Package evaluation to test StructuralIdentifiability on Julia 1.13.0-DEV.1342 (4ff19f0352*) started at 2025-10-19T14:57:09.758 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.88s ################################################################################ # Installation # Installing StructuralIdentifiability... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [220ca800] + StructuralIdentifiability v0.5.16 Updating `~/.julia/environments/v1.13/Manifest.toml` ⌅ [c3fe647b] + AbstractAlgebra v0.46.5 [a9b6321e] + Atomix v1.1.2 [861a8166] + Combinatorics v1.0.3 [864edb3b] + DataStructures v0.19.1 [e2ba6199] + ExprTools v0.1.10 ⌅ [0b43b601] + Groebner v0.9.5 [18e54dd8] + IntegerMathUtils v0.1.3 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [1914dd2f] + MacroTools v0.5.16 ⌅ [2edaba10] + Nemo v0.51.1 [bac558e1] + OrderedCollections v1.8.1 [3e851597] + ParamPunPam v0.5.5 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.11.0 [fb686558] + RandomExtensions v0.4.4 [220ca800] + StructuralIdentifiability v0.5.16 [a759f4b9] + TimerOutputs v0.5.29 [013be700] + UnsafeAtomics v0.3.0 [e134572f] + FLINT_jll v301.300.102+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.4s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 225.67s ################################################################################ # Testing # Testing StructuralIdentifiability Status `/tmp/jl_ObJih1/Project.toml` ⌅ [c3fe647b] AbstractAlgebra v0.46.5 [4c88cf16] Aqua v0.8.14 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [864edb3b] DataStructures v0.19.1 ⌅ [0b43b601] Groebner v0.9.5 [c8e1da08] IterTools v1.10.0 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.51.1 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [27ebfcd6] Primes v0.5.7 [276daf66] SpecialFunctions v2.6.1 [220ca800] StructuralIdentifiability v0.5.16 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_ObJih1/Manifest.toml` ⌅ [c3fe647b] AbstractAlgebra v0.46.5 [4c88cf16] Aqua v0.8.14 [a9b6321e] Atomix v1.1.2 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [864edb3b] DataStructures v0.19.1 [ab62b9b5] DeepDiffs v1.2.0 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 ⌅ [0b43b601] Groebner v0.9.5 [615f187c] IfElse v0.1.1 [18e54dd8] IntegerMathUtils v0.1.3 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.51.1 [bac558e1] OrderedCollections v1.8.1 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.11.0 [fb686558] RandomExtensions v0.4.4 [431bcebd] SciMLPublic v1.0.0 [276daf66] SpecialFunctions v2.6.1 [aedffcd0] Static v1.3.0 [220ca800] StructuralIdentifiability v0.5.16 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [013be700] UnsafeAtomics v0.3.0 [e134572f] FLINT_jll v301.300.102+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.2+0 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.46.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Resolving package versions... Updating `/tmp/jl_ObJih1/Project.toml` ⌅ [c3fe647b] ↓ AbstractAlgebra v0.46.5 ⇒ v0.44.13 [loaded: v0.46.5] [961ee093] + ModelingToolkit v10.26.0 ⌅ [2edaba10] ↓ Nemo v0.51.1 ⇒ v0.49.5 [loaded: v0.51.1] Updating `/tmp/jl_ObJih1/Manifest.toml` [47edcb42] + ADTypes v1.18.0 ⌅ [c3fe647b] ↓ AbstractAlgebra v0.46.5 ⇒ v0.44.13 [loaded: v0.46.5] [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.4.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.21.0 [4c555306] + ArrayLayouts v1.12.0 [e2ed5e7c] + Bijections v0.2.2 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] + BlockArrays v1.7.2 [70df07ce] + BracketingNonlinearSolve v1.5.0 [d360d2e6] + ChainRulesCore v1.26.0 [fb6a15b2] + CloseOpenIntervals v0.1.13 [a80b9123] + CommonMark v0.9.1 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 [187b0558] + ConstructionBase v1.6.0 [9a962f9c] + DataAPI v1.16.0 [2b5f629d] + DiffEqBase v6.190.2 [459566f4] + DiffEqCallbacks v4.10.1 [77a26b50] + DiffEqNoiseProcess v5.24.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.9 [8d63f2c5] + DispatchDoctor v0.4.26 [31c24e10] + Distributions v0.25.122 [5b8099bc] + DomainSets v0.7.16 [7c1d4256] + DynamicPolynomials v0.6.4 [06fc5a27] + DynamicQuantities v1.10.0 [4e289a0a] + EnumX v1.0.5 [f151be2c] + EnzymeCore v0.8.14 [55351af7] + ExproniconLite v0.10.14 [7034ab61] + FastBroadcast v0.3.5 [9aa1b823] + FastClosures v0.3.2 [a4df4552] + FastPower v1.1.3 [1a297f60] + FillArrays v1.14.0 [64ca27bc] + FindFirstFunctions v1.4.2 [6a86dc24] + FiniteDiff v2.29.0 [1fa38f19] + Format v1.3.7 ⌃ [f6369f11] + ForwardDiff v0.10.39 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [c27321d9] + Glob v1.3.1 [86223c79] + Graphs v1.13.1 [34004b35] + HypergeometricFunctions v0.3.28 [3263718b] + ImplicitDiscreteSolve v1.2.0 [d25df0c9] + Inflate v0.1.5 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [82899510] + IteratorInterfaceExtensions v1.0.0 [ae98c720] + Jieko v0.2.1 [98e50ef6] + JuliaFormatter v2.1.6 ⌅ [70703baa] + JuliaSyntax v0.4.10 [ccbc3e58] + JumpProcesses v9.19.1 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.10 [10f19ff3] + LayoutPointers v0.1.17 [87fe0de2] + LineSearch v0.1.4 [d3d80556] + LineSearches v7.4.0 [d8e11817] + MLStyle v0.4.17 [d125e4d3] + ManualMemory v0.1.8 [bb5d69b7] + MaybeInplace v0.1.4 [e1d29d7a] + Missings v1.2.0 [961ee093] + ModelingToolkit v10.26.0 [2e0e35c7] + Moshi v0.3.7 [46d2c3a1] + MuladdMacro v0.2.4 [102ac46a] + MultivariatePolynomials v0.5.13 [d8a4904e] + MutableArithmetics v1.6.6 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 ⌅ [2edaba10] ↓ Nemo v0.51.1 ⇒ v0.49.5 [loaded: v0.51.1] [be0214bd] + NonlinearSolveBase v2.0.0 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.13.2 [bbf590c4] + OrdinaryDiffEqCore v1.36.0 [90014a1f] + PDMats v0.11.35 [d96e819e] + Parameters v0.12.3 [e409e4f3] + PoissonRandom v0.4.7 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [85a6dd25] + PositiveFactorizations v0.2.4 [d236fae5] + PreallocationTools v0.4.34 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.39.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [ae5879a3] + ResettableStacks v1.1.1 [79098fc4] + Rmath v0.8.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.15 [9dfe8606] + SCCNonlinearSolve v1.6.0 [94e857df] + SIMDTypes v0.1.0 [0bca4576] + SciMLBase v2.121.1 [19f34311] + SciMLJacobianOperators v0.1.11 [c0aeaf25] + SciMLOperators v1.9.0 [53ae85a6] + SciMLStructures v1.7.0 [efcf1570] + Setfield v1.1.2 [727e6d20] + SimpleNonlinearSolve v2.9.0 [699a6c99] + SimpleTraits v0.9.5 [ce78b400] + SimpleUnPack v1.1.0 [a2af1166] + SortingAlgorithms v1.2.2 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [4c63d2b9] + StatsFuns v1.5.0 [7792a7ef] + StrideArraysCore v0.5.8 [2efcf032] + SymbolicIndexingInterface v0.3.46 ⌃ [19f23fe9] + SymbolicLimits v0.2.3 ⌅ [d1185830] + SymbolicUtils v3.31.0 [0c5d862f] + Symbolics v6.56.0 [ed4db957] + TaskLocalValues v0.1.3 [8ea1fca8] + TermInterface v2.0.0 [1c621080] + TestItems v1.0.0 [8290d209] + ThreadingUtilities v0.5.5 [410a4b4d] + Tricks v0.1.12 [781d530d] + TruncatedStacktraces v1.4.0 [5c2747f8] + URIs v1.6.1 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.25.1 [a7c27f48] + Unityper v0.1.6 ⌅ [e134572f] ↓ FLINT_jll v301.300.102+0 ⇒ v300.200.201+0 [loaded: v301.300.102+0] [61579ee1] + Ghostscript_jll v9.55.1+0 [aacddb02] + JpegTurbo_jll v3.1.3+0 [f50d1b31] + Rmath_jll v0.5.1+0 [9fa8497b] + Future v1.11.0 [a63ad114] + Mmap v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [4607b0f0] + SuiteSparse Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Resolving package versions... Updating `/tmp/jl_ObJih1/Project.toml` [0c5d862f] + Symbolics v6.56.0 Manifest No packages added to or removed from `/tmp/jl_ObJih1/Manifest.toml` [ Info: Testing started [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y ┌ Warning: New variable c, treating as a scalar parameter └ @ StructuralIdentifiability ~/.julia/packages/StructuralIdentifiability/0tPYp/src/pb_representation.jl:94 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: a [ Info: Parameters: b [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: a, b [ Info: Parameters: k1, k2 [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y 2.128261 seconds (946.83 k allocations: 47.841 MiB, 99.53% compilation time) 0.001917 seconds (7.22 k allocations: 333.391 KiB) 0.001971 seconds (10.80 k allocations: 485.219 KiB) 0.002007 seconds (10.76 k allocations: 480.734 KiB) 0.002351 seconds (14.53 k allocations: 635.875 KiB) 0.001410 seconds (7.95 k allocations: 360.930 KiB) 0.001020 seconds (7.46 k allocations: 301.469 KiB) 15.698323 seconds (6.85 M allocations: 351.419 MiB, 0.81% gc time, 99.79% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.341174 seconds (112.56 k allocations: 6.034 MiB, 98.22% compilation time) [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.012999 seconds (9.76 k allocations: 518.211 KiB, 92.04% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b [ Info: Inputs: u [ Info: Outputs: y Coefficient extraction for rational functions: Test Failed at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/extract_coefficients.jl:27 Expression: Set(C) == Set([x // 1, (y + 3) // 1, y ^ 2 // 1, one(R) // 1, 3 * one(R) // 1, -((x ^ 2 + y ^ 2)) // 1]) Evaluated: Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[1//3, -1//3*x^2 - 1//3*y^2, 1//3*y^2, 1//3*x, 1, 1//3*y + 1]) == Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[y^2, 3, y + 3, 1, x, -x^2 - y^2]) Stacktrace: [1] top-level scope @ ~/.julia/packages/StructuralIdentifiability/0tPYp/test/extract_coefficients.jl:2 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1961 [inlined] [3] macro expansion @ ~/.julia/packages/StructuralIdentifiability/0tPYp/test/extract_coefficients.jl:27 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:753 [inlined] [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 IOEQS: Dict{QQMPolyRingElem, QQMPolyRingElem}(y2(t)_1 => -a*y2(t)_0 + a*u(t)_0 + y2(t)_1 - u(t)_1, y1(t)_2 => -y1(t)_0 + y1(t)_2) [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a, b, c, d [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, I, W, R [ Info: Parameters: a, bi, bw, gam, k, mu, xi [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a01, a12, a13, a21, a31 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, In [ Info: Parameters: N, a, b, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00309155 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 6.673744703 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.066395558 seconds [ Info: Global identifiability assessed in 56.171164568 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002417046 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Global identifiability assessed in 0.843519809 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Global identifiability assessed in 4.408e-5 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.035793609 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.55520608 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.679e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:14 ✓ # Computing specializations.. Time: 0:00:16 [ Info: Search for polynomial generators concluded in 13.839669401 [ Info: Selecting generators in 0.01823361 [ Info: Inclusion checked with probability 0.9955 in 0.072103022 seconds [ Info: Global identifiability assessed in 107.482745957 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.704906813 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 1.763753895 seconds [ Info: Dimensions of the Wronskians [676] [ Info: Ranks of the Wronskians computed in 0.132567028 seconds [ Info: Global identifiability assessed in 35.218028201 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015810915 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.032983296 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000305197 seconds [ Info: Global identifiability assessed in 0.086100174 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Note: the input model has nontrivial submodels. If the computation for the full model will be too heavy, you may want to try to first analyze one of the submodels. They can be produced using function `find_submodels` [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 16.744557738 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003512505 seconds [ Info: Dimensions of the Wronskians [2, 3, 2] [ Info: Ranks of the Wronskians computed in 3.474e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.031045279 [ Info: Selecting generators in 0.000439886 [ Info: Inclusion checked with probability 0.9955 in 0.002946102 seconds [ Info: Global identifiability assessed in 19.38425955 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002409017 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001734843 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.489e-5 seconds [ Info: Global identifiability assessed in 0.00715671 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002804022 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00203878 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.016e-5 seconds [ Info: Global identifiability assessed in 0.008534396 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005684925 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004352097 seconds [ Info: Dimensions of the Wronskians [6] [ Info: Ranks of the Wronskians computed in 3.1989e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.226601138 [ Info: Selecting generators in 0.017825355 [ Info: Inclusion checked with probability 0.9955 in 0.005704494 seconds [ Info: Global identifiability assessed in 2.559852196 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009263779 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004166869 seconds [ Info: Dimensions of the Wronskians [2, 5] [ Info: Ranks of the Wronskians computed in 4.195e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008568175 [ Info: Selecting generators in 0.004926012 [ Info: Inclusion checked with probability 0.9955 in 0.004557995 seconds [ Info: Global identifiability assessed in 0.058433866 seconds [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: V_m, c, k01, k_m [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k1, k2, k3, k4 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: s, i, r, x1, x2 [ Info: Parameters: M, b0, b1, g, mu, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, E, I, R, Q [ Info: Parameters: beta, gamma, psi, v [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: k01, k12, k13, k14, k21, k31, k41 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x5, x7, x4, x6 [ Info: Parameters: k10, k5, k6, k7, k8, k9 [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, In, L, Q [ Info: Parameters: Ninv, a, b, e, g, s [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, R, W [ Info: Parameters: Dd, T, a, d, dr, e, g, r, rR [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: P3, P0, P5, P4, P1, P2 [ Info: Parameters: Ks, M, Mar, alpa, beta, beta_SA, beta_SI, phi, siga1, siga2 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: C, α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR [ Info: Parameters: EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1 [ Info: Inputs: pro_EGFR [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio [ Info: Parameters: kOHbeta10, kbeta, kbeta10, kcryOH, kcrybeta, kzea [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: EpoR_A, k1, k2, k3, k5, k6, k7 [ Info: Inputs: [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, U, I [ Info: Parameters: N, a, b, d, g [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: alpha [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k01, k02, k12, k21, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: K_M, V_M, b1, c, k02, k12, k21 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: k02, k03, k12, k13, k21, k31, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: a03, a04, a13, a24, a31, a42, a43 [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, I [ Info: Parameters: N, beta, k, mu, nu [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4, p5 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: beta, c, d, k1, k2, mu1, mu2, q1, q2, s [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001732803 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001359797 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.413e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000111129 [ Info: Selecting generators in 1.221966162 [ Info: Inclusion checked with probability 0.995 in 0.001335247 seconds [ Info: The search for identifiable functions concluded in 2.621523819 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00199875 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001862542 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 4.3779e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000134178 [ Info: Selecting generators in 0.000784702 [ Info: Inclusion checked with probability 0.995 in 0.001279817 seconds [ Info: The search for identifiable functions concluded in 0.012708465 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001268637 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001227998 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.539e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000116479 [ Info: Selecting generators in 0.000732073 [ Info: Inclusion checked with probability 0.995 in 0.001294188 seconds [ Info: The search for identifiable functions concluded in 0.009519676 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001394237 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001403677 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.9589e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000696073 [ Info: Selecting generators in 0.000846561 [ Info: Inclusion checked with probability 0.995 in 0.001328316 seconds [ Info: The search for identifiable functions concluded in 0.011472177 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001531275 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001317487 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.8369e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000520965 [ Info: Selecting generators in 0.000891751 [ Info: Inclusion checked with probability 0.995 in 0.001398616 seconds [ Info: The search for identifiable functions concluded in 0.011561576 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001316697 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001270518 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.0019e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000474195 [ Info: Selecting generators in 0.000728553 [ Info: Inclusion checked with probability 0.995 in 0.001281667 seconds [ Info: The search for identifiable functions concluded in 0.010371588 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002144079 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001382036 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.328e-5 seconds [ Info: The search for identifiable functions concluded in 0.027877806 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00209004 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001380897 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.793e-5 seconds [ Info: The search for identifiable functions concluded in 0.004723024 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001697653 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001214048 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.767e-5 seconds [ Info: The search for identifiable functions concluded in 0.00405898 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001557885 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001105879 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.499e-5 seconds [ Info: The search for identifiable functions concluded in 0.003731674 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001522036 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001165288 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.595e-5 seconds [ Info: The search for identifiable functions concluded in 0.003815962 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001562175 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001152409 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.289e-5 seconds [ Info: The search for identifiable functions concluded in 0.003729114 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001905311 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001309957 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 3.0089e-5 seconds [ Info: The search for identifiable functions concluded in 0.004725973 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001670034 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001255447 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.3349e-5 seconds [ Info: The search for identifiable functions concluded in 0.004023261 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001728073 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001456766 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.752e-5 seconds [ Info: The search for identifiable functions concluded in 0.004117819 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001695953 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001309067 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.531e-5 seconds [ Info: The search for identifiable functions concluded in 0.004202919 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001707103 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001301477 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.541e-5 seconds [ Info: The search for identifiable functions concluded in 0.004225698 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001768523 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001277437 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.629e-5 seconds [ Info: The search for identifiable functions concluded in 0.004221749 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.332713231 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00198553 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.0449e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000102709 [ Info: Selecting generators in 0.000756782 [ Info: Inclusion checked with probability 0.995 in 0.001203858 seconds [ Info: The search for identifiable functions concluded in 0.344430226 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002636355 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001772793 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.303e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000100759 [ Info: Selecting generators in 0.000686983 [ Info: Inclusion checked with probability 0.995 in 0.001228537 seconds [ Info: The search for identifiable functions concluded in 0.012324299 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002603045 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001747893 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.741e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000113848 [ Info: Selecting generators in 0.000662303 [ Info: Inclusion checked with probability 0.995 in 0.001197698 seconds [ Info: The search for identifiable functions concluded in 0.01225993 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002714343 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001770692 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.699e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000482695 [ Info: Selecting generators in 0.000724763 [ Info: Inclusion checked with probability 0.995 in 0.001332327 seconds [ Info: The search for identifiable functions concluded in 0.012723275 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002541795 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001665434 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.6509e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000526464 [ Info: Selecting generators in 0.000828062 [ Info: Inclusion checked with probability 0.995 in 0.001199468 seconds [ Info: The search for identifiable functions concluded in 0.012350138 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002848172 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001642023 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.694e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000530505 [ Info: Selecting generators in 0.000921951 [ Info: Inclusion checked with probability 0.995 in 0.001398376 seconds [ Info: The search for identifiable functions concluded in 0.012971183 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001576545 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002107179 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.328e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000140079 [ Info: Selecting generators in 0.002248037 [ Info: Inclusion checked with probability 0.995 in 0.003400577 seconds [ Info: The search for identifiable functions concluded in 0.020228682 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001536265 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001447026 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.9679e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000124279 [ Info: Selecting generators in 0.002156049 [ Info: Inclusion checked with probability 0.995 in 0.003206648 seconds [ Info: The search for identifiable functions concluded in 0.018536638 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001425806 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001440685 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.01e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000122818 [ Info: Selecting generators in 0.002230368 [ Info: Inclusion checked with probability 0.995 in 0.003267377 seconds [ Info: The search for identifiable functions concluded in 0.018521568 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001375437 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001330997 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.638e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.26666413 [ Info: Selecting generators in 0.003991071 [ Info: Inclusion checked with probability 0.995 in 0.003236868 seconds [ Info: The search for identifiable functions concluded in 0.286470045 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001411896 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001420526 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.294e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.016053053 [ Info: Selecting generators in 0.003993461 [ Info: Inclusion checked with probability 0.995 in 0.003226238 seconds [ Info: The search for identifiable functions concluded in 0.037239164 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001602135 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001434066 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.0289e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014974763 [ Info: Selecting generators in 0.00411565 [ Info: Inclusion checked with probability 0.995 in 0.003694023 seconds [ Info: The search for identifiable functions concluded in 0.03660784 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001344367 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001169578 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.759e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000119519 [ Info: Selecting generators in 0.002300388 [ Info: Inclusion checked with probability 0.995 in 0.002380206 seconds [ Info: The search for identifiable functions concluded in 1.092338716 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001315647 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001284647 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.8389e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000106869 [ Info: Selecting generators in 0.00209818 [ Info: Inclusion checked with probability 0.995 in 0.002255368 seconds [ Info: The search for identifiable functions concluded in 0.014343829 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001314018 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001185078 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.955e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000107069 [ Info: Selecting generators in 0.00210265 [ Info: Inclusion checked with probability 0.995 in 0.002300757 seconds [ Info: The search for identifiable functions concluded in 0.014463188 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001323957 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001212738 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 3.223e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.254047003 [ Info: Selecting generators in 0.00310562 [ Info: Inclusion checked with probability 0.995 in 0.002874152 seconds [ Info: The search for identifiable functions concluded in 0.27061607 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001409566 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001283717 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.668e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005461327 [ Info: Selecting generators in 0.002263198 [ Info: Inclusion checked with probability 0.995 in 0.002125009 seconds [ Info: The search for identifiable functions concluded in 0.019171222 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001266168 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001105959 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.377e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005368667 [ Info: Selecting generators in 0.002291938 [ Info: Inclusion checked with probability 0.995 in 0.002209208 seconds [ Info: The search for identifiable functions concluded in 0.01825793 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002221428 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001678633 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.387e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000113989 [ Info: Selecting generators in 0.000600064 [ Info: Inclusion checked with probability 0.995 in 0.002466475 seconds [ Info: The search for identifiable functions concluded in 0.016492308 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002366317 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001821802 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.311e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000109398 [ Info: Selecting generators in 0.000606504 [ Info: Inclusion checked with probability 0.995 in 0.002761183 seconds [ Info: The search for identifiable functions concluded in 0.018143211 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002584315 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.29101686 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.9229e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000114479 [ Info: Selecting generators in 0.000770863 [ Info: Inclusion checked with probability 0.995 in 0.002587455 seconds [ Info: The search for identifiable functions concluded in 0.30827805 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002560535 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001842752 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.552e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00918059 [ Info: Selecting generators in 0.000774453 [ Info: Inclusion checked with probability 0.995 in 0.002964321 seconds [ Info: The search for identifiable functions concluded in 0.028403951 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002832372 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002108299 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.923e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008023431 [ Info: Selecting generators in 0.000741363 [ Info: Inclusion checked with probability 0.995 in 0.002632684 seconds [ Info: The search for identifiable functions concluded in 0.027122163 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002838462 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00199009 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.833e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008318438 [ Info: Selecting generators in 0.000879731 [ Info: Inclusion checked with probability 0.995 in 0.002707194 seconds [ Info: The search for identifiable functions concluded in 0.027593239 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0030964 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002248058 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.9719e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000152708 [ Info: Selecting generators in 0.003912492 [ Info: Inclusion checked with probability 0.995 in 0.003583855 seconds [ Info: The search for identifiable functions concluded in 0.024910005 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0030924 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002288067 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.8019e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000132458 [ Info: Selecting generators in 0.004112859 [ Info: Inclusion checked with probability 0.995 in 0.003759263 seconds [ Info: The search for identifiable functions concluded in 0.027209682 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003272838 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002316068 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.217e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000140739 [ Info: Selecting generators in 0.00407342 [ Info: Inclusion checked with probability 0.995 in 0.003579814 seconds [ Info: The search for identifiable functions concluded in 0.026696398 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00309656 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002256918 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.1439e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.016442409 [ Info: Selecting generators in 0.00401623 [ Info: Inclusion checked with probability 0.995 in 0.003562935 seconds [ Info: The search for identifiable functions concluded in 0.04274678 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003234648 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002306347 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.049e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.016137911 [ Info: Selecting generators in 0.003927212 [ Info: Inclusion checked with probability 0.995 in 0.003520546 seconds [ Info: The search for identifiable functions concluded in 0.042536212 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003329907 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002217388 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.412e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.015619677 [ Info: Selecting generators in 0.003814452 [ Info: Inclusion checked with probability 0.995 in 0.003380597 seconds [ Info: The search for identifiable functions concluded in 0.041428363 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.017821315 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005434716 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 4.2669e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000192088 [ Info: Selecting generators in 0.013629436 [ Info: Inclusion checked with probability 0.995 in 0.005910892 seconds [ Info: The search for identifiable functions concluded in 0.342512954 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00715212 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005189469 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 4.545e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000144648 [ Info: Selecting generators in 0.010033732 [ Info: Inclusion checked with probability 0.995 in 0.005743363 seconds [ Info: The search for identifiable functions concluded in 0.048212226 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007253089 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005217869 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.8879e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000147188 [ Info: Selecting generators in 0.010035362 [ Info: Inclusion checked with probability 0.995 in 0.00612555 seconds [ Info: The search for identifiable functions concluded in 0.049228806 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007669684 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005485186 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.9089e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002202119 [ Info: Selecting generators in 0.009934492 [ Info: Inclusion checked with probability 0.995 in 0.005983801 seconds [ Info: The search for identifiable functions concluded in 0.052322826 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007341388 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005581676 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.9849e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002260248 [ Info: Selecting generators in 0.010984572 [ Info: Inclusion checked with probability 0.995 in 0.006920922 seconds [ Info: The search for identifiable functions concluded in 0.054486425 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007723264 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005576755 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 4.2739e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002125139 [ Info: Selecting generators in 0.010460837 [ Info: Inclusion checked with probability 0.995 in 0.00618073 seconds [ Info: The search for identifiable functions concluded in 0.053413065 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005765993 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003593995 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 4.096e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000120968 [ Info: Selecting generators in 0.001953401 [ Info: Inclusion checked with probability 0.995 in 0.003400326 seconds [ Info: The search for identifiable functions concluded in 0.026944075 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005559296 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003518975 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.1169e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000138679 [ Info: Selecting generators in 0.002405616 [ Info: Inclusion checked with probability 0.995 in 0.003779443 seconds [ Info: The search for identifiable functions concluded in 0.028589799 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005771503 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003788573 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.9779e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000139269 [ Info: Selecting generators in 0.002248507 [ Info: Inclusion checked with probability 0.995 in 0.003664603 seconds [ Info: The search for identifiable functions concluded in 0.029932756 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005439667 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003427596 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.088e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001266068 [ Info: Selecting generators in 0.002198359 [ Info: Inclusion checked with probability 0.995 in 0.003264848 seconds [ Info: The search for identifiable functions concluded in 0.02746416 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004845452 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003110669 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.9119e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001205778 [ Info: Selecting generators in 0.001911752 [ Info: Inclusion checked with probability 0.995 in 0.003157509 seconds [ Info: The search for identifiable functions concluded in 0.025839096 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004759473 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003084109 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.978e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001150138 [ Info: Selecting generators in 0.001897662 [ Info: Inclusion checked with probability 0.995 in 0.003167049 seconds [ Info: The search for identifiable functions concluded in 0.02537496 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004916051 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002986301 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.9619e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000123388 [ Info: Selecting generators in 0.002381697 [ Info: Inclusion checked with probability 0.995 in 0.00304845 seconds [ Info: The search for identifiable functions concluded in 0.027884476 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004957942 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003164959 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.8399e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000131619 [ Info: Selecting generators in 0.002810333 [ Info: Inclusion checked with probability 0.995 in 0.003260048 seconds [ Info: The search for identifiable functions concluded in 0.029810177 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004979202 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003168679 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.172e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000116099 [ Info: Selecting generators in 0.002464916 [ Info: Inclusion checked with probability 0.995 in 0.003214119 seconds [ Info: The search for identifiable functions concluded in 0.02945575 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005641174 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003459416 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 4.456e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.020828895 [ Info: Selecting generators in 0.004643015 [ Info: Inclusion checked with probability 0.995 in 0.003528075 seconds [ Info: The search for identifiable functions concluded in 0.05597685 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005444107 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003168209 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 4.0319e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.020045453 [ Info: Selecting generators in 0.004277688 [ Info: Inclusion checked with probability 0.995 in 0.003690634 seconds [ Info: The search for identifiable functions concluded in 0.052842881 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005280448 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003155309 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.751e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.019875085 [ Info: Selecting generators in 0.004773383 [ Info: Inclusion checked with probability 0.995 in 0.003792833 seconds [ Info: The search for identifiable functions concluded in 0.053870511 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00311141 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002317628 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 3.51e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000125059 [ Info: Selecting generators in 0.00202699 [ Info: Inclusion checked with probability 0.995 in 0.003455926 seconds [ Info: The search for identifiable functions concluded in 0.022884295 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002927021 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002427946 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 3.4669e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000114849 [ Info: Selecting generators in 0.001817623 [ Info: Inclusion checked with probability 0.995 in 0.003111859 seconds [ Info: The search for identifiable functions concluded in 0.02134532 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002883272 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00199152 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 3.07e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000124579 [ Info: Selecting generators in 0.001900182 [ Info: Inclusion checked with probability 0.995 in 0.002949481 seconds [ Info: The search for identifiable functions concluded in 0.020567568 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002678143 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00201407 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 3.024e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.011826493 [ Info: Selecting generators in 0.002921771 [ Info: Inclusion checked with probability 0.995 in 0.002870671 seconds [ Info: The search for identifiable functions concluded in 0.03261901 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002765453 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002122379 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.642e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.013665165 [ Info: Selecting generators in 0.003393326 [ Info: Inclusion checked with probability 0.995 in 0.003484456 seconds [ Info: The search for identifiable functions concluded in 0.036836948 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003260218 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002367367 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 3.4519e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014813104 [ Info: Selecting generators in 0.003579625 [ Info: Inclusion checked with probability 0.995 in 0.003506206 seconds [ Info: The search for identifiable functions concluded in 0.040378854 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.016687026 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.035620659 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000357787 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:05 ✓ # Computing specializations.. Time: 0:00:05 [ Info: Search for polynomial generators concluded in 0.000342377 [ Info: Selecting generators in 0.021163822 [ Info: Inclusion checked with probability 0.995 in 0.432244802 seconds [ Info: The search for identifiable functions concluded in 12.904414669 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015790555 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.032950506 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000374566 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000147609 [ Info: Selecting generators in 0.01524461 [ Info: Inclusion checked with probability 0.995 in 0.025501169 seconds [ Info: The search for identifiable functions concluded in 0.166781081 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013426748 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031363412 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000397526 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000153069 [ Info: Selecting generators in 0.023309491 [ Info: Inclusion checked with probability 0.995 in 0.029370362 seconds [ Info: The search for identifiable functions concluded in 0.170724852 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015766285 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031802078 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000342026 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.249737997 [ Info: Selecting generators in 0.018519908 [ Info: Inclusion checked with probability 0.995 in 0.031190093 seconds [ Info: The search for identifiable functions concluded in 1.428189383 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015361229 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.033342702 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000345587 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.048307875 [ Info: Selecting generators in 0.018398329 [ Info: Inclusion checked with probability 0.995 in 0.028776157 seconds [ Info: The search for identifiable functions concluded in 0.224136907 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.016530948 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.393370214 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000345477 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.048981519 [ Info: Selecting generators in 0.018284911 [ Info: Inclusion checked with probability 0.995 in 0.028381071 seconds [ Info: The search for identifiable functions concluded in 0.581676743 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.588526618 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.548015135 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.189037982 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000147258 [ Info: Selecting generators in 0.927682521 [ Info: Inclusion checked with probability 0.995 in 2.6268158 seconds [ Info: The search for identifiable functions concluded in 18.166386027 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.764508236 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.010404461 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.206875866 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000143328 [ Info: Selecting generators in 0.986015437 [ Info: Inclusion checked with probability 0.995 in 2.87994887 seconds [ Info: The search for identifiable functions concluded in 18.905590182 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.657490466 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.167904502 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.211371942 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 3   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000274027 [ Info: Selecting generators in 0.644173947 [ Info: Inclusion checked with probability 0.995 in 3.1968927 seconds [ Info: The search for identifiable functions concluded in 19.333584964 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.720482845 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.314125566 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.191924773 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 2   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.043116956 [ Info: Selecting generators in 0.651250517 [ Info: Inclusion checked with probability 0.995 in 3.262555621 seconds [ Info: The search for identifiable functions concluded in 19.614531501 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.467100395 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.595510329 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.182455336 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.037684129 [ Info: Selecting generators in 1.314535353 [ Info: Inclusion checked with probability 0.995 in 2.762555094 seconds [ Info: The search for identifiable functions concluded in 19.713556187 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.507602065 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.771024342 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.221919538 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 5   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.029598969 [ Info: Selecting generators in 0.559444088 [ Info: Inclusion checked with probability 0.995 in 2.918502918 seconds [ Info: The search for identifiable functions concluded in 19.264867158 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014898524 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012416778 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 5.07e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000164009 [ Info: Selecting generators in 0.009596506 [ Info: Inclusion checked with probability 0.995 in 0.009311029 seconds [ Info: The search for identifiable functions concluded in 0.088686928 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014333699 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010998652 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 5.0119e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000165768 [ Info: Selecting generators in 0.009484827 [ Info: Inclusion checked with probability 0.995 in 0.009390568 seconds [ Info: The search for identifiable functions concluded in 0.086650968 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014758655 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012443668 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.9469e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000150148 [ Info: Selecting generators in 0.009461407 [ Info: Inclusion checked with probability 0.995 in 0.009244029 seconds [ Info: The search for identifiable functions concluded in 0.08951712 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014724016 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012879143 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.9409e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.038336523 [ Info: Selecting generators in 0.014891584 [ Info: Inclusion checked with probability 0.995 in 0.009694094 seconds [ Info: The search for identifiable functions concluded in 0.132899643 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013983012 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012482047 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.659e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.040438992 [ Info: Selecting generators in 0.015678336 [ Info: Inclusion checked with probability 0.995 in 0.81240109 seconds [ Info: The search for identifiable functions concluded in 0.941639999 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.016638307 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012845874 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.72e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.041181505 [ Info: Selecting generators in 0.015428089 [ Info: Inclusion checked with probability 0.995 in 0.00912066 seconds [ Info: The search for identifiable functions concluded in 0.149210673 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.025187402 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016485198 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.8209e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000157619 [ Info: Selecting generators in 0.011576046 [ Info: Inclusion checked with probability 0.995 in 0.016396008 seconds [ Info: The search for identifiable functions concluded in 0.402932827 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.024620817 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.025576679 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 0.000102229 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000156219 [ Info: Selecting generators in 0.010516396 [ Info: Inclusion checked with probability 0.995 in 0.015081522 seconds [ Info: The search for identifiable functions concluded in 0.122662204 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.023783747 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016470848 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.6609e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000146949 [ Info: Selecting generators in 0.012395328 [ Info: Inclusion checked with probability 0.995 in 0.014522517 seconds [ Info: The search for identifiable functions concluded in 0.113295596 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.027750037 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016026163 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 0.000101979 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.048427574 [ Info: Selecting generators in 0.016749685 [ Info: Inclusion checked with probability 0.995 in 0.014287169 seconds [ Info: The search for identifiable functions concluded in 0.168671232 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.022840725 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017211491 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.7759e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.045808969 [ Info: Selecting generators in 0.015413429 [ Info: Inclusion checked with probability 0.995 in 0.014049621 seconds [ Info: The search for identifiable functions concluded in 0.15759334 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.022666087 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015429729 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.6929e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.049440754 [ Info: Selecting generators in 0.019393759 [ Info: Inclusion checked with probability 0.995 in 0.015883724 seconds [ Info: The search for identifiable functions concluded in 0.16584142 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013085261 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.018005113 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 8.5159e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000199898 [ Info: Selecting generators in 0.093093104 [ Info: Inclusion checked with probability 0.995 in 0.019668777 seconds [ Info: The search for identifiable functions concluded in 0.587303214 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013266489 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017897544 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 9.599e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000211938 [ Info: Selecting generators in 0.093723868 [ Info: Inclusion checked with probability 0.995 in 0.018203231 seconds [ Info: The search for identifiable functions concluded in 1.358338211 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012719805 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016792184 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 8.538e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000282067 [ Info: Selecting generators in 0.079841725 [ Info: Inclusion checked with probability 0.995 in 0.017484018 seconds [ Info: The search for identifiable functions concluded in 0.526307883 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010919932 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015355379 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 8.1059e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.091199123 [ Info: Selecting generators in 0.099062096 [ Info: Inclusion checked with probability 0.995 in 0.017637946 seconds [ Info: The search for identifiable functions concluded in 0.671880752 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013048731 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017974563 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.9719e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 3.256828359 [ Info: Selecting generators in 0.120667883 [ Info: Inclusion checked with probability 0.995 in 0.017933944 seconds [ Info: The search for identifiable functions concluded in 3.862174685 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009756065 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016692036 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.4489e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.28515875 [ Info: Selecting generators in 0.077935083 [ Info: Inclusion checked with probability 0.995 in 0.014409418 seconds [ Info: The search for identifiable functions concluded in 1.781993104 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.905213326 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.073798424 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000101609 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ⌝ # Computing specializations.. Time: 0:00:00 Points: 18   ⌟ # Computing specializations.. Time: 0:00:01 Points: 29   ⌞ # Computing specializations.. Time: 0:00:01 Points: 39   ⌜ # Computing specializations.. Time: 0:00:01 Points: 48   ⌝ # Computing specializations.. Time: 0:00:02 Points: 58   ⌟ # Computing specializations.. Time: 0:00:02 Points: 68   ⌞ # Computing specializations.. Time: 0:00:02 Points: 78   ⌜ # Computing specializations.. Time: 0:00:03 Points: 87   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 29   ⌞ # Computing specializations.. Time: 0:00:01 Points: 40   ⌜ # Computing specializations.. Time: 0:00:01 Points: 49   ⌝ # Computing specializations.. Time: 0:00:02 Points: 60   ⌟ # Computing specializations.. Time: 0:00:02 Points: 71   ⌞ # Computing specializations.. Time: 0:00:03 Points: 82   ⌜ # Computing specializations.. Time: 0:00:03 Points: 92   ⌝ # Computing specializations.. Time: 0:00:03 Points: 103   ⌟ # Computing specializations.. Time: 0:00:04 Points: 113   ⌞ # Computing specializations.. Time: 0:00:04 Points: 122   ⌜ # Computing specializations.. Time: 0:00:04 Points: 132   ⌝ # Computing specializations.. Time: 0:00:05 Points: 140   ⌟ # Computing specializations.. Time: 0:00:05 Points: 150   ⌞ # Computing specializations.. Time: 0:00:06 Points: 159   ⌜ # Computing specializations.. Time: 0:00:06 Points: 169   ⌝ # Computing specializations.. Time: 0:00:06 Points: 179   ⌟ # Computing specializations.. Time: 0:00:07 Points: 189   ⌞ # Computing specializations.. Time: 0:00:07 Points: 199   ⌜ # Computing specializations.. Time: 0:00:07 Points: 208   ⌝ # Computing specializations.. Time: 0:00:08 Points: 219   ⌟ # Computing specializations.. Time: 0:00:08 Points: 229   ⌞ # Computing specializations.. Time: 0:00:09 Points: 238   ⌜ # Computing specializations.. Time: 0:00:09 Points: 247   ⌝ # Computing specializations.. Time: 0:00:09 Points: 256   ⌟ # Computing specializations.. Time: 0:00:10 Points: 268   ⌞ # Computing specializations.. Time: 0:00:10 Points: 279   ⌜ # Computing specializations.. Time: 0:00:10 Points: 290   ⌝ # Computing specializations.. Time: 0:00:11 Points: 300   ⌟ # Computing specializations.. Time: 0:00:11 Points: 309   ⌞ # Computing specializations.. Time: 0:00:12 Points: 319   ⌜ # Computing specializations.. Time: 0:00:12 Points: 328   ⌝ # Computing specializations.. Time: 0:00:12 Points: 340   ⌟ # Computing specializations.. Time: 0:00:13 Points: 352   ⌞ # Computing specializations.. Time: 0:00:13 Points: 363   ⌜ # Computing specializations.. Time: 0:00:13 Points: 373   ⌝ # Computing specializations.. Time: 0:00:14 Points: 382   ⌟ # Computing specializations.. Time: 0:00:14 Points: 395   ⌞ # Computing specializations.. Time: 0:00:15 Points: 406   ⌜ # Computing specializations.. Time: 0:00:15 Points: 416   ⌝ # Computing specializations.. Time: 0:00:15 Points: 424   ⌟ # Computing specializations.. Time: 0:00:16 Points: 434   ⌞ # Computing specializations.. Time: 0:00:16 Points: 444   ⌜ # Computing specializations.. Time: 0:00:16 Points: 453   ⌝ # Computing specializations.. Time: 0:00:17 Points: 464   ⌟ # Computing specializations.. Time: 0:00:17 Points: 477   ⌞ # Computing specializations.. Time: 0:00:18 Points: 489   ⌜ # Computing specializations.. Time: 0:00:18 Points: 500   ⌝ # Computing specializations.. Time: 0:00:18 Points: 514   ⌟ # Computing specializations.. Time: 0:00:19 Points: 525   ⌞ # Computing specializations.. Time: 0:00:19 Points: 537   ⌜ # Computing specializations.. Time: 0:00:20 Points: 549   ⌝ # Computing specializations.. Time: 0:00:20 Points: 560   ⌟ # Computing specializations.. Time: 0:00:20 Points: 570   ⌞ # Computing specializations.. Time: 0:00:21 Points: 579   ⌜ # Computing specializations.. Time: 0:00:21 Points: 590   ⌝ # Computing specializations.. Time: 0:00:21 Points: 600   ⌟ # Computing specializations.. Time: 0:00:22 Points: 610   ⌞ # Computing specializations.. Time: 0:00:22 Points: 620   ⌜ # Computing specializations.. Time: 0:00:23 Points: 629   ⌝ # Computing specializations.. Time: 0:00:23 Points: 640   ✓ # Computing specializations.. Time: 0:00:23 [ Info: Search for polynomial generators concluded in 0.000496405 [ Info: Selecting generators in 0.050925209 [ Info: Inclusion checked with probability 0.995 in 9.247955908 seconds [ Info: The search for identifiable functions concluded in 57.530506857 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.64267851 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.081753736 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000199778 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 21   ⌟ # Computing specializations.. Time: 0:00:01 Points: 32   ⌞ # Computing specializations.. Time: 0:00:01 Points: 44   ⌜ # Computing specializations.. Time: 0:00:02 Points: 55   ⌝ # Computing specializations.. Time: 0:00:02 Points: 66   ⌟ # Computing specializations.. Time: 0:00:02 Points: 77   ⌞ # Computing specializations.. Time: 0:00:03 Points: 89   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 21   ⌟ # Computing specializations.. Time: 0:00:01 Points: 32   ⌞ # Computing specializations.. Time: 0:00:01 Points: 42   ⌜ # Computing specializations.. Time: 0:00:01 Points: 53   ⌝ # Computing specializations.. Time: 0:00:02 Points: 63   ⌟ # Computing specializations.. Time: 0:00:02 Points: 75   ⌞ # Computing specializations.. Time: 0:00:03 Points: 86   ⌜ # Computing specializations.. Time: 0:00:03 Points: 98   ⌝ # Computing specializations.. Time: 0:00:03 Points: 109   ⌟ # Computing specializations.. Time: 0:00:04 Points: 120   ⌞ # Computing specializations.. Time: 0:00:04 Points: 131   ⌜ # Computing specializations.. Time: 0:00:05 Points: 143   ⌝ # Computing specializations.. Time: 0:00:05 Points: 154   ⌟ # Computing specializations.. Time: 0:00:05 Points: 166   ⌞ # Computing specializations.. Time: 0:00:06 Points: 176   ⌜ # Computing specializations.. Time: 0:00:06 Points: 187   ⌝ # Computing specializations.. Time: 0:00:07 Points: 198   ⌟ # Computing specializations.. Time: 0:00:07 Points: 207   ⌞ # Computing specializations.. Time: 0:00:07 Points: 217   ⌜ # Computing specializations.. Time: 0:00:08 Points: 226   ⌝ # Computing specializations.. Time: 0:00:08 Points: 238   ⌟ # Computing specializations.. Time: 0:00:09 Points: 249   ⌞ # Computing specializations.. Time: 0:00:09 Points: 260   ⌜ # Computing specializations.. Time: 0:00:09 Points: 271   ⌝ # Computing specializations.. Time: 0:00:10 Points: 280   ⌟ # Computing specializations.. Time: 0:00:10 Points: 290   ⌞ # Computing specializations.. Time: 0:00:11 Points: 298   ⌜ # Computing specializations.. Time: 0:00:12 Points: 310   ⌝ # Computing specializations.. Time: 0:00:12 Points: 321   ⌟ # Computing specializations.. Time: 0:00:15 Points: 330   ⌞ # Computing specializations.. Time: 0:00:15 Points: 340   ⌜ # Computing specializations.. Time: 0:00:15 Points: 350   ⌝ # Computing specializations.. Time: 0:00:16 Points: 360   ⌟ # Computing specializations.. Time: 0:00:16 Points: 370   ⌞ # Computing specializations.. Time: 0:00:16 Points: 380   ⌜ # Computing specializations.. Time: 0:00:17 Points: 390   ⌝ # Computing specializations.. Time: 0:00:17 Points: 400   ⌟ # Computing specializations.. Time: 0:00:18 Points: 408   ⌞ # Computing specializations.. Time: 0:00:18 Points: 419   ⌜ # Computing specializations.. Time: 0:00:19 Points: 429   ⌝ # Computing specializations.. Time: 0:00:19 Points: 439   ⌟ # Computing specializations.. Time: 0:00:20 Points: 447   ⌞ # Computing specializations.. Time: 0:00:20 Points: 458   ⌜ # Computing specializations.. Time: 0:00:20 Points: 468   ⌝ # Computing specializations.. Time: 0:00:21 Points: 478   ⌟ # Computing specializations.. Time: 0:00:21 Points: 486   ⌞ # Computing specializations.. Time: 0:00:21 Points: 497   ⌜ # Computing specializations.. Time: 0:00:22 Points: 507   ⌝ # Computing specializations.. Time: 0:00:22 Points: 516   ⌟ # Computing specializations.. Time: 0:00:22 Points: 526   ⌞ # Computing specializations.. Time: 0:00:23 Points: 536   ⌜ # Computing specializations.. Time: 0:00:23 Points: 545   ⌝ # Computing specializations.. Time: 0:00:24 Points: 555   ⌟ # Computing specializations.. Time: 0:00:24 Points: 565   ⌞ # Computing specializations.. Time: 0:00:24 Points: 576   ⌜ # Computing specializations.. Time: 0:00:25 Points: 586   ⌝ # Computing specializations.. Time: 0:00:25 Points: 596   ⌟ # Computing specializations.. Time: 0:00:25 Points: 606   ⌞ # Computing specializations.. Time: 0:00:26 Points: 616   ⌜ # Computing specializations.. Time: 0:00:26 Points: 627   ⌝ # Computing specializations.. Time: 0:00:27 Points: 637   ✓ # Computing specializations.. Time: 0:00:27 [ Info: Search for polynomial generators concluded in 0.000544555 [ Info: Selecting generators in 0.052107376 [ Info: Inclusion checked with probability 0.995 in 8.956086815 seconds [ Info: The search for identifiable functions concluded in 58.810099505 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.088903695 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.056132387 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000110779 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 Points: 12   ⌝ # Computing specializations.. Time: 0:00:00 Points: 23   ⌟ # Computing specializations.. Time: 0:00:00 Points: 34   ⌞ # Computing specializations.. Time: 0:00:01 Points: 44   ⌜ # Computing specializations.. Time: 0:00:01 Points: 57   ⌝ # Computing specializations.. Time: 0:00:01 Points: 71   ⌟ # Computing specializations.. Time: 0:00:02 Points: 85   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 25   ⌟ # Computing specializations.. Time: 0:00:01 Points: 39   ⌞ # Computing specializations.. Time: 0:00:01 Points: 52   ⌜ # Computing specializations.. Time: 0:00:01 Points: 63   ⌝ # Computing specializations.. Time: 0:00:02 Points: 74   ⌟ # Computing specializations.. Time: 0:00:02 Points: 88   ⌞ # Computing specializations.. Time: 0:00:02 Points: 102   ⌜ # Computing specializations.. Time: 0:00:03 Points: 116   ⌝ # Computing specializations.. Time: 0:00:03 Points: 127   ⌟ # Computing specializations.. Time: 0:00:03 Points: 139   ⌞ # Computing specializations.. Time: 0:00:04 Points: 153   ⌜ # Computing specializations.. Time: 0:00:04 Points: 166   ⌝ # Computing specializations.. Time: 0:00:04 Points: 177   ⌟ # Computing specializations.. Time: 0:00:05 Points: 189   ⌞ # Computing specializations.. Time: 0:00:05 Points: 203   ⌜ # Computing specializations.. Time: 0:00:05 Points: 216   ⌝ # Computing specializations.. Time: 0:00:06 Points: 227   ⌟ # Computing specializations.. Time: 0:00:06 Points: 240   ⌞ # Computing specializations.. Time: 0:00:06 Points: 253   ⌜ # Computing specializations.. Time: 0:00:07 Points: 263   ⌝ # Computing specializations.. Time: 0:00:07 Points: 276   ⌟ # Computing specializations.. Time: 0:00:07 Points: 289   ⌞ # Computing specializations.. Time: 0:00:08 Points: 299   ⌜ # Computing specializations.. Time: 0:00:08 Points: 312   ⌝ # Computing specializations.. Time: 0:00:08 Points: 325   ⌟ # Computing specializations.. Time: 0:00:09 Points: 335   ⌞ # Computing specializations.. Time: 0:00:09 Points: 348   ⌜ # Computing specializations.. Time: 0:00:10 Points: 361   ⌝ # Computing specializations.. Time: 0:00:10 Points: 371   ⌟ # Computing specializations.. Time: 0:00:10 Points: 384   ⌞ # Computing specializations.. Time: 0:00:11 Points: 397   ⌜ # Computing specializations.. Time: 0:00:11 Points: 410   ⌝ # Computing specializations.. Time: 0:00:11 Points: 425   ⌟ # Computing specializations.. Time: 0:00:12 Points: 438   ⌞ # Computing specializations.. Time: 0:00:12 Points: 451   ⌜ # Computing specializations.. Time: 0:00:12 Points: 465   ⌝ # Computing specializations.. Time: 0:00:13 Points: 478   ⌟ # Computing specializations.. Time: 0:00:13 Points: 490   ⌞ # Computing specializations.. Time: 0:00:14 Points: 504   ⌜ # Computing specializations.. Time: 0:00:14 Points: 517   ⌝ # Computing specializations.. Time: 0:00:14 Points: 529   ⌟ # Computing specializations.. Time: 0:00:15 Points: 541   ⌞ # Computing specializations.. Time: 0:00:15 Points: 553   ⌜ # Computing specializations.. Time: 0:00:15 Points: 566   ⌝ # Computing specializations.. Time: 0:00:16 Points: 579   ⌟ # Computing specializations.. Time: 0:00:16 Points: 591   ⌞ # Computing specializations.. Time: 0:00:16 Points: 603   ⌜ # Computing specializations.. Time: 0:00:17 Points: 613   ⌝ # Computing specializations.. Time: 0:00:17 Points: 627   ⌟ # Computing specializations.. Time: 0:00:18 Points: 640   ✓ # Computing specializations.. Time: 0:00:18 [ Info: Search for polynomial generators concluded in 0.000245927 [ Info: Selecting generators in 0.050192504 [ Info: Inclusion checked with probability 0.995 in 6.163978976 seconds [ Info: The search for identifiable functions concluded in 44.989164364 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.012113222 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.07599689 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000176268 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 29   ⌞ # Computing specializations.. Time: 0:00:01 Points: 38   ⌜ # Computing specializations.. Time: 0:00:01 Points: 48   ⌝ # Computing specializations.. Time: 0:00:02 Points: 57   ⌟ # Computing specializations.. Time: 0:00:02 Points: 68   ⌞ # Computing specializations.. Time: 0:00:02 Points: 78   ⌜ # Computing specializations.. Time: 0:00:03 Points: 87   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 21   ⌟ # Computing specializations.. Time: 0:00:01 Points: 30   ⌞ # Computing specializations.. Time: 0:00:01 Points: 40   ⌜ # Computing specializations.. Time: 0:00:01 Points: 49   ⌝ # Computing specializations.. Time: 0:00:02 Points: 60   ⌟ # Computing specializations.. Time: 0:00:02 Points: 70   ⌞ # Computing specializations.. Time: 0:00:02 Points: 78   ⌜ # Computing specializations.. Time: 0:00:03 Points: 88   ⌝ # Computing specializations.. Time: 0:00:03 Points: 97   ⌟ # Computing specializations.. Time: 0:00:03 Points: 108   ⌞ # Computing specializations.. Time: 0:00:04 Points: 118   ⌜ # Computing specializations.. Time: 0:00:04 Points: 126   ⌝ # Computing specializations.. Time: 0:00:04 Points: 136   ⌟ # Computing specializations.. Time: 0:00:05 Points: 145   ⌞ # Computing specializations.. Time: 0:00:05 Points: 156   ⌜ # Computing specializations.. Time: 0:00:06 Points: 166   ⌝ # Computing specializations.. Time: 0:00:06 Points: 175   ⌟ # Computing specializations.. Time: 0:00:06 Points: 189   ⌞ # Computing specializations.. Time: 0:00:07 Points: 201   ⌜ # Computing specializations.. Time: 0:00:07 Points: 214   ⌝ # Computing specializations.. Time: 0:00:07 Points: 227   ⌟ # Computing specializations.. Time: 0:00:08 Points: 240   ⌞ # Computing specializations.. Time: 0:00:08 Points: 251   ⌜ # Computing specializations.. Time: 0:00:09 Points: 262   ⌝ # Computing specializations.. Time: 0:00:09 Points: 273   ⌟ # Computing specializations.. Time: 0:00:09 Points: 284   ⌞ # Computing specializations.. Time: 0:00:10 Points: 293   ⌜ # Computing specializations.. Time: 0:00:10 Points: 303   ⌝ # Computing specializations.. Time: 0:00:11 Points: 313   ⌟ # Computing specializations.. Time: 0:00:11 Points: 324   ⌞ # Computing specializations.. Time: 0:00:11 Points: 334   ⌜ # Computing specializations.. Time: 0:00:12 Points: 344   ⌝ # Computing specializations.. Time: 0:00:12 Points: 354   ⌟ # Computing specializations.. Time: 0:00:12 Points: 364   ⌞ # Computing specializations.. Time: 0:00:13 Points: 375   ⌜ # Computing specializations.. Time: 0:00:13 Points: 386   ⌝ # Computing specializations.. Time: 0:00:14 Points: 397   ⌟ # Computing specializations.. Time: 0:00:14 Points: 407   ⌞ # Computing specializations.. Time: 0:00:14 Points: 416   ⌜ # Computing specializations.. Time: 0:00:15 Points: 426   ⌝ # Computing specializations.. Time: 0:00:15 Points: 436   ⌟ # Computing specializations.. Time: 0:00:15 Points: 448   ⌞ # Computing specializations.. Time: 0:00:16 Points: 459   ⌜ # Computing specializations.. Time: 0:00:16 Points: 469   ⌝ # Computing specializations.. Time: 0:00:17 Points: 479   ⌟ # Computing specializations.. Time: 0:00:17 Points: 487   ⌞ # Computing specializations.. Time: 0:00:17 Points: 498   ⌜ # Computing specializations.. Time: 0:00:18 Points: 508   ⌝ # Computing specializations.. Time: 0:00:18 Points: 517   ⌟ # Computing specializations.. Time: 0:00:18 Points: 527   ⌞ # Computing specializations.. Time: 0:00:19 Points: 535   ⌜ # Computing specializations.. Time: 0:00:19 Points: 546   ⌝ # Computing specializations.. Time: 0:00:20 Points: 556   ⌟ # Computing specializations.. Time: 0:00:20 Points: 565   ⌞ # Computing specializations.. Time: 0:00:20 Points: 575   ⌜ # Computing specializations.. Time: 0:00:21 Points: 583   ⌝ # Computing specializations.. Time: 0:00:21 Points: 593   ⌟ # Computing specializations.. Time: 0:00:21 Points: 603   ⌞ # Computing specializations.. Time: 0:00:22 Points: 612   ⌜ # Computing specializations.. Time: 0:00:22 Points: 622   ⌝ # Computing specializations.. Time: 0:00:22 Points: 632   ✓ # Computing specializations.. Time: 0:00:23 [ Info: Search for polynomial generators concluded in 2.18342759 [ Info: Selecting generators in 0.039114894 [ Info: Inclusion checked with probability 0.995 in 8.767150888 seconds [ Info: The search for identifiable functions concluded in 54.532900783 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.434413793 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.080103789 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000201728 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:01 Points: 26   ⌞ # Computing specializations.. Time: 0:00:01 Points: 36   ⌜ # Computing specializations.. Time: 0:00:01 Points: 44   ⌝ # Computing specializations.. Time: 0:00:02 Points: 55   ⌟ # Computing specializations.. Time: 0:00:02 Points: 65   ⌞ # Computing specializations.. Time: 0:00:02 Points: 75   ⌜ # Computing specializations.. Time: 0:00:03 Points: 85   ⌝ # Computing specializations.. Time: 0:00:03 Points: 95   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:01 Points: 28   ⌞ # Computing specializations.. Time: 0:00:01 Points: 38   ⌜ # Computing specializations.. Time: 0:00:01 Points: 49   ⌝ # Computing specializations.. Time: 0:00:02 Points: 59   ⌟ # Computing specializations.. Time: 0:00:02 Points: 70   ⌞ # Computing specializations.. Time: 0:00:03 Points: 80   ⌜ # Computing specializations.. Time: 0:00:03 Points: 90   ⌝ # Computing specializations.. Time: 0:00:03 Points: 99   ⌟ # Computing specializations.. Time: 0:00:04 Points: 110   ⌞ # Computing specializations.. Time: 0:00:04 Points: 120   ⌜ # Computing specializations.. Time: 0:00:05 Points: 128   ⌝ # Computing specializations.. Time: 0:00:05 Points: 137   ⌟ # Computing specializations.. Time: 0:00:05 Points: 146   ⌞ # Computing specializations.. Time: 0:00:06 Points: 160   ⌜ # Computing specializations.. Time: 0:00:06 Points: 173   ⌝ # Computing specializations.. Time: 0:00:07 Points: 183   ⌟ # Computing specializations.. Time: 0:00:07 Points: 196   ⌞ # Computing specializations.. Time: 0:00:07 Points: 207   ⌜ # Computing specializations.. Time: 0:00:08 Points: 217   ⌝ # Computing specializations.. Time: 0:00:08 Points: 227   ⌟ # Computing specializations.. Time: 0:00:09 Points: 238   ⌞ # Computing specializations.. Time: 0:00:09 Points: 248   ⌜ # Computing specializations.. Time: 0:00:09 Points: 259   ⌝ # Computing specializations.. Time: 0:00:10 Points: 269   ⌟ # Computing specializations.. Time: 0:00:10 Points: 278   ⌞ # Computing specializations.. Time: 0:00:10 Points: 288   ⌜ # Computing specializations.. Time: 0:00:11 Points: 298   ⌝ # Computing specializations.. Time: 0:00:11 Points: 308   ⌟ # Computing specializations.. Time: 0:00:12 Points: 316   ⌞ # Computing specializations.. Time: 0:00:12 Points: 326   ⌜ # Computing specializations.. Time: 0:00:12 Points: 336   ⌝ # Computing specializations.. Time: 0:00:13 Points: 347   ⌟ # Computing specializations.. Time: 0:00:13 Points: 357   ⌞ # Computing specializations.. Time: 0:00:13 Points: 366   ⌜ # Computing specializations.. Time: 0:00:14 Points: 375   ⌝ # Computing specializations.. Time: 0:00:14 Points: 384   ⌟ # Computing specializations.. Time: 0:00:14 Points: 394   ⌞ # Computing specializations.. Time: 0:00:15 Points: 403   ⌜ # Computing specializations.. Time: 0:00:15 Points: 414   ⌝ # Computing specializations.. Time: 0:00:16 Points: 424   ⌟ # Computing specializations.. Time: 0:00:16 Points: 434   ⌞ # Computing specializations.. Time: 0:00:16 Points: 444   ⌜ # Computing specializations.. Time: 0:00:17 Points: 453   ⌝ # Computing specializations.. Time: 0:00:17 Points: 462   ⌟ # Computing specializations.. Time: 0:00:18 Points: 471   ⌞ # Computing specializations.. Time: 0:00:18 Points: 481   ⌜ # Computing specializations.. Time: 0:00:18 Points: 490   ⌝ # Computing specializations.. Time: 0:00:19 Points: 499   ⌟ # Computing specializations.. Time: 0:00:19 Points: 508   ⌞ # Computing specializations.. Time: 0:00:19 Points: 517   ⌜ # Computing specializations.. Time: 0:00:20 Points: 527   ⌝ # Computing specializations.. Time: 0:00:20 Points: 537   ⌟ # Computing specializations.. Time: 0:00:20 Points: 548   ⌞ # Computing specializations.. Time: 0:00:21 Points: 558   ⌜ # Computing specializations.. Time: 0:00:21 Points: 567   ⌝ # Computing specializations.. Time: 0:00:22 Points: 576   ⌟ # Computing specializations.. Time: 0:00:22 Points: 585   ⌞ # Computing specializations.. Time: 0:00:22 Points: 595   ⌜ # Computing specializations.. Time: 0:00:23 Points: 604   ⌝ # Computing specializations.. Time: 0:00:23 Points: 615   ⌟ # Computing specializations.. Time: 0:00:23 Points: 625   ⌞ # Computing specializations.. Time: 0:00:24 Points: 636   ✓ # Computing specializations.. Time: 0:00:24 [ Info: Search for polynomial generators concluded in 2.570427709 [ Info: Selecting generators in 0.053242265 [ Info: Inclusion checked with probability 0.995 in 8.341129712 seconds [ Info: The search for identifiable functions concluded in 57.41500218 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.379907279 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.080563545 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000202118 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:01 Points: 26   ⌞ # Computing specializations.. Time: 0:00:01 Points: 35   ⌜ # Computing specializations.. Time: 0:00:01 Points: 44   ⌝ # Computing specializations.. Time: 0:00:02 Points: 53   ⌟ # Computing specializations.. Time: 0:00:02 Points: 61   ⌞ # Computing specializations.. Time: 0:00:02 Points: 70   ⌜ # Computing specializations.. Time: 0:00:03 Points: 79   ⌝ # Computing specializations.. Time: 0:00:03 Points: 91   ✓ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 18   ⌟ # Computing specializations.. Time: 0:00:01 Points: 27   ⌞ # Computing specializations.. Time: 0:00:01 Points: 37   ⌜ # Computing specializations.. Time: 0:00:01 Points: 46  ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 55 running 1 of 1 signal (10): User defined signal 1 == at ./promotion.jl:637 [inlined] iterate at ./range.jl:925 [inlined] linalg_extract_sparse_row! at /home/pkgeval/.julia/packages/Groebner/k40dp/src/f4/linalg/backend.jl:892 [inlined] #linalg_reduce_dense_row_by_pivots_sparse!#92 at /home/pkgeval/.julia/packages/Groebner/k40dp/src/f4/linalg/backend.jl:428 linalg_reduce_dense_row_by_pivots_sparse! at /home/pkgeval/.julia/packages/Groebner/k40dp/src/f4/linalg/backend.jl:369 [inlined] linalg_reduce_dense_row_by_pivots_sparse! at /home/pkgeval/.julia/packages/Groebner/k40dp/src/f4/linalg/backend.jl:369 [inlined] linalg_apply_reduce_matrix_lower_part! at /home/pkgeval/.julia/packages/Groebner/k40dp/src/f4/linalg/backend_learn_apply.jl:125 linalg_apply_sparse! at /home/pkgeval/.julia/packages/Groebner/k40dp/src/f4/linalg/backend_learn_apply.jl:39 [inlined] _linalg_main_with_trace! at /home/pkgeval/.julia/packages/Groebner/k40dp/src/f4/linalg/linalg.jl:210 #linalg_main!#83 at /home/pkgeval/.julia/packages/Groebner/k40dp/src/f4/linalg/linalg.jl:56 [inlined] linalg_main! at /home/pkgeval/.julia/packages/Groebner/k40dp/src/f4/linalg/linalg.jl:23 [inlined] f4_reduction_apply! at /home/pkgeval/.julia/packages/Groebner/k40dp/src/f4/learn_apply.jl:271 f4_apply! at /home/pkgeval/.julia/packages/Groebner/k40dp/src/f4/learn_apply.jl:504 _groebner_apply2! at /home/pkgeval/.julia/packages/Groebner/k40dp/src/groebner/learn_apply.jl:266 groebner_apply2! at /home/pkgeval/.julia/packages/Groebner/k40dp/src/groebner/learn_apply.jl:253 unknown function (ip: 0x757fb6d3442d) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 __groebner_apply1! at /home/pkgeval/.julia/packages/Groebner/k40dp/src/groebner/learn_apply.jl:237 unknown function (ip: 0x757fbc6a8590) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 groebner_apply0! at /home/pkgeval/.julia/packages/Groebner/k40dp/src/groebner/learn_apply.jl:129 #groebner_apply!#177 at /home/pkgeval/.julia/packages/Groebner/k40dp/src/interface.jl:405 [inlined] groebner_apply! at /home/pkgeval/.julia/packages/Groebner/k40dp/src/interface.jl:403 unknown function (ip: 0x757fbc6a7394) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 interpolate_exponents! at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:432 _paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:138 #paramgb#56 at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:103 paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:60 [inlined] #groebner_basis_coeffs#326 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:548 groebner_basis_coeffs at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:548 unknown function (ip: 0x757fbc7d5c84) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#328 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:720 unknown function (ip: 0x757fb6ef1b59) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #_find_identifiable_functions#389 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:86 [inlined] #387 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#385 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:49 unknown function (ip: 0x757fb6eeabf4) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2979 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3039 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x757f907b2992) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:162 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:1961 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:160 [inlined] macro expansion at ./timing.jl:689 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:159 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2979 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3039 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_35340.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_54238.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x757fd22da249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file)  ⌝ # Computing specializations.. Time: 0:00:02 Points: 53   ⌟ # Computing specializations.. Time: 0:00:02 Points: 59  ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ==============================================================  ⌞ # Computing specializations.. Time: 0:00:03 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1217 wait_forever at ./task.jl:1139 jfptr_wait_forever_74407.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x0000757fb81fc010 Total snapshots: 303. Utilization: 100% ╎298 @Base/client.jl:577 _start() ╎ 298 @Base/client.jl:310 exec_options(opts::Base.JLOptions) ╎ 298 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ 298 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ 298 @Base/Base.jl:310 include(mapexpr::Function, mod::Module, _path::St… ╎ 298 @Base/loading.jl:3039 _include(mapexpr::Function, mod::Module, _pa… ╎ ╎ 298 @Base/loading.jl:2979 include_string(mapexpr::typeof(identity), m… ╎ ╎ 298 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ 298 @StructuralIdentifiability/…:159 top-level scope ╎ ╎ 298 @Base/timing.jl:689 macro expansion ╎ ╎ 298 @StructuralIdentifiability/…:160 macro expansion ╎ ╎ ╎ 298 @Test/src/Test.jl:1961 macro expansion ╎ ╎ ╎ 298 @StructuralIdentifiability/…:162 macro expansion ╎ ╎ ╎ 298 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ ╎ ╎ 298 @Base/Base.jl:310 include(mapexpr::Function, mod::Module,… ╎ ╎ ╎ 298 @Base/loading.jl:3039 _include(mapexpr::Function, mod::M… ╎ ╎ ╎ ╎ 298 @Base/loading.jl:2979 include_string(mapexpr::typeof(id… ╎ ╎ ╎ ╎ 298 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ ╎ ╎ 298 @StructuralIdentifiability/…:49 kwcall(::@NamedTuple{… ╎ ╎ ╎ ╎ 298 @StructuralIdentifiability/…:61 #find_identifiable_f… ╎ ╎ ╎ ╎ 298 @Base/…ogging.jl:651 with_logger ╎ ╎ ╎ ╎ ╎ 298 @Base/…gging.jl:540 with_logstate(f::StructuralIde… ╎ ╎ ╎ ╎ ╎ 298 @StructuralIdentifiability/…:63 (::StructuralIden… ╎ ╎ ╎ ╎ ╎ 298 @StructuralIdentifiability/…:86 _find_identifiab… ╎ ╎ ╎ ╎ ╎ 298 @StructuralIdentifiability/…:120 _find_identifi… ╎ ╎ ╎ ╎ ╎ 298 @StructuralIdentifiability/…:720 kwcall(::@Nam… ╎ ╎ ╎ ╎ ╎ ╎ 298 @StructuralIdentifiability/…:720 simplified_g… ╎ ╎ ╎ ╎ ╎ ╎ 298 @StructuralIdentifiability/…:548 kwcall(::@N… ╎ ╎ ╎ ╎ ╎ ╎ 298 @StructuralIdentifiability/…:548 groebner_b… ╎ ╎ ╎ ╎ ╎ ╎ 298 @ParamPunPam/…:60 paramgb ╎ ╎ ╎ ╎ ╎ ╎ 298 @ParamPunPam/…:103 paramgb(blackbox::Stru… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 298 @ParamPunPam/…:138 _paramgb(blackbox::St… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 80 @ParamPunPam/…:431 interpolate_exponent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 80 @StructuralIdentifiability/…:305 speci… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 40 @StructuralIdentifiability/…:270 frac… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 40 @Base/…ay.jl:3390 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 40 @Base/…ay.jl:763 collect_similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:848 _collect(c::Vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @StructuralIdentifiability/…:270 … 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:548 evaluate(a::fp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 38 @Base/…ay.jl:858 _collect(c::Vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 38 @Base/…ay.jl:864 collect_to_with_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 38 @Base/…ay.jl:886 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 38 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 38 @StructuralIdentifiability/…:270… 38╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 38 @Nemo/…ly.jl:548 evaluate(a::fp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 40 @StructuralIdentifiability/…:276 frac… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 39 @Nemo/…ly.jl:313 * ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 37 @Nemo/…ly.jl:306 *(a::fpMPolyRingEl… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 37 @Nemo/…ly.jl:909 fpMPolyRing 37╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 37 @Nemo/…es.jl:1465 fpMPolyRingElem 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:307 *(a::fpMPolyRingEl… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:251 -(a::fpMPolyRingEle… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 217 @ParamPunPam/…:432 interpolate_exponent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 217 @Groebner/…l:403 groebner_apply!(trace… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 217 @Groebner/…l:405 #groebner_apply!#177 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 83 @Groebner/…l:128 groebner_apply0!(wr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 22 @Groebner/…l:22 io_convert_polynomi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 22 @Groebner/…l:108 io_extract_coeffs… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 22 @Groebner/…l:128 io_extract_coeff… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 22 @Base/…ay.jl:3420 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 22 @Base/…ay.jl:838 collect(itr::B… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 22 @Base/…ay.jl:864 collect_to_wit… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 21 @Base/…ay.jl:886 collect_to!(de… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 6 @Base/…or.jl:45 iterate 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 5 @AbstractAlgebra/…:821 iterate 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Nemo/…ly.jl:117 coeff(a::fpMPo… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Nemo/…ly.jl:118 coeff(a::fpMPo… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Nemo/…em.jl:405 fpField ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 15 @Base/…or.jl:48 iterate 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 15 @Groebner/…l:116 io_lift_coeff_… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Nemo/…pz.jl:2936 UInt64(a::ZZR… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…rs.jl:424 > ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Nemo/…pz.jl:887 < ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…rs.jl:424 > 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/int.jl:83 < 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Nemo/…pz.jl:2937 UInt64(a::ZZR… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 10 @Nemo/…em.jl:46 lift ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 10 @Nemo/…em.jl:45 lift 3╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 3 @Nemo/…es.jl:71 ZZRingElem 3╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 3 @Nemo/…es.jl:72 ZZRingElem ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 4 @Nemo/…es.jl:73 ZZRingElem 4╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 4 @Base/…ls.jl:86 finalizer ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 60 @Groebner/…l:23 io_convert_polynomi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 60 @Groebner/…l:181 io_extract_monoms… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 60 @Base/…ay.jl:759 collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 60 @Base/…ay.jl:765 _collect 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:949 copyto!(dest::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 58 @Base/…ay.jl:953 copyto!(dest::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 58 @AbstractAlgebra/…:838 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 58 @Nemo/…ly.jl:39 exponent_vector ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Nemo/…ly.jl:19 exponent_vector… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Nemo/…ly.jl:726 exponent_vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Nemo/…ly.jl:26 parent 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…er.jl:57 getproperty ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 47 @Nemo/…ly.jl:23 exponent_vector… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 36 @Base/…ot.jl:648 Array 36╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 36 @Base/…ot.jl:588 GenericMemory 11╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 11 @Base/…ot.jl:649 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 10 @Nemo/…ly.jl:24 exponent_vector… 9╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 9 @Nemo/…ly.jl:736 exponent_vecto… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:18 exponent_vector… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:31 io_convert_polynomi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 132 @Groebner/…l:129 groebner_apply0!(wr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 17 @Groebner/…l:218 __groebner_apply1!… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 17 @Groebner/…l:61 wrapped_trace_chec… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 16 @Base/…rs.jl:320 != 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:3049 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @Base/…ay.jl:3053 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @Base/…rs.jl:415 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 6 @Base/…rs.jl:425 _zip_iterate_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 5 @Base/…rs.jl:433 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 5 @Base/…ay.jl:1245 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 5 @Base/…ay.jl:1245 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 5 @Base/…ay.jl:1253 _iterate_abst… 5╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 5 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…rs.jl:435 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…rs.jl:433 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1245 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ay.jl:1245 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ay.jl:1253 _iterate_abst… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:3054 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/int.jl:564 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…on.jl:487 == 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…on.jl:637 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 7 @Base/…ay.jl:3060 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 7 @Base/…rs.jl:416 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 7 @Base/…rs.jl:425 _zip_iterate_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 3 @Base/…rs.jl:433 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 3 @Base/…ay.jl:1245 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1252 _iterate_abst… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:381 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Base/…ay.jl:1253 _iterate_abst… 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 4 @Base/…rs.jl:435 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 4 @Base/…rs.jl:433 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 4 @Base/…ay.jl:1245 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 4 @Base/…ay.jl:1253 _iterate_abst… 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 2 @Base/…ls.jl:965 getindex 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 2 @Base/int.jl:87 + ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 80 @Groebner/…l:234 __groebner_apply1!… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:212 ir_extract_coeffs… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ls.jl:965 getindex 76╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 79 @Groebner/…l:213 ir_extract_coeffs… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:1025 _setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…er.jl:6 convert(::Type{UIn… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 35 @Groebner/…l:237 __groebner_apply1!… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 35 @Groebner/…l:253 groebner_apply2!(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 35 @Groebner/…l:266 _groebner_apply2… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Groebner/…l:490 f4_apply!(trace… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:394 basis_make_mon… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:127 inv_mod_p ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…cs.jl:298 invmod(n::UInt… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…cs.jl:236 gcdx ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/div.jl:196 divrem ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/div.jl:218 divrem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/int.jl:1046 div ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Groebner/…l:397 basis_make_mon… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:122 mod_p ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:106 _mul_high 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/int.jl:1043 * ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:124 mod_p 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/int.jl:1043 * ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 15 @Groebner/…l:502 f4_apply!(trace… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:314 f4_symbolic_pr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:236 hashtable_resi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:1025 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Groebner/…l:323 f4_symbolic_pr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 3 @Groebner/…l:306 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:517 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…al.jl:774 setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ay.jl:1024 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Groebner/…l:519 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:708 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1363 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:964 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ls.jl:385 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:720 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1363 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:964 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ls.jl:385 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 11 @Groebner/…l:342 f4_symbolic_pr… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…er.jl:57 getproperty ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 2 @Groebner/…l:303 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Base/…ay.jl:402 similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:44 size 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ls.jl:10 size ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ot.jl:648 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ot.jl:588 GenericMemory ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 2 @Groebner/…l:304 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Groebner/…l:236 hashtable_resi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Base/…ay.jl:1020 setindex! 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Base/…ay.jl:1025 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 6 @Groebner/…l:306 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:482 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:1363 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ls.jl:965 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:485 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 4 @Groebner/…l:519 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 3 @Groebner/…l:708 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 3 @Base/…ay.jl:1363 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:964 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ls.jl:385 checkbounds 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…es.jl:365 to_indices ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…es.jl:368 to_indices ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…es.jl:292 to_index ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…es.jl:307 to_index ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…er.jl:7 convert ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…ot.jl:1008 Int64 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Base/…ls.jl:0 toInt64 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:720 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1363 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:964 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ls.jl:385 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 13 @Groebner/…l:504 f4_apply!(trace… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 11 @Groebner/…l:271 f4_reduction_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 11 @Groebner/…l:23 linalg_main! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 11 @Groebner/…l:56 #linalg_main!#83 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 11 @Groebner/…l:210 _linalg_main_w… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Groebner/…l:36 linalg_apply_sp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Groebner/…l:216 sort_matrix_lo… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…rt.jl:1734 sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…rt.jl:1741 #sort!#24 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…rt.jl:1594 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…rt.jl:561 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…rt.jl:686 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Base/…rt.jl:747 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 1 @Base/…rt.jl:800 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +13 1 @Base/…rt.jl:845 _sort!(v::Vect… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +14 1 @Base/…ng.jl:121 lt ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +15 1 @Groebner/…l:212 #sort_matrix_l… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +16 1 @Groebner/…l:168 matrix_row_inc… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +17 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 9 @Groebner/…l:39 linalg_apply_sp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Groebner/…l:120 linalg_apply_r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Groebner/…l:865 linalg_load_sp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…al.jl:774 setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…ay.jl:1025 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 7 @Groebner/…l:125 linalg_apply_r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 7 @Groebner/…l:369 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 7 @Groebner/…l:369 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Groebner/…l:390 linalg_reduce_… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 4 @Groebner/…l:415 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Groebner/…l:751 linalg_vector_… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 3 @Groebner/…l:752 linalg_vector_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…al.jl:774 setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 1 @Base/…ay.jl:1025 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Groebner/…l:122 mod_p ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Groebner/…l:106 _mul_high 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 1 @Base/int.jl:1043 * ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Groebner/…l:124 mod_p 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Base/int.jl:576 >>> ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 2 @Groebner/…l:428 linalg_reduce_… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…ls.jl:0 linalg_extract_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Groebner/…l:886 linalg_extract… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Groebner/…l:151 linalg_apply_r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Groebner/…l:679 linalg_new_emp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ot.jl:671 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ot.jl:649 Array ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Groebner/…l:44 linalg_apply_sp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Groebner/…l:183 linalg_apply_i… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Groebner/…l:190 #linalg_apply_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Groebner/…l:127 linalg_interre… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Groebner/…l:170 linalg_interre… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Groebner/…l:369 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Groebner/…l:369 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Groebner/…l:390 linalg_reduce_… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Groebner/…l:274 f4_reduction_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 2 @Groebner/…l:189 matrix_convert… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Groebner/…l:239 matrix_convert… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Groebner/…l:390 matrix_insert_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Base/…ay.jl:1363 getindex 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:517 f4_apply!(trace… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:556 basis_update!(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ls.jl:964 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ls.jl:385 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Groebner/…l:524 f4_apply!(trace… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:407 f4_autoreduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:306 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:519 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:708 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1363 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:964 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ls.jl:385 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:433 f4_autoreduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:71 linalg_autoredu… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:71 linalg_autoredu… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:89 #linalg_autored… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Groebner/…l:226 _linalg_autore… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Groebner/…l:42 linalg_determin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Groebner/…l:127 linalg_interre… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Groebner/…l:170 linalg_interre… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Groebner/…l:369 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Groebner/…l:369 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Groebner/…l:428 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Groebner/…l:886 linalg_extract… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:446 f4_autoreduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:37 matrix_compute_… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Groebner/…l:131 groebner_apply0!(wr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Groebner/…l:44 io_convert_ir_to_po… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Groebner/…l:250 _io_convert_ir_to… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:957 fpMPolyRing 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:1489 fpMPolyRingEle… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:1491 fpMPolyRingEle… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ls.jl:86 finalizer ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:444 interpolate_exponent… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ls.jl:965 getindex Points: 64 ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x000078fd3a71fb20 Total snapshots: 430. Utilization: 0% ╎430 @Base/task.jl:1139 wait_forever() 429╎ 430 @Base/task.jl:1217 wait() [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1217 wait_forever at ./task.jl:1139 jfptr_wait_forever_74407.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file) Allocations: 23243986 (Pool: 23243349; Big: 637); GC: 20 [55] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/identifiable_functions.jl:1077 jl_set_typeof at /source/src/julia.h:135 [inlined] jl_gc_alloc_ at /source/src/gc-stock.c:804 jl_alloc_genericmemory_unchecked at /source/src/genericmemory.c:41 GenericMemory at ./boot.jl:588 [inlined] Array at ./boot.jl:648 [inlined] exponent_vector at /home/pkgeval/.julia/packages/Nemo/sUaag/src/flint/mpoly.jl:23 exponent_vector at /home/pkgeval/.julia/packages/Nemo/sUaag/src/flint/mpoly.jl:39 [inlined] iterate at /home/pkgeval/.julia/packages/AbstractAlgebra/vdTzs/src/generic/MPoly.jl:838 [inlined] copyto! at ./abstractarray.jl:953 _collect at ./array.jl:765 [inlined] collect at ./array.jl:759 [inlined] io_extract_monoms_ir at /home/pkgeval/.julia/packages/Groebner/k40dp/src/input_output/AbstractAlgebra.jl:181 unknown function (ip: 0x757fbc680bbe) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 io_convert_polynomials_to_ir at /home/pkgeval/.julia/packages/Groebner/k40dp/src/input_output/AbstractAlgebra.jl:23 groebner_apply0! at /home/pkgeval/.julia/packages/Groebner/k40dp/src/groebner/learn_apply.jl:128 #groebner_apply!#177 at /home/pkgeval/.julia/packages/Groebner/k40dp/src/interface.jl:405 [inlined] groebner_apply! at /home/pkgeval/.julia/packages/Groebner/k40dp/src/interface.jl:403 unknown function (ip: 0x757fbc6a7394) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 interpolate_exponents! at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:432 _paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:138 #paramgb#56 at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:103 paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:60 [inlined] #groebner_basis_coeffs#326 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:548 groebner_basis_coeffs at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:548 unknown function (ip: 0x757fbc7d5c84) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#328 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:720 unknown function (ip: 0x757fb6ef1b59) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #_find_identifiable_functions#389 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:86 [inlined] #387 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#385 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:49 unknown function (ip: 0x757fb6eeabf4) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2979 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3039 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x757f907b2992) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:162 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:1961 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:160 [inlined] macro expansion at ./timing.jl:689 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:159 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2979 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3039 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_35340.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_54238.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x757fd22da249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 1358354784 (Pool: 1358350652; Big: 4132); GC: 594 PkgEval terminated after 2746.21s: test duration exceeded the time limit