Package evaluation to test SimilaritySearch on Julia 1.13.0-DEV.1342 (4ff19f0352*) started at 2025-10-19T16:54:05.088 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.3s ################################################################################ # Installation # Installing SimilaritySearch... Resolving package versions... Installed SimilaritySearch ─ v0.13.5 Updating `~/.julia/environments/v1.13/Project.toml` [053f045d] + SimilaritySearch v0.13.5 Updating `~/.julia/environments/v1.13/Manifest.toml` [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.21.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] + CPUSummary v0.2.7 [fb6a15b2] + CloseOpenIntervals v0.1.13 [f70d9fcc] + CommonWorldInvalidations v1.0.0 [34da2185] + Compat v4.18.1 [a33af91c] + CompositionsBase v0.1.2 [187b0558] + ConstructionBase v1.6.0 [adafc99b] + CpuId v0.3.1 [9a962f9c] + DataAPI v1.16.0 ⌅ [864edb3b] + DataStructures v0.18.22 [b4f34e82] + Distances v0.10.12 [ffbed154] + DocStringExtensions v0.9.5 [615f187c] + IfElse v0.1.1 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.6 [10f19ff3] + LayoutPointers v0.1.17 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 [d125e4d3] + ManualMemory v0.1.8 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [d96e819e] + Parameters v0.12.3 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [431bcebd] + SciMLPublic v1.0.0 [0e966ebe] + SearchModels v0.4.1 [053f045d] + SimilaritySearch v0.13.5 [a2af1166] + SortingAlgorithms v1.2.2 [aedffcd0] + Static v1.3.0 [0d7ed370] + StaticArrayInterface v1.8.0 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 ⌅ [2913bbd2] + StatsBase v0.33.21 [7792a7ef] + StrideArraysCore v0.5.8 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.21s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 38.57s ################################################################################ # Testing # Testing SimilaritySearch Status `/tmp/jl_ApW2oU/Project.toml` [7d9f7c33] Accessors v0.1.42 [4c88cf16] Aqua v0.8.14 [b4f34e82] Distances v0.10.12 [d96e819e] Parameters v0.12.3 [f517fe37] Polyester v0.7.18 [92933f4c] ProgressMeter v1.11.0 [0e966ebe] SearchModels v0.4.1 [053f045d] SimilaritySearch v0.13.5 [10745b16] Statistics v1.11.1 ⌅ [2913bbd2] StatsBase v0.33.21 [7792a7ef] StrideArraysCore v0.5.8 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_ApW2oU/Manifest.toml` [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.21.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] CPUSummary v0.2.7 [fb6a15b2] CloseOpenIntervals v0.1.13 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [a33af91c] CompositionsBase v0.1.2 [187b0558] ConstructionBase v1.6.0 [adafc99b] CpuId v0.3.1 [9a962f9c] DataAPI v1.16.0 ⌅ [864edb3b] DataStructures v0.18.22 [b4f34e82] Distances v0.10.12 [ffbed154] DocStringExtensions v0.9.5 [615f187c] IfElse v0.1.1 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.6 [10f19ff3] LayoutPointers v0.1.17 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [d125e4d3] ManualMemory v0.1.8 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [d96e819e] Parameters v0.12.3 [f517fe37] Polyester v0.7.18 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [431bcebd] SciMLPublic v1.0.0 [0e966ebe] SearchModels v0.4.1 [053f045d] SimilaritySearch v0.13.5 [a2af1166] SortingAlgorithms v1.2.2 [aedffcd0] Static v1.3.0 [0d7ed370] StaticArrayInterface v1.8.0 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 ⌅ [2913bbd2] StatsBase v0.33.21 [7792a7ef] StrideArraysCore v0.5.8 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.46.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Test Summary: | Pass Total Time test database abstractions | 56 56 18.2s Test Summary: | Pass Total Time heap | 16 16 0.1s Test Summary: | Pass Total Time KnnHeap | 30005 30005 4.0s Test Summary: | Pass Total Time XKnn | 25005 25005 2.7s Test Summary: | Pass Total Time XKnn pop ops | 9603 9603 1.2s [ Info: (MatrixDatabase{Matrix{Float32}}, SubDatabase{MatrixDatabase{Matrix{Float32}}, Vector{Int64}}) 10.857055 seconds (1000 allocations: 78.125 KiB) 10.742593 seconds (1000 allocations: 78.125 KiB) 4.107681 seconds (1000 allocations: 78.125 KiB) 4.194822 seconds (1000 allocations: 78.125 KiB) 4.094891 seconds (1000 allocations: 78.125 KiB) 4.068498 seconds (1000 allocations: 78.125 KiB) 4.141333 seconds (1000 allocations: 78.125 KiB) 4.130791 seconds (1000 allocations: 78.125 KiB) 16.242814 seconds (1000 allocations: 78.125 KiB) 15.914897 seconds (1000 allocations: 78.125 KiB) 29.091791 seconds (1000 allocations: 78.125 KiB) 29.127827 seconds (1000 allocations: 78.125 KiB) 21.708040 seconds (6.23 k allocations: 358.094 KiB) 21.663903 seconds (1000 allocations: 78.125 KiB) 18.878121 seconds (1.00 k allocations: 78.141 KiB) 19.069100 seconds (1000 allocations: 78.125 KiB) Test Summary: | Pass Total Time indexing vectors with ExhaustiveSearch | 8000 8000 3m50.0s [ Info: (VectorDatabase{Vector{Vector{Int64}}}, SubDatabase{VectorDatabase{Vector{Vector{Int64}}}, Vector{Int64}}) 3.139782 seconds (1000 allocations: 78.125 KiB) 3.117727 seconds (1000 allocations: 78.125 KiB) 30.204530 seconds (1000 allocations: 78.125 KiB) 29.618889 seconds (1000 allocations: 78.125 KiB) 29.386380 seconds (1000 allocations: 78.125 KiB) 29.591087 seconds (1000 allocations: 78.125 KiB) 4.380776 seconds (1000 allocations: 78.125 KiB) 4.276169 seconds (1000 allocations: 78.125 KiB) Test Summary: | Pass Total Time indexing sequences with ExhaustiveSearch | 4000 4000 2m17.8s [ Info: (VectorDatabase{Vector{Vector{Int64}}}, SubDatabase{VectorDatabase{Vector{Vector{Int64}}}, Vector{Int64}}) 10.319108 seconds (1000 allocations: 78.125 KiB) 10.431320 seconds (1000 allocations: 78.125 KiB) 10.506735 seconds (1000 allocations: 78.125 KiB) 10.472300 seconds (1000 allocations: 78.125 KiB) 10.746610 seconds (1000 allocations: 78.125 KiB) 10.639459 seconds (1000 allocations: 78.125 KiB) Test Summary: | Pass Total Time indexing sets with ExhaustiveSearch | 3000 3000 1m06.4s 0.045427 seconds (1.00 k allocations: 78.141 KiB) 0.045832 seconds (1000 allocations: 78.125 KiB) 0.039356 seconds (1000 allocations: 78.125 KiB) 0.040044 seconds (1000 allocations: 78.125 KiB) Test Summary: | Pass Total Time Normalized Cosine and Normalized Angle distances | 2000 2000 3.0s 0.052448 seconds (1000 allocations: 78.125 KiB) 0.051508 seconds (1000 allocations: 78.125 KiB) Test Summary: | Pass Total Time Binary hamming distance | 1000 1000 1.4s ExhaustiveSearch allknn: 4.505595 seconds (2.44 M allocations: 129.808 MiB, 0.82% gc time, 99.96% compilation time) ParallelExhaustiveSearch allknn: 1.240728 seconds (615.38 k allocations: 30.729 MiB, 99.85% compilation time) Test Summary: | Pass Total Time allknn | 3 3 6.3s quantile(length.(hsp_knns), 0:0.1:1) = [3.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 5.0, 5.0] Test Summary: | Total Time HSP | 0 3.2s [ Info: neardup> starting: 1:100, current elements: 0, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:32.951 LOG add_vertex! sp=1 ep=1 n=1 BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2025-10-19T17:03:33.201 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] LOG add_vertex! sp=2 ep=2 n=2 BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2025-10-19T17:03:34.520 LOG n.size quantiles:[1.0, 1.0, 1.0, 1.0, 1.0] [ Info: neardup> finished current elements: 8, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:34.918 D.map = UInt32[0x00000001, 0x00000002, 0x00000003, 0x00000004, 0x00000005, 0x00000006, 0x00000007, 0x0000000b] D.nn = Int32[1, 2, 3, 4, 5, 6, 7, 7, 4, 4, 11, 3, 1, 6, 4, 3, 6, 1, 2, 4, 6, 4, 3, 6, 4, 3, 4, 7, 1, 4, 7, 4, 2, 3, 2, 6, 6, 1, 3, 6, 7, 7, 7, 6, 11, 4, 1, 3, 6, 2, 3, 4, 4, 4, 3, 3, 4, 7, 3, 1, 7, 6, 6, 3, 3, 11, 6, 3, 1, 4, 6, 4, 3, 3, 2, 7, 6, 2, 6, 2, 4, 6, 4, 2, 2, 3, 11, 6, 7, 3, 6, 6, 4, 2, 7, 6, 11, 4, 3, 2] D.dist = Float32[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.027052343, 0.051409245, 0.04493946, 0.0, 0.007964134, 0.064433694, 0.015027404, 0.072757065, 0.012048781, 0.002723217, 0.009903669, 0.07758623, 0.07417917, 0.029194593, 0.040563703, 0.09696525, 0.049999297, 0.06721091, 0.07049984, 0.04710436, 0.038327277, 0.07888186, 0.020347953, 0.052623034, 0.001640439, 0.025092065, 0.03707373, 0.0753904, 0.019490004, 0.040794194, 0.069916606, 0.06397247, 0.06232345, 0.056322753, 0.044831753, 0.092784345, 0.049808204, 0.012167454, 0.048691392, 0.089577794, 0.0067103505, 0.0110654235, 0.07853842, 0.04886186, 0.05812353, 0.0751487, 0.06749487, 0.08510274, 0.07998234, 0.023746192, 0.054404497, 0.020418823, 0.04045725, 0.036427617, 0.020617008, 0.007031858, 0.03136462, 0.02916199, 0.04104024, 0.05946642, 0.054000854, 0.025232792, 0.021074474, 0.0961166, 0.047834158, 0.006665468, 0.020682871, 0.07256144, 0.016091406, 0.049295425, 0.06174189, 0.04030317, 0.022592783, 0.03547162, 0.08250862, 0.06750417, 0.07227415, 0.015051544, 0.030264795, 0.044600308, 0.01813519, 0.06386626, 0.043556094, 0.036177814, 0.06883097, 0.02583474, 0.04973817, 0.0043667555, 0.017842412, 0.03297186, 0.052946985, 0.0019521713, 0.060019016] Test Summary: | Pass Total Time neardup single block | 3 3 19.2s [ Info: neardup> starting: 1:16, current elements: 0, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:36.119 LOG add_vertex! sp=1 ep=1 n=1 BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2025-10-19T17:03:36.119 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] [ Info: neardup> range: 17:32, current elements: 8, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:36.120 [ Info: neardup> range: 33:48, current elements: 8, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:36.120 [ Info: neardup> range: 49:64, current elements: 8, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:36.120 [ Info: neardup> range: 65:80, current elements: 8, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:36.120 [ Info: neardup> range: 81:96, current elements: 8, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:36.120 [ Info: neardup> range: 97:100, current elements: 8, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:36.120 [ Info: neardup> finished current elements: 8, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:36.120 D.map = UInt32[0x00000001, 0x00000002, 0x00000003, 0x00000004, 0x00000005, 0x00000006, 0x00000007, 0x0000000b] D.nn = Int32[1, 2, 3, 4, 5, 6, 7, 7, 4, 4, 11, 3, 1, 6, 4, 3, 6, 1, 2, 4, 6, 4, 3, 6, 4, 3, 4, 7, 1, 4, 7, 4, 2, 3, 2, 6, 6, 1, 3, 6, 7, 7, 7, 6, 11, 4, 1, 3, 6, 2, 3, 4, 4, 4, 3, 3, 4, 7, 3, 1, 7, 6, 6, 3, 3, 11, 6, 3, 1, 4, 6, 4, 3, 3, 2, 7, 6, 2, 6, 2, 4, 6, 4, 2, 2, 3, 11, 6, 7, 3, 6, 6, 4, 2, 7, 6, 11, 4, 3, 2] D.dist = Float32[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.027052343, 0.051409245, 0.04493946, 0.0, 0.007964134, 0.064433694, 0.015027404, 0.072757065, 0.012048781, 0.002723217, 0.009903669, 0.07758623, 0.07417917, 0.029194593, 0.040563703, 0.09696525, 0.049999297, 0.06721091, 0.07049984, 0.04710436, 0.038327277, 0.07888186, 0.020347953, 0.052623034, 0.001640439, 0.025092065, 0.03707373, 0.0753904, 0.019490004, 0.040794194, 0.069916606, 0.06397247, 0.06232345, 0.056322753, 0.044831753, 0.092784345, 0.049808204, 0.012167454, 0.048691392, 0.089577794, 0.0067103505, 0.0110654235, 0.07853842, 0.04886186, 0.05812353, 0.0751487, 0.06749487, 0.08510274, 0.07998234, 0.023746192, 0.054404497, 0.020418823, 0.04045725, 0.036427617, 0.020617008, 0.007031858, 0.03136462, 0.02916199, 0.04104024, 0.05946642, 0.054000854, 0.025232792, 0.021074474, 0.0961166, 0.047834158, 0.006665468, 0.020682871, 0.07256144, 0.016091406, 0.049295425, 0.06174189, 0.04030317, 0.022592783, 0.03547162, 0.08250862, 0.06750417, 0.07227415, 0.015051544, 0.030264795, 0.044600308, 0.01813519, 0.06386626, 0.043556094, 0.036177814, 0.06883097, 0.02583474, 0.04973817, 0.0043667555, 0.017842412, 0.03297186, 0.052946985, 0.0019521713, 0.060019016] Test Summary: | Pass Total Time neardup small block | 3 3 0.0s [ Info: neardup> starting: 1:16, current elements: 0, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:36.217 LOG add_vertex! sp=1 ep=1 n=1 BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2025-10-19T17:03:36.217 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] [ Info: neardup> range: 17:32, current elements: 16, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:36.218 [ Info: neardup> range: 33:48, current elements: 16, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:36.219 [ Info: neardup> range: 49:64, current elements: 16, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:36.219 [ Info: neardup> range: 65:80, current elements: 16, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:36.219 [ Info: neardup> range: 81:96, current elements: 16, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:36.219 [ Info: neardup> range: 97:100, current elements: 16, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:36.219 [ Info: neardup> finished current elements: 16, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:36.219 D.map = UInt32[0x00000001, 0x00000002, 0x00000003, 0x00000004, 0x00000005, 0x00000006, 0x00000007, 0x00000008, 0x00000009, 0x0000000a, 0x0000000b, 0x0000000c, 0x0000000d, 0x0000000e, 0x0000000f, 0x00000010] D.nn = Int32[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 6, 1, 15, 10, 6, 16, 15, 8, 10, 15, 10, 8, 8, 4, 7, 4, 2, 15, 2, 6, 6, 9, 15, 6, 7, 8, 8, 6, 11, 10, 10, 3, 6, 15, 12, 16, 10, 10, 15, 3, 4, 7, 16, 8, 8, 6, 14, 3, 9, 11, 6, 15, 1, 4, 8, 10, 3, 3, 10, 8, 14, 2, 6, 2, 9, 15, 10, 10, 2, 12, 11, 6, 8, 9, 6, 6, 15, 10, 7, 6, 11, 4, 3, 2] D.dist = Float32[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.002723217, 0.009903669, 0.013418496, 0.017216504, 0.029194593, 0.040142357, 0.057116687, 0.036943972, 0.03306824, 0.037260354, 0.010915399, 0.028603375, 0.052781165, 0.020347953, 0.052623034, 0.001640439, 0.025092065, 0.017028034, 0.0753904, 0.019490004, 0.040794194, 0.024525464, 0.01137352, 0.06232345, 0.056322753, 0.0026529431, 0.044255137, 0.049808204, 0.012167454, 0.036873877, 0.051051676, 0.0067103505, 0.0110654235, 0.017852068, 0.02219379, 0.042093694, 0.0045673847, 0.015490174, 0.00115484, 0.07998234, 0.023746192, 0.054404497, 0.0124902725, 0.026524305, 0.0011472702, 0.020617008, 0.006833732, 0.03136462, 0.008255899, 0.04104024, 0.05946642, 0.014926314, 0.025232792, 0.021074474, 0.052078784, 0.0073671937, 0.006665468, 0.020682871, 0.013912499, 0.006493211, 0.027208805, 0.06174189, 0.04030317, 0.022592783, 0.025708914, 0.015423, 0.0039097667, 0.04276365, 0.015051544, 0.01826775, 0.044600308, 0.01813519, 0.03308016, 0.0180763, 0.036177814, 0.06883097, 0.021524549, 0.03557688, 0.0043667555, 0.017842412, 0.03297186, 0.052946985, 0.0019521713, 0.060019016] Test Summary: | Pass Total Time neardup small block with filterblocks=false | 3 3 0.1s [ Info: neardup> starting: 1:16, current elements: 0, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:44.109 LOG append_items! ExhaustiveSearch{SimilaritySearch.DistanceWithIdentifiers{CosineDistance, MatrixDatabase{Matrix{Float32}}}, VectorDatabase{Vector{UInt32}}} sp=0 ep=8 n=8 2025-10-19T17:03:44.110 [ Info: neardup> range: 17:32, current elements: 8, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:44.115 [ Info: neardup> range: 33:48, current elements: 8, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:44.116 [ Info: neardup> range: 49:64, current elements: 8, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:44.116 [ Info: neardup> range: 65:80, current elements: 8, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:44.116 [ Info: neardup> range: 81:96, current elements: 8, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:44.116 [ Info: neardup> range: 97:100, current elements: 8, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:44.116 [ Info: neardup> finished current elements: 8, n: 100, ϵ: 0.1, timestamp: 2025-10-19T17:03:44.116 D.map = UInt32[0x00000001, 0x00000002, 0x00000003, 0x00000004, 0x00000005, 0x00000006, 0x00000007, 0x0000000b] D.nn = Int32[1, 2, 3, 4, 5, 6, 7, 7, 4, 4, 11, 3, 1, 6, 4, 3, 6, 1, 2, 4, 6, 4, 3, 6, 4, 3, 4, 7, 1, 4, 7, 4, 2, 3, 2, 6, 6, 1, 3, 6, 7, 7, 7, 6, 11, 4, 1, 3, 6, 2, 3, 4, 4, 4, 3, 3, 4, 7, 3, 1, 7, 6, 6, 3, 3, 11, 6, 3, 1, 4, 6, 4, 3, 3, 2, 7, 6, 2, 6, 2, 4, 6, 4, 2, 2, 3, 11, 6, 7, 3, 6, 6, 4, 2, 7, 6, 11, 4, 3, 2] D.dist = Float32[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.027052343, 0.051409245, 0.04493946, 0.0, 0.007964134, 0.064433694, 0.015027404, 0.072757065, 0.012048781, 0.002723217, 0.009903669, 0.07758623, 0.07417917, 0.029194593, 0.040563703, 0.09696525, 0.049999297, 0.06721091, 0.07049984, 0.04710436, 0.038327277, 0.07888186, 0.020347953, 0.052623034, 0.001640439, 0.025092065, 0.03707373, 0.0753904, 0.019490004, 0.040794194, 0.069916606, 0.06397247, 0.06232345, 0.056322753, 0.044831753, 0.092784345, 0.049808204, 0.012167454, 0.048691392, 0.089577794, 0.0067103505, 0.0110654235, 0.07853842, 0.04886186, 0.05812353, 0.0751487, 0.06749487, 0.08510274, 0.07998234, 0.023746192, 0.054404497, 0.020418823, 0.04045725, 0.036427617, 0.020617008, 0.007031858, 0.03136462, 0.02916199, 0.04104024, 0.05946642, 0.054000854, 0.025232792, 0.021074474, 0.0961166, 0.047834158, 0.006665468, 0.020682871, 0.07256144, 0.016091406, 0.049295425, 0.06174189, 0.04030317, 0.022592783, 0.03547162, 0.08250862, 0.06750417, 0.07227415, 0.015051544, 0.030264795, 0.044600308, 0.01813519, 0.06386626, 0.043556094, 0.036177814, 0.06883097, 0.02583474, 0.04973817, 0.0043667555, 0.017842412, 0.03297186, 0.052946985, 0.0019521713, 0.060019016] Test Summary: | Pass Total Time neardup small block with filterblocks=false | 3 3 7.9s computing farthest point 1, dmax: Inf, imax: 26, n: 30 computing farthest point 2, dmax: 0.9410006, imax: 10, n: 30 computing farthest point 3, dmax: 0.9209322, imax: 14, n: 30 computing farthest point 4, dmax: 0.8381724, imax: 18, n: 30 computing farthest point 5, dmax: 0.7841315, imax: 5, n: 30 computing farthest point 6, dmax: 0.7123731, imax: 3, n: 30 computing farthest point 7, dmax: 0.64729017, imax: 2, n: 30 computing farthest point 8, dmax: 0.61410004, imax: 29, n: 30 computing farthest point 9, dmax: 0.5650224, imax: 25, n: 30 computing farthest point 10, dmax: 0.5462676, imax: 21, n: 30 Test Summary: | Pass Total Time farthest first traversal | 3 3 1.6s Test Summary: | Pass Total Time AdjacencyList | 15 15 1.7s LOG add_vertex! sp=1 ep=1 n=1 BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2025-10-19T17:03:52.888 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] LOG add_vertex! sp=295 ep=299 n=294 BeamSearch(bsize=2, Δ=0.99, maxvisits=106) 2025-10-19T17:04:05.131 LOG n.size quantiles:[3.0, 4.0, 4.0, 4.0, 4.0] (i, j, d) = (16, 653, -1.1920929f-7) (i, j, d, :parallel) = (16, 653, -1.1920929f-7, :parallel) [ Info: NOTE: the exact method will be faster on small datasets due to the preprocessing step of the approximation method [ Info: ("closestpair computation time", :approx => 20.306064299, :exact => 1.016155839) Test Summary: | Pass Total Time closestpair | 4 4 21.9s 6.140154 seconds (1.00 k allocations: 140.711 KiB) SEARCH Exhaustive 1: 0.005002 seconds SEARCH Exhaustive 2: 0.005428 seconds SEARCH Exhaustive 3: 0.005968 seconds typeof(seq) = ExhaustiveSearch{SqL2Distance, MatrixDatabase{Matrix{Float32}}} typeof(ectx) = GenericContext{KnnSorted} typeof(q) = SubArray{Float32, 1, Matrix{Float32}, Tuple{Base.Slice{Base.OneTo{Int64}}, Int64}, true} typeof(res) = KnnSorted{Vector{IdWeight}} [ Info: ===================== minrecall ============================== LOG add_vertex! sp=1 ep=1 n=1 BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2025-10-19T17:04:34.770 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] LOG add_vertex! sp=295 ep=299 n=294 BeamSearch(bsize=10, Δ=1.05, maxvisits=202) 2025-10-19T17:04:40.610 LOG n.size quantiles:[3.0, 3.0, 3.0, 4.0, 5.0] LOG add_vertex! sp=17510 ep=17514 n=17509 BeamSearch(bsize=4, Δ=1.21275, maxvisits=402) 2025-10-19T17:04:41.610 LOG n.size quantiles:[5.0, 5.0, 6.0, 7.0, 8.0] LOG add_vertex! sp=31795 ep=31799 n=31794 BeamSearch(bsize=4, Δ=0.975, maxvisits=388) 2025-10-19T17:04:42.611 LOG n.size quantiles:[5.0, 6.0, 6.0, 7.0, 7.0] LOG add_vertex! sp=43405 ep=43409 n=43404 BeamSearch(bsize=8, Δ=1.1287501, maxvisits=452) 2025-10-19T17:04:43.611 LOG n.size quantiles:[4.0, 5.0, 7.0, 7.0, 8.0] LOG add_vertex! sp=54435 ep=54439 n=54434 BeamSearch(bsize=8, Δ=1.1287501, maxvisits=452) 2025-10-19T17:04:45.039 LOG n.size quantiles:[6.0, 7.0, 7.0, 7.0, 8.0] LOG add_vertex! sp=63090 ep=63094 n=63089 BeamSearch(bsize=10, Δ=1.155, maxvisits=500) 2025-10-19T17:04:46.039 LOG n.size quantiles:[5.0, 5.0, 5.0, 8.0, 9.0] LOG add_vertex! sp=74100 ep=74104 n=74099 BeamSearch(bsize=10, Δ=1.155, maxvisits=500) 2025-10-19T17:04:47.039 LOG n.size quantiles:[5.0, 5.0, 5.0, 7.0, 9.0] LOG add_vertex! sp=85225 ep=85229 n=85224 BeamSearch(bsize=6, Δ=1.05, maxvisits=452) 2025-10-19T17:04:48.138 LOG n.size quantiles:[3.0, 4.0, 6.0, 7.0, 9.0] LOG add_vertex! sp=95925 ep=95929 n=95924 BeamSearch(bsize=6, Δ=1.05, maxvisits=452) 2025-10-19T17:04:49.138 LOG n.size quantiles:[5.0, 5.0, 5.0, 6.0, 10.0] quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 8.0, 9.0, 10.0, 11.0, 13.0, 15.0, 17.0, 23.0, 95.0] [ Info: minrecall: queries per second: 19253.760071617828, recall: 0.905375 graph.algo = Base.RefValue{BeamSearch}(BeamSearch(bsize=10, Δ=1.1287501, maxvisits=716)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 8.0, 9.0, 10.0, 11.0, 13.0, 15.0, 17.0, 23.0, 95.0] [ Info: ===================== rebuild ============================== (graph.algo, length(B.queries), B.ksearch) = (Base.RefValue{BeamSearch}(BeamSearch(bsize=16, Δ=1.1287501, maxvisits=576)), 1000, 8) [ Info: rebuild: queries per second: 14047.021279973007, recall: 0.898 graph.algo = Base.RefValue{BeamSearch}(BeamSearch(bsize=16, Δ=1.1287501, maxvisits=576)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 18.0, 19.0, 30.0] [ Info: ===================== matrixhints ============================== (graph.algo, length(B.queries), B.ksearch) = (Base.RefValue{BeamSearch}(BeamSearch(bsize=14, Δ=1.12, maxvisits=740)), 1000, 8) 1.709992 seconds (612.31 k allocations: 31.314 MiB, 95.97% compilation time) [ Info: matrixhints: queries per second: 14001.541401689828, recall: 0.90325 graph.algo = Base.RefValue{BeamSearch}(BeamSearch(bsize=14, Δ=1.12, maxvisits=740)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 8.0, 9.0, 10.0, 11.0, 13.0, 15.0, 17.0, 23.0, 95.0] 2.247825 seconds (1.00 k allocations: 140.711 KiB) SEARCH Exhaustive 1: 0.002286 seconds SEARCH Exhaustive 2: 0.002609 seconds SEARCH Exhaustive 3: 0.002639 seconds typeof(seq) = ExhaustiveSearch{SqL2Distance, StrideMatrixDatabase{StrideArraysCore.StrideArray{Float32, 2, (1, 2), Tuple{Int64, Int64}, Tuple{Nothing, Nothing}, Tuple{Static.StaticInt{1}, Static.StaticInt{1}}, Matrix{Float32}}}} typeof(ectx) = GenericContext{KnnSorted} typeof(q) = StrideArraysCore.StrideArray{Float32, 1, (1,), Tuple{Int64}, Tuple{Nothing}, Tuple{Static.StaticInt{1}}, Matrix{Float32}} typeof(res) = KnnSorted{Vector{IdWeight}} [ Info: ===================== minrecall ============================== LOG add_vertex! sp=1 ep=1 n=1 BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2025-10-19T17:05:56.593 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] LOG add_vertex! sp=295 ep=299 n=294 BeamSearch(bsize=10, Δ=1.05, maxvisits=202) 2025-10-19T17:06:02.167 LOG n.size quantiles:[3.0, 3.0, 3.0, 4.0, 5.0] LOG add_vertex! sp=20365 ep=20369 n=20364 BeamSearch(bsize=4, Δ=1.21275, maxvisits=402) 2025-10-19T17:06:03.167 LOG n.size quantiles:[3.0, 4.0, 7.0, 8.0, 9.0] LOG add_vertex! sp=37225 ep=37229 n=37224 BeamSearch(bsize=4, Δ=0.975, maxvisits=388) 2025-10-19T17:06:04.168 LOG n.size quantiles:[4.0, 5.0, 8.0, 9.0, 11.0] LOG add_vertex! sp=50730 ep=50734 n=50729 BeamSearch(bsize=8, Δ=1.1287501, maxvisits=452) 2025-10-19T17:06:05.168 LOG n.size quantiles:[6.0, 6.0, 6.0, 7.0, 8.0] LOG add_vertex! sp=62140 ep=62144 n=62139 BeamSearch(bsize=10, Δ=1.155, maxvisits=500) 2025-10-19T17:06:06.168 LOG n.size quantiles:[4.0, 6.0, 6.0, 7.0, 7.0] LOG add_vertex! sp=73110 ep=73114 n=73109 BeamSearch(bsize=10, Δ=1.155, maxvisits=500) 2025-10-19T17:06:07.169 LOG n.size quantiles:[4.0, 5.0, 6.0, 7.0, 7.0] LOG add_vertex! sp=83305 ep=83309 n=83304 BeamSearch(bsize=10, Δ=1.155, maxvisits=500) 2025-10-19T17:06:08.169 LOG n.size quantiles:[5.0, 6.0, 6.0, 7.0, 10.0] LOG add_vertex! sp=92940 ep=92944 n=92939 BeamSearch(bsize=6, Δ=1.05, maxvisits=452) 2025-10-19T17:06:09.169 LOG n.size quantiles:[5.0, 5.0, 6.0, 7.0, 8.0] LOG add_vertex! sp=99815 ep=99819 n=99814 BeamSearch(bsize=6, Δ=1.05, maxvisits=452) 2025-10-19T17:06:10.169 LOG n.size quantiles:[5.0, 6.0, 8.0, 9.0, 10.0] quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 8.0, 9.0, 10.0, 11.0, 13.0, 15.0, 17.0, 23.0, 95.0] [ Info: minrecall: queries per second: 14454.196530241214, recall: 0.905375 graph.algo = Base.RefValue{BeamSearch}(BeamSearch(bsize=10, Δ=1.1287501, maxvisits=716)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 8.0, 9.0, 10.0, 11.0, 13.0, 15.0, 17.0, 23.0, 95.0] [ Info: ===================== rebuild ============================== (graph.algo, length(B.queries), B.ksearch) = (Base.RefValue{BeamSearch}(BeamSearch(bsize=16, Δ=1.1287501, maxvisits=576)), 1000, 8) [ Info: rebuild: queries per second: 16460.975529097315, recall: 0.898 graph.algo = Base.RefValue{BeamSearch}(BeamSearch(bsize=16, Δ=1.1287501, maxvisits=576)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 18.0, 19.0, 30.0] [ Info: ===================== matrixhints ============================== (graph.algo, length(B.queries), B.ksearch) = (Base.RefValue{BeamSearch}(BeamSearch(bsize=14, Δ=1.12, maxvisits=740)), 1000, 8) 1.644923 seconds (567.92 k allocations: 29.100 MiB, 95.79% compilation time) [ Info: matrixhints: queries per second: 14729.488090487135, recall: 0.90325 graph.algo = Base.RefValue{BeamSearch}(BeamSearch(bsize=14, Δ=1.12, maxvisits=740)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 8.0, 9.0, 10.0, 11.0, 13.0, 15.0, 17.0, 23.0, 95.0] Test Summary: | Pass Total Time vector indexing with SearchGraph | 18 18 2m39.8s Testing SimilaritySearch tests passed Testing completed after 706.2s PkgEval succeeded after 774.24s