Package evaluation to test QuasiNewtonMethods on Julia 1.13.0-DEV.1353 (74c32ec0b5*) started at 2025-10-21T16:55:02.272 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.36s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.21.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.1 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.173 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 4.54s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 193.84s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_nRS4jX/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_nRS4jX/Manifest.toml` [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.21.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.173 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:753 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1961 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [-2.5135449277513544e-12, -9.909850717804147e-13] QuasiNewtonMethods.optimum(state) .- 1 = [1.1546319456101628e-13, 8.1556983388964e-13] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [8.094946934988911e-11, 1.5895929017517574e-10, -3.975719753412932e-11] QuasiNewtonMethods.optimum(state) .- 1 = [3.079603239086737e-11, 6.075273617511812e-11, -1.1118883591620943e-11] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [-5.512257317263902e-13, 2.8268498653005736e-12, -1.1287637491363967e-12, 5.341505016076553e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.8471202345438087e-10, -6.39616137831922e-11, 3.764650813309345e-10, -1.2930279069678363e-10] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [1.9547918839180056e-11, -1.2642831226372664e-10, 3.7982950118475856e-11, -2.615611061074219e-10, -4.460876112943879e-13] QuasiNewtonMethods.optimum(state) .- 1 = [7.262679346808909e-11, -7.422462644512962e-11, 1.4933632108693473e-10, -1.4465328934676336e-10, 2.8829227893822917e-10] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [9.812151091637134e-13, 7.006617508409363e-12, -9.35918009759007e-14, 2.0197177263980848e-12, 1.3683942867714904e-11, -9.736655925962623e-13] QuasiNewtonMethods.optimum(state) .- 1 = [4.300493294806529e-11, 2.595372805558327e-10, -5.960043569785967e-11, 1.0455436516565442e-10, 5.418039350502113e-10, -1.2301415441839936e-10] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [3.625233446769016e-11, -3.120010916290994e-10, -5.042266604249335e-11, 8.062528422669857e-11, -6.184588396962454e-10, -1.0333045530330764e-10, -2.5995650076993115e-11] QuasiNewtonMethods.optimum(state) .- 1 = [7.455569495107284e-11, 3.2797231597214704e-10, -1.6032286609402036e-11, 1.3521073150002394e-10, 6.793205997723817e-10, -1.1510459252406235e-11, -1.750433131775253e-11] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-4.891753668800902e-12, -3.846101215287945e-11, -3.941513782024231e-11, -1.916322656114744e-11, -1.4247825141922021e-11, -7.946343583142834e-11, -9.248535270955927e-11, -4.5835446549347125e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.689570871046044e-11, 2.3283952543806663e-10, -7.30109306346094e-11, -3.3960279033351526e-11, -7.541411939371301e-11, 4.61820581776351e-10, -1.5348111670476783e-10, -6.135736363432898e-11] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [-6.536171603954699e-11, -5.350053733366167e-12, 1.1114442699522442e-11, 1.8284040947946778e-11, -1.3601786363892643e-10, -9.976353076979194e-12, 2.3887114508625018e-11, 3.2123415039109204e-11, 3.0873081868776353e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-9.613532192531693e-12, 2.711719737646945e-11, 3.497202527569243e-11, -1.1704037738979878e-10, -1.6713741501916957e-11, 6.090883353238041e-11, 6.86013468254032e-11, -2.3143753580256998e-10, -3.7671865626975887e-11] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [2.836175738707425e-11, 5.413069992243891e-11, 1.0366241198767057e-10, 1.1719736292548077e-11, -2.964917200642958e-11, 6.089750925752924e-11, 1.0382827930754956e-10, 2.0367529884879332e-10, 2.965960810286106e-11, -5.548617121320376e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-8.500755654949899e-11, 5.4456661402468853e-11, -1.4283796367919877e-11, -4.6623260807621136e-11, 1.8532952950067738e-11, -1.6717704998114868e-10, 1.0424150431731505e-10, -2.907496465809345e-11, -9.4997787414286e-11, 3.8575587169020764e-11] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-7.147948899444145e-12, 6.0313976035786254e-12, -1.2626455436759443e-11, -1.6523893364706055e-11, -9.263145805959994e-12, -1.5116907725598594e-11, 1.1829648371985968e-11, -2.4357071914948847e-11, -3.442524043606454e-11, -2.240085894555932e-11, -8.819500685319781e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-2.0091150965129145e-11, -9.774625553404803e-12, -2.242150909381735e-11, -7.823364178705106e-11, 3.6624481225544514e-11, -4.1059822208922014e-11, -1.590494402847753e-11, -4.348255089325903e-11, -1.5788270690819672e-10, 6.996780932411184e-11, -1.0598522059979132e-11] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [-3.964772954390128e-11, -7.405587254538659e-11, 1.5610401860044476e-11, -3.063416187387702e-11, -4.015343613161804e-12, -4.227851402305305e-11, -8.12154787865893e-11, -1.5127632480016473e-10, 3.6912251033527355e-11, -5.4310667074730645e-11, -1.3878009852419382e-11, -8.328027156778717e-11] QuasiNewtonMethods.optimum(state) .- 1 = [3.884226273953573e-12, -1.0823342222465726e-11, -8.794076578055865e-12, -3.21029869354561e-11, 7.891687303640538e-12, 6.338218838664034e-11, 4.9260595602618196e-12, -1.9219181801588547e-11, -1.6139201086673438e-11, -6.454647927256474e-11, 1.3339551685476181e-11, 1.2607781485485248e-10] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [-6.931655249786672e-11, -1.2599943310931394e-10, -1.308975150493552e-10, 8.217226898921126e-11, -5.457567731070867e-11, 9.231881925586549e-11, -1.362051582631807e-10, -2.5113344737093257e-10, -2.7887725462250046e-10, 1.6305246042236377e-10, -1.0862177823867114e-10, 1.7990409162393917e-10, -2.4275359500336435e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.49000811688893e-11, -7.626932418958177e-11, -1.195599175218831e-11, 1.8248957900368623e-11, -6.429168308841327e-11, -2.3886004285600393e-11, 2.89006596432273e-11, -1.492854728724069e-10, -2.2147617073642323e-11, 4.488676097480493e-11, -1.3118595099115282e-10, -4.726208313599045e-11, 2.942091015256665e-13] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [-1.3701484391503982e-11, -5.636824340626845e-12, -3.790079361465359e-12, -5.990763440877345e-13, -1.168187768740836e-11, 1.1440404179552388e-11, -1.5919376927797657e-11, -2.8385294115196302e-11, -1.1587508730315221e-11, -8.08242361927114e-12, -3.2335245592207684e-12, -2.5210611376280667e-11, 2.2346791084260076e-11, -3.268241233200797e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.8677437374492456e-10, 1.02277963875963e-10, -8.811429363930756e-11, 1.8007706437117577e-10, 8.366529691272717e-11, -1.0483502954627966e-11, 3.9218184255673805e-11, -3.864712994072761e-10, 1.9234747128393792e-10, -1.8536683299430479e-10, 3.5192493363922495e-10, 1.711695230000032e-10, -1.255839876534992e-11, 6.635381133435203e-11] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [2.4464652526035024e-11, -1.377686853487603e-11, -2.6077695558512914e-11, -3.732691933322485e-11, 2.7742919073148187e-11, 7.028067017245121e-11, -1.4155343563970746e-12, 4.579914225644188e-11, -2.9556690428478305e-11, -5.0569992637861105e-11, -7.832001713836689e-11, 5.7379212492492115e-11, 1.366526891644071e-10, -2.0287105328975485e-12, -4.105049633551516e-12] QuasiNewtonMethods.optimum(state) .- 1 = [8.623990410683291e-12, -8.00171040538089e-12, -3.6778913248269873e-11, -5.5416227162652376e-11, -3.024192007927695e-11, -1.773470259536225e-11, -4.298639222355405e-11, 1.8068879725774423e-11, -1.477784561387807e-11, -7.787148703641833e-11, -1.0923140170149281e-10, -6.22331075561533e-11, -3.162492490105251e-11, -8.506961801657553e-11, 3.3526514897630477e-12] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [1.7333690038867644e-10, -1.2818190953112207e-11, -2.335389659435805e-10, -3.5743563664425437e-10, -4.299672839991331e-10, -1.078248601515952e-10, -1.8113543998055093e-10, 8.403056028782885e-12, 3.242974777606378e-10, -4.269773423715151e-11, -4.6107462292610535e-10, -7.358560427661587e-10, -8.522045291670111e-10, -2.24831153694538e-10, -3.499406320273124e-10, 1.0024425733945463e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-5.0009107965820476e-11, -1.8323864647840082e-10, -1.0413314655011163e-10, -4.320888091768893e-11, 7.609157748333928e-11, -3.2642444303121465e-11, -9.356238006574813e-11, -8.684453156604377e-11, -8.80179262807701e-11, -3.6643288403581664e-10, -2.1006385519939386e-10, -8.664013950721028e-11, 1.4197287789841084e-10, -5.879030595679069e-11, -1.885999134643157e-10, -1.8660728517971847e-10] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [8.74187389143799e-11, -3.04956060404038e-11, 1.1374234887284729e-11, 6.606049041124606e-11, -8.941791751482242e-11, 2.9003688339912514e-11, -9.272682621741524e-11, -8.163170139852127e-11, 1.8720203165401017e-10, -6.286460241256009e-11, 2.5691448968245822e-11, 1.3172707369335512e-10, -1.8297163784097847e-10, 6.10045347571031e-11, -1.846293118390463e-10, -1.6581347406230407e-10, 3.175903984242723e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.2220646716798456e-10, 7.068545748722954e-11, 9.430567438073467e-11, -6.781897265994985e-11, 6.377254280209854e-11, 3.423328287510685e-11, -1.9304113862972372e-11, 1.31529009905762e-10, 2.436695289986801e-10, 1.4740364484566726e-10, 1.8181278704787474e-10, -1.2889378453451172e-10, 1.3239254137431544e-10, 6.5397243176335e-11, -3.688083172193046e-11, 2.743423266338141e-10, -7.176925720386862e-12] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [-3.340783205629805e-11, -1.0885958801054585e-11, 6.054778900477231e-11, -1.0192957589083562e-11, -1.1059708704408422e-11, -3.951328153561917e-11, -2.738520521461396e-11, 2.899902540320909e-11, 2.208211391518944e-11, -7.039124838570388e-11, -2.6941004982461436e-11, 1.1381895426154642e-10, -2.219213701692979e-11, -1.3420042854761505e-11, -8.20714607385753e-11, -6.350653336539835e-11, 5.972200511905612e-11, 4.062705727392313e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-5.831113369936247e-12, 3.0482283364108298e-12, 1.4678080972885255e-10, -4.2015280143914424e-12, 1.346649458611182e-10, 9.000067358044817e-11, -1.4717949081699544e-10, 6.516787109944744e-12, -2.8004154550842486e-11, -5.478062448105447e-12, 6.8902661354286465e-12, 2.8860891454485227e-10, -2.1867174737622008e-11, 2.59334997920746e-10, 1.811435446086307e-10, -3.125978365048354e-10, 1.571565100277894e-11, -5.746669806683258e-11] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [1.5483170301422433e-12, -4.741995685009215e-11, 4.621658611370094e-11, -4.28351798476001e-11, -6.676981190167908e-11, -3.720557195663332e-11, 6.343392477958787e-11, 3.307198959134894e-11, -5.957268012224404e-11, -3.838929174548866e-12, -9.26786425381465e-11, 9.490408459100763e-11, -9.08233488416954e-11, -1.3993928238420494e-10, -7.622558140241154e-11, 1.15816467527452e-10, 7.39743821753791e-11, -1.1226186646950964e-10, -1.9019008590248632e-11] QuasiNewtonMethods.optimum(state) .- 1 = [2.1225909918598518e-11, 3.1322944238354467e-11, 3.52760043398348e-11, 6.226619220228713e-11, -4.699285405251885e-11, -4.312894485991592e-11, -6.889244730245991e-11, 5.310551998150004e-11, -3.3588243297799636e-11, 4.3026027185533167e-11, 6.086908754809883e-11, 7.165956716903565e-11, 1.208948496866924e-10, -9.344325313520585e-11, -8.52764525660632e-11, -1.3686662914125236e-10, 1.0639022995917458e-10, -6.760580983922182e-11, -5.211497899892947e-12] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [-5.6319615637789866e-11, 9.12996345192596e-11, 9.662937117127512e-12, -1.8185564165662527e-11, -6.90471013697902e-11, -2.6637803074436306e-11, -2.929778641913572e-11, 4.0648151511391006e-11, -5.953304516026492e-11, -1.5411005804821798e-12, -1.1478662464980971e-10, 1.7682122432916003e-10, 1.836175655967054e-11, -3.454092567523048e-11, -1.3913947771726498e-10, -5.3766102681152006e-11, -5.301503680499309e-11, 8.089551251089233e-11, -1.1922796083752019e-10, 5.102585021177219e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-7.39397432170108e-12, 5.197398067480208e-11, -1.0271739014910963e-10, 1.1905498809028359e-10, -1.3314094271521526e-10, -3.1838864877897777e-11, -3.556066552334869e-11, -6.962208587424357e-13, -1.5596968161446512e-10, -4.036893042069778e-11, -1.0899614544257474e-11, 9.379008680809875e-11, -1.9794910155468415e-10, 2.395792453313561e-10, -2.611695304466366e-10, -6.52899956321562e-11, -6.286404730104778e-11, -6.559086607182962e-12, -3.090548927886516e-10, -8.121037176067603e-11] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [-1.3367862372604122e-11, -9.306277970466681e-11, 1.8517121169736583e-10, 1.085531664557493e-11, -4.9296344784011126e-11, -7.427458648123775e-11, 3.9005021434945775e-11, -8.017975172691649e-11, -9.819700608204585e-12, -7.912082100602902e-11, -2.6837976285776222e-11, -1.9604795564731603e-10, 3.6745584353070626e-10, 2.112576780177733e-11, -9.642142639876283e-11, -1.503538404890037e-10, 6.832112653398781e-11, -1.5902701377967787e-10, -1.571121011068044e-11, -1.5629031402397686e-10, 1.6124879209655774e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.7468471114057138e-11, -3.8570813210014876e-11, -6.386502438004982e-11, 2.539524146527583e-11, -1.7223777959429754e-11, -6.13487038947369e-12, 2.0456969451743134e-11, 6.729772294988834e-11, -6.360689752682447e-12, 8.214984248411383e-12, 3.303068929483288e-11, -7.44032613297918e-11, -1.2364098633810272e-10, 4.8399284580114e-11, -3.6783465162670836e-11, -9.62263602133362e-12, 3.568856321578551e-11, 1.3673129295455055e-10, -5.934586155831312e-12, 1.6259660284845268e-11, -7.576916871698813e-11] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [1.066973176477859e-10, -1.8174350913113813e-13, 8.126299633204326e-11, -3.4161562467716067e-12, -1.8821499914167816e-11, -2.7149837933393428e-11, -3.5984992763360424e-11, -3.5869418546496945e-11, 1.1210365968850056e-11, -1.1398215704616632e-11, 4.768829775514405e-11, 2.1185586618344132e-10, -1.7597034940308731e-12, 1.6919443623919506e-10, -6.724620860154573e-12, -4.2167158653683146e-11, -5.2940318795435815e-11, -7.423062164946259e-11, -7.231304444133002e-11, 2.2211787964465657e-11, -2.4241941787295218e-11, 9.350986651668336e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.6051604490030513e-12, 1.5159207222836812e-11, 1.0171152808879924e-10, -3.0235924874943976e-11, -1.7860712908657206e-11, -2.4751645177900627e-11, 7.363221143918963e-12, -1.9272361484468092e-12, -3.119215996605362e-11, 3.1430635871743107e-11, 4.633338157589151e-11, 6.27786711504541e-12, 3.8219871711930864e-11, 2.1616197720675245e-10, -6.282740994123515e-11, -3.505495893563193e-11, -5.3711812775247836e-11, 1.4371392964562801e-11, -3.830824546469103e-12, -6.076683600753086e-11, 6.220624015895737e-11, 9.544898205149366e-11] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [-1.2979617380892705e-11, 9.772183062750628e-12, 6.8685057641459935e-12, -4.362910033250955e-11, 3.275246740486182e-11, 3.2017055673350114e-11, 1.7610357616604233e-12, -1.5119239193950307e-11, 3.327693676169474e-11, 5.14277509466865e-12, -3.685984850676505e-11, -2.245814645362998e-11, 1.8673285140380358e-11, 1.5436096845178326e-11, -8.725509204055015e-11, 6.461053914108561e-11, 5.927436319552726e-11, 3.7339020764193265e-12, -3.026956463259012e-11, 6.398637175664135e-11, 1.1606715588641237e-11, -7.58110241250165e-11, 6.5774052870892774e-12] QuasiNewtonMethods.optimum(state) .- 1 = [2.7183810757946958e-11, 1.2451462083618026e-10, 1.5313017520668382e-10, -1.6238144162628032e-10, -8.137845952660427e-11, 9.477596485396589e-11, 4.968403466421023e-11, -7.747580355044192e-11, 1.649538283743368e-10, -1.653898129561071e-10, 2.0311041737386404e-10, 4.3982817388155127e-11, 2.367575024919688e-10, 3.0621971625066635e-10, -3.1996050253724206e-10, -1.6117596146614233e-10, 1.918389891386596e-10, 1.0389222815376797e-10, -1.373096081280778e-10, 3.4186209418862745e-10, -3.1267977096405275e-10, 4.0183056881915036e-10, -2.1114554549228615e-11] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [-3.735078912825429e-11, 2.972155854763514e-11, -1.4699352846037073e-11, 4.3151704431920734e-11, -1.5181411683329316e-11, 6.761702309177053e-12, -9.819778323816308e-11, 2.0514967502549553e-10, 8.6861629000623e-12, -2.9421687308683886e-11, -1.4366619005556913e-11, -4.0426550995675825e-11, -7.796174816832036e-11, 5.661826563141403e-11, -2.8003266372422786e-11, 8.374612114891988e-11, -2.784361630148169e-11, 1.3390621944608938e-11, -1.9694434971739838e-10, 4.1628900326884377e-10, 1.815880779076906e-11, -5.689171356237921e-11, -3.2104430225388114e-11, -7.677181113052711e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.947353389653017e-11, -1.861510945389e-12, -4.708888834414893e-11, 1.147208994467519e-10, 2.355227124439807e-11, 3.8877567831718807e-11, -9.021450253499097e-12, -2.2820412226565168e-11, 7.108980071279802e-12, -1.5013212895098604e-11, 8.042677634989559e-12, 1.7048584766143904e-11, 3.620903576972978e-11, -1.392075343886745e-11, -9.30462373815999e-11, 2.283924160906281e-10, 4.225952920933196e-11, 7.96160914973143e-11, -1.546673900065798e-11, -4.595868130508052e-11, 1.1878498185069475e-11, -3.2225888624282106e-11, 1.766320423257639e-11, 4.2124748134142465e-11] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 4m03.5s Method ambiguity | 1 1 9.4s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 7.2s Compat bounds | 3 1 4 11.0s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.2s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 47.0s RNG of the outermost testset: Random.Xoshiro(0x994c77949fef1438, 0xe1308a1ff2d4c39a, 0x43a26c4f2117b3a9, 0x7c9d621866b377c3, 0xf757e22aeccc27a8) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 273.0s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2674 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2523 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:548 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:525 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:172 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:161 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:160 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:160 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:159 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:309 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [14] _start() @ Base ./client.jl:577 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 497.15s: package has test failures