314 K, F = -1.2817336383363909e-6, relative_change = 2.237318927742509e-11 Iter 135: T = 708.0849034005435 K, F = -5.360352187677719e-7, relative_change = 9.356715821490968e-12 Iter 140: T = 708.0849033803071 K, F = -2.2417670708652082e-7, relative_change = 3.913096880300952e-12 Iter 145: T = 708.0849033718439 K, F = -9.37528441546931e-8, relative_change = 1.6364945616778849e-12 Iter 150: T = 708.0849033683045 K, F = -3.920808222535044e-8, relative_change = 6.843932460466101e-13 Iter 155: T = 708.0849033668243 K, F = -1.639691105115304e-8, relative_change = 2.8621484506814716e-13 Converged in 157 iterations to T = 708.0849033665111 K Iter 1: T = 973.5987285259588 K, F = -6015.554819452945, relative_change = 0.026401271474041223 Iter 2: T = 949.3903598265404 K, F = -5090.510773177711, relative_change = 0.024864831875931234 Iter 3: T = 927.3067989521287 K, F = -4305.902315989672, relative_change = 0.023260780611303475 Iter 5: T = 889.1889377965301 K, F = -3076.729290977384, relative_change = 0.019928500935837392 Iter 10: T = 824.3540266384472 K, F = -1317.2196275479023, relative_change = 0.01193069160608035 Iter 15: T = 791.0301440502551 K, F = -558.2507252132403, relative_change = 0.006105486923459723 Iter 20: T = 775.4965666503663 K, F = -235.00525980294944, relative_change = 0.0028193550905547013 Iter 25: T = 768.659598909009 K, F = -98.57484038795744, relative_change = 0.0012330487983510528 Iter 30: T = 765.7349528765297 K, F = -41.27837269895996, relative_change = 0.0005257602064037968 Iter 35: T = 764.4999282619663 K, F = -17.272566025979526, relative_change = 0.00022169404330336286 Iter 40: T = 763.9813079378796 K, F = -7.225259028275193, relative_change = 9.303637482272789e-5 Iter 45: T = 763.7640415074162 K, F = -3.021981784624974, relative_change = 3.896540126825575e-5 Iter 50: T = 763.6731126139946 K, F = -1.2638800357100166, relative_change = 1.6305695325810917e-5 Iter 55: T = 763.6350735979731 K, F = -0.5285786778543315, relative_change = 6.820969436576798e-6 Iter 60: T = 763.6191632205407 K, F = -0.22105948183040747, relative_change = 2.8529140804235966e-6 Iter 65: T = 763.6125089596446 K, F = -0.09244998924569592, relative_change = 1.1931757779695365e-6 Iter 70: T = 763.6097260068659 K, F = -0.03866373749549834, relative_change = 4.990096369007649e-7 Iter 75: T = 763.6085621320387 K, F = -0.016169645138570443, relative_change = 2.0869341214532665e-7 Iter 80: T = 763.608075383808 K, F = -0.006762340167969727, relative_change = 8.727836107316585e-8 Iter 85: T = 763.6078718195564 K, F = -0.00282809167353848, relative_change = 3.650090255613169e-8 Iter 90: T = 763.6077866864979 K, F = -0.00118274175633859, relative_change = 1.5265122031619787e-8 Iter 95: T = 763.6077510828261 K, F = -0.0004946367338106716, relative_change = 6.3840578373810294e-9 Iter 100: T = 763.6077361929435 K, F = -0.00020686299150296517, relative_change = 2.669889505783798e-9 Iter 105: T = 763.6077299658166 K, F = -8.651257245939625e-5, relative_change = 1.116579706296226e-9 Iter 110: T = 763.6077273615577 K, F = -3.618059177401545e-5, relative_change = 4.669669857708044e-10 Iter 115: T = 763.6077262724256 K, F = -1.5131157014680596e-5, relative_change = 1.9529119021838474e-10 Iter 120: T = 763.6077258169374 K, F = -6.328030227820136e-6, relative_change = 8.167310386374568e-11 Iter 125: T = 763.607725626447 K, F = -2.6464586873053975e-6, relative_change = 3.415667873169839e-11 Iter 130: T = 763.6077255467815 K, F = -1.1067806340303576e-6, relative_change = 1.4284731041960936e-11 Iter 135: T = 763.6077255134645 K, F = -4.6287021437940723e-7, relative_change = 5.974062355103349e-12 Iter 140: T = 763.6077254995309 K, F = -1.9357908020989356e-7, relative_change = 2.498440081024528e-12 Iter 145: T = 763.6077254937037 K, F = -8.09572727744623e-8, relative_change = 1.0448799267885144e-12 Iter 150: T = 763.6077254912667 K, F = -3.385818714285449e-8, relative_change = 4.369927356880402e-13 Converged in 154 iterations to T = 763.607725490387 K Iter 1: T = 964.3287860615955 K, F = -8127.720027949876, relative_change = 0.035671213938404556 Iter 2: T = 930.5833582205777 K, F = -6895.2176295549625, relative_change = 0.03499369543746289 Iter 3: T = 898.7327659871597 K, F = -5848.545045540706, relative_change = 0.03422647950025812 Iter 5: T = 840.603135181051 K, F = -4205.00117837551, relative_change = 0.0323975089186555 Iter 10: T = 726.4565906078418 K, F = -1833.7938309269068, relative_change = 0.02600324552780657 Iter 15: T = 652.821011075606 K, F = -791.8083127919753, relative_change = 0.017802900983146453 Iter 20: T = 611.1857451962838 K, F = -338.0421674028047, relative_change = 0.0102021725024767 Iter 25: T = 590.3891275544173 K, F = -142.97226007452363, relative_change = 0.00505943199679122 Iter 30: T = 580.8684888622533 K, F = -60.11692896043575, relative_change = 0.002295625435705512 Iter 35: T = 576.7170689481002 K, F = -25.202409030441697, relative_change = 0.0009955554227773285 Iter 40: T = 574.9488780136597 K, F = -10.55091276510182, relative_change = 0.0004229040933489538 Iter 45: T = 574.2036126411366 K, F = -4.414460815943331, relative_change = 0.00017803594999633417 Iter 50: T = 573.8909073950101 K, F = -1.8465219784434703, relative_change = 7.46638170534508e-5 Iter 55: T = 573.7599497531535 K, F = -0.7722974549487818, relative_change = 3.126166242084943e-5 Iter 60: T = 573.7051500427019 K, F = -0.3229945076347225, relative_change = 1.3080371280670467e-5 Iter 65: T = 573.6822266061249 K, F = -0.13508199569374466, relative_change = 5.47148252400883e-6 Iter 70: T = 573.6726387812504 K, F = -0.056493224848293805, relative_change = 2.2884344149825494e-6 Iter 75: T = 573.6686288687124 K, F = -0.023626197451634218, relative_change = 9.570847258896066e-7 Iter 80: T = 573.6669518457227 K, F = -0.009880767750120034, relative_change = 4.002702309393092e-7 Iter 85: T = 573.6662504894897 K, F = -0.004132256791095634, relative_change = 1.673988347170642e-7 Iter 90: T = 573.6659571730291 K, F = -0.001728159439284449, relative_change = 7.00083744010787e-8 Iter 95: T = 573.6658345044237 K, F = -0.0007227369681235829, relative_change = 2.9278370165375412e-8 Iter 100: T = 573.6657832029201 K, F = -0.00030225724040083835, relative_change = 1.2244569639714332e-8 Iter 105: T = 573.665761748014 K, F = -0.0001264075895636152, relative_change = 5.120826243711382e-9 Iter 110: T = 573.6657527753151 K, F = -5.286516488139936e-5, relative_change = 2.1415909028569298e-9 Iter 115: T = 573.6657490228251 K, F = -2.2108843140467016e-5, relative_change = 8.956389131304769e-10 Iter 120: T = 573.665747453489 K, F = -9.246182446465134e-6, relative_change = 3.7456690303509413e-10 Iter 125: T = 573.6657467971738 K, F = -3.866863818313693e-6, relative_change = 1.5664834878172988e-10 Iter 130: T = 573.6657465226949 K, F = -1.6171683930865655e-6, relative_change = 6.551220083218404e-11 Iter 135: T = 573.6657464079046 K, F = -6.76319544756776e-7, relative_change = 2.7398001392100467e-11 Iter 140: T = 573.6657463598979 K, F = -2.828440799351739e-7, relative_change = 1.1458137738257452e-11 Iter 145: T = 573.665746339821 K, F = -1.1828904095123605e-7, relative_change = 4.7919409332594594e-12 Iter 150: T = 573.6657463314245 K, F = -4.946959986096289e-8, relative_change = 2.004035189024467e-12 Iter 155: T = 573.6657463279131 K, F = -2.0688960711279236e-8, relative_change = 8.381188731561633e-13 Iter 160: T = 573.6657463264445 K, F = -8.65246957415522e-9, relative_change = 3.5051533766236013e-13 Converged in 163 iterations to T = 573.6657463260145 K Iter 1: T = 963.5789935745463 K, F = -8298.560959360806, relative_change = 0.03642100642545369 Iter 2: T = 929.036793168986 K, F = -7041.574264289665, relative_change = 0.035847813864663694 Iter 3: T = 896.3399279070576 K, F = -5974.061180429006, relative_change = 0.03519437066684736 Iter 5: T = 836.3635279529492 K, F = -4297.634382330976, relative_change = 0.033617550333125516 Iter 10: T = 716.7771641246328 K, F = -1877.9920380698509, relative_change = 0.02788152501466406 Iter 15: T = 637.2513087652112 K, F = -813.1711405747407, relative_change = 0.019959974336259727 Iter 20: T = 590.6990201691254 K, F = -348.15136328101147, relative_change = 0.011957045315113473 Iter 25: T = 566.7621442137514 K, F = -147.55445080406082, relative_change = 0.0061218402163209515 Iter 30: T = 555.6012060684321 K, F = -62.11667826205522, relative_change = 0.002827666381685275 Iter 35: T = 550.6881152779329 K, F = -26.05556314576473, relative_change = 0.0012368456939255857 Iter 40: T = 548.5863047691463 K, F = -10.910851137524194, relative_change = 0.0005274100947153569 Iter 45: T = 547.6987225463632 K, F = -4.5655557385301755, relative_change = 0.00022239535938906808 Iter 50: T = 547.325998035796 K, F = -1.9098115537642522, relative_change = 9.333168836569042e-5 Iter 55: T = 547.1698511434748 K, F = -0.7987834653767734, relative_change = 3.908925999673413e-5 Iter 60: T = 547.1045014454273 K, F = -0.33407435008477704, relative_change = 1.6357556827134748e-5 Iter 65: T = 547.0771631547333 K, F = -0.13971625668897908, relative_change = 6.842669447029543e-6 Iter 70: T = 547.0657285084693 K, F = -0.058431422369912056, relative_change = 2.861991193379426e-6 Iter 75: T = 547.0609461497731 K, F = -0.02443679128516074, relative_change = 1.1969722690598044e-6 Iter 80: T = 547.0589460659869 K, F = -0.010219770654259858, relative_change = 5.005974332375822e-7 Iter 85: T = 547.0581095993191 K, F = -0.004274032358086849, relative_change = 2.0935745775446578e-7 Iter 90: T = 547.0577597776152 K, F = -0.0017874517637569698, relative_change = 8.755607469095487e-8 Iter 95: T = 547.0576134777639 K, F = -0.0007475337421715966, relative_change = 3.661704602215132e-8 Iter 100: T = 547.0575522933775 K, F = -0.00031262755063696246, relative_change = 1.5313694699089153e-8 Iter 105: T = 547.0575267053291 K, F = -0.00013074457709294496, relative_change = 6.40437152432023e-9 Iter 110: T = 547.0575160041004 K, F = -5.467894374439064e-5, relative_change = 2.6783849142739266e-9 Iter 115: T = 547.0575115287186 K, F = -2.286738699291968e-5, relative_change = 1.1201325874631927e-9 Iter 120: T = 547.0575096570605 K, F = -9.563414858609898e-6, relative_change = 4.684528585781006e-10 Iter 125: T = 547.0575088743105 K, F = -3.9995334015774375e-6, relative_change = 1.9591253703939162e-10 Iter 130: T = 547.0575085469552 K, F = -1.6726522303611713e-6, relative_change = 8.193294318756386e-11 Iter 135: T = 547.0575084100514 K, F = -6.995230896478244e-7, relative_change = 3.426533297863967e-11 Iter 140: T = 547.0575083527966 K, F = -2.925489901162148e-7, relative_change = 1.4330175389833669e-11 Iter 145: T = 547.057508328852 K, F = -1.2234770285779462e-7, relative_change = 5.993061333639597e-12 Iter 150: T = 547.057508318838 K, F = -5.116757642587011e-8, relative_change = 2.50638480885151e-12 Iter 155: T = 547.05750831465 K, F = -2.13987105812663e-8, relative_change = 1.0481911960312018e-12 Iter 160: T = 547.0575083128987 K, F = -8.949514601619413e-9, relative_change = 4.3838166690873645e-13 Converged in 164 iterations to T = 547.0575083122665 K Iter 1: T = 969.3060462548023 K, F = -6993.646558330973, relative_change = 0.03069395374519775 Iter 2: T = 940.7526105311899 K, F = -5925.129021809458, relative_change = 0.029457606123408496 Iter 3: T = 914.3006915302017 K, F = -5018.175608018505, relative_change = 0.028117826838718357 Iter 5: T = 867.5160020125596 K, F = -3595.4578398943368, relative_change = 0.025159661419821136 Iter 10: T = 783.2042629562472 K, F = -1550.5622790091445, relative_change = 0.01689254938109959 Iter 15: T = 736.2261073315236 K, F = -661.1964861815402, relative_change = 0.009505579333214437 Iter 20: T = 713.031188542201 K, F = -279.42078381944555, relative_change = 0.004655780836117995 Iter 25: T = 702.4868036633836 K, F = -117.43874290995983, relative_change = 0.002098357352305062 Iter 30: T = 697.9052087476289 K, F = -49.22271012990877, relative_change = 0.0009071325580351386 Iter 35: T = 695.9569377573465 K, F = -20.605028230393994, relative_change = 0.00038480590483029294 Iter 40: T = 695.1363458667678 K, F = -8.620721123931324, relative_change = 0.00016190062320178012 Iter 45: T = 694.7921368229651 K, F = -3.6058953919040984, relative_change = 6.787996857178512e-5 Iter 50: T = 694.6480037758851 K, F = -1.5081348833300499, relative_change = 2.841826688137181e-5 Iter 55: T = 694.587693936045 K, F = -0.6307386393159633, relative_change = 1.1890123136705052e-5 Iter 60: T = 694.5624660949976 K, F = -0.26378568943166053, relative_change = 4.9735128665345834e-6 Iter 65: T = 694.5519145402448 K, F = -0.1103188954618119, relative_change = 2.0801436697981965e-6 Iter 70: T = 694.5475015842934 K, F = -0.04613677923791615, relative_change = 8.699691207260691e-7 Iter 75: T = 694.545656003723 K, F = -0.019294969496595482, relative_change = 3.6383640757934576e-7 Iter 80: T = 694.5448841546947 K, F = -0.008069389720021025, relative_change = 1.521615932969866e-7 Iter 85: T = 694.5445613573053 K, F = -0.003374715682653351, relative_change = 6.363594637008793e-8 Iter 90: T = 694.5444263594231 K, F = -0.00141134649430541, relative_change = 2.6613339131420014e-8 Iter 95: T = 694.5443699016688 K, F = -0.0005902419749757026, relative_change = 1.113002086476153e-8 Iter 100: T = 694.5443462903569 K, F = -0.0002468462459491727, relative_change = 4.654708456812441e-9 Iter 105: T = 694.5443364158233 K, F = -0.00010323404799872371, relative_change = 1.946654796914591e-9 Iter 110: T = 694.5443322861754 K, F = -4.317371166107087e-5, relative_change = 8.141143054456158e-10 Iter 115: T = 694.5443305591072 K, F = -1.805576139268794e-5, relative_change = 3.4047232109491913e-10 Iter 120: T = 694.5443298368267 K, F = -7.551134470484833e-6, relative_change = 1.4238958063747868e-10 Iter 125: T = 694.5443295347603 K, F = -3.157973229916955e-6, relative_change = 5.954899711572594e-11 Iter 130: T = 694.5443294084326 K, F = -1.3207028214390348e-6, relative_change = 2.4904115027846014e-11 Iter 135: T = 694.5443293556009 K, F = -5.523331340073767e-7, relative_change = 1.041518779599808e-11 Iter 140: T = 694.544329333506 K, F = -2.30993229322074e-7, relative_change = 4.355773201405853e-12 Iter 145: T = 694.5443293242656 K, F = -9.660370947628394e-8, relative_change = 1.8216284960159966e-12 Iter 150: T = 694.5443293204013 K, F = -4.04014059984803e-8, relative_change = 7.618377477105131e-13 Iter 155: T = 694.5443293187851 K, F = -1.6896215426775996e-8, relative_change = 3.186070976389647e-13 Converged in 158 iterations to T = 694.5443293183118 K Iter 1: T = 966.4884213291028 K, F = -7635.645077904836, relative_change = 0.033511578670897206 Iter 2: T = 935.0164107113927 K, F = -6473.984851205751, relative_change = 0.03256325675834809 Iter 3: T = 905.5542328564765 K, F = -5487.646214478358, relative_change = 0.03150979760077203 Iter 5: T = 852.5346189826072 K, F = -3939.397794463453, relative_change = 0.029082689216233554 Iter 10: T = 752.531689994629 K, F = -1708.90798741944, relative_change = 0.021441730288944815 Iter 15: T = 692.5826669334629 K, F = -733.12336668334, relative_change = 0.013254986471238862 Iter 20: T = 661.0941687148867 K, F = -311.20255430849113, relative_change = 0.0069522206948488255 Iter 25: T = 646.2021564354037 K, F = -131.1303166196038, relative_change = 0.0032569206851793377 Iter 30: T = 639.5965011315577 K, F = -55.029527315025476, relative_change = 0.0014345591144865448 Iter 35: T = 636.7604603908553 K, F = -23.04859687394937, relative_change = 0.000613638994564924 Iter 40: T = 635.5609215956752 K, F = -9.645364912644283, relative_change = 0.0002591064046850109 Iter 45: T = 635.0568555110822 K, F = -4.034894072784307, relative_change = 0.00010880047182234018 Iter 50: T = 634.8456248610755 K, F = -1.6876317022065412, relative_change = 4.557890969846018e-5 Iter 55: T = 634.7572112209888 K, F = -0.7058211536281438, relative_change = 1.9075189709327548e-5 Iter 60: T = 634.7202225380817 K, F = -0.2951886845830083, relative_change = 7.979843710719488e-6 Iter 65: T = 634.7047511465217 K, F = -0.12345245639611224, relative_change = 3.3376809099809433e-6 Iter 70: T = 634.6982804264646 K, F = -0.05162947056823808, relative_change = 1.395930608771612e-6 Iter 75: T = 634.6955742242079 K, F = -0.021592092477206504, relative_change = 5.838075487946031e-7 Iter 80: T = 634.6944424458876 K, F = -0.009030076410798837, relative_change = 2.4415750983621104e-7 Iter 85: T = 634.6939691205409 K, F = -0.0037764867531205892, relative_change = 1.0210997486889328e-7 Iter 90: T = 634.6937711698547 K, F = -0.0015793720277945678, relative_change = 4.270367886223349e-8 Iter 95: T = 634.6936883844483 K, F = -0.0006605122726607293, relative_change = 1.7859200363087008e-8 Iter 100: T = 634.6936537625912 K, F = -0.00027623412636385014, relative_change = 7.468932971074317e-9 Iter 105: T = 634.6936392833151 K, F = -0.00011552441049472728, relative_change = 3.1235973034244097e-9 Iter 110: T = 634.6936332279087 K, F = -4.831368923696733e-5, relative_change = 1.3063257854138965e-9 Iter 115: T = 634.6936306954652 K, F = -2.0205361577041447e-5, relative_change = 5.463210479259653e-10 Iter 120: T = 634.6936296363672 K, F = -8.450123638148455e-6, relative_change = 2.284779918523562e-10 Iter 125: T = 634.6936291934397 K, F = -3.5339431451175685e-6, relative_change = 9.555223927782347e-11 Iter 130: T = 634.6936290082022 K, F = -1.477937744853719e-6, relative_change = 3.996110164514796e-11 Iter 135: T = 634.6936289307337 K, F = -6.180919014386888e-7, relative_change = 1.6712228508807823e-11 Iter 140: T = 634.6936288983353 K, F = -2.584937474625626e-7, relative_change = 6.989262546050057e-12 Iter 145: T = 634.6936288847859 K, F = -1.0810525707949381e-7, relative_change = 2.922995359967239e-12 Iter 150: T = 634.6936288791194 K, F = -4.521095364751204e-8, relative_change = 1.2224327595818306e-12 Iter 155: T = 634.6936288767496 K, F = -1.8907373444676523e-8, relative_change = 5.112255069209964e-13 Converged in 160 iterations to T = 634.6936288757585 K Iter 1: T = 966.534486831781 K, F = -7625.149009300002, relative_change = 0.033465513168219004 Iter 2: T = 935.1106225970132 K, F = -6465.00504383617, relative_change = 0.032511891363310425 Iter 3: T = 905.6986102521784 K, F = -5479.958245847355, relative_change = 0.031452976400964214 Iter 5: T = 852.7847463907186 K, F = -3933.751536861185, relative_change = 0.029015037465812705 Iter 10: T = 753.0615009086456 K, F = -1706.2799570374539, relative_change = 0.021356056875350055 Iter 15: T = 693.3622789530742 K, F = -731.9101120741691, relative_change = 0.013177767614243637 Iter 20: T = 662.044533389845 K, F = -310.658301409584, relative_change = 0.00690170893119772 Iter 25: T = 647.2460165665426 K, F = -130.893546697235, relative_change = 0.003230464642139732 Iter 30: T = 640.6849058008783 K, F = -54.92860005621967, relative_change = 0.0014222941734769786 Iter 35: T = 637.8686153304636 K, F = -23.006026690527275, relative_change = 0.0006082741839130471 Iter 40: T = 636.6775472465757 K, F = -9.627496157434733, relative_change = 0.00025681949929318973 Iter 45: T = 636.1770617770192 K, F = -4.027409538725025, relative_change = 0.00010783633022508549 Iter 50: T = 635.9673353289883 K, F = -1.6844995379520142, relative_change = 4.517433005788276e-5 Iter 55: T = 635.8795519506101 K, F = -0.7045108869257508, relative_change = 1.890575019830211e-5 Iter 60: T = 635.8428270586783 K, F = -0.29464065268176554, relative_change = 7.90894013417872e-6 Iter 65: T = 635.8274660240698 K, F = -0.123223251935284, relative_change = 3.3080208456986387e-6 Iter 70: T = 635.8210414629796 K, F = -0.051533612606230406, relative_change = 1.383525131251626e-6 Iter 75: T = 635.8183545660686 K, F = -0.021552003196761038, relative_change = 5.78619205264663e-7 Iter 80: T = 635.8172308616695 K, F = -0.009013310536997277, relative_change = 2.4198764333367247e-7 Iter 85: T = 635.8167609129672 K, F = -0.0037694750544789435, relative_change = 1.012025039183017e-7 Iter 90: T = 635.8165643744397 K, F = -0.001576439650070094, relative_change = 4.232416247602547e-8 Iter 95: T = 635.8164821796161 K, F = -0.0006592859170816978, relative_change = 1.7700481871005522e-8 Iter 100: T = 635.816447804748 K, F = -0.00027572124931019015, relative_change = 7.402554953216036e-9 Iter 105: T = 635.8164334287655 K, F = -0.00011530991994940232, relative_change = 3.095837238147696e-9 Iter 110: T = 635.8164274165578 K, F = -4.822398561327157e-5, relative_change = 1.2947161633630487e-9 Iter 115: T = 635.8164249021806 K, F = -2.0167847080976298e-5, relative_change = 5.414657821316665e-10 Iter 120: T = 635.8164238506381 K, F = -8.434434872639507e-6, relative_change = 2.2644746822878796e-10 Iter 125: T = 635.8164234108704 K, F = -3.527381089496462e-6, relative_change = 9.470302775305404e-11 Iter 130: T = 635.8164232269544 K, F = -1.4751933664070016e-6, relative_change = 3.9605949844308997e-11 Iter 135: T = 635.8164231500384 K, F = -6.169439242253993e-7, relative_change = 1.6563693065681784e-11 Iter 140: T = 635.8164231178712 K, F = -2.58012079423775e-7, relative_change = 6.9271010281993505e-12 Iter 145: T = 635.8164231044185 K, F = -1.0790348398126426e-7, relative_change = 2.8969896935737263e-12 Iter 150: T = 635.8164230987924 K, F = -4.5125817638158594e-8, relative_change = 1.2115366788345722e-12 Iter 155: T = 635.8164230964395 K, F = -1.8872143181525303e-8, relative_change = 5.066787677150996e-13 Converged in 160 iterations to T = 635.8164230954555 K Iter 1: T = 976.3797875608534 K, F = -5381.887872882113, relative_change = 0.02362021243914663 Iter 2: T = 954.9223746483661 K, F = -4550.813158614021, relative_change = 0.021976502571905115 Iter 3: T = 935.5366017702864 K, F = -3846.3326032469786, relative_change = 0.02030088873477094 Iter 5: T = 902.5608321830038 K, F = -2743.83653749274, relative_change = 0.01694700287356369 Iter 10: T = 848.2199501931581 K, F = -1170.1194543310905, relative_change = 0.00954664848110966 Iter 15: T = 821.3712084768842 K, F = -494.51478954157767, relative_change = 0.0046793320035026535 Iter 20: T = 809.1607513929522 K, F = -207.8467638820754, relative_change = 0.002109800656838189 Iter 25: T = 803.8541402122518 K, F = -87.11696173354262, relative_change = 0.0009122477383059314 Iter 30: T = 801.5973521121227 K, F = -36.4680684525717, relative_change = 0.00038700715605732156 Iter 35: T = 800.6467772016105 K, F = -15.257527036598159, relative_change = 0.00016283240744141092 Iter 40: T = 800.2480380103777 K, F = -6.381960323340326, relative_change = 6.827163604565328e-5 Iter 45: T = 800.081069958373 K, F = -2.669201374170626, relative_change = 2.8582415874963507e-5 Iter 50: T = 800.0112050144322 K, F = -1.1163250387464074, relative_change = 1.19588333859317e-5 Iter 55: T = 799.9819801987002 K, F = -0.4668662624974147, relative_change = 5.002259024233443e-6 Iter 60: T = 799.9697569011184 K, F = -0.19525006101277442, relative_change = 2.0921675303405973e-6 Iter 65: T = 799.9646447743132 K, F = -0.08165608472321295, relative_change = 8.749979706330159e-7 Iter 70: T = 799.9625067872377 K, F = -0.03414958083537445, relative_change = 3.6593958997208836e-7 Iter 75: T = 799.9616126494592 K, F = -0.014281767960643066, relative_change = 1.5304117932905987e-7 Iter 80: T = 799.961238709304 K, F = -0.005972806870794711, relative_change = 6.400380151495139e-8 Iter 85: T = 799.9610823228801 K, F = -0.002497899327995712, relative_change = 2.676718083506385e-8 Iter 90: T = 799.9610169201776 K, F = -0.0010446513575451677, relative_change = 1.1194359343653465e-8 Iter 95: T = 799.9609895679807 K, F = -0.00043688567959143665, relative_change = 4.681615593853824e-9 Iter 100: T = 799.9609781289644 K, F = -0.00018271081034781922, relative_change = 1.9579077023702484e-9 Iter 105: T = 799.960973345031 K, F = -7.641184365503317e-5, relative_change = 8.188204147281362e-10 Iter 110: T = 799.9609713443328 K, F = -3.195634517039192e-5, relative_change = 3.4244047605151195e-10 Iter 115: T = 799.9609705076169 K, F = -1.3364526054937542e-5, relative_change = 1.4321270667357828e-10 Iter 120: T = 799.9609701576924 K, F = -5.589204093658928e-6, relative_change = 5.989326106894019e-11 Iter 125: T = 799.9609700113497 K, F = -2.3374716482393865e-6, relative_change = 2.504807436715715e-11 Iter 130: T = 799.9609699501475 K, F = -9.77557827464004e-7, relative_change = 1.0475396006568677e-11 Iter 135: T = 799.960969924552 K, F = -4.0882823482135677e-7, relative_change = 4.380955825582888e-12 Iter 140: T = 799.9609699138477 K, F = -1.7097745952376897e-7, relative_change = 1.8321745750242666e-12 Iter 145: T = 799.960969909371 K, F = -7.150557757018561e-8, relative_change = 7.662454546050699e-13 Iter 150: T = 799.9609699074988 K, F = -2.9904647647072125e-8, relative_change = 3.204547268903498e-13 Converged in 153 iterations to T = 799.9609699069507 K Iter 1: T = 965.1794834640864 K, F = -7933.887815570187, relative_change = 0.03482051653591366 Iter 2: T = 932.3333763852366 K, F = -6729.233973253096, relative_change = 0.034031087110309395 Iter 3: T = 901.4322177576419 K, F = -5706.273386119747, relative_change = 0.03314389403005404 Iter 5: T = 845.3517237077788 K, F = -4100.166224076213, relative_change = 0.031057482357673197 Iter 10: T = 737.0300558586149 K, F = -1784.1921832274647, relative_change = 0.02406941263755486 Iter 15: T = 669.2952806666755 K, F = -768.2362198927405, relative_change = 0.015764474177389912 Iter 20: T = 632.2359289536744 K, F = -327.12417422363575, relative_change = 0.008675581998117205 Iter 25: T = 614.1909764837837 K, F = -138.1096379916242, relative_change = 0.004187443179633547 Iter 30: T = 606.0546083380377 K, F = -58.01688760015795, relative_change = 0.0018727248901615828 Iter 35: T = 602.5336291431712 K, F = -24.311091037873567, relative_change = 0.0008066736658104429 Iter 40: T = 601.0391179186873 K, F = -10.175748773838214, relative_change = 0.0003416498849399282 Iter 45: T = 600.4101446139969 K, F = -4.257132876552799, relative_change = 0.00014364634848164367 Iter 50: T = 600.1464016053469 K, F = -1.7806496643407708, relative_change = 6.020934510617394e-5 Iter 55: T = 600.0359783152852 K, F = -0.7447355409661643, relative_change = 2.5203908680461156e-5 Iter 60: T = 599.9897764534636 K, F = -0.3114654515657033, relative_change = 1.0544716236258107e-5 Iter 65: T = 599.9704505155121 K, F = -0.13025999817691888, relative_change = 4.410650878361717e-6 Iter 70: T = 599.9623675182786 K, F = -0.05447653641840777, relative_change = 1.8447136384375974e-6 Iter 75: T = 599.9589869969963 K, F = -0.02278278176180537, relative_change = 7.715034478877806e-7 Iter 80: T = 599.9575732024557 K, F = -0.009528039049440107, relative_change = 3.226558339558833e-7 Iter 85: T = 599.956981933167 K, F = -0.003984741053221608, relative_change = 1.3493920138918724e-7 Iter 90: T = 599.9567346566723 K, F = -0.0016664665300605286, relative_change = 5.6433304187348326e-8 Iter 95: T = 599.9566312425812 K, F = -0.0006969362458462136, relative_change = 2.360110252902846e-8 Iter 100: T = 599.9565879935544 K, F = -0.00029146706806432165, relative_change = 9.870266554632377e-9 Iter 105: T = 599.9565699062916 K, F = -0.0001218950104006078, relative_change = 4.127863998534572e-9 Iter 110: T = 599.9565623419818 K, F = -5.097794909086906e-5, relative_change = 1.7263221251723974e-9 Iter 115: T = 599.9565591784968 K, F = -2.131958708839754e-5, relative_change = 7.219685466076086e-10 Iter 120: T = 599.9565578554898 K, F = -8.916105977863076e-6, relative_change = 3.0193587310713285e-10 Iter 125: T = 599.9565573021924 K, F = -3.7288222914377833e-6, relative_change = 1.2627319840805176e-10 Iter 130: T = 599.9565570707967 K, F = -1.5594374003780054e-6, relative_change = 5.280893891795608e-11 Iter 135: T = 599.9565569740245 K, F = -6.521759070010624e-7, relative_change = 2.2085347994527736e-11 Iter 140: T = 599.9565569335531 K, F = -2.7274862823833956e-7, relative_change = 9.236385930458134e-12 Iter 145: T = 599.9565569166274 K, F = -1.1406633243504771e-7, relative_change = 3.862753316078625e-12 Iter 150: T = 599.9565569095489 K, F = -4.770365058526238e-8, relative_change = 1.615441038244615e-12 Iter 155: T = 599.9565569065886 K, F = -1.9949971730159888e-8, relative_change = 6.75587772635452e-13 Iter 160: T = 599.9565569053506 K, F = -8.343461976867417e-9, relative_change = 2.8254380353603864e-13 Converged in 162 iterations to T = 599.9565569050886 K Iter 1: T = 964.5699052067525 K, F = -8072.780801362303, relative_change = 0.03543009479324742 Iter 2: T = 931.0798822600754 K, F = -6848.164235966685, relative_change = 0.034720161562057754 Iter 3: T = 899.4995457482883 K, F = -5808.205323138317, relative_change = 0.033917966775449934 Iter 5: T = 841.955630821642 K, F = -4175.258724622813, relative_change = 0.03201301013278926 Iter 10: T = 729.4960661460783 K, F = -1819.6778848103545, relative_change = 0.02543504377999334 Iter 15: T = 657.6106426171275 K, F = -785.0597967674495, relative_change = 0.0171857273066397 Iter 20: T = 617.3671135243063 K, F = -334.89379366180884, relative_change = 0.00972712667412334 Iter 25: T = 597.423943659318 K, F = -141.5620833115606, relative_change = 0.004783066143203377 Iter 30: T = 588.3377312749607 K, F = -59.50590967312867, relative_change = 0.002160274816510024 Iter 35: T = 584.3853394218118 K, F = -24.942660573120328, relative_change = 0.00093482539706626 Iter 40: T = 582.7037820794875 K, F = -10.44150417399631, relative_change = 0.0003967261760694125 Iter 45: T = 581.9953723122791 K, F = -4.368565376613909, relative_change = 0.00016694699568705487 Iter 50: T = 581.6981920570919 K, F = -1.8273033201562625, relative_change = 7.000126585326008e-5 Iter 55: T = 581.5737468340072 K, F = -0.7642556552255468, relative_change = 2.930732611698229e-5 Iter 60: T = 581.5216741501644 K, F = -0.31963057276272056, relative_change = 1.2262272719834763e-5 Iter 65: T = 581.4998917939647 K, F = -0.13367502525198663, relative_change = 5.129208810349544e-6 Iter 70: T = 581.4907812884652 K, F = -0.05590478979030031, relative_change = 2.1452678165014293e-6 Iter 75: T = 581.486971015123 K, F = -0.023380102821977, relative_change = 8.972066085621869e-7 Iter 80: T = 581.4853774868709 K, F = -0.009777847325489641, relative_change = 3.7522776367458603e-7 Iter 85: T = 581.4847110497014 K, F = -0.004089214116692275, relative_change = 1.569256493217638e-7 Iter 90: T = 581.4844323369094 K, F = -0.0017101584568636197, relative_change = 6.56283410538182e-8 Iter 95: T = 581.48431577575 K, F = -0.0007152087390587258, relative_change = 2.7446584062612322e-8 Iter 100: T = 581.4842670284564 K, F = -0.00029910884489486866, relative_change = 1.1478494156347079e-8 Iter 105: T = 581.4842466417517 K, F = -0.00012509089333057055, relative_change = 4.800444227183397e-9 Iter 110: T = 581.4842381157875 K, F = -5.2314505712747206e-5, relative_change = 2.0076032538496235e-9 Iter 115: T = 581.4842345501274 K, F = -2.1878551598131235e-5, relative_change = 8.396037019139691e-10 Iter 120: T = 581.4842330589256 K, F = -9.149871065650128e-6, relative_change = 3.5113228031083026e-10 Iter 125: T = 581.4842324352873 K, F = -3.826584690447277e-6, relative_change = 1.4684768838592088e-10 Iter 130: T = 581.4842321744742 K, F = -1.6003231918526595e-6, relative_change = 6.141344852040956e-11 Iter 135: T = 581.4842320653992 K, F = -6.692739488722843e-7, relative_change = 2.5683825274220112e-11 Iter 140: T = 581.4842320197827 K, F = -2.798980755502889e-7, relative_change = 1.074127161504212e-11 Iter 145: T = 581.4842320007053 K, F = -1.1705688607310805e-7, relative_change = 4.49213452234966e-12 Iter 150: T = 581.484231992727 K, F = -4.895543326277618e-8, relative_change = 1.878696753417131e-12 Iter 155: T = 581.4842319893903 K, F = -2.0474176465334892e-8, relative_change = 7.857099057605936e-13 Iter 160: T = 581.4842319879948 K, F = -8.561573727750016e-9, relative_change = 3.285559884793966e-13 Converged in 163 iterations to T = 581.4842319875862 K Iter 1: T = 964.3272597648534 K, F = -8128.067796114435, relative_change = 0.035672740235146605 Iter 2: T = 930.5802139251534 K, F = -6895.515498819929, relative_change = 0.03499542867628676 Iter 3: T = 898.7279080432864 K, F = -5848.800435088998, relative_change = 0.03422843663042774 Iter 5: T = 840.5945570937216 K, F = -4205.189521540121, relative_change = 0.03239995480712575 Iter 10: T = 726.4372400766769 K, F = -1833.883333006988, relative_change = 0.02600689538301503 Iter 15: T = 652.7903725453543 K, F = -791.8512101639816, relative_change = 0.017806916449091714 Iter 20: T = 611.1460317896413 K, F = -338.06224373938375, relative_change = 0.010205301124834861 Iter 25: T = 590.3437999844442 K, F = -142.98127546725647, relative_change = 0.005061267532367521 Iter 30: T = 580.8202879668061 K, F = -60.120841176632744, relative_change = 0.0022965285339495486 Iter 35: T = 576.667548003019 K, F = -25.20407337748459, relative_change = 0.000995961514847264 Iter 40: T = 574.8987817387585 K, F = -10.551614038616263, relative_change = 0.0004230793096266768 Iter 45: T = 574.1532714735278 K, F = -4.414755033181729, relative_change = 0.00017811020215899022 Iter 50: T = 573.8404630447782 K, F = -1.8466451890679458, relative_change = 7.469504315795779e-5 Iter 55: T = 573.7094621155826 K, F = -0.7723490121690955, relative_change = 3.127475198782159e-5 Iter 60: T = 573.6546442781228 K, F = -0.32301607457249826, relative_change = 1.3085850831043533e-5 Iter 65: T = 573.6317132564579 K, F = -0.13509101613701094, relative_change = 5.473775071927922e-6 Iter 70: T = 573.6221222586818 K, F = -0.0564969974621366, relative_change = 2.2893933494471715e-6 Iter 75: T = 573.6181110190711 K, F = -0.023627775231541526, relative_change = 9.57485792357727e-7 Iter 80: T = 573.6164334410613 K, F = -0.009881427601169057, relative_change = 4.0043796672433185e-7 Iter 85: T = 573.6157318527084 K, F = -0.004132532749353213, relative_change = 1.6746898469391914e-7 Iter 90: T = 573.6154384391721 K, F = -0.001728274848945166, relative_change = 7.003771213149763e-8 Iter 95: T = 573.6153157299682 K, F = -0.0007227852340705998, relative_change = 2.9290639590407062e-8 Iter 100: T = 573.6152644114858 K, F = -0.0003022774260981742, relative_change = 1.224970087652285e-8 Iter 105: T = 573.6152429494788 K, F = -0.00012641603071544827, relative_change = 5.122972158709431e-9 Iter 110: T = 573.6152339738103 K, F = -5.286869429299568e-5, relative_change = 2.1424883187239387e-9 Iter 115: T = 573.6152302200784 K, F = -2.2110319070456352e-5, relative_change = 8.96014218642191e-10 Iter 120: T = 573.6152286502228 K, F = -9.24679947217344e-6, relative_change = 3.7472385113718776e-10 Iter 125: T = 573.6152279936905 K, F = -3.867122079614926e-6, relative_change = 1.5671399501503918e-10 Iter 130: T = 573.6152277191209 K, F = -1.6172767666189358e-6, relative_change = 6.553966968239009e-11 Iter 135: T = 573.6152276042925 K, F = -6.76364547924635e-7, relative_change = 2.740947623379299e-11 Iter 140: T = 573.6152275562699 K, F = -2.828633609008868e-7, relative_change = 1.1462955287801115e-11 Iter 145: T = 573.6152275361864 K, F = -1.1829673363106252e-7, relative_change = 4.79394066524921e-12 Iter 150: T = 573.615227527787 K, F = -4.94725784228045e-8, relative_change = 2.0048618271406835e-12 Iter 155: T = 573.6152275242745 K, F = -2.0689701396570115e-8, relative_change = 8.384441213399891e-13 Iter 160: T = 573.6152275228055 K, F = -8.653219529808354e-9, relative_change = 3.5066920041308125e-13 Converged in 163 iterations to T = 573.6152275223753 K Iter 1: T = 980.2291659214228 K, F = -4504.803351722229, relative_change = 0.019770834078577163 Iter 2: T = 962.49822815482 K, F = -3805.126809147823, relative_change = 0.018088563759409804 Iter 3: T = 946.6856675465152 K, F = -3212.624931408746, relative_change = 0.016428664641407836 Iter 5: T = 920.2905271814833 K, F = -2286.8935403729943, relative_change = 0.01326433252557155 Iter 10: T = 878.415725241826 K, F = -970.7725961262423, relative_change = 0.006958444369998611 Iter 15: T = 858.6093806205588 K, F = -409.0541285762006, relative_change = 0.003260207649509055 Iter 20: T = 849.8233202696998 K, F = -171.66237513477034, relative_change = 0.0014360885255512111 Iter 25: T = 846.051042055279 K, F = -71.89928687286348, relative_change = 0.000614309021392962 Iter 30: T = 844.4554888474315 K, F = -30.088399133356155, relative_change = 0.0002593922115418891 Iter 35: T = 843.7850071430096 K, F = -12.586723605319127, relative_change = 0.00010892099917675222 Iter 40: T = 843.5040387745623 K, F = -5.264514077755232, relative_change = 4.5629492076919515e-5 Iter 45: T = 843.3864352866764 K, F = -2.201787039770694, relative_change = 1.9096374833418503e-5 Iter 50: T = 843.3372347340124 K, F = -0.9208319020365381, relative_change = 7.988709007769438e-6 Iter 55: T = 843.3166554354364 K, F = -0.3851060941620623, relative_change = 3.3413894325726287e-6 Iter 60: T = 843.3080483951862 K, F = -0.1610565266759587, relative_change = 1.397481723334429e-6 Iter 65: T = 843.3044487351387 K, F = -0.06735586063034105, relative_change = 5.844562724754876e-7 Iter 70: T = 843.3029432980472 K, F = -0.02816904240847129, relative_change = 2.444288189212626e-7 Iter 75: T = 843.3023137034311 K, F = -0.011780632930217028, relative_change = 1.022234404490838e-7 Iter 80: T = 843.302050398946 K, F = -0.004926801902085387, relative_change = 4.2751131670153465e-8 Iter 85: T = 843.3019402817788 K, F = -0.0020604474847016885, relative_change = 1.7879045724595614e-8 Iter 90: T = 843.3018942294492 K, F = -0.0008617037605840316, relative_change = 7.47723252196217e-9 Iter 95: T = 843.3018749698123 K, F = -0.0003603748056471012, relative_change = 3.127068295566589e-9 Iter 100: T = 843.3018669152017 K, F = -0.00015071304763947246, relative_change = 1.307777366922144e-9 Iter 105: T = 843.3018635466673 K, F = -6.302999547291854e-5, relative_change = 5.469281152191787e-10 Iter 110: T = 843.3018621379059 K, F = -2.63598978988977e-5, relative_change = 2.2873188045967178e-10 Iter 115: T = 843.3018615487451 K, F = -1.1024024115346975e-5, relative_change = 9.565840445190949e-11 Iter 120: T = 843.3018613023511 K, F = -4.610378655289793e-6, relative_change = 4.0005488203143906e-11 Iter 125: T = 843.301861199306 K, F = -1.9281135268389704e-6, relative_change = 1.6730756574333255e-11 Iter 130: T = 843.3018611562115 K, F = -8.063627752186164e-7, relative_change = 6.9970253920612386e-12 Iter 135: T = 843.3018611381888 K, F = -3.3722910974809395e-7, relative_change = 2.9262271481344166e-12 Iter 140: T = 843.3018611306514 K, F = -1.4103318624059114e-7, relative_change = 1.2237826642277581e-12 Iter 145: T = 843.3018611274994 K, F = -5.8982688955211415e-8, relative_change = 5.118085619300539e-13 Converged in 150 iterations to T = 843.301861126181 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014221964867051147 Iteration 10: d = 1.361721986706835e-5 Iteration 20: d = 1.4428999147462115e-7 Iteration 30: d = 1.840609295522924e-9 Iteration 40: d = 2.4861813426798673e-11 Iteration 50: d = 3.4281627043655934e-13 Iteration 60: d = 4.794028078610688e-15 Converged after 62 iterations. d = 2.0656369218144688e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.717764466319 Iteration 2: convergence error = 4819.7058203105535 Iteration 3: convergence error = 1105.3390532610358 Iteration 4: convergence error = 321.5605905425798 Iteration 5: convergence error = 95.43790817829426 Iteration 6: convergence error = 28.470720218902443 Iteration 7: convergence error = 8.559113139825513 Iteration 8: convergence error = 2.566785036283136 Iteration 9: convergence error = 0.7679299056458149 Iteration 10: convergence error = 0.2294358559381635 Iteration 11: convergence error = 0.06849581477831634 Iteration 12: convergence error = 0.020439750655214084 Iteration 13: convergence error = 0.006097874051420149 Iteration 14: convergence error = 0.0018189437123510288 Iteration 15: convergence error = 0.0005425309216207097 Iteration 16: convergence error = 0.0001618114547454752 Iteration 17: convergence error = 4.8259429831887246e-5 Iteration 18: convergence error = 1.4392894172488013e-5 Iteration 19: convergence error = 4.2925016714434605e-6 Iteration 20: convergence error = 1.2801783668692224e-6 Iteration 21: convergence error = 3.8179723560460843e-7 Iteration 22: convergence error = 1.1372230801498517e-7 Iteration 23: convergence error = 3.301056494819932e-8 Iteration 24: convergence error = 9.534915079711936e-9 Iteration 25: convergence error = 2.7321220841258764e-9 Iteration 26: convergence error = 7.873950380599126e-10 Iteration 27: convergence error = 2.2782842279411852e-10 Iteration 28: convergence error = 6.502887117676437e-11 Iteration 29: convergence error = 2.114575181622058e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019025070621711323 Iteration 10: d = 2.3717977910517917e-5 Iteration 20: d = 2.7716398545365796e-7 Iteration 30: d = 3.44131347432157e-9 Iteration 40: d = 4.340456946841921e-11 Iteration 50: d = 5.524835928224239e-13 Iteration 60: d = 7.07389058182124e-15 Converged after 63 iterations. d = 1.9423509426052608e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12268.584831904065 Iteration 2: convergence error = 8318.372965564135 Iteration 3: convergence error = 1951.8521191463567 Iteration 4: convergence error = 480.23292844903835 Iteration 5: convergence error = 122.39196136690703 Iteration 6: convergence error = 32.67294270443335 Iteration 7: convergence error = 8.900230930770704 Iteration 8: convergence error = 2.438414898800602 Iteration 9: convergence error = 0.6688801064126437 Iteration 10: convergence error = 0.18350593836771623 Iteration 11: convergence error = 0.05034182128019893 Iteration 12: convergence error = 0.013809679112000595 Iteration 13: convergence error = 0.003788120614217405 Iteration 14: convergence error = 0.0010390983575234713 Iteration 15: convergence error = 0.0002850270423095935 Iteration 16: convergence error = 7.818329095243826e-5 Iteration 17: convergence error = 2.144574523299525e-5 Iteration 18: convergence error = 5.8825849009735975e-6 Iteration 19: convergence error = 1.6135963960550725e-6 Iteration 20: convergence error = 4.4260946197027806e-7 Iteration 21: convergence error = 1.222715582116507e-7 Iteration 22: convergence error = 3.287209437985439e-8 Iteration 23: convergence error = 8.791175787337124e-9 Iteration 24: convergence error = 2.3471784516004845e-9 Iteration 25: convergence error = 6.248228601180017e-10 Iteration 26: convergence error = 1.6939338820520788e-10 Iteration 27: convergence error = 4.388311936054379e-11 Iteration 28: convergence error = 1.1596057447604835e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019025070621711323 Iteration 10: d = 2.3717977910517917e-5 Iteration 20: d = 2.7716398545365796e-7 Iteration 30: d = 3.44131347432157e-9 Iteration 40: d = 4.340456946841921e-11 Iteration 50: d = 5.524835928224239e-13 Iteration 60: d = 7.07389058182124e-15 Converged after 63 iterations. d = 1.9423509426052608e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10996.168659072962 Iteration 2: convergence error = 5722.561325340612 Iteration 3: convergence error = 2011.8696656659304 Iteration 4: convergence error = 893.4859019944988 Iteration 5: convergence error = 410.57700812152916 Iteration 6: convergence error = 193.68813241357338 Iteration 7: convergence error = 91.45977066945625 Iteration 8: convergence error = 43.2103134139129 Iteration 9: convergence error = 20.415489531601906 Iteration 10: convergence error = 9.64375305971771 Iteration 11: convergence error = 4.554324137088315 Iteration 12: convergence error = 2.15033212236267 Iteration 13: convergence error = 1.0151088810671354 Iteration 14: convergence error = 0.4791438740630838 Iteration 15: convergence error = 0.2261424081630139 Iteration 16: convergence error = 0.106637249112282 Iteration 17: convergence error = 0.04984637568668404 Iteration 18: convergence error = 0.02276690804046666 Iteration 19: convergence error = 0.010360183910052001 Iteration 20: convergence error = 0.00470438124921202 Iteration 21: convergence error = 0.002133530824266927 Iteration 22: convergence error = 0.000966897928265098 Iteration 23: convergence error = 0.0004380028722152929 Iteration 24: convergence error = 0.00019836412593576824 Iteration 25: convergence error = 8.982213603303535e-5 Iteration 26: convergence error = 4.0669008740223944e-5 Iteration 27: convergence error = 1.8412792542221723e-5 Iteration 28: convergence error = 8.33606372907525e-6 Iteration 29: convergence error = 3.7739287108706776e-6 Iteration 30: convergence error = 1.7085130821214989e-6 Iteration 31: convergence error = 7.734706741757691e-7 Iteration 32: convergence error = 3.5015273169847205e-7 Iteration 33: convergence error = 1.5852265278226696e-7 Iteration 34: convergence error = 7.176186045398936e-8 Iteration 35: convergence error = 3.248669599997811e-8 Iteration 36: convergence error = 1.4707438822370023e-8 Iteration 37: convergence error = 6.654772732872516e-9 Iteration 38: convergence error = 3.0172486731316894e-9 Iteration 39: convergence error = 1.3646968000102788e-9 Iteration 40: convergence error = 6.198206392582506e-10 Iteration 41: convergence error = 2.7830537874251604e-10 Iteration 42: convergence error = 1.268745108973235e-10 Iteration 43: convergence error = 5.6843418860808015e-11 Iteration 44: convergence error = 2.6830093702301383e-11 Iteration 45: convergence error = 1.1823431123048067e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019025070621711323 Iteration 10: d = 2.3717977910517917e-5 Iteration 20: d = 2.7716398545365796e-7 Iteration 30: d = 3.44131347432157e-9 Iteration 40: d = 4.340456946841921e-11 Iteration 50: d = 5.524835928224239e-13 Iteration 60: d = 7.07389058182124e-15 Converged after 63 iterations. d = 1.9423509426052608e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10827.19027349957 Iteration 2: convergence error = 7337.683586010171 Iteration 3: convergence error = 1729.4353775505851 Iteration 4: convergence error = 505.53924354599076 Iteration 5: convergence error = 157.09057194198158 Iteration 6: convergence error = 48.81338481733383 Iteration 7: convergence error = 15.142563207272815 Iteration 8: convergence error = 4.689606426067712 Iteration 9: convergence error = 1.4506658197938123 Iteration 10: convergence error = 0.4484213237269614 Iteration 11: convergence error = 0.13855509601398808 Iteration 12: convergence error = 0.0428010313444247 Iteration 13: convergence error = 0.013219853610280552 Iteration 14: convergence error = 0.0040828690639500564 Iteration 15: convergence error = 0.0012609132154466351 Iteration 16: convergence error = 0.0003893983521265909 Iteration 17: convergence error = 0.0001202532530442113 Iteration 18: convergence error = 3.713608612088137e-5 Iteration 19: convergence error = 1.1468147476989543e-5 Iteration 20: convergence error = 3.54151461579022e-6 Iteration 21: convergence error = 1.09366419565049e-6 Iteration 22: convergence error = 3.375757842150051e-7 Iteration 23: convergence error = 1.0303028830094263e-7 Iteration 24: convergence error = 3.0667706596432254e-8 Iteration 25: convergence error = 9.106315701501444e-9 Iteration 26: convergence error = 2.682554622879252e-9 Iteration 27: convergence error = 7.976268534548581e-10 Iteration 28: convergence error = 2.332853910047561e-10 Iteration 29: convergence error = 7.048583938740194e-11 Iteration 30: convergence error = 2.000888343900442e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019025070621711323 Iteration 10: d = 2.3717977910517917e-5 Iteration 20: d = 2.7716398545365796e-7 Iteration 30: d = 3.44131347432157e-9 Iteration 40: d = 4.340456946841921e-11 Iteration 50: d = 5.524835928224239e-13 Iteration 60: d = 7.07389058182124e-15 Converged after 63 iterations. d = 1.9423509426052608e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.864701128641 Iteration 2: convergence error = 5510.540172511054 Iteration 3: convergence error = 934.6258440921333 Iteration 4: convergence error = 170.13722180665968 Iteration 5: convergence error = 30.87341448274674 Iteration 6: convergence error = 5.617507485900887 Iteration 7: convergence error = 1.02946876700571 Iteration 8: convergence error = 0.18843332229789667 Iteration 9: convergence error = 0.03444964469736078 Iteration 10: convergence error = 0.006294413215073291 Iteration 11: convergence error = 0.0011497310897539137 Iteration 12: convergence error = 0.0002099766643368639 Iteration 13: convergence error = 3.834523977275239e-5 Iteration 14: convergence error = 7.002201527939178e-6 Iteration 15: convergence error = 1.2786372280970681e-6 Iteration 16: convergence error = 2.3348275135504082e-7 Iteration 17: convergence error = 4.262983566150069e-8 Iteration 18: convergence error = 7.777998689562082e-9 Iteration 19: convergence error = 1.4288161764852703e-9 Iteration 20: convergence error = 2.582964953035116e-10 Iteration 21: convergence error = 4.638422979041934e-11 Iteration 22: convergence error = 8.185452315956354e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019025070621711323 Iteration 10: d = 2.3717977910517917e-5 Iteration 20: d = 2.7716398545365796e-7 Iteration 30: d = 3.44131347432157e-9 Iteration 40: d = 4.340456946841921e-11 Iteration 50: d = 5.524835928224239e-13 Iteration 60: d = 7.07389058182124e-15 Converged after 63 iterations. d = 1.9423509426052608e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.5114350893455 Iteration 2: convergence error = 2711.1623457451333 Iteration 3: convergence error = 204.35220649236328 Iteration 4: convergence error = 19.368504030653604 Iteration 5: convergence error = 1.6019390554414614 Iteration 6: convergence error = 0.13052280653794984 Iteration 7: convergence error = 0.01064713216565885 Iteration 8: convergence error = 0.0008704909118700879 Iteration 9: convergence error = 7.127693178413414e-5 Iteration 10: convergence error = 5.841187642787668e-6 Iteration 11: convergence error = 4.789047024137158e-7 Iteration 12: convergence error = 3.9273781978174987e-8 Iteration 13: convergence error = 3.221818701345594e-9 Iteration 14: convergence error = 2.6351291980806606e-10 Iteration 15: convergence error = 2.2168933355715126e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014221964867051147 Iteration 10: d = 1.361721986706835e-5 Iteration 20: d = 1.4428999147462115e-7 Iteration 30: d = 1.840609295522924e-9 Iteration 40: d = 2.4861813426798673e-11 Iteration 50: d = 3.4281627043655934e-13 Iteration 60: d = 4.794028078610688e-15 Converged after 62 iterations. d = 2.0656369218144688e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.345870764133 Iteration 2: convergence error = 3608.8411776053877 Iteration 3: convergence error = 598.0036805592946 Iteration 4: convergence error = 105.21501225450106 Iteration 5: convergence error = 18.729600151936893 Iteration 6: convergence error = 3.3033526480837736 Iteration 7: convergence error = 0.5804222403849053 Iteration 8: convergence error = 0.10182589001374254 Iteration 9: convergence error = 0.01785244773168415 Iteration 10: convergence error = 0.0031291528362089593 Iteration 11: convergence error = 0.0005484179625909746 Iteration 12: convergence error = 9.611234759177023e-5 Iteration 13: convergence error = 1.684378298705269e-5 Iteration 14: convergence error = 2.951869419121067e-6 Iteration 15: convergence error = 5.173214958631434e-7 Iteration 16: convergence error = 9.066184247785714e-8 Iteration 17: convergence error = 1.5897285265964456e-8 Iteration 18: convergence error = 2.766000761766918e-9 Iteration 19: convergence error = 4.913545126328245e-10 Iteration 20: convergence error = 8.458300726488233e-11 Iteration 21: convergence error = 1.3869794202037156e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 10m08.3s Testing RayTraceHeatTransfer tests passed Testing completed after 620.57s PkgEval succeeded after 704.67s