Package evaluation to test RayTraceHeatTransfer on Julia 1.13.0-DEV.1342 (4ff19f0352*) started at 2025-10-19T15:15:42.096 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.26s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.13/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.1 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.9.9 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.46.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.67.1+0 [3f19e933] + p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.38s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 55.64s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_e6oLFg/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_e6oLFg/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.1 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.46.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:37 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:06 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001103867259844866 Iteration 10: d = 1.0093883568854898e-5 Iteration 20: d = 1.299045078134408e-7 Iteration 30: d = 2.048360466918773e-9 Iteration 40: d = 3.471281414897977e-11 Iteration 50: d = 6.046890125327201e-13 Iteration 60: d = 1.0625798154208823e-14 Converged after 64 iterations. d = 2.1080011259487123e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 74%|████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010622220686403833 Iteration 10: d = 1.0083610461293527e-5 Iteration 20: d = 1.6386603698130275e-7 Iteration 30: d = 2.8842775314406974e-9 Iteration 40: d = 5.086854442457834e-11 Iteration 50: d = 8.980833523885791e-13 Iteration 60: d = 1.5880206508502477e-14 Converged after 65 iterations. d = 2.0762973132336386e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▊ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011945600577853818 Iteration 10: d = 1.4106835741163979e-5 Iteration 20: d = 2.3331659271262496e-7 Iteration 30: d = 4.076391612707922e-9 Iteration 40: d = 7.18390654004117e-11 Iteration 50: d = 1.2713155653599923e-12 Iteration 60: d = 2.2545303439992e-14 Converged after 66 iterations. d = 1.9897888119544523e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 76%|█████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001105640402051692 Iteration 10: d = 1.1643950024014486e-5 Iteration 20: d = 1.963609120500164e-7 Iteration 30: d = 3.579089678362452e-9 Iteration 40: d = 6.498100743422582e-11 Iteration 50: d = 1.1743536164864857e-12 Iteration 60: d = 2.1115407925659373e-14 Converged after 66 iterations. d = 1.9143886463472054e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 88%|█████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012133649852948637 Iteration 10: d = 1.5319081920537967e-5 Iteration 20: d = 2.0942341651383553e-7 Iteration 30: d = 3.166448048046436e-9 Iteration 40: d = 4.9014294288177664e-11 Iteration 50: d = 7.623310960779739e-13 Iteration 60: d = 1.1906635965266026e-14 Converged after 65 iterations. d = 1.4645550416587563e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012552870150200398 Iteration 10: d = 1.1389610604704327e-5 Iteration 20: d = 1.4676416807871403e-7 Iteration 30: d = 2.229008922501108e-9 Iteration 40: d = 3.4714372348200786e-11 Iteration 50: d = 5.428035461226568e-13 Iteration 60: d = 8.497179997067144e-15 Converged after 64 iterations. d = 1.6175810329340821e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012468806673415192 Iteration 10: d = 1.0754067696688627e-5 Iteration 20: d = 8.847580803105303e-8 Iteration 30: d = 8.226431993315466e-10 Iteration 40: d = 8.571477042114367e-12 Iteration 50: d = 1.0120792746440794e-13 Converged after 59 iterations. d = 2.0587136774683793e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 88%|█████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001418002818833075 Iteration 10: d = 1.5932341097605974e-5 Iteration 20: d = 1.7143474074744817e-7 Iteration 30: d = 2.1375308527678688e-9 Iteration 40: d = 2.939921916688334e-11 Iteration 50: d = 4.295565456022989e-13 Iteration 60: d = 6.489764229056797e-15 Converged after 63 iterations. d = 1.8217479519578822e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001189715764831795 Iteration 10: d = 1.3112460011038219e-5 Iteration 20: d = 1.5997681328526795e-7 Iteration 30: d = 2.2634088462298127e-9 Iteration 40: d = 3.3820523430652326e-11 Iteration 50: d = 5.160837103511556e-13 Iteration 60: d = 7.951431203997062e-15 Converged after 64 iterations. d = 1.5240509041775991e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013721698051916997 Iteration 10: d = 1.3160191514909298e-5 Iteration 20: d = 1.3725133826594682e-7 Iteration 30: d = 1.7538004254225962e-9 Iteration 40: d = 2.4685466013413856e-11 Iteration 50: d = 3.6303528275979393e-13 Iteration 60: d = 5.462709251146371e-15 Converged after 63 iterations. d = 1.5639499310888928e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003808873148140082 Iteration 10: d = 2.503089485911054e-5 Iteration 20: d = 2.545181097204107e-7 Iteration 30: d = 3.5469389913505692e-9 Iteration 40: d = 5.110327184731133e-11 Iteration 50: d = 7.36645410977581e-13 Iteration 60: d = 1.0584709715291455e-14 Converged after 64 iterations. d = 1.9125746813219212e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003331871766014733 Iteration 10: d = 2.2908795094619313e-5 Iteration 20: d = 2.8451782071894917e-7 Iteration 30: d = 4.364718267687611e-9 Iteration 40: d = 6.821496838204465e-11 Iteration 50: d = 1.0694618691036575e-12 Iteration 60: d = 1.6815240336575892e-14 Converged after 65 iterations. d = 2.0908841988755732e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0024485371226501836 Iteration 10: d = 1.391354254859485e-5 Iteration 20: d = 1.4874170353162464e-7 Iteration 30: d = 2.5065436314081312e-9 Iteration 40: d = 4.3746566399336866e-11 Iteration 50: d = 7.578830309215512e-13 Iteration 60: d = 1.3041931578346442e-14 Converged after 65 iterations. d = 1.7414092196114164e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019279566486966313 Iteration 10: d = 1.6347759964027768e-5 Iteration 20: d = 2.344526350925053e-7 Iteration 30: d = 4.083212494245674e-9 Iteration 40: d = 7.254207862307227e-11 Iteration 50: d = 1.2916790982345222e-12 Iteration 60: d = 2.3054670931386998e-14 Converged after 66 iterations. d = 2.062907309427297e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 90%|█████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012133649852948637 Iteration 10: d = 1.5319081920537967e-5 Iteration 20: d = 2.0942341651383553e-7 Iteration 30: d = 3.166448048046436e-9 Iteration 40: d = 4.9014294288177664e-11 Iteration 50: d = 7.623310960779739e-13 Iteration 60: d = 1.1906635965266026e-14 Converged after 65 iterations. d = 1.4645550416587563e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016567029646715355 Iteration 10: d = 1.2756389737054429e-5 Iteration 20: d = 1.0420556440356535e-7 Iteration 30: d = 1.0707178153277137e-9 Iteration 40: d = 1.2752123381986311e-11 Iteration 50: d = 1.658271864648471e-13 Iteration 60: d = 2.2697461732065087e-15 Converged after 61 iterations. d = 1.4286460710564758e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015152309081578794 Iteration 10: d = 8.18322941250677e-6 Iteration 20: d = 5.215041816295958e-8 Iteration 30: d = 6.113427939419798e-10 Iteration 40: d = 8.365714072235465e-12 Iteration 50: d = 1.178181096372449e-13 Converged after 60 iterations. d = 1.687909431674233e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.87907312623 Iteration 2: convergence error = 4825.797562262779 Iteration 3: convergence error = 1096.4882532704828 Iteration 4: convergence error = 320.7356752855578 Iteration 5: convergence error = 95.37009475527475 Iteration 6: convergence error = 28.49636548070839 Iteration 7: convergence error = 8.548322070638733 Iteration 8: convergence error = 2.5666198416440693 Iteration 9: convergence error = 0.7688238798687053 Iteration 10: convergence error = 0.229988070505442 Iteration 11: convergence error = 0.06874623498606525 Iteration 12: convergence error = 0.02054007471974728 Iteration 13: convergence error = 0.00613545129749582 Iteration 14: convergence error = 0.0018324361351460539 Iteration 15: convergence error = 0.000547236989632438 Iteration 16: convergence error = 0.00016341857099178014 Iteration 17: convergence error = 4.8799505066199345e-5 Iteration 18: convergence error = 1.457211055821972e-5 Iteration 19: convergence error = 4.351372808741871e-6 Iteration 20: convergence error = 1.299345512961736e-6 Iteration 21: convergence error = 3.880040821968578e-7 Iteration 22: convergence error = 1.1572387847991195e-7 Iteration 23: convergence error = 3.364311851328239e-8 Iteration 24: convergence error = 9.717950888443738e-9 Iteration 25: convergence error = 2.8046542865922675e-9 Iteration 26: convergence error = 8.101324056042358e-10 Iteration 27: convergence error = 2.346496330574155e-10 Iteration 28: convergence error = 6.730260793119669e-11 Iteration 29: convergence error = 2.000888343900442e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016567029646715355 Iteration 10: d = 1.2756389737054429e-5 Iteration 20: d = 1.0420556440356535e-7 Iteration 30: d = 1.0707178153277137e-9 Iteration 40: d = 1.2752123381986311e-11 Iteration 50: d = 1.658271864648471e-13 Iteration 60: d = 2.2697461732065087e-15 Converged after 61 iterations. d = 1.4286460710564758e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.729845709917 Iteration 2: convergence error = 4818.590896320196 Iteration 3: convergence error = 1096.2585544189658 Iteration 4: convergence error = 320.3869013243061 Iteration 5: convergence error = 95.08451309789689 Iteration 6: convergence error = 28.35982558817841 Iteration 7: convergence error = 8.509113949435005 Iteration 8: convergence error = 2.551233918629123 Iteration 9: convergence error = 0.7630952896493 Iteration 10: convergence error = 0.22793398116800745 Iteration 11: convergence error = 0.06802968039573898 Iteration 12: convergence error = 0.02029522506450121 Iteration 13: convergence error = 0.00605311294339117 Iteration 14: convergence error = 0.0018050964963549632 Iteration 15: convergence error = 0.0005382520660077716 Iteration 16: convergence error = 0.00016049074974944233 Iteration 17: convergence error = 4.7852224724920234e-5 Iteration 18: convergence error = 1.4267474625739851e-5 Iteration 19: convergence error = 4.253911356499884e-6 Iteration 20: convergence error = 1.26831423585827e-6 Iteration 21: convergence error = 3.7815357245563064e-7 Iteration 22: convergence error = 1.1260476640018169e-7 Iteration 23: convergence error = 3.2672687666490674e-8 Iteration 24: convergence error = 9.426003089174628e-9 Iteration 25: convergence error = 2.706201485125348e-9 Iteration 26: convergence error = 7.719336281297728e-10 Iteration 27: convergence error = 2.248725650133565e-10 Iteration 28: convergence error = 6.502887117676437e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 12:38:24 Bin 1 ray tracing: 8%|██▌ | ETA: 0:01:03 Bin 1 ray tracing: 16%|████▉ | ETA: 0:00:34 Bin 1 ray tracing: 25%|███████▍ | ETA: 0:00:23 Bin 1 ray tracing: 33%|█████████▉ | ETA: 0:00:18 Bin 1 ray tracing: 41%|████████████▍ | ETA: 0:00:14 Bin 1 ray tracing: 50%|██████████████▉ | ETA: 0:00:11 Bin 1 ray tracing: 59%|█████████████████▊ | ETA: 0:00:08 Bin 1 ray tracing: 68%|████████████████████▌ | ETA: 0:00:06 Bin 1 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:04 Bin 1 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 1 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 10%|██▉ | ETA: 0:00:10 Bin 2 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 2 ray tracing: 28%|████████▎ | ETA: 0:00:08 Bin 2 ray tracing: 37%|███████████ | ETA: 0:00:07 Bin 2 ray tracing: 45%|█████████████▋ | ETA: 0:00:06 Bin 2 ray tracing: 54%|████████████████▎ | ETA: 0:00:05 Bin 2 ray tracing: 64%|███████████████████▎ | ETA: 0:00:04 Bin 2 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 2 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 2 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 12%|███▊ | ETA: 0:00:07 Bin 3 ray tracing: 25%|███████▍ | ETA: 0:00:07 Bin 3 ray tracing: 36%|██████████▋ | ETA: 0:00:06 Bin 3 ray tracing: 48%|██████████████▌ | ETA: 0:00:05 Bin 3 ray tracing: 61%|██████████████████▎ | ETA: 0:00:04 Bin 3 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:03 Bin 3 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 3 ray tracing: 96%|█████████████████████████████ | ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 14%|████▏ | ETA: 0:00:06 Bin 4 ray tracing: 27%|████████▏ | ETA: 0:00:05 Bin 4 ray tracing: 41%|████████████▍ | ETA: 0:00:04 Bin 4 ray tracing: 55%|████████████████▌ | ETA: 0:00:03 Bin 4 ray tracing: 69%|████████████████████▋ | ETA: 0:00:02 Bin 4 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:02 Bin 4 ray tracing: 87%|██████████████████████████▎ | ETA: 0:00:01 Bin 4 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 10%|███ | ETA: 0:00:09 Bin 5 ray tracing: 20%|██████ | ETA: 0:00:08 Bin 5 ray tracing: 30%|████████▉ | ETA: 0:00:07 Bin 5 ray tracing: 39%|███████████▋ | ETA: 0:00:07 Bin 5 ray tracing: 47%|██████████████▎ | ETA: 0:00:06 Bin 5 ray tracing: 56%|████████████████▉ | ETA: 0:00:05 Bin 5 ray tracing: 65%|███████████████████▍ | ETA: 0:00:04 Bin 5 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 5 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 5 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▊ | ETA: 0:00:11 Bin 6 ray tracing: 18%|█████▎ | ETA: 0:00:10 Bin 6 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 6 ray tracing: 35%|██████████▍ | ETA: 0:00:08 Bin 6 ray tracing: 43%|█████████████ | ETA: 0:00:07 Bin 6 ray tracing: 52%|███████████████▌ | ETA: 0:00:06 Bin 6 ray tracing: 61%|██████████████████▏ | ETA: 0:00:05 Bin 6 ray tracing: 69%|████████████████████▊ | ETA: 0:00:04 Bin 6 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 6 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 6 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 7 ray tracing: 18%|█████▎ | ETA: 0:00:10 Bin 7 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 7 ray tracing: 35%|██████████▌ | ETA: 0:00:08 Bin 7 ray tracing: 44%|█████████████▎ | ETA: 0:00:06 Bin 7 ray tracing: 55%|████████████████▌ | ETA: 0:00:05 Bin 7 ray tracing: 68%|████████████████████▍ | ETA: 0:00:03 Bin 7 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 7 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 13%|████ | ETA: 0:00:07 Bin 8 ray tracing: 26%|███████▉ | ETA: 0:00:06 Bin 8 ray tracing: 39%|███████████▊ | ETA: 0:00:05 Bin 8 ray tracing: 52%|███████████████▊ | ETA: 0:00:04 Bin 8 ray tracing: 65%|███████████████████▍ | ETA: 0:00:03 Bin 8 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:02 Bin 8 ray tracing: 89%|██████████████████████████▉ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 13%|████ | ETA: 0:00:06 Bin 9 ray tracing: 27%|████████ | ETA: 0:00:05 Bin 9 ray tracing: 41%|████████████▏ | ETA: 0:00:04 Bin 9 ray tracing: 54%|████████████████▎ | ETA: 0:00:03 Bin 9 ray tracing: 68%|████████████████████▌ | ETA: 0:00:02 Bin 9 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:01 Bin 9 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 14%|████▏ | ETA: 0:00:06 Bin 10 ray tracing: 28%|████████▏ | ETA: 0:00:05 Bin 10 ray tracing: 42%|████████████▎ | ETA: 0:00:04 Bin 10 ray tracing: 56%|████████████████▍ | ETA: 0:00:03 Bin 10 ray tracing: 71%|████████████████████▌ | ETA: 0:00:02 Bin 10 ray tracing: 85%|████████████████████████▋ | ETA: 0:00:01 Bin 10 ray tracing: 99%|████████████████████████████▋| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 1 progress: 67%|██████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 2 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 33%|███████████ | ETA: 0:00:02 Bin 3 progress: 67%|██████████████████████ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 33%|███████████ | ETA: 0:00:02 Bin 4 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 33%|███████████ | ETA: 0:00:02 Bin 5 progress: 64%|█████████████████████▎ | ETA: 0:00:01 Bin 5 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 33%|███████████ | ETA: 0:00:02 Bin 6 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 33%|███████████ | ETA: 0:00:02 Bin 7 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 8 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 27%|████████▊ | ETA: 0:00:03 Bin 9 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 9 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 22%|███████▏ | ETA: 0:00:04 Bin 10 progress: 44%|██████████████▎ | ETA: 0:00:03 Bin 10 progress: 69%|██████████████████████ | ETA: 0:00:01 Bin 10 progress: 91%|█████████████████████████████▏ | ETA: 0:00:00 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016567029646715355 Iteration 10: d = 1.2756389737054429e-5 Iteration 20: d = 1.0420556440356535e-7 Iteration 30: d = 1.0707178153277137e-9 Iteration 40: d = 1.2752123381986311e-11 Iteration 50: d = 1.658271864648471e-13 Iteration 60: d = 2.2697461732065087e-15 Converged after 61 iterations. d = 1.4286460710564758e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015347238266182248 Iteration 10: d = 8.305789473150418e-6 Iteration 20: d = 5.248790295106798e-8 Iteration 30: d = 6.193504853931008e-10 Iteration 40: d = 8.554841564480946e-12 Iteration 50: d = 1.2112002412373968e-13 Converged after 60 iterations. d = 1.7754273055140141e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001219924004319188 Iteration 10: d = 9.642015110224443e-6 Iteration 20: d = 8.856776855576928e-8 Iteration 30: d = 1.0819594516477499e-9 Iteration 40: d = 1.450558861717451e-11 Iteration 50: d = 2.010135283114381e-13 Iteration 60: d = 2.8131373458845354e-15 Converged after 61 iterations. d = 1.8423671181019933e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014076360148009347 Iteration 10: d = 1.6128332829875902e-5 Iteration 20: d = 1.8162756365590075e-7 Iteration 30: d = 2.331425654395193e-9 Iteration 40: d = 3.1705713909902396e-11 Iteration 50: d = 4.4362342833039337e-13 Iteration 60: d = 6.2617260508524865e-15 Converged after 63 iterations. d = 1.7017326061525927e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011954126530162458 Iteration 10: d = 8.40761692418478e-6 Iteration 20: d = 7.299612538441069e-8 Iteration 30: d = 8.252242425583393e-10 Iteration 40: d = 1.0356911288283976e-11 Iteration 50: d = 1.3502039423978868e-13 Converged after 60 iterations. d = 1.796781853649095e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001378518979631385 Iteration 10: d = 1.710531567828351e-5 Iteration 20: d = 2.0108886305302647e-7 Iteration 30: d = 2.631889725345526e-9 Iteration 40: d = 3.550852252022317e-11 Iteration 50: d = 4.843709612403012e-13 Iteration 60: d = 6.6443972977928115e-15 Converged after 63 iterations. d = 1.8517036360882165e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015014539063309094 Iteration 10: d = 1.281091672449747e-5 Iteration 20: d = 1.4749144844046856e-7 Iteration 30: d = 1.9245771726899533e-9 Iteration 40: d = 2.562795226850488e-11 Iteration 50: d = 3.441382707408333e-13 Iteration 60: d = 4.6101138310896484e-15 Converged after 62 iterations. d = 1.92673860537101e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016601859746821711 Iteration 10: d = 2.3130375448510986e-5 Iteration 20: d = 3.0569473940955056e-7 Iteration 30: d = 4.193492787042206e-9 Iteration 40: d = 5.797003539101134e-11 Iteration 50: d = 8.039839768794134e-13 Iteration 60: d = 1.1149738899481209e-14 Converged after 64 iterations. d = 2.0452801856629634e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012856211282072081 Iteration 10: d = 1.4587844275249978e-5 Iteration 20: d = 1.8609817376286198e-7 Iteration 30: d = 2.5160141826818046e-9 Iteration 40: d = 3.4301400242057185e-11 Iteration 50: d = 4.694976073482288e-13 Iteration 60: d = 6.4803626653554116e-15 Converged after 63 iterations. d = 1.780567125836357e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001640764859672375 Iteration 10: d = 2.389140153384914e-5 Iteration 20: d = 2.99715811536802e-7 Iteration 30: d = 4.0637458190825985e-9 Iteration 40: d = 5.6573909396414753e-11 Iteration 50: d = 7.954844833894074e-13 Iteration 60: d = 1.1266754030523603e-14 Converged after 64 iterations. d = 2.0557915615383777e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8650.157786390035 Iteration 2: convergence error = 4818.109511065338 Iteration 3: convergence error = 1108.6898686114512 Iteration 4: convergence error = 319.19541027214314 Iteration 5: convergence error = 96.45278618709881 Iteration 6: convergence error = 29.4002844137176 Iteration 7: convergence error = 8.906229394893671 Iteration 8: convergence error = 2.6872218217265527 Iteration 9: convergence error = 0.8088527629040527 Iteration 10: convergence error = 0.24312447470856569 Iteration 11: convergence error = 0.07301981925547807 Iteration 12: convergence error = 0.021920745011584586 Iteration 13: convergence error = 0.006578963791753267 Iteration 14: convergence error = 0.001974220240526847 Iteration 15: convergence error = 0.0005923754345076304 Iteration 16: convergence error = 0.00017773682543520408 Iteration 17: convergence error = 5.3326820761867566e-5 Iteration 18: convergence error = 1.5999522247511777e-5 Iteration 19: convergence error = 4.800253464054549e-6 Iteration 20: convergence error = 1.4401846328837564e-6 Iteration 21: convergence error = 4.320904736232478e-7 Iteration 22: convergence error = 1.295168203796493e-7 Iteration 23: convergence error = 3.7990503187756985e-8 Iteration 24: convergence error = 1.103012436942663e-8 Iteration 25: convergence error = 3.1909621611703187e-9 Iteration 26: convergence error = 9.254108590539545e-10 Iteration 27: convergence error = 2.651177055668086e-10 Iteration 28: convergence error = 7.753442332614213e-11 Iteration 29: convergence error = 2.2282620193436742e-11 Iteration 30: convergence error = 7.275957614183426e-12 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.2521897043686 K, F = -7461.619727069241, relative_change = 0.03274781029563143 Iter 2: T = 936.5765926051172 K, F = -6325.127200930857, relative_change = 0.03171416661111623 Iter 3: T = 907.9420288431345 K, F = -5360.233446243953, relative_change = 0.030573648741673926 Iter 5: T = 856.6589236965144 K, F = -3845.8835020930387, relative_change = 0.027976652270682793 Iter 10: T = 761.1866707377528 K, F = -1665.5128008037673, relative_change = 0.020074792134019647 Iter 15: T = 705.195684786768 K, F = -713.1840076100995, relative_change = 0.012055015768462626 Iter 20: T = 676.3587732238091 K, F = -302.29932682648985, relative_change = 0.0061832079067813865 Iter 25: T = 662.8988773348884 K, F = -127.26909427140728, relative_change = 0.0028589912351010423 Iter 30: T = 656.9704588841205 K, F = -53.38630324026037, relative_change = 0.0012511834042700368 Iter 35: T = 654.4336299243489 K, F = -22.35602573356937, relative_change = 0.0005336454552332353 Iter 40: T = 653.3622189008078 K, F = -9.354755919261686, relative_change = 0.0002250467349479089 Iter 45: T = 652.9122766499343 K, F = -3.9131863643206035, relative_change = 9.444830478472823e-5 Iter 50: T = 652.7237767344321 K, F = -1.6367019051748595, relative_change = 3.955761346829497e-5 Iter 55: T = 652.6448861498434 K, F = -0.6845164129455276, relative_change = 1.6553668432604645e-5 Iter 60: T = 652.6118830656654 K, F = -0.2862778611957098, relative_change = 6.924727798882041e-6 Iter 65: T = 652.5980790143321 K, F = -0.11972568154066371, relative_change = 2.896316349986579e-6 Iter 70: T = 652.592305686021 K, F = -0.050070860461600086, relative_change = 1.2113287494974092e-6 Iter 75: T = 652.5898911570907 K, F = -0.020940258156948388, relative_change = 5.066017104510731e-7 Iter 80: T = 652.5888813627975 K, F = -0.008757470646613419, relative_change = 2.1186855768118084e-7 Iter 85: T = 652.58845905311 K, F = -0.0036624796157280204, relative_change = 8.860625353903367e-8 Iter 90: T = 652.588282437866 K, F = -0.0015316928555653142, relative_change = 3.70562445715004e-8 Iter 95: T = 652.5882085752112 K, F = -0.0006405722699003302, relative_change = 1.5497372991100688e-8 Iter 100: T = 652.5881776849579 K, F = -0.00026789497748980207, relative_change = 6.481188024080773e-9 Iter 105: T = 652.5881647662836 K, F = -0.00011203687977251464, relative_change = 2.7105105092997382e-9 Iter 110: T = 652.5881593635394 K, F = -4.685516097169273e-5, relative_change = 1.1335679063225074e-9 Iter 115: T = 652.5881571040472 K, F = -1.9595388976445527e-5, relative_change = 4.740716702517999e-10 Iter 120: T = 652.5881561591005 K, F = -8.195024912505122e-6, relative_change = 1.982624167083211e-10 Iter 125: T = 652.5881557639126 K, F = -3.4272575050731113e-6, relative_change = 8.291571591926923e-11 Iter 130: T = 652.5881555986404 K, F = -1.4333205917704817e-6, relative_change = 3.4676356525840783e-11 Iter 135: T = 652.5881555295215 K, F = -5.994321488067555e-7, relative_change = 1.4502075135807517e-11 Iter 140: T = 652.5881555006151 K, F = -2.5069017239864877e-7, relative_change = 6.064952845684719e-12 Iter 145: T = 652.5881554885261 K, F = -1.048420419369478e-7, relative_change = 2.536445823005052e-12 Iter 150: T = 652.5881554834704 K, F = -4.3845930108865616e-8, relative_change = 1.0607655500585283e-12 Iter 155: T = 652.588155481356 K, F = -1.8336834828325266e-8, relative_change = 4.4362344771807875e-13 Converged in 159 iterations to T = 652.5881554805928 K Iter 1: T = 970.2729558557061 K, F = -6773.3352859965535, relative_change = 0.029727044144293904 Iter 2: T = 942.7088301772592 K, F = -5736.96878588479, relative_change = 0.0284086302850083 Iter 3: T = 917.2632908112864 K, F = -4857.427869352119, relative_change = 0.026991939134789093 Iter 5: T = 872.5141531108521 K, F = -3478.076068939878, relative_change = 0.023907821157101227 Iter 10: T = 793.0013885619385 K, F = -1497.2451560923214, relative_change = 0.015602154565931128 Iter 15: T = 749.6116162088249 K, F = -637.4151244450271, relative_change = 0.00855920650030524 Iter 20: T = 728.525364016177 K, F = -269.0765609122896, relative_change = 0.004122879931993625 Iter 25: T = 719.028398913972 K, F = -113.02535568509435, relative_change = 0.0018418969774879209 Iter 30: T = 714.920900960137 K, F = -47.36000647589646, relative_change = 0.0007930051918816228 Iter 35: T = 713.1778706700431 K, F = -19.822913160884667, relative_change = 0.0003357887931011628 Iter 40: T = 712.444385598642 K, F = -8.29307632512925, relative_change = 0.00014116913991071855 Iter 45: T = 712.1368324120576 K, F = -3.4687725433332144, relative_change = 5.9168740876168954e-5 Iter 50: T = 712.0080692498047 K, F = -1.4507712902733751, relative_change = 2.4767906016318364e-5 Iter 55: T = 711.9541942925697 K, F = -0.6067454903396217, relative_change = 1.0362232833969556e-5 Iter 60: T = 711.9316588245728 K, F = -0.2537509413374326, relative_change = 4.334309303744179e-6 Iter 65: T = 711.9222334673361 K, F = -0.10612215183038909, relative_change = 1.812782334718449e-6 Iter 70: T = 711.9182915382404 K, F = -0.04438163481683666, relative_change = 7.581486352250208e-7 Iter 75: T = 711.916642953304 K, F = -0.018560944319271022, relative_change = 3.1707055881832206e-7 Iter 80: T = 711.915953491353 K, F = -0.0077624111323630895, relative_change = 1.3260334936848708e-7 Iter 85: T = 711.9156651494243 K, F = -0.003246333485714903, relative_change = 5.5456418907142685e-8 Iter 90: T = 711.9155445612624 K, F = -0.0013576555102334797, relative_change = 2.3192556697534493e-8 Iter 95: T = 711.9154941298315 K, F = -0.0005677877617270566, relative_change = 9.699407690787321e-9 Iter 100: T = 711.915473038801 K, F = -0.00023745562619581495, relative_change = 4.056408762328666e-9 Iter 105: T = 711.9154642182795 K, F = -9.93067784900159e-5, relative_change = 1.6964386847422572e-9 Iter 110: T = 711.9154605294319 K, F = -4.153128075423673e-5, relative_change = 7.094709354971866e-10 Iter 115: T = 711.9154589867118 K, F = -1.7368876523149446e-5, relative_change = 2.967092027686827e-10 Iter 120: T = 711.9154583415278 K, F = -7.263871845908376e-6, relative_change = 1.2408733695817376e-10 Iter 125: T = 711.9154580717043 K, F = -3.0378391617791323e-6, relative_change = 5.1894826942050785e-11 Iter 130: T = 711.9154579588608 K, F = -1.2704609714253579e-6, relative_change = 2.1703042454654474e-11 Iter 135: T = 711.9154579116682 K, F = -5.313229097803074e-7, relative_change = 9.076487929255119e-12 Iter 140: T = 711.9154578919317 K, F = -2.2220485806911938e-7, relative_change = 3.79588321005459e-12 Iter 145: T = 711.9154578836777 K, F = -9.292864144860857e-8, relative_change = 1.5874822580058196e-12 Iter 150: T = 711.9154578802259 K, F = -3.886526667162826e-8, relative_change = 6.639279379696868e-13 Iter 155: T = 711.9154578787821 K, F = -1.6253576484714927e-8, relative_change = 2.776567471261215e-13 Converged in 157 iterations to T = 711.9154578784767 K Iter 1: T = 974.3603238106735 K, F = -5842.024609366542, relative_change = 0.025639676189326457 Iter 2: T = 950.910261273155 K, F = -4942.634235633941, relative_change = 0.024067136114293418 Iter 3: T = 929.575526051989 K, F = -4179.90268408663, relative_change = 0.022436118412058587 Iter 5: T = 892.900503028101 K, F = -2985.326804897485, relative_change = 0.01908272172583331 Iter 10: T = 831.0828341588314 K, F = -1276.650317158744, relative_change = 0.011225315364151275 Iter 15: T = 799.676954299555 K, F = -540.6019286424051, relative_change = 0.005670801987867298 Iter 20: T = 785.1464965362959 K, F = -227.46578242289198, relative_change = 0.002599506623370738 Iter 25: T = 778.7760420010455 K, F = -95.3898880294653, relative_change = 0.00113286946965827 Iter 30: T = 776.0559135693316 K, F = -39.94045763367871, relative_change = 0.0004822796409382344 Iter 35: T = 774.908169275164 K, F = -16.71196845023236, relative_change = 0.00020322123955187726 Iter 40: T = 774.4263644072062 K, F = -6.990621922051456, relative_change = 8.525944648199161e-5 Iter 45: T = 774.2245501194154 K, F = -2.9238206157697517, relative_change = 3.5703944421800706e-5 Iter 50: T = 774.140093244258 K, F = -1.2228220566212478, relative_change = 1.4940126966038895e-5 Iter 55: T = 774.104762611699 K, F = -0.5114067243371416, relative_change = 6.249594313419473e-6 Iter 60: T = 774.0899852115682 K, F = -0.21387778797442192, relative_change = 2.613909509481533e-6 Iter 65: T = 774.0838048276219 K, F = -0.08944648800491539, relative_change = 1.0932126976386001e-6 Iter 70: T = 774.0812200649934 K, F = -0.0374076319665928, relative_change = 4.572023935680275e-7 Iter 75: T = 774.0801390772543 K, F = -0.015644325855248775, relative_change = 1.9120886322555207e-7 Iter 80: T = 774.0796869936738 K, F = -0.006542645203728492, relative_change = 7.99660683456288e-8 Iter 85: T = 774.0794979266419 K, F = -0.0027362125865637577, relative_change = 3.344280644039125e-8 Iter 90: T = 774.0794188565023 K, F = -0.0011443168201088483, relative_change = 1.3986188325193497e-8 Iter 95: T = 774.0793857884171 K, F = -0.00047856696677972543, relative_change = 5.8491922580986334e-9 Iter 100: T = 774.0793719589474 K, F = -0.00020014242197341492, relative_change = 2.4462022788195706e-9 Iter 105: T = 774.0793661752978 K, F = -8.370195100826372e-5, relative_change = 1.0230310424100788e-9 Iter 110: T = 774.0793637565064 K, F = -3.5005155765710505e-5, relative_change = 4.2784380882557554e-10 Iter 115: T = 774.079362744939 K, F = -1.4639575152686213e-5, relative_change = 1.7892940325150395e-10 Iter 120: T = 774.0793623218893 K, F = -6.122444445755271e-6, relative_change = 7.483040474497852e-11 Iter 125: T = 774.079362144965 K, F = -2.560478761570728e-6, relative_change = 3.12949613467876e-11 Iter 130: T = 774.0793620709732 K, F = -1.0708242204060525e-6, relative_change = 1.3087943983376435e-11 Iter 135: T = 774.0793620400289 K, F = -4.4783274744109036e-7, relative_change = 5.473550001814106e-12 Iter 140: T = 774.0793620270875 K, F = -1.8728850337268454e-7, relative_change = 2.2890978694937196e-12 Iter 145: T = 774.0793620216754 K, F = -7.832645421146367e-8, relative_change = 9.573300882737337e-13 Iter 150: T = 774.079362019412 K, F = -3.2758193047044415e-8, relative_change = 4.0038074182683727e-13 Converged in 154 iterations to T = 774.0793620185949 K Iter 1: T = 970.3887783200638 K, F = -6746.9450273170505, relative_change = 0.029611221679936232 Iter 2: T = 942.9427422137172 K, F = -5714.436230310502, relative_change = 0.02828354647078791 Iter 3: T = 917.6168618736597 K, F = -4838.184694324595, relative_change = 0.026858343785117568 Iter 5: T = 873.1081688552515 K, F = -3464.0368874859064, relative_change = 0.02376089137264124 Iter 10: T = 794.1526121938108 K, F = -1490.8902379353938, relative_change = 0.01545527483351305 Iter 15: T = 751.1692806354366 K, F = -634.5924385300002, relative_change = 0.00845442512077935 Iter 20: T = 730.317323463112 K, F = -267.8527972118272, relative_change = 0.004064948075573163 Iter 25: T = 720.9354120455146 K, F = -112.50422353695427, relative_change = 0.0018142862071429168 Iter 30: T = 716.8796935839906 K, F = -47.14026136077737, relative_change = 0.0007807736561646764 Iter 35: T = 715.1590208111794 K, F = -19.730684211436554, relative_change = 0.00033054584658648886 Iter 40: T = 714.4350138569908 K, F = -8.254446481657595, relative_change = 0.00013895354984203592 Iter 45: T = 714.1314472930442 K, F = -3.4526067532326685, relative_change = 5.82380984215262e-5 Iter 50: T = 714.0043553935477 K, F = -1.4440087514827673, relative_change = 2.4377987367055477e-5 Iter 55: T = 713.9511800817463 K, F = -0.6039169984506527, relative_change = 1.0199039266641086e-5 Iter 60: T = 713.9289373370038 K, F = -0.2525679767041948, relative_change = 4.2660379358349995e-6 Iter 65: T = 713.9196344216836 K, F = -0.10562741217719573, relative_change = 1.7842266070699313e-6 Iter 70: T = 713.9157437030303 K, F = -0.04417472708393877, relative_change = 7.462056195469581e-7 Iter 75: T = 713.9141165355721 K, F = -0.01847441273750894, relative_change = 3.120757299683059e-7 Iter 80: T = 713.9134360307818 K, F = -0.007726222540701433, relative_change = 1.3051443183736896e-7 Iter 85: T = 713.9131514348646 K, F = -0.0032311989743671887, relative_change = 5.458280504969435e-8 Iter 90: T = 713.9130324133332 K, F = -0.0013513260759105972, relative_change = 2.282720033411852e-8 Iter 95: T = 713.9129826370864 K, F = -0.0005651407174495082, relative_change = 9.546611204099288e-9 Iter 100: T = 713.9129618200618 K, F = -0.0002363486003077453, relative_change = 3.9925074222228746e-9 Iter 105: T = 713.912953114133 K, F = -9.884380808333759e-5, relative_change = 1.6697143956524876e-9 Iter 110: T = 713.9129494732094 K, F = -4.133766092895286e-5, relative_change = 6.982945168749911e-10 Iter 115: T = 713.9129479505316 K, F = -1.7287903751439515e-5, relative_change = 2.92035113966192e-10 Iter 120: T = 713.9129473137297 K, F = -7.230008412517641e-6, relative_change = 1.2213258299273145e-10 Iter 125: T = 713.9129470474115 K, F = -3.023676901858785e-6, relative_change = 5.107732242413417e-11 Iter 130: T = 713.912946936034 K, F = -1.2645394232846385e-6, relative_change = 2.1361173824295904e-11 Iter 135: T = 713.9129468894545 K, F = -5.288437696648884e-7, relative_change = 8.933468965224997e-12 Iter 140: T = 713.9129468699746 K, F = -2.2116985465281402e-7, relative_change = 3.736101559999339e-12 Iter 145: T = 713.9129468618277 K, F = -9.24952547887159e-8, relative_change = 1.5624718218036616e-12 Iter 150: T = 713.9129468584207 K, F = -3.868294407016748e-8, relative_change = 6.534498470595127e-13 Iter 155: T = 713.9129468569959 K, F = -1.6178950734691e-8, relative_change = 2.7330217845081177e-13 Converged in 157 iterations to T = 713.9129468566942 K Iter 1: T = 969.3092313609804 K, F = -6992.9208288584605, relative_change = 0.030690768639019587 Iter 2: T = 940.7590647422347 K, F = -5924.5090435788925, relative_change = 0.029454136714100236 Iter 3: T = 914.3104828278019 K, F = -5017.645788401572, relative_change = 0.02811408670473949 Iter 5: T = 867.5325827023497 K, F = -3595.0706402241813, relative_change = 0.02515546234556647 Iter 10: T = 783.2370987323972 K, F = -1550.385849358231, relative_change = 0.01688810102216054 Iter 15: T = 736.2713712850748 K, F = -661.1174830305823, relative_change = 0.009502235206325855 Iter 20: T = 713.0838833219055 K, F = -279.38631178384986, relative_change = 0.004653866599614524 Iter 25: T = 702.5432279575978 K, F = -117.42400836959757, relative_change = 0.0020974280562205305 Iter 30: T = 697.9633299461015 K, F = -49.21648573435854, relative_change = 0.0009067173241789644 Iter 35: T = 696.0157953002539 K, F = -20.602413672555258, relative_change = 0.0003846272446865591 Iter 40: T = 695.1955162447372 K, F = -8.619625640298699, relative_change = 0.00016182500224565068 Iter 45: T = 694.8514389040387 K, F = -3.6054368867686053, relative_change = 6.784818291719945e-5 Iter 50: T = 694.7073610905095 K, F = -1.507943067662981, relative_change = 2.8404945588892487e-5 Iter 55: T = 694.647074376983 K, F = -0.6306584086164172, relative_change = 1.1884547077769371e-5 Iter 60: T = 694.6218562123626 K, F = -0.2637521340532463, relative_change = 4.97118002806644e-6 Iter 65: T = 694.611308705234 K, F = -0.11030486186150101, relative_change = 2.0791678976978686e-6 Iter 70: T = 694.6068974421923 K, F = -0.046130910161135796, relative_change = 8.695610147698598e-7 Iter 75: T = 694.6050525696423 K, F = -0.019292514968176633, relative_change = 3.6366572816839374e-7 Iter 80: T = 694.6042810167211 K, F = -0.008068363207031859, relative_change = 1.5209021235623835e-7 Iter 85: T = 694.6039583431676 K, F = -0.0033742863819119506, relative_change = 6.360609385854198e-8 Iter 90: T = 694.6038233970754 K, F = -0.0014111669541810867, relative_change = 2.6600854403969637e-8 Iter 95: T = 694.6037669609804 K, F = -0.000590166889889332, relative_change = 1.1124799612406337e-8 Iter 100: T = 694.6037433587264 K, F = -0.00024681484398270115, relative_change = 4.652524856822921e-9 Iter 105: T = 694.6037334879812 K, F = -0.0001032209157370012, relative_change = 1.945741597033414e-9 Iter 110: T = 694.6037293599175 K, F = -4.316821802863302e-5, relative_change = 8.137323648511791e-10 Iter 115: T = 694.6037276335119 K, F = -1.8053464276190923e-5, relative_change = 3.4031259625586693e-10 Iter 120: T = 694.6037269115084 K, F = -7.55017307774164e-6, relative_change = 1.4232276839918266e-10 Iter 125: T = 694.603726609558 K, F = -3.157571688006122e-6, relative_change = 5.95210653264177e-11 Iter 130: T = 694.6037264832786 K, F = -1.3205325863907547e-6, relative_change = 2.489239015754328e-11 Iter 135: T = 694.6037264304672 K, F = -5.522622393838716e-7, relative_change = 1.0410289968361576e-11 Iter 140: T = 694.6037264083808 K, F = -2.309611607520523e-7, relative_change = 4.353679255537474e-12 Iter 145: T = 694.6037263991441 K, F = -9.65919542128546e-8, relative_change = 1.8207840052657786e-12 Iter 150: T = 694.6037263952812 K, F = -4.039612699902051e-8, relative_change = 7.614777288216482e-13 Iter 155: T = 694.6037263936656 K, F = -1.689461692766514e-8, relative_change = 3.1846801867527104e-13 Converged in 158 iterations to T = 694.6037263931927 K Iter 1: T = 963.588827133612 K, F = -8296.320373573571, relative_change = 0.03641117286638806 Iter 2: T = 929.0571015222826 K, F = -7039.6544214566475, relative_change = 0.03583657742696229 Iter 3: T = 896.3713930672209 K, F = -5972.414302065029, relative_change = 0.035181592607715195 Iter 5: T = 836.4194658480613 K, F = -4296.418063018975, relative_change = 0.03360130621744436 Iter 10: T = 716.9064216742821 K, F = -1877.4093185526028, relative_change = 0.027855735703366403 Iter 15: T = 637.4625855201423 K, F = -812.8870187750633, relative_change = 0.019929078340508277 Iter 20: T = 590.9813716153669 K, F = -348.015319647989, relative_change = 0.011930818597658108 Iter 25: T = 567.0913472274829 K, F = -147.49215612789496, relative_change = 0.006105464173613584 Iter 30: T = 555.955384803405 K, F = -62.089320857934474, relative_change = 0.0028193213755865246 Iter 35: T = 551.0540160286063 K, F = -26.04385476751546, relative_change = 0.0012330291357344242 Iter 40: T = 548.9573655042799 K, F = -10.90590439066894, relative_change = 0.0005257508867116907 Iter 45: T = 548.0719892625676 K, F = -4.563477903420261, relative_change = 0.0002216899438493295 Iter 50: T = 547.7001959479982 K, F = -1.9089409753727726, relative_change = 9.303462430852902e-5 Iter 55: T = 547.544440019457 K, F = -0.7984190972049718, relative_change = 3.896466281554481e-5 Iter 60: T = 547.4792540954045 K, F = -0.3339219175475572, relative_change = 1.630538537825322e-5 Iter 65: T = 547.451984343967 K, F = -0.13965249892992998, relative_change = 6.820839616987772e-6 Iter 70: T = 547.4405783698686 K, F = -0.05840475660068711, relative_change = 2.8528597540663597e-6 Iter 75: T = 547.4358080036546 K, F = -0.024425639077765293, relative_change = 1.193153052074637e-6 Iter 80: T = 547.4338129355193 K, F = -0.010215106621236897, relative_change = 4.99000131585568e-7 Iter 85: T = 547.4329785665008 K, F = -0.004272081796217214, relative_change = 2.0868943675104994e-7 Iter 90: T = 547.4326296220663 K, F = -0.001786636012878734, relative_change = 8.727669845157206e-8 Iter 95: T = 547.4324836891011 K, F = -0.0007471925846530558, relative_change = 3.650020719916617e-8 Iter 100: T = 547.432422658151 K, F = -0.00031248487389451407, relative_change = 1.52648312253637e-8 Iter 105: T = 547.4323971342717 K, F = -0.00013068490795170584, relative_change = 6.3839362255658075e-9 Iter 110: T = 547.4323864598794 K, F = -5.465399002851923e-5, relative_change = 2.6698386575252007e-9 Iter 115: T = 547.4323819957208 K, F = -2.28569516747823e-5, relative_change = 1.1165584710623002e-9 Iter 120: T = 547.4323801287562 K, F = -9.559050351798382e-6, relative_change = 4.66958104071357e-10 Iter 125: T = 547.4323793479693 K, F = -3.997708911768205e-6, relative_change = 1.952874520001957e-10 Iter 130: T = 547.4323790214349 K, F = -1.6718892731359958e-6, relative_change = 8.167152844551638e-11 Iter 135: T = 547.4323788848744 K, F = -6.992041008124783e-7, relative_change = 3.415601056488294e-11 Iter 140: T = 547.4323788277632 K, F = -2.924160268646947e-7, relative_change = 1.4284477016491318e-11 Iter 145: T = 547.4323788038786 K, F = -1.2229196547086651e-7, relative_change = 5.973943320286291e-12 Iter 150: T = 547.4323787938897 K, F = -5.1143746543358404e-8, relative_change = 2.4983639921662597e-12 Iter 155: T = 547.4323787897123 K, F = -2.1389073345812193e-8, relative_change = 1.0448528761892426e-12 Iter 160: T = 547.4323787879653 K, F = -8.94556168029581e-9, relative_change = 4.369892841925006e-13 Converged in 164 iterations to T = 547.4323787873345 K Iter 1: T = 966.9339610395795 K, F = -7534.12843105506, relative_change = 0.03306603896042058 Iter 2: T = 935.9270131347182 K, F = -6387.142384373024, relative_change = 0.03206728603422379 Iter 3: T = 906.9486853170249 K, F = -5413.306743726207, relative_change = 0.030962166291830465 Iter 5: T = 854.9463835305166 K, F = -3884.8207582086343, relative_change = 0.02843347430440361 Iter 10: T = 757.6135522368457 K, F = -1683.5482064966473, relative_change = 0.020630771515397713 Iter 15: T = 700.0196699063631 K, F = -721.4471495113916, relative_change = 0.012534940657155548 Iter 20: T = 670.1226219857234 K, F = -305.97861908591807, relative_change = 0.006486729690658675 Iter 25: T = 656.0951585538351 K, F = -128.86177992705788, relative_change = 0.0030148181842853806 Iter 30: T = 649.899628902766 K, F = -54.06343920954182, relative_change = 0.0013227116581389473 Iter 35: T = 647.2450566513685 K, F = -22.64128908816039, relative_change = 0.000564792835557031 Iter 40: T = 646.1232769978209 K, F = -9.474431155754663, relative_change = 0.0002382985159472204 Iter 45: T = 645.6520672460474 K, F = -3.963302379179141, relative_change = 0.00010003056526936149 Iter 50: T = 645.4546371238979 K, F = -1.6576726992746313, relative_change = 4.189927003540388e-5 Iter 55: T = 645.3720055126562 K, F = -0.6932886967534515, relative_change = 1.753422112048496e-5 Iter 60: T = 645.3374367809363 K, F = -0.28994689346410707, relative_change = 7.335024515261848e-6 Iter 65: T = 645.3229777635773 K, F = -0.1212601773657137, relative_change = 3.067945465113574e-6 Iter 70: T = 645.3169304867918 K, F = -0.050712615910678716, relative_change = 1.2831127654192545e-6 Iter 75: T = 645.3144013834149 K, F = -0.021208649868981133, relative_change = 5.366238099580876e-7 Iter 80: T = 645.3133436716836 K, F = -0.008869715600583916, relative_change = 2.2442436228755245e-7 Iter 85: T = 645.3129013221703 K, F = -0.0037094218552224945, relative_change = 9.385727668053859e-8 Iter 90: T = 645.312716326 K, F = -0.001551324670226728, relative_change = 3.9252291383295144e-8 Iter 95: T = 645.3126389583362 K, F = -0.0006487825313364337, relative_change = 1.6415787094378394e-8 Iter 100: T = 645.3126066022453 K, F = -0.0002713286064880971, relative_change = 6.865279943369047e-9 Iter 105: T = 645.3125930705401 K, F = -0.00011347286520729805, relative_change = 2.871142388858833e-9 Iter 110: T = 645.312587411419 K, F = -4.74557077952964e-5, relative_change = 1.2007460962960633e-9 Iter 115: T = 645.3125850447069 K, F = -1.9846544709434255e-5, relative_change = 5.021663906842749e-10 Iter 120: T = 645.3125840549197 K, F = -8.300062458665991e-6, relative_change = 2.100119944696452e-10 Iter 125: T = 645.3125836409788 K, F = -3.471184726877574e-6, relative_change = 8.782951134654814e-11 Iter 130: T = 645.3125834678638 K, F = -1.4516917402063179e-6, relative_change = 3.673137166793161e-11 Iter 135: T = 645.312583395465 K, F = -6.071146322339516e-7, relative_change = 1.536149348784413e-11 Iter 140: T = 645.312583365187 K, F = -2.539034597570655e-7, relative_change = 6.4243820481130234e-12 Iter 145: T = 645.3125833525243 K, F = -1.0618503409887126e-7, relative_change = 2.686742542064969e-12 Iter 150: T = 645.3125833472286 K, F = -4.44076309613628e-8, relative_change = 1.1236222911581167e-12 Iter 155: T = 645.312583345014 K, F = -1.8571930437971673e-8, relative_change = 4.699155207905617e-13 Converged in 160 iterations to T = 645.3125833440877 K Iter 1: T = 965.1774754552212 K, F = -7934.345342300229, relative_change = 0.03482252454477885 Iter 2: T = 932.3292514329335 K, F = -6729.625678755532, relative_change = 0.03403335123086555 Iter 3: T = 901.425865033266 K, F = -5706.609038070174, relative_change = 0.033146430139535825 Iter 5: T = 845.3405906495475 K, F = -4100.413352148202, relative_change = 0.031060591661500873 Iter 10: T = 737.005581192929 K, F = -1784.3086153858671, relative_change = 0.024073752317863392 Iter 15: T = 669.2577357881358 K, F = -768.2911083577264, relative_change = 0.0157688571098409 Iter 20: T = 632.1886038515512 K, F = -327.1493555032499, relative_change = 0.008678737144234018 Iter 25: T = 614.137932749313 K, F = -138.12077038647388, relative_change = 0.004189197904661765 Iter 30: T = 605.9987360801198 K, F = -58.02167496659536, relative_change = 0.0018735637893091573 Iter 35: T = 602.4764796527355 K, F = -24.31311874150283, relative_change = 0.0008070458296593691 Iter 40: T = 600.9814161292287 K, F = -10.176601466473201, relative_change = 0.00034180950994995785 Iter 45: T = 600.3522085388572 K, F = -4.257490318081548, relative_change = 0.00014371382164243867 Iter 50: T = 600.0883669603699 K, F = -1.7807992979675853, relative_change = 6.023768991147489e-5 Iter 55: T = 599.9779023434838 K, F = -0.7447981453910394, relative_change = 2.5215785090333545e-5 Iter 60: T = 599.9316831800897 K, F = -0.3114916380126554, relative_change = 1.0549686996478108e-5 Iter 65: T = 599.9123500032264 K, F = -0.13027095045313944, relative_change = 4.412730392974294e-6 Iter 70: T = 599.9042639780359 K, F = -0.05448111693021368, relative_change = 1.845583435862624e-6 Iter 75: T = 599.9008821903283 K, F = -0.022784697411080024, relative_change = 7.718672284831209e-7 Iter 80: T = 599.8994678661362 K, F = -0.009528840200436761, relative_change = 3.228079749815946e-7 Iter 85: T = 599.898876375338 K, F = -0.003985076104663365, relative_change = 1.3500282921565466e-7 Iter 90: T = 599.8986290062048 K, F = -0.0016666066516190514, relative_change = 5.645991417939471e-8 Iter 95: T = 599.8985255533712 K, F = -0.0006969948451674424, relative_change = 2.361223112405738e-8 Iter 100: T = 599.8984822881418 K, F = -0.0002914915751604519, relative_change = 9.874920674688507e-9 Iter 105: T = 599.898464194103 K, F = -0.00012190525892169513, relative_change = 4.129810386050932e-9 Iter 110: T = 599.8984566269593 K, F = -5.098223568961169e-5, relative_change = 1.7271361462317038e-9 Iter 115: T = 599.8984534622892 K, F = -2.1321379842897947e-5, relative_change = 7.223089815692191e-10 Iter 120: T = 599.8984521387865 K, F = -8.916856143459384e-6, relative_change = 3.0207826111112836e-10 Iter 125: T = 599.8984515852818 K, F = -3.7291360396873863e-6, relative_change = 1.2633274745497517e-10 Iter 130: T = 599.8984513537995 K, F = -1.559569483611245e-6, relative_change = 5.283387250469315e-11 Iter 135: T = 599.8984512569909 K, F = -6.522312824275289e-7, relative_change = 2.2095780154681363e-11 Iter 140: T = 599.8984512165043 K, F = -2.7277070635545186e-7, relative_change = 9.240712189963791e-12 Iter 145: T = 599.8984511995724 K, F = -1.1407575994937247e-7, relative_change = 3.864569182555595e-12 Iter 150: T = 599.8984511924912 K, F = -4.770723027736068e-8, relative_change = 1.6161881543209182e-12 Iter 155: T = 599.8984511895297 K, F = -1.9951044483157432e-8, relative_change = 6.758858473506517e-13 Iter 160: T = 599.8984511882912 K, F = -8.343161606028104e-9, relative_change = 2.8264308951291207e-13 Converged in 162 iterations to T = 599.8984511880292 K Iter 1: T = 980.0754322995107 K, F = -4539.831703713331, relative_change = 0.019924567700489275 Iter 2: T = 962.1974536650449 K, F = -3834.877711279678, relative_change = 0.018241431266692767 Iter 3: T = 946.2456369780342 K, F = -3237.8805678848507, relative_change = 0.016578527230819092 Iter 5: T = 919.5987459005715 K, F = -2305.0608480133874, relative_change = 0.013402469933327998 Iter 10: T = 877.2651073485634 K, F = -978.6495489635765, relative_change = 0.007049199695923313 Iter 15: T = 857.2107713111956 K, F = -412.41539709815413, relative_change = 0.0033078666067121176 Iter 20: T = 848.3071984883918 K, F = -173.08184590204206, relative_change = 0.0014582121455930014 Iter 25: T = 844.4829345434161 K, F = -72.49551280416499, relative_change = 0.0006239918968123175 Iter 30: T = 842.8651060212671 K, F = -30.33821487056388, relative_change = 0.00026352088443244096 Iter 35: T = 842.1852121039135 K, F = -12.691282307566313, relative_change = 0.00011066180684588483 Iter 40: T = 841.9002903486011 K, F = -5.30825633623579, relative_change = 4.636001537003151e-5 Iter 45: T = 841.7810305018972 K, F = -2.2200831273943686, relative_change = 1.940232673066226e-5 Iter 50: T = 841.7311367133511 K, F = -0.9284839913048579, relative_change = 8.116738530913475e-6 Iter 55: T = 841.7102674030144 K, F = -0.38830636747711034, relative_change = 3.394946346941781e-6 Iter 60: T = 841.701539060244 K, F = -0.16239493287704243, relative_change = 1.4198822156562275e-6 Iter 65: T = 841.6978886672107 K, F = -0.06791560048260759, relative_change = 5.938248371617653e-7 Iter 70: T = 841.6963620124848 K, F = -0.02840313271558892, relative_change = 2.4834693647007843e-7 Iter 75: T = 841.6957235443142 K, F = -0.011878532367483485, relative_change = 1.0386205659885201e-7 Iter 80: T = 841.6954565287875 K, F = -0.004967744630286042, relative_change = 4.343642272724111e-8 Iter 85: T = 841.6953448596158 K, F = -0.0020775702245674488, relative_change = 1.8165643011276577e-8 Iter 90: T = 841.695298158219 K, F = -0.0008688646957695223, relative_change = 7.597091001544941e-9 Iter 95: T = 841.6952786271344 K, F = -0.0003633695972944384, relative_change = 3.1771945807867398e-9 Iter 100: T = 841.695270459001 K, F = -0.00015196550655627306, relative_change = 1.3287407911977614e-9 Iter 105: T = 841.6952670429899 K, F = -6.35537891287008e-5, relative_change = 5.556952731969684e-10 Iter 110: T = 841.6952656143733 K, F = -2.6578953593148213e-5, relative_change = 2.3239840141843962e-10 Iter 115: T = 841.6952650169088 K, F = -1.1115634984459888e-5, relative_change = 9.719177998550036e-11 Iter 120: T = 841.6952647670421 K, F = -4.64869393135281e-6, relative_change = 4.0646786176970034e-11 Iter 125: T = 841.6952646625448 K, F = -1.9441395944230777e-6, relative_change = 1.6998973820677378e-11 Iter 130: T = 841.6952646188428 K, F = -8.130642241699348e-7, relative_change = 7.109189846376405e-12 Iter 135: T = 841.6952646005661 K, F = -3.400352324156586e-7, relative_change = 2.973166141232557e-12 Iter 140: T = 841.6952645929225 K, F = -1.422067850143094e-7, relative_change = 1.2434134994562205e-12 Iter 145: T = 841.6952645897259 K, F = -5.947294523522828e-8, relative_change = 5.200136052003391e-13 Converged in 150 iterations to T = 841.695264588389 K Iter 1: T = 976.3283598042669 K, F = -5393.605736140748, relative_change = 0.023671640195733028 Iter 2: T = 954.8205262055068 K, F = -4560.786024003104, relative_change = 0.02202930334121605 Iter 3: T = 935.3857707174758 K, F = -3854.8177425512977, relative_change = 0.02035435451441903 Iter 5: T = 902.3180028521698 K, F = -2749.970857365502, relative_change = 0.01699954537200152 Iter 10: T = 847.7955026394551 K, F = -1172.8145354981577, relative_change = 0.00958627678191023 Iter 15: T = 820.8392059794268 K, F = -495.6766208095443, relative_change = 0.00470206604995589 Iter 20: T = 808.5749802189092 K, F = -208.3402763249875, relative_change = 0.002120850378836763 Iter 25: T = 803.2439441519364 K, F = -87.32483894431667, relative_change = 0.0009171878072060205 Iter 30: T = 800.9765643166197 K, F = -36.555277504485886, relative_change = 0.0003891332136003948 Iter 35: T = 800.0214907628664 K, F = -15.294047518271912, relative_change = 0.0001637323925003063 Iter 40: T = 799.6208578674219 K, F = -6.397242201638206, relative_change = 6.86499423958716e-5 Iter 45: T = 799.4530956733159 K, F = -2.6755939437268017, relative_change = 2.8740966133495518e-5 Iter 50: T = 799.3828982283849 K, F = -1.1189987513990551, relative_change = 1.2025200257585526e-5 Iter 55: T = 799.3535342899844 K, F = -0.4679844872142387, relative_change = 5.030024817399429e-6 Iter 60: T = 799.3412527979536 K, F = -0.19571772402022614, relative_change = 2.1037813319756924e-6 Iter 65: T = 799.3361163314901 K, F = -0.08185166839142499, relative_change = 8.79855318741456e-7 Iter 70: T = 799.3339681649211 K, F = -0.034231376512066536, relative_change = 3.679710465458794e-7 Iter 75: T = 799.3330697698945 K, F = -0.014315975934808378, relative_change = 1.5389076846669227e-7 Iter 80: T = 799.3326940492959 K, F = -0.005987113059646831, relative_change = 6.435911151593155e-8 Iter 85: T = 799.3325369182676 K, F = -0.002503882349162878, relative_change = 2.691577602667281e-8 Iter 90: T = 799.3324712041623 K, F = -0.0010471535292662093, relative_change = 1.1256503685601747e-8 Iter 95: T = 799.3324437217331 K, F = -0.00043793211568954327, relative_change = 4.707605087031361e-9 Iter 100: T = 799.3324322282518 K, F = -0.00018314844166278377, relative_change = 1.9687768121841704e-9 Iter 105: T = 799.3324274215406 K, F = -7.65948649897874e-5, relative_change = 8.233659924853775e-10 Iter 110: T = 799.3324254113165 K, F = -3.203288723874209e-5, relative_change = 3.4434149486165716e-10 Iter 115: T = 799.3324245706168 K, F = -1.3396536887477772e-5, relative_change = 1.4400773575366384e-10 Iter 120: T = 799.3324242190262 K, F = -5.602590517850281e-6, relative_change = 6.022574216732182e-11 Iter 125: T = 799.3324240719868 K, F = -2.3430721893813455e-6, relative_change = 2.5187145344836274e-11 Iter 130: T = 799.3324240104931 K, F = -9.799017680611755e-7, relative_change = 1.0533575694642114e-11 Iter 135: T = 799.3324239847758 K, F = -4.0980560234160635e-7, relative_change = 4.405256193746849e-12 Iter 140: T = 799.3324239740205 K, F = -1.713853254869946e-7, relative_change = 1.8423278314236413e-12 Iter 145: T = 799.3324239695224 K, F = -7.167517468431583e-8, relative_change = 7.704811877643788e-13 Iter 150: T = 799.3324239676413 K, F = -2.997606363130956e-8, relative_change = 3.2223141712781485e-13 Converged in 153 iterations to T = 799.3324239670906 K Iter 1: T = 980.6036383513429 K, F = -4419.479452349725, relative_change = 0.019396361648657205 Iter 2: T = 963.2302546197542 K, F = -3732.6683924454187, relative_change = 0.017717029645941282 Iter 3: T = 947.7557299830878 K, F = -3151.124223258326, relative_change = 0.01606523939883424 Iter 5: T = 921.9701513316973 K, F = -2242.6683750730845, relative_change = 0.012930767848530847 Iter 10: T = 881.2007130585382 K, F = -951.6128636775499, relative_change = 0.006741190814145729 Iter 15: T = 861.9884937675185 K, F = -400.8828636313267, relative_change = 0.003146713612372496 Iter 20: T = 853.483097713043 K, F = -168.212686967612, relative_change = 0.0013835410593400575 Iter 25: T = 849.8347975891469 K, F = -70.45050885979786, relative_change = 0.000591337688441056 Iter 30: T = 848.2923326794695 K, F = -29.481406640899202, relative_change = 0.0002496025021319206 Iter 35: T = 847.6442765677346 K, F = -12.332677831122538, relative_change = 0.00010479417796497179 Iter 40: T = 847.3727264352934 K, F = -5.158234935467324, relative_change = 4.3897845826333076e-5 Iter 45: T = 847.2590687273013 K, F = -2.1573338437528964, relative_change = 1.83711684973671e-5 Iter 50: T = 847.2115195671861 K, F = -0.9022399960009324, relative_change = 7.685241926307351e-6 Iter 55: T = 847.1916311143258 K, F = -0.377330553552232, relative_change = 3.214444874615904e-6 Iter 60: T = 847.1833130313835 K, F = -0.1578046706374061, relative_change = 1.3443865696998543e-6 Iter 65: T = 847.1798342232718 K, F = -0.06599588998807504, relative_change = 5.622502964820797e-7 Iter 70: T = 847.1783793290467 K, F = -0.02760028546200277, relative_change = 2.3514184862996324e-7 Iter 75: T = 847.1777708722609 K, F = -0.01154277181217056, relative_change = 9.83394895512626e-8 Iter 80: T = 847.1775164079039 K, F = -0.004827325511832292, relative_change = 4.112681194500088e-8 Iter 85: T = 847.17740998779 K, F = -0.0020188452654765765, relative_change = 1.719973493302859e-8 Iter 90: T = 847.1773654816134 K, F = -0.0008443052166176024, relative_change = 7.193136496949689e-9 Iter 95: T = 847.1773468685963 K, F = -0.0003530985276301024, relative_change = 3.0082559266719682e-9 Iter 100: T = 847.1773390844098 K, F = -0.00014767002130899876, relative_change = 1.2580886111606315e-9 Iter 105: T = 847.17733582897 K, F = -6.175736610769533e-5, relative_change = 5.261476885300782e-10 Iter 110: T = 847.1773344675061 K, F = -2.5827668442834906e-5, relative_change = 2.2004125194720354e-10 Iter 115: T = 847.1773338981257 K, F = -1.0801437650975743e-5, relative_change = 9.202386488802244e-11 Iter 120: T = 847.177333660004 K, F = -4.51729122286082e-6, relative_change = 3.848548787125274e-11 Iter 125: T = 847.1773335604187 K, F = -1.889184580106118e-6, relative_change = 1.6095085903910236e-11 Iter 130: T = 847.1773335187709 K, F = -7.900803784544053e-7, relative_change = 6.731164174799572e-12 Iter 135: T = 847.1773335013532 K, F = -3.3041918312548546e-7, relative_change = 2.8150373417568404e-12 Iter 140: T = 847.177333494069 K, F = -1.3818529032150195e-7, relative_change = 1.1772825919877998e-12 Iter 145: T = 847.1773334910226 K, F = -5.7790719099060084e-8, relative_change = 4.923534727658244e-13 Converged in 150 iterations to T = 847.1773334897487 K Iter 1: T = 967.3253722984302 K, F = -7444.945003397669, relative_change = 0.03267462770156975 Iter 2: T = 936.7258787370586 K, F = -6310.867122325214, relative_change = 0.031633093101512744 Iter 3: T = 908.1701555794092 K, F = -5348.031078934582, relative_change = 0.030484610071998503 Iter 5: T = 857.0515780966745 K, F = -3836.934383993045, relative_change = 0.02787239676235805 Iter 10: T = 762.001873560121 K, F = -1661.3742010782007, relative_change = 0.019949559627226655 Iter 15: T = 706.3706682521935 K, F = -711.2924014216925, relative_change = 0.01194841198363968 Iter 20: T = 677.7692235721655 K, F = -301.4589755714337, relative_change = 0.006116503412849026 Iter 25: T = 664.4345050483657 K, F = -126.9058664007649, relative_change = 0.002824957955067474 Iter 30: T = 658.5647748019488 K, F = -53.231995223398805, relative_change = 0.0012356090864543566 Iter 35: T = 656.0537693765876 K, F = -22.291042183312705, relative_change = 0.0005268728666870926 Iter 40: T = 654.9933964841204 K, F = -9.327497914653614, relative_change = 0.00022216702194507556 Iter 45: T = 654.5481133602326 K, F = -3.9017723745541995, relative_change = 9.323554268839998e-5 Iter 50: T = 654.3615695281426 K, F = -1.6319259121586298, relative_change = 3.90489357786667e-5 Iter 55: T = 654.2834983333121 K, F = -0.6825185928088203, relative_change = 1.634067258886613e-5 Iter 60: T = 654.2508381612114 K, F = -0.2854422714326966, relative_change = 6.835604724685511e-6 Iter 65: T = 654.2371775606773 K, F = -0.11937621435849793, relative_change = 2.8590360239966062e-6 Iter 70: T = 654.2314642323546 K, F = -0.04992470673992361, relative_change = 1.1957362738125176e-6 Iter 75: T = 654.2290747973873 K, F = -0.020879134511327002, relative_change = 5.000805063768146e-7 Iter 80: T = 654.2280754979075 K, F = -0.008731907934355132, relative_change = 2.0914126945613863e-7 Iter 85: T = 654.2276575773149 K, F = -0.0036517889712741614, relative_change = 8.746566154620185e-8 Iter 90: T = 654.2274827976493 K, F = -0.0015272218966067563, relative_change = 3.657923403275392e-8 Iter 95: T = 654.2274097026565 K, F = -0.0006387024611704817, relative_change = 1.5297881260176173e-8 Iter 100: T = 654.227379133449 K, F = -0.00026711300098936075, relative_change = 6.397758157588123e-9 Iter 105: T = 654.2273663490396 K, F = -0.00011170984691399877, relative_change = 2.6756191133426905e-9 Iter 110: T = 654.2273610024467 K, F = -4.6718391914279955e-5, relative_change = 1.1189759064871163e-9 Iter 115: T = 654.2273587664378 K, F = -1.9538189475032386e-5, relative_change = 4.67969096085563e-10 Iter 120: T = 654.227357831312 K, F = -8.17110382017594e-6, relative_change = 1.9571025757823883e-10 Iter 125: T = 654.2273574402313 K, F = -3.417252820714367e-6, relative_change = 8.184835811338041e-11 Iter 130: T = 654.2273572766768 K, F = -1.4291366478014211e-6, relative_change = 3.422997782674434e-11 Iter 135: T = 654.2273572082763 K, F = -5.976827350817615e-7, relative_change = 1.431540280695617e-11 Iter 140: T = 654.2273571796704 K, F = -2.499583763859725e-7, relative_change = 5.986880051325833e-12 Iter 145: T = 654.227357167707 K, F = -1.0453561521961419e-7, relative_change = 2.5037856242892035e-12 Iter 150: T = 654.2273571627037 K, F = -4.371741713082855e-8, relative_change = 1.0470980662164853e-12 Iter 155: T = 654.2273571606114 K, F = -1.8283708047572844e-8, relative_change = 4.379223796062579e-13 Converged in 159 iterations to T = 654.2273571598561 K Iter 1: T = 973.5255008691071 K, F = -6032.23981072408, relative_change = 0.026474499130892882 Iter 2: T = 949.2440226657869 K, F = -5104.732324580459, relative_change = 0.024941799862091992 Iter 3: T = 927.088056329752 K, F = -4318.023058785291, relative_change = 0.02334064350894069 Iter 5: T = 888.8300388987368 K, F = -3085.5273746670277, relative_change = 0.020011041207368057 Iter 10: T = 823.6988713011971 K, F = -1321.1323961795445, relative_change = 0.012000834642340905 Iter 15: T = 790.1840833551062 K, F = -559.9560880049187, relative_change = 0.006149320703010985 Iter 20: T = 774.5497596558452 K, F = -235.73467801592085, relative_change = 0.0028417028585614812 Iter 25: T = 767.6657133180756 K, F = -98.88317016141994, relative_change = 0.0012432718578721188 Iter 30: T = 764.7203816859777 K, F = -41.40793206218097, relative_change = 0.0005302050386894678 Iter 35: T = 763.4765204903642 K, F = -17.326859444124075, relative_change = 0.00022358385791068525 Iter 40: T = 762.9541712538658 K, F = -7.247984681655807, relative_change = 9.383222735936719e-5 Iter 45: T = 762.7353394483562 K, F = -3.0314893517026107, relative_change = 3.9299207324183216e-5 Iter 50: T = 762.6437548596595 K, F = -1.267856814539318, relative_change = 1.6445467383264357e-5 Iter 55: T = 762.6054414423542 K, F = -0.5302419194170063, relative_change = 6.8794536196795054e-6 Iter 60: T = 762.5894162752236 K, F = -0.221755087716339, relative_change = 2.877378086145915e-6 Iter 65: T = 762.5827140023403 K, F = -0.09274090315370132, relative_change = 1.2034078308592527e-6 Iter 70: T = 762.5799109694017 K, F = -0.03878540172804468, relative_change = 5.03288963394948e-7 Iter 75: T = 762.5787386966415 K, F = -0.01622052667297469, relative_change = 2.104831055516679e-7 Iter 80: T = 762.5782484362652 K, F = -0.006783619448805012, relative_change = 8.802683709505716e-8 Iter 85: T = 762.5780434031872 K, F = -0.0028369909261251047, relative_change = 3.681392502474709e-8 Iter 90: T = 762.5779576558471 K, F = -0.0011864635311112925, relative_change = 1.5396031922685802e-8 Iter 95: T = 762.5779217952752 K, F = -0.0004961932271352332, relative_change = 6.438805976687972e-9 Iter 100: T = 762.5779067979539 K, F = -0.00020751393418438902, relative_change = 2.6927858175306518e-9 Iter 105: T = 762.5779005258947 K, F = -8.678480450330373e-5, relative_change = 1.1261552185090156e-9 Iter 110: T = 762.5778979028446 K, F = -3.629444073904864e-5, relative_change = 4.709715571114484e-10 Iter 115: T = 762.5778968058537 K, F = -1.517876826384601e-5, relative_change = 1.9696592722336756e-10 Iter 120: T = 762.5778963470791 K, F = -6.347942163476006e-6, relative_change = 8.237350330651801e-11 Iter 125: T = 762.577896155214 K, F = -2.6547862036485625e-6, relative_change = 3.444959559407245e-11 Iter 130: T = 762.5778960749738 K, F = -1.1102635519844029e-6, relative_change = 1.4407235631742087e-11 Iter 135: T = 762.5778960414162 K, F = -4.6432355393921654e-7, relative_change = 6.025253049526184e-12 Iter 140: T = 762.5778960273822 K, F = -1.9418472918530938e-7, relative_change = 2.51982076263761e-12 Iter 145: T = 762.577896021513 K, F = -8.121170891328688e-8, relative_change = 1.0538364739340302e-12 Iter 150: T = 762.5778960190584 K, F = -3.396188463788974e-8, relative_change = 4.407033571194926e-13 Converged in 154 iterations to T = 762.5778960181724 K Iter 1: T = 970.0750059005991 K, F = -6818.438371566696, relative_change = 0.02992499409940088 Iter 2: T = 942.3088498074844 K, F = -5775.481941946038, relative_change = 0.02862268992008214 Iter 3: T = 916.6583640379686 K, F = -4890.322042134904, relative_change = 0.027220890236525158 Iter 5: T = 871.4966264061027 K, F = -3502.080775511301, relative_change = 0.02416041401697888 Iter 10: T = 791.0230191670856 K, F = -1508.1216587679892, relative_change = 0.01585686283171769 Iter 15: T = 746.9274998596569 K, F = -642.2518018585477, relative_change = 0.00874230930992006 Iter 20: T = 725.4322589833488 K, F = -271.17536680384126, relative_change = 0.004224620417144942 Iter 25: T = 715.7338284348624 K, F = -113.91957835126924, relative_change = 0.0018905141865230184 Iter 30: T = 711.5355214721321 K, F = -47.73716583259277, relative_change = 0.0008145687093702604 Iter 35: T = 709.7532539507472 K, F = -19.981227765003982, relative_change = 0.0003450367297689819 Iter 40: T = 709.0031298391795 K, F = -8.359389117796882, relative_change = 0.00014507806424790464 Iter 45: T = 708.6885771513928 K, F = -3.496523633047601, relative_change = 6.081081298069533e-5 Iter 50: T = 708.5568795158124 K, F = -1.4623803366588195, relative_change = 2.5455925583857215e-5 Iter 55: T = 708.5017760639121 K, F = -0.6116010942665564, relative_change = 1.0650196115792402e-5 Iter 60: T = 708.4787266036118 K, F = -0.25578171125527943, relative_change = 4.4547784232672765e-6 Iter 65: T = 708.4690862499531 K, F = -0.10697146127251833, relative_change = 1.8631708591239631e-6 Iter 70: T = 708.4650544000154 K, F = -0.04473682917802846, relative_change = 7.792229248679303e-7 Iter 75: T = 708.4633682079246 K, F = -0.018709491370024756, relative_change = 3.258842895498691e-7 Iter 80: T = 708.4626630180055 K, F = -0.007824535376359298, relative_change = 1.362893937650003e-7 Iter 85: T = 708.4623680984163 K, F = -0.003272314600056281, relative_change = 5.6997973108934386e-8 Iter 90: T = 708.4622447593921 K, F = -0.0013685211260466845, relative_change = 2.3837254216150548e-8 Iter 95: T = 708.4621931775165 K, F = -0.0005723318931335486, relative_change = 9.969028100660736e-9 Iter 100: T = 708.4621716053562 K, F = -0.00023935603553437712, relative_change = 4.169167259170508e-9 Iter 105: T = 708.4621625836204 K, F = -0.00010010155307038637, relative_change = 1.7435956524952777e-9 Iter 110: T = 708.4621588106226 K, F = -4.186366588787571e-5, relative_change = 7.291925594711094e-10 Iter 115: T = 708.4621572327098 K, F = -1.750788493359856e-5, relative_change = 3.049570382877766e-10 Iter 120: T = 708.4621565728079 K, F = -7.3220068260715365e-6, relative_change = 1.275366804369971e-10 Iter 125: T = 708.4621562968291 K, F = -3.0621514511830483e-6, relative_change = 5.3337376088335785e-11 Iter 130: T = 708.4621561814114 K, F = -1.2806288044453495e-6, relative_change = 2.2306336350166142e-11 Iter 135: T = 708.4621561331423 K, F = -5.355748103896829e-7, relative_change = 9.328785846167408e-12 Iter 140: T = 708.4621561129557 K, F = -2.2398620236341316e-7, relative_change = 3.9014518123205534e-12 Iter 145: T = 708.4621561045133 K, F = -9.367282916006303e-8, relative_change = 1.631618489247408e-12 Iter 150: T = 708.4621561009826 K, F = -3.917516722129477e-8, relative_change = 6.823635811182663e-13 Iter 155: T = 708.462156099506 K, F = -1.638502400425068e-8, relative_change = 2.853987474565951e-13 Converged in 157 iterations to T = 708.4621560991935 K Iter 1: T = 973.7424563928996 K, F = -5982.806288249979, relative_change = 0.026257543607100392 Iter 2: T = 949.6774824800002 K, F = -5062.598984319311, relative_change = 0.02471390022577934 Iter 3: T = 927.7358280516335 K, F = -4282.115259683821, relative_change = 0.023104322081079556 Iter 5: T = 889.8923257814241 K, F = -3059.465787577267, relative_change = 0.019767122333345374 Iter 10: T = 825.6357043812662 K, F = -1309.546031507054, relative_change = 0.011794230350554151 Iter 15: T = 792.6831214738091 K, F = -554.9078986391261, relative_change = 0.006020527902986792 Iter 20: T = 777.3450172004177 K, F = -233.57593812211599, relative_change = 0.0027761338944695155 Iter 25: T = 770.5992755498452 K, F = -97.97076118299465, relative_change = 0.0012132979893271518 Iter 30: T = 767.7146883997104 K, F = -41.02456043267744, relative_change = 0.0005171769194284906 Iter 35: T = 766.4967717442462 K, F = -17.166206627172794, relative_change = 0.00021804542221478821 Iter 40: T = 765.985369906847 K, F = -7.180740722140801, relative_change = 9.14999737712336e-5 Iter 45: T = 765.771133606568 K, F = -3.0033570995036962, relative_change = 3.8321008876227953e-5 Iter 50: T = 765.6814739307207 K, F = -1.2560898135800243, relative_change = 1.6035877940662984e-5 Iter 55: T = 765.6439660638003 K, F = -0.5253205114945234, relative_change = 6.708071702070203e-6 Iter 60: T = 765.6282778800331 K, F = -0.21969684232896514, relative_change = 2.805688945356561e-6 Iter 65: T = 765.6217165538134 K, F = -0.09188011093802739, relative_change = 1.173423921103749e-6 Iter 70: T = 765.618972469286 K, F = -0.03842540649753723, relative_change = 4.907488698673775e-7 Iter 75: T = 765.6178248499509 K, F = -0.016069972079631567, relative_change = 2.052386074434662e-7 Iter 80: T = 765.6173449000181 K, F = -0.006720655670146014, relative_change = 8.58335111556841e-8 Iter 85: T = 765.6171441789058 K, F = -0.002810658712173675, relative_change = 3.5896647426037194e-8 Iter 90: T = 765.6170602348839 K, F = -0.0011754510833705822, relative_change = 1.5012415043664342e-8 Iter 95: T = 765.6170251284816 K, F = -0.0004915876876779857, relative_change = 6.278372714408627e-9 Iter 100: T = 765.6170104465633 K, F = -0.000205587843160826, relative_change = 2.625690706093384e-9 Iter 105: T = 765.6170043064094 K, F = -8.597929212650346e-5, relative_change = 1.0980952638174662e-9 Iter 110: T = 765.6170017385236 K, F = -3.5957565942545955e-5, relative_change = 4.5923655003297524e-10 Iter 115: T = 765.6170006646032 K, F = -1.5037884507296262e-5, relative_change = 1.9205822379859756e-10 Iter 120: T = 765.6170002154768 K, F = -6.28902258326125e-6, relative_change = 8.03210391433686e-11 Iter 125: T = 765.6170000276468 K, F = -2.630144574133908e-6, relative_change = 3.3591220693143326e-11 Iter 130: T = 765.6169999490941 K, F = -1.0999588437865526e-6, relative_change = 1.404826208278897e-11 Iter 135: T = 765.6169999162423 K, F = -4.6001629905312313e-7, relative_change = 5.875155756306823e-12 Iter 140: T = 765.6169999025033 K, F = -1.9238344928229623e-7, relative_change = 2.4570493086704518e-12 Iter 145: T = 765.6169998967576 K, F = -8.045969079883974e-8, relative_change = 1.0276010145244011e-12 Iter 150: T = 765.6169998943546 K, F = -3.3649582231731756e-8, relative_change = 4.297598523789651e-13 Converged in 154 iterations to T = 765.6169998934873 K Iter 1: T = 964.3289847264448 K, F = -8127.6747619749685, relative_change = 0.03567101527355519 Iter 2: T = 930.5837674851471 K, F = -6895.178858505774, relative_change = 0.03499346983837721 Iter 3: T = 898.7333982998283 K, F = -5848.511803725753, relative_change = 0.03422622476146635 Iter 5: T = 840.6042517009914 K, F = -4204.976663440972, relative_change = 0.03239719056964698 Iter 10: T = 726.4591091960452 K, F = -1833.7821813524652, relative_change = 0.026002770507543366 Iter 15: T = 652.8249987274031 K, F = -791.8027293801291, relative_change = 0.017802378427965143 Iter 20: T = 611.1909137932903 K, F = -338.03955437892523, relative_change = 0.010201765393649092 Iter 25: T = 590.3950266945918 K, F = -142.97108670354388, relative_change = 0.005059193164515087 Iter 30: T = 580.8747618788892 K, F = -60.11641978357532, relative_change = 0.00229550793234284 Iter 35: T = 576.723513725731 K, F = -25.202192416056818, relative_change = 0.0009955025864390903 Iter 40: T = 574.9553976508072 K, F = -10.550821494743314, relative_change = 0.00042288129625384335 Iter 45: T = 574.2101641425689 K, F = -4.414422523774272, relative_change = 0.0001780262892023202 Iter 50: T = 573.8974723220551 K, F = -1.8465059426734989, relative_change = 7.465975429543825e-5 Iter 55: T = 573.7665203125288 K, F = -0.7722907448168168, relative_change = 3.1259959367762946e-5 Iter 60: T = 573.7117229606714 K, F = -0.3229917007138599, relative_change = 1.3079658349252504e-5 Iter 65: T = 573.6888005110274 K, F = -0.13508082169092195, relative_change = 5.471184246061611e-6 Iter 70: T = 573.6792130989948 K, F = -0.05649273384715106, relative_change = 2.2883096503599588e-6 Iter 75: T = 573.6752033591285 K, F = -0.02362599210509081, relative_change = 9.570325440953749e-7 Iter 80: T = 573.673526408355 K, F = -0.009880681870495844, relative_change = 4.0024840721358856e-7 Iter 85: T = 573.6728250823243 K, F = -0.004132220874418113, relative_change = 1.6738970763278037e-7 Iter 90: T = 573.672531778495 K, F = -0.0017281444193908424, relative_change = 7.000455736233902e-8 Iter 95: T = 573.672409115172 K, F = -0.0007227306872211181, relative_change = 2.9276773855002672e-8 Iter 100: T = 573.6723578158776 K, F = -0.0003022546136447479, relative_change = 1.2243902042756588e-8 Iter 105: T = 573.6723363618952 K, F = -0.00012640649078066168, relative_change = 5.120547036777261e-9 Iter 110: T = 573.6723273895827 K, F = -5.2864704260524586e-5, relative_change = 2.1414740907362175e-9 Iter 115: T = 573.6723236372543 K, F = -2.2108650643726246e-5, relative_change = 8.955900665916229e-10 Iter 120: T = 573.6723220679858 K, F = -9.246101191684453e-6, relative_change = 3.745464444328699e-10 Iter 125: T = 573.6723214116989 K, F = -3.866830262488907e-6, relative_change = 1.5663981000244907e-10 Iter 130: T = 573.6723211372318 K, F = -1.6171537766673794e-6, relative_change = 6.550860619774583e-11 Iter 135: T = 573.6723210224465 K, F = -6.763130338538481e-7, relative_change = 2.7396481944123422e-11 Iter 140: T = 573.6723209744418 K, F = -2.8284221009755584e-7, relative_change = 1.1457536846369968e-11 Iter 145: T = 573.6723209543658 K, F = -1.1828773482935873e-7, relative_change = 4.79166840069369e-12 Iter 150: T = 573.6723209459698 K, F = -4.946976600583852e-8, relative_change = 2.0039500707183268e-12 Iter 155: T = 573.6723209424584 K, F = -2.068916238329166e-8, relative_change = 8.380886300819621e-13 Iter 160: T = 573.6723209409898 K, F = -8.651985794472239e-9, relative_change = 3.504796756741657e-13 Converged in 163 iterations to T = 573.6723209405599 K Iter 1: T = 963.5495782884703 K, F = -8305.263260274383, relative_change = 0.03645042171152969 Iter 2: T = 928.9760404723136 K, F = -7047.317180168447, relative_change = 0.03588143111179484 Iter 3: T = 896.2457924401705 K, F = -5978.987630452774, relative_change = 0.035232607307613954 Iter 5: T = 836.1961463230127 K, F = -4301.2730065983005, relative_change = 0.03366618077115338 Iter 10: T = 716.3901365237136 K, F = -1879.7356338980053, relative_change = 0.027958861013349576 Iter 15: T = 636.6181267049035 K, F = -814.0216993462841, relative_change = 0.020052846518434135 Iter 20: T = 589.8520673902489 K, F = -348.55891013156213, relative_change = 0.012036080907906097 Iter 25: T = 565.7740074250728 K, F = -147.74118245518665, relative_change = 0.006171284516192983 Iter 30: T = 554.5377114454359 K, F = -62.19871545498332, relative_change = 0.002852890360104079 Iter 35: T = 549.5892285301994 K, F = -26.090680256284426, relative_change = 0.001248388029197835 Iter 40: T = 547.4718335846668 K, F = -10.925689332748401, relative_change = 0.0005324292203595859 Iter 45: T = 546.5775878142409 K, F = -4.571788630224342, relative_change = 0.00022452947391125454 Iter 50: T = 546.2020502959326 K, F = -1.9124230755563218, relative_change = 9.423044491658435e-5 Iter 55: T = 546.0447223288936 K, F = -0.7998764882902512, relative_change = 3.946623128853767e-5 Iter 60: T = 545.9788778755882 K, F = -0.3345316149109788, relative_change = 1.6515403834975494e-5 Iter 65: T = 545.951332529379 K, F = -0.13990751648950306, relative_change = 6.9087167718323975e-6 Iter 70: T = 545.939811265001 K, F = -0.05851141408569216, relative_change = 2.8896188920902575e-6 Iter 75: T = 545.9349926771968 K, F = -0.024470245577698224, relative_change = 1.2085275380354103e-6 Iter 80: T = 545.932977441199 K, F = -0.010233761779343598, relative_change = 5.054301658466693e-7 Iter 85: T = 545.9321346375613 K, F = -0.004279883638146409, relative_change = 2.113785959214909e-7 Iter 90: T = 545.9317821656373 K, F = -0.001789898842579768, relative_change = 8.840134431779495e-8 Iter 95: T = 545.9316347574284 K, F = -0.0007485571398093693, relative_change = 3.69705488092043e-8 Iter 100: T = 545.9315731095129 K, F = -0.0003130555480503616, relative_change = 1.5461533964283023e-8 Iter 105: T = 545.931547327611 K, F = -0.00013092357082208905, relative_change = 6.4661997039324015e-9 Iter 110: T = 545.9315365453105 K, F = -5.4753801308260464e-5, relative_change = 2.7042422145693845e-9 Iter 115: T = 545.9315320360233 K, F = -2.289869349694773e-5, relative_change = 1.1309464287122937e-9 Iter 120: T = 545.9315301501856 K, F = -9.576507001368695e-6, relative_change = 4.729753063114636e-10 Iter 125: T = 545.9315293615057 K, F = -4.00500885597288e-6, relative_change = 1.978038864474826e-10 Iter 130: T = 545.9315290316704 K, F = -1.6749426672291179e-6, relative_change = 8.272395443358406e-11 Iter 135: T = 545.9315288937294 K, F = -7.004812741517874e-7, relative_change = 3.4596157950933876e-11 Iter 140: T = 545.9315288360407 K, F = -2.929494453962622e-7, relative_change = 1.446851709481974e-11 Iter 145: T = 545.9315288119146 K, F = -1.2251501030347e-7, relative_change = 6.050909292294347e-12 Iter 150: T = 545.9315288018248 K, F = -5.1237073916965414e-8, relative_change = 2.5305543045988447e-12 Iter 155: T = 545.9315287976052 K, F = -2.1428309349147412e-8, relative_change = 1.0583254725598433e-12 Iter 160: T = 545.9315287958406 K, F = -8.961873493307237e-9, relative_change = 4.4261910006209814e-13 Converged in 164 iterations to T = 545.9315287952036 K Iter 1: T = 969.3621542143733 K, F = -6980.862306370273, relative_change = 0.03063784578562675 Iter 2: T = 940.8662962536318 K, F = -5914.207807362731, relative_change = 0.029396503501662008 Iter 3: T = 914.4731410948797 K, F = -5008.842740132879, relative_change = 0.028051972170589187 Iter 5: T = 867.8079693666697 K, F = -3588.6375536063188, relative_change = 0.02508576572756455 Iter 10: T = 783.7821307430644 K, F = -1547.4551307801826, relative_change = 0.016814387523860046 Iter 15: T = 737.0222884746926 K, F = -659.8054557454498, relative_change = 0.009446903957481134 Iter 20: T = 713.9577677827934 K, F = -278.8139368560942, relative_change = 0.004622226570210082 Iter 25: T = 703.4787892433425 K, F = -117.17938376289075, relative_change = 0.0020820763939911956 Iter 30: T = 698.9269445310885 K, F = -49.11315343816573, relative_change = 0.0008998595819443806 Iter 35: T = 696.9915813327727 K, F = -20.559010040147857, relative_change = 0.00038167694353934795 Iter 40: T = 696.1764729638929 K, F = -8.601439985531888, relative_change = 0.00016057629805902392 Iter 45: T = 695.8345724141349 K, F = -3.597825474745563, relative_change = 6.732332761824836e-5 Iter 50: T = 695.6914074908884 K, F = -1.504758838948622, relative_change = 2.8184981886413755e-5 Iter 55: T = 695.6315030030728 K, F = -0.6293265430261351, relative_change = 1.17924744721903e-5 Iter 60: T = 695.6064447675944 K, F = -0.2631950999096652, relative_change = 4.9326599563709575e-6 Iter 65: T = 695.595964158356 K, F = -0.11007189792249639, relative_change = 2.063055857583942e-6 Iter 70: T = 695.5915808751924 K, F = -0.046033480876416566, relative_change = 8.628223322362647e-7 Iter 75: T = 695.5897477045781 K, F = -0.01925176870539913, relative_change = 3.6084745457241945e-7 Iter 80: T = 695.5889810456191 K, F = -0.008051322603942701, relative_change = 1.50911563387984e-7 Iter 85: T = 695.588660418792 K, F = -0.0033671597925045704, relative_change = 6.311316644874835e-8 Iter 90: T = 695.5885263286673 K, F = -0.0014081865301537322, relative_change = 2.639470589922001e-8 Iter 95: T = 695.5884702505484 K, F = -0.0005889204405602477, relative_change = 1.1038585769930958e-8 Iter 100: T = 695.5884467980046 K, F = -0.0002462935640349384, relative_change = 4.61646918728538e-9 Iter 105: T = 695.5884369898698 K, F = -0.00010300291069953449, relative_change = 1.9306626920242063e-9 Iter 110: T = 695.5884328879906 K, F = -4.3077046590567214e-5, relative_change = 8.074262028635332e-10 Iter 115: T = 695.5884311725356 K, F = -1.8015334249055215e-5, relative_change = 3.37675264395078e-10 Iter 120: T = 695.588430455112 K, F = -7.534228380401409e-6, relative_change = 1.4121983737223402e-10 Iter 125: T = 695.5884301550768 K, F = -3.150904826276779e-6, relative_change = 5.905983275122096e-11 Iter 130: T = 695.5884300295986 K, F = -1.3177473134895479e-6, relative_change = 2.469955149418686e-11 Iter 135: T = 695.588429977122 K, F = -5.510964454780165e-7, relative_change = 1.0329624578927123e-11 Iter 140: T = 695.5884299551757 K, F = -2.3047637454087777e-7, relative_change = 4.319995970237222e-12 Iter 145: T = 695.5884299459975 K, F = -9.638809250755997e-8, relative_change = 1.8066761596157334e-12 Iter 150: T = 695.588429942159 K, F = -4.030934175336398e-8, relative_change = 7.555489984596101e-13 Iter 155: T = 695.5884299405537 K, F = -1.6857644946632888e-8, relative_change = 3.159758061515157e-13 Converged in 158 iterations to T = 695.5884299400838 K Iter 1: T = 966.4867904272584 K, F = -7636.016680441467, relative_change = 0.03351320957274159 Iter 2: T = 935.0130749724804 K, F = -6474.302776042576, relative_change = 0.032565075660128104 Iter 3: T = 905.5491204699658 K, F = -5487.91840681029, relative_change = 0.03151181014595084 Iter 5: T = 852.5257602119966 K, F = -3939.59770882472, relative_change = 0.029085086605626306 Iter 10: T = 752.5129137884176 K, F = -1709.0010558889824, relative_change = 0.02144477136852782 Iter 15: T = 692.5550193375914 K, F = -733.1663467656241, relative_change = 0.013257732517102388 Iter 20: T = 661.0604483836244 K, F = -311.22184108657217, relative_change = 0.0069540196368654324 Iter 25: T = 646.1651076893934 K, F = -131.13870896439613, relative_change = 0.0032578637348150905 Iter 30: T = 639.5578657440135 K, F = -55.033105125039775, relative_change = 0.0014349965033998487 Iter 35: T = 636.7211213300463 K, F = -23.050106045344812, relative_change = 0.0006138303514522064 Iter 40: T = 635.521280700702 K, F = -9.645998400031282, relative_change = 0.00025918798319327844 Iter 45: T = 635.0170870228202 K, F = -4.03515941904767, relative_change = 0.00010883486596236881 Iter 50: T = 634.8058027702541 K, F = -1.6877427460919197, relative_change = 4.5593342625741074e-5 Iter 55: T = 634.7173666704573 K, F = -0.7058676062927514, relative_change = 1.9081234314326746e-5 Iter 60: T = 634.680368587184 K, F = -0.29520811388093615, relative_change = 7.982373140152573e-6 Iter 65: T = 634.6648932629747 K, F = -0.12346058235202778, relative_change = 3.338739010695058e-6 Iter 70: T = 634.6584208980087 K, F = -0.05163286900891617, relative_change = 1.3963731651691638e-6 Iter 75: T = 634.6557140077914 K, F = -0.021593513757437566, relative_change = 5.839926392111681e-7 Iter 80: T = 634.654581941751 K, F = -0.009030670809526131, relative_change = 2.4423491827440803e-7 Iter 85: T = 634.654108496075 K, F = -0.0037767353380232516, relative_change = 1.0214234824554111e-7 Iter 90: T = 634.6539104950652 K, F = -0.0015794759891195054, relative_change = 4.271721784036802e-8 Iter 95: T = 634.653827688613 K, F = -0.000660555750141012, relative_change = 1.786486252218597e-8 Iter 100: T = 634.6537930579543 K, F = -0.00027625230884686935, relative_change = 7.47130094628621e-9 Iter 105: T = 634.6537785749973 K, F = -0.00011553201528430312, relative_change = 3.1245876369488327e-9 Iter 110: T = 634.6537725180514 K, F = -4.831686869616325e-5, relative_change = 1.3067399289480602e-9 Iter 115: T = 634.6537699849641 K, F = -2.0206691740853877e-5, relative_change = 5.464942605764412e-10 Iter 120: T = 634.6537689255969 K, F = -8.450680502869456e-6, relative_change = 2.2855044698622523e-10 Iter 125: T = 634.6537684825568 K, F = -3.5341753114592755e-6, relative_change = 9.558252138061537e-11 Iter 130: T = 634.6537682972721 K, F = -1.4780340941711323e-6, relative_change = 3.9973745825705235e-11 Iter 135: T = 634.653768219784 K, F = -6.18132378504832e-7, relative_change = 1.6717521400080184e-11 Iter 140: T = 634.6537681873774 K, F = -2.5851131429943663e-7, relative_change = 6.991493376334307e-12 Iter 145: T = 634.6537681738246 K, F = -1.0811275269473342e-7, relative_change = 2.9239323489099373e-12 Iter 150: T = 634.6537681681566 K, F = -4.521345164931745e-8, relative_change = 1.22280739869993e-12 Iter 155: T = 634.6537681657861 K, F = -1.8908358545566273e-8, relative_change = 5.113805711303106e-13 Converged in 160 iterations to T = 634.6537681647949 K Iter 1: T = 966.4509269440584 K, F = -7644.188209203548, relative_change = 0.033549073055941514 Iter 2: T = 934.9397176118687 K, F = -6481.294002453755, relative_change = 0.03260507952724406 Iter 3: T = 905.4366844909836 K, F = -5493.904041119087, relative_change = 0.03155608063827384 Iter 5: T = 852.3308995904772 K, F = -3943.9940688784063, relative_change = 0.029137844055376595 Iter 10: T = 752.0996998168315 K, F = -1711.0480749557407, relative_change = 0.02151178178309653 Iter 15: T = 691.9462467296231 K, F = -734.1119297712314, relative_change = 0.013318330335865674 Iter 20: T = 660.3176586732018 K, F = -311.64627094408655, relative_change = 0.006993763863845372 Iter 25: T = 645.3488066037921 K, F = -131.32342613164568, relative_change = 0.0032787133196568678 Iter 30: T = 638.7065068612397 K, F = -55.11186092755344, relative_change = 0.0014446700093640114 Iter 35: T = 635.8542111272602 K, F = -23.08332784349534, relative_change = 0.0006180631714902428 Iter 40: T = 634.6476992850892 K, F = -9.659943800732899, relative_change = 0.0002609926274999299 Iter 45: T = 634.1406853969204 K, F = -4.04100072037834, relative_change = 0.00010959574060764669 Iter 50: T = 633.9282163404228 K, F = -1.6901872616445215, relative_change = 4.591263494264129e-5 Iter 55: T = 633.8392837990162 K, F = -0.706890214845859, relative_change = 1.921495673482484e-5 Iter 60: T = 633.8020779327077 K, F = -0.295635830533483, relative_change = 8.038330834996015e-6 Iter 65: T = 633.7865156822252 K, F = -0.1236394672334935, relative_change = 3.3621470292791285e-6 Iter 70: T = 633.7800069585921 K, F = -0.05170768231962547, relative_change = 1.4061637002112219e-6 Iter 75: T = 633.7772848618607 K, F = -0.021624801843162678, relative_change = 5.880873366899115e-7 Iter 80: T = 633.7761464361195 K, F = -0.009043755905767559, relative_change = 2.4594740089818415e-7 Iter 85: T = 633.7756703307138 K, F = -0.003782207690246564, relative_change = 1.0285853441561215e-7 Iter 90: T = 633.7754712173685 K, F = -0.0015817645942314829, relative_change = 4.301673642370915e-8 Iter 95: T = 633.7753879457233 K, F = -0.0006615128724014596, relative_change = 1.7990124938570733e-8 Iter 100: T = 633.7753531205153 K, F = -0.0002766525885551929, relative_change = 7.523687206059524e-9 Iter 105: T = 633.7753385561954 K, F = -0.00011569941745903645, relative_change = 3.146496212705665e-9 Iter 110: T = 633.7753324652225 K, F = -4.838687744601611e-5, relative_change = 1.3159023350206772e-9 Iter 115: T = 633.7753299179049 K, F = -2.0235970972670714e-5, relative_change = 5.503261084291884e-10 Iter 120: T = 633.7753288525862 K, F = -8.462924210250744e-6, relative_change = 2.3015293855285713e-10 Iter 125: T = 633.7753284070571 K, F = -3.5392962280944573e-6, relative_change = 9.625271475840612e-11 Iter 130: T = 633.7753282207316 K, F = -1.4801751169746247e-6, relative_change = 4.0254012194614007e-11 Iter 135: T = 633.7753281428081 K, F = -6.190271754635823e-7, relative_change = 1.6834715837830262e-11 Iter 140: T = 633.7753281102196 K, F = -2.588848750928463e-7, relative_change = 7.040487850478203e-12 Iter 145: T = 633.7753280965907 K, F = -1.0826915053385733e-7, relative_change = 2.9444270883723186e-12 Iter 150: T = 633.7753280908909 K, F = -4.5280217797483147e-8, relative_change = 1.2314154050218016e-12 Iter 155: T = 633.7753280885071 K, F = -1.8936456847029604e-8, relative_change = 5.149852587430917e-13 Converged in 160 iterations to T = 633.7753280875102 K Iter 1: T = 976.4681097958153 K, F = -5361.763567629919, relative_change = 0.023531890204184776 Iter 2: T = 955.0972502036768 K, F = -4533.686363076013, relative_change = 0.021885875614112243 Iter 3: T = 935.7955219959723 K, F = -3831.761354399895, relative_change = 0.020209175770936838 Iter 5: T = 902.9774882418584 K, F = -2733.3032943043418, relative_change = 0.016856983893056537 Iter 10: T = 848.9475035316415 K, F = -1165.4930013676258, relative_change = 0.009478942889106752 Iter 15: T = 822.2825266374894 K, F = -492.52081442578924, relative_change = 0.004640563548627636 Iter 20: T = 810.1638299409753 K, F = -206.99989725444874, relative_change = 0.002090976608866407 Iter 25: T = 804.8988770343232 K, F = -86.76026906187906, relative_change = 0.0009038359667787111 Iter 30: T = 802.6601489504035 K, F = -36.31843264649369, relative_change = 0.0003833877428474689 Iter 35: T = 801.7172437926713 K, F = -15.19486497240613, relative_change = 0.0001613004052023711 Iter 40: T = 801.3217330225306 K, F = -6.355739731239011, relative_change = 6.762768738437626e-5 Iter 45: T = 801.1561188097028 K, F = -2.658233052152644, relative_change = 2.8312537774264497e-5 Iter 50: T = 801.0868207024494 K, F = -1.1117375075419456, relative_change = 1.1845867025297145e-5 Iter 55: T = 801.0578330575598 K, F = -0.4649476237642972, relative_change = 4.954997615614718e-6 Iter 60: T = 801.0457089674277 K, F = -0.19444764966802386, relative_change = 2.0723991780273224e-6 Iter 65: T = 801.0406383338216 K, F = -0.0813205043180395, relative_change = 8.667300731400979e-7 Iter 70: T = 801.0385177003022 K, F = -0.03400923668581746, relative_change = 3.624817626971809e-7 Iter 75: T = 801.037630820094 K, F = -0.014223074286725645, relative_change = 1.5159505824297143e-7 Iter 80: T = 801.0372599151598 K, F = -0.005948260462496968, relative_change = 6.33990135349078e-8 Iter 85: T = 801.0371047981049 K, F = -0.0024876337272335958, relative_change = 2.6514250804621474e-8 Iter 90: T = 801.0370399262682 K, F = -0.0010403581599417455, relative_change = 1.1088580892585328e-8 Iter 95: T = 801.0370127960858 K, F = -0.0004350902118051003, relative_change = 4.637377754059668e-9 Iter 100: T = 801.0370014499186 K, F = -0.00018195992313030374, relative_change = 1.939406894632606e-9 Iter 105: T = 801.0369967048158 K, F = -7.609781156414641e-5, relative_change = 8.110831332391011e-10 Iter 110: T = 801.0369947203573 K, F = -3.182501626819434e-5, relative_change = 3.392046851820967e-10 Iter 115: T = 801.0369938904329 K, F = -1.3309601709088348e-5, relative_change = 1.4185944924128985e-10 Iter 120: T = 801.0369935433486 K, F = -5.566234034470874e-6, relative_change = 5.932731221911649e-11 Iter 125: T = 801.0369933981938 K, F = -2.327865598616974e-6, relative_change = 2.481139104773076e-11 Iter 130: T = 801.0369933374883 K, F = -9.735404832289518e-7, relative_change = 1.037641247555565e-11 Iter 135: T = 801.0369933121005 K, F = -4.0714832472144025e-7, relative_change = 4.339561661233047e-12 Iter 140: T = 801.0369933014831 K, F = -1.702725581642639e-7, relative_change = 1.8148380345710282e-12 Iter 145: T = 801.0369932970427 K, F = -7.121098666296177e-8, relative_change = 7.589972716214688e-13 Iter 150: T = 801.0369932951858 K, F = -2.9780133137258247e-8, relative_change = 3.174094456369733e-13 Converged in 153 iterations to T = 801.036993294642 K Iter 1: T = 965.183369247122 K, F = -7933.002436209182, relative_change = 0.03481663075287802 Iter 2: T = 932.3413586769082 K, F = -6728.475968505049, relative_change = 0.034026705822575186 Iter 3: T = 901.4445109276962 K, F = -5705.623854088365, relative_change = 0.03313898655430004 Iter 5: T = 845.3732667540797 K, F = -4099.6880004414425, relative_change = 0.031051466122997445 Iter 10: T = 737.0774115169775 K, F = -1783.966878922435, relative_change = 0.02406101761845077 Iter 15: T = 669.3679182717086 K, F = -768.1300124811689, relative_change = 0.0157559978373592 Iter 20: T = 632.3274803267325 K, F = -327.07545218591827, relative_change = 0.008669481626405042 Iter 25: T = 614.2935850951949 K, F = -138.08809943355246, relative_change = 0.004184051020552575 Iter 30: T = 606.1626854750691 K, F = -58.007625411306734, relative_change = 0.0018711033030381487 Iter 35: T = 602.6441754932453 K, F = -24.307168057565974, relative_change = 0.0008059543034652247 Iter 40: T = 601.1507319779246 K, F = -10.17409908589132, relative_change = 0.0003413413481199545 Iter 45: T = 600.5222115918332 K, F = -4.256441342953901, relative_change = 0.00014351593156252217 Iter 50: T = 600.2586591365521 K, F = -1.7803601720192161, relative_change = 6.015455842183693e-5 Iter 55: T = 600.1483157385946 K, F = -0.7446144218509191, relative_change = 2.518095321237389e-5 Iter 60: T = 600.1021473237657 K, F = -0.31141478935317257, relative_change = 1.0535108445139538e-5 Iter 65: T = 600.0828353799036 K, F = -0.13023880910258587, relative_change = 4.406631465429887e-6 Iter 70: T = 600.074758236243 K, F = -0.05446767462582619, relative_change = 1.8430324409832262e-6 Iter 75: T = 600.0713801631834 K, F = -0.022779075607850252, relative_change = 7.708003106504722e-7 Iter 80: T = 600.0699673925517 K, F = -0.009526489083323597, relative_change = 3.2236176649745836e-7 Iter 85: T = 600.0693765514796 K, F = -0.0039840928370944995, relative_change = 1.3481621761836023e-7 Iter 90: T = 600.0691294540715 K, F = -0.0016661954381230748, relative_change = 5.63818706908043e-8 Iter 95: T = 600.0690261148766 K, F = -0.0006968228715711899, relative_change = 2.3579592377024965e-8 Iter 100: T = 600.0689828971723 K, F = -0.0002914196540120817, relative_change = 9.861270760165285e-9 Iter 105: T = 600.068964823009 K, F = -0.00012187518128553565, relative_change = 4.1241018489983476e-9 Iter 110: T = 600.0689572641775 K, F = -5.096965657280794e-5, relative_change = 1.7247487577355744e-9 Iter 115: T = 600.0689541029838 K, F = -2.1316119444725334e-5, relative_change = 7.213105585989891e-10 Iter 120: T = 600.0689527809348 K, F = -8.914655966252294e-6, relative_change = 3.0166070137001265e-10 Iter 125: T = 600.068952228038 K, F = -3.7282149342177107e-6, relative_change = 1.2615808631374227e-10 Iter 130: T = 600.06895199681 K, F = -1.559184902799604e-6, relative_change = 5.2760848657620535e-11 Iter 135: T = 600.0689519001077 K, F = -6.520690933875528e-7, relative_change = 2.2065194907386842e-11 Iter 140: T = 600.0689518596656 K, F = -2.727035964267266e-7, relative_change = 9.227945427947933e-12 Iter 145: T = 600.0689518427523 K, F = -1.1404798594405463e-7, relative_change = 3.859239864785262e-12 Iter 150: T = 600.068951835679 K, F = -4.769636019474888e-8, relative_change = 1.6139846149440723e-12 Iter 155: T = 600.0689518327208 K, F = -1.99477855900021e-8, relative_change = 6.750078813931512e-13 Iter 160: T = 600.0689518314836 K, F = -8.34171104413528e-9, relative_change = 2.82272970788949e-13 Converged in 162 iterations to T = 600.0689518312217 K Iter 1: T = 964.6178674746017 K, F = -8061.852553008984, relative_change = 0.03538213252539829 Iter 2: T = 931.1786008416178 K, F = -6838.805305057745, relative_change = 0.03466581717020116 Iter 3: T = 899.6519133463106 K, F = -5800.182523105338, relative_change = 0.03385675687436633 Iter 5: T = 842.2240389788547 K, F = -4169.345183134476, relative_change = 0.031936974011467154 Iter 10: T = 730.096569856546 K, F = -1816.8754776401618, relative_change = 0.025323975044390316 Iter 15: T = 658.5516227525312 K, F = -783.7239886548897, relative_change = 0.01706690493031271 Iter 20: T = 618.5753667925878 K, F = -334.2728820413324, relative_change = 0.009636977843324951 Iter 25: T = 598.7944013604189 K, F = -141.28478981936087, relative_change = 0.0047311404850067795 Iter 30: T = 589.7902286214584 K, F = -59.38596772845121, relative_change = 0.0021349817151443415 Iter 35: T = 585.8752998729459 K, F = -24.891715595436033, relative_change = 0.0009235058354093511 Iter 40: T = 584.2100251731696 K, F = -10.420053802494447, relative_change = 0.0003918523700032511 Iter 45: T = 583.5085378354927 K, F = -4.359568706290914, relative_change = 0.00016488345683501106 Iter 50: T = 583.2142727622462 K, F = -1.8235362369190302, relative_change = 6.913379178354951e-5 Iter 55: T = 583.0910502556893 K, F = -0.7626794137929068, relative_change = 2.8943750508367398e-5 Iter 60: T = 583.0394895500925 K, F = -0.31897122922281107, relative_change = 1.2110082978071221e-5 Iter 65: T = 583.0179214185406 K, F = -0.13339925530896513, relative_change = 5.065537068239367e-6 Iter 70: T = 583.0089005234638 K, F = -0.055789455203360455, relative_change = 2.1186353036426708e-6 Iter 75: T = 583.005127729615 K, F = -0.023331867767306946, relative_change = 8.860678336713748e-7 Iter 80: T = 583.0035498763195 K, F = -0.00975767471892558, relative_change = 3.705692656030791e-7 Iter 85: T = 583.0028899947065 K, F = -0.004080777668302504, relative_change = 1.549773871420788e-7 Iter 90: T = 583.0026140235444 K, F = -0.0017066302299875713, relative_change = 6.481355060768507e-8 Iter 95: T = 583.0024986089704 K, F = -0.0007137331915142431, relative_change = 2.7105828266335242e-8 Iter 100: T = 583.002450341193 K, F = -0.0002984917525779007, relative_change = 1.133598586925641e-8 Iter 105: T = 583.0024301550278 K, F = -0.00012483281716030303, relative_change = 4.7408455087916085e-9 Iter 110: T = 583.0024217129318 K, F = -5.220657504928505e-5, relative_change = 1.9826783496907307e-9 Iter 115: T = 583.0024181823462 K, F = -2.1833413392402523e-5, relative_change = 8.291797966093889e-10 Iter 120: T = 583.0024167058133 K, F = -9.130994819805949e-6, relative_change = 3.4677292014514333e-10 Iter 125: T = 583.0024160883096 K, F = -3.818692321355677e-6, relative_change = 1.450246243944393e-10 Iter 130: T = 583.0024158300621 K, F = -1.597023037314127e-6, relative_change = 6.065104154344708e-11 Iter 135: T = 583.0024157220598 K, F = -6.678934509340984e-7, relative_change = 2.5364965018322106e-11 Iter 140: T = 583.002415676892 K, F = -2.7932152157905676e-7, relative_change = 1.0607950439432665e-11 Iter 145: T = 583.0024156580023 K, F = -1.1681511730143868e-7, relative_change = 4.436353375479528e-12 Iter 150: T = 583.0024156501024 K, F = -4.8853330436582354e-8, relative_change = 1.8553303922168074e-12 Iter 155: T = 583.0024156467987 K, F = -2.043204994084391e-8, relative_change = 7.759594462197734e-13 Iter 160: T = 583.0024156454169 K, F = -8.544922325270932e-9, relative_change = 3.2451531856960434e-13 Converged in 163 iterations to T = 583.0024156450124 K Iter 1: T = 964.3347864733081 K, F = -8126.352828433278, relative_change = 0.03566521352669188 Iter 2: T = 930.5957194014837 K, F = -6894.046602537627, relative_change = 0.03498688167748499 Iter 3: T = 898.7518637694517 K, F = -5847.5410235152185, relative_change = 0.03421878584667518 Iter 5: T = 840.6368566283206 K, F = -4204.26074363811, relative_change = 0.03238789473558199 Iter 10: T = 726.5326507948246 K, F = -1833.441984737128, relative_change = 0.02598890322244203 Iter 15: T = 652.9414223398898 K, F = -791.6396902187113, relative_change = 0.017787128373127594 Iter 20: T = 611.3417996900454 K, F = -337.9632585730356, relative_change = 0.01018988817349093 Iter 25: T = 590.5672264580057 K, F = -142.936828540247, relative_change = 0.005052226852233715 Iter 30: T = 581.0578680958351 K, F = -60.101554252100115, relative_change = 0.0022920809772114027 Iter 35: T = 576.9116300689047 K, F = -25.19586843275727, relative_change = 0.000993961715740108 Iter 40: T = 575.1456975117036 K, F = -10.548156910733793, relative_change = 0.0004222164792976992 Iter 45: T = 574.4013934139906 K, F = -4.413304610777341, relative_change = 0.00017774456074097142 Iter 50: T = 574.089093186411 K, F = -1.8460377903713776, relative_change = 7.454127652296158e-5 Iter 55: T = 573.9583054580274 K, F = -0.7720948476630776, relative_change = 3.1210295186298684e-5 Iter 60: T = 573.9035769004535 K, F = -0.3229097548635704, relative_change = 1.305886796676127e-5 Iter 65: T = 573.8806832371575 K, F = -0.13504654757462606, relative_change = 5.4624859179501485e-6 Iter 70: T = 573.8711078666774 K, F = -0.056478399409954194, relative_change = 2.284671285887727e-6 Iter 75: T = 573.8671031632149 K, F = -0.023619997169385565, relative_change = 9.55510828232609e-7 Iter 80: T = 573.8654283188099 K, F = -0.009878174699222697, relative_change = 3.996119885251833e-7 Iter 85: T = 573.8647278737023 K, F = -0.004131172342724754, relative_change = 1.6712354643797956e-7 Iter 90: T = 573.8644349382881 K, F = -0.0017277059096844072, relative_change = 6.989324496454498e-8 Iter 95: T = 573.8643124290413 K, F = -0.00072254729740856, relative_change = 2.92302215907703e-8 Iter 100: T = 573.8642611941834 K, F = -0.00030217791749687084, relative_change = 1.2224433299172479e-8 Iter 105: T = 573.8642397671492 K, F = -0.00012637441557206142, relative_change = 5.112404974189018e-9 Iter 110: T = 573.8642308061067 K, F = -5.2851289622068975e-5, relative_change = 2.1380689660977262e-9 Iter 115: T = 573.8642270584916 K, F = -2.2103040080267977e-5, relative_change = 8.941659864737781e-10 Iter 120: T = 573.8642254911941 K, F = -9.243755373256057e-6, relative_change = 3.739509008492102e-10 Iter 125: T = 573.8642248357318 K, F = -3.865849127648868e-6, relative_change = 1.5639074308209216e-10 Iter 130: T = 573.8642245616096 K, F = -1.6167449247705967e-6, relative_change = 6.540450296565532e-11 Iter 135: T = 573.8642244469684 K, F = -6.761424025669704e-7, relative_change = 2.735295910839573e-11 Iter 140: T = 573.864224399024 K, F = -2.827711561015356e-7, relative_change = 1.1439347456380662e-11 Iter 145: T = 573.864224378973 K, F = -1.1825751022875863e-7, relative_change = 4.784040804262734e-12 Iter 150: T = 573.8642243705875 K, F = -4.9456696460392635e-8, relative_change = 2.0007427305828404e-12 Iter 155: T = 573.8642243670806 K, F = -2.0683831813972375e-8, relative_change = 8.367527373517325e-13 Iter 160: T = 573.8642243656141 K, F = -8.650553995348531e-9, relative_change = 3.499532775360919e-13 Converged in 163 iterations to T = 573.8642243651847 K Iter 1: T = 979.9433512430377 K, F = -4569.926498072242, relative_change = 0.02005664875696235 Iter 2: T = 961.9389239733134 K, F = -3860.4403392927675, relative_change = 0.018372926605283866 Iter 3: T = 945.8672402861964 K, F = -3259.5825777055147, relative_change = 0.016707592640843073 Iter 5: T = 919.0033512997412 K, F = -2320.674698084028, relative_change = 0.01352171377155034 Iter 10: T = 876.2731190823922 K, F = -985.422353091615, relative_change = 0.00712791566107287 Iter 15: T = 856.0037791194719 K, F = -415.3064043518931, relative_change = 0.0033493223426576493 Iter 20: T = 846.9981515801096 K, F = -174.30293193057892, relative_change = 0.0014774839945223108 Iter 25: T = 843.1287031566 K, F = -73.00845151572324, relative_change = 0.0006324321691831993 Iter 30: T = 841.4915065090636 K, F = -30.553141260215284, relative_change = 0.00026712074864743054 Iter 35: T = 840.80342749771 K, F = -12.781239665307885, relative_change = 0.000112179831734934 Iter 40: T = 840.5150675506806 K, F = -5.345890344563928, relative_change = 4.699708110802862e-5 Iter 45: T = 840.3943671573427 K, F = -2.2358243575049546, relative_change = 1.966914317383024e-5 Iter 50: T = 840.3438704497379 K, F = -0.9350675536209074, relative_change = 8.228392314468477e-6 Iter 55: T = 840.3227489099966 K, F = -0.39105976043521795, relative_change = 3.4416531870169666e-6 Iter 60: T = 840.3139150676245 K, F = -0.1635464466851495, relative_change = 1.4394176548493024e-6 Iter 65: T = 840.3102205509049 K, F = -0.068397179407927, relative_change = 6.019951551374587e-7 Iter 70: T = 840.3086754426903 K, F = -0.028604535142106258, relative_change = 2.5176392470299597e-7 Iter 75: T = 840.3080292569741 K, F = -0.01196276133463603, relative_change = 1.0529109304666603e-7 Iter 80: T = 840.3077590138644 K, F = -0.005002970202973689, relative_change = 4.403406479672129e-8 Iter 85: T = 840.3076459948765 K, F = -0.0020923019815779487, relative_change = 1.841558440150784e-8 Iter 90: T = 840.3075987289699 K, F = -0.0008750256920322386, relative_change = 7.701619528438648e-9 Iter 95: T = 840.3075789618005 K, F = -0.00036594619832608366, relative_change = 3.220909658673872e-9 Iter 100: T = 840.3075706949337 K, F = -0.00015304307131125405, relative_change = 1.3470229556261304e-9 Iter 105: T = 840.3075672376311 K, F = -6.40044406536866e-5, relative_change = 5.633411024280001e-10 Iter 110: T = 840.3075657917458 K, F = -2.6767419387452307e-5, relative_change = 2.3559596047417435e-10 Iter 115: T = 840.3075651870594 K, F = -1.1194454178076185e-5, relative_change = 9.852904215116662e-11 Iter 120: T = 840.3075649341723 K, F = -4.681653976934541e-6, relative_change = 4.120601820809781e-11 Iter 125: T = 840.307564828412 K, F = -1.957923204454204e-6, relative_change = 1.72328454128877e-11 Iter 130: T = 840.3075647841817 K, F = -8.18828596926835e-7, relative_change = 7.20699698636126e-12 Iter 135: T = 840.3075647656841 K, F = -3.4244335656019587e-7, relative_change = 3.0140474432013026e-12 Iter 140: T = 840.3075647579482 K, F = -1.4321452623811126e-7, relative_change = 1.2605161361344962e-12 Iter 145: T = 840.3075647547129 K, F = -5.989535800665635e-8, relative_change = 5.271746325704462e-13 Converged in 150 iterations to T = 840.3075647533599 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 1 ray tracing: 12%|███▊ | ETA: 0:00:15 Bin 1 ray tracing: 18%|█████▌ | ETA: 0:00:14 Bin 1 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 1 ray tracing: 30%|█████████▏ | ETA: 0:00:12 Bin 1 ray tracing: 37%|███████████▏ | ETA: 0:00:10 Bin 1 ray tracing: 44%|█████████████▏ | ETA: 0:00:09 Bin 1 ray tracing: 50%|███████████████ | ETA: 0:00:08 Bin 1 ray tracing: 56%|████████████████▊ | ETA: 0:00:07 Bin 1 ray tracing: 62%|██████████████████▋ | ETA: 0:00:06 Bin 1 ray tracing: 68%|████████████████████▍ | ETA: 0:00:05 Bin 1 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 1 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 1 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 1 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:02 Bin 1 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 2 ray tracing: 13%|███▊ | ETA: 0:00:14 Bin 2 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 2 ray tracing: 26%|███████▋ | ETA: 0:00:12 Bin 2 ray tracing: 32%|█████████▌ | ETA: 0:00:11 Bin 2 ray tracing: 38%|███████████▍ | ETA: 0:00:10 Bin 2 ray tracing: 44%|█████████████▏ | ETA: 0:00:09 Bin 2 ray tracing: 50%|██████████████▉ | ETA: 0:00:08 Bin 2 ray tracing: 56%|████████████████▉ | ETA: 0:00:07 Bin 2 ray tracing: 63%|███████████████████ | ETA: 0:00:06 Bin 2 ray tracing: 69%|████████████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 76%|██████████████████████▋ | ETA: 0:00:04 Bin 2 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 2 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:02 Bin 2 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 3 ray tracing: 18%|█████▌ | ETA: 0:00:10 Bin 3 ray tracing: 26%|███████▋ | ETA: 0:00:10 Bin 3 ray tracing: 32%|█████████▌ | ETA: 0:00:10 Bin 3 ray tracing: 38%|███████████▍ | ETA: 0:00:09 Bin 3 ray tracing: 44%|█████████████▎ | ETA: 0:00:08 Bin 3 ray tracing: 50%|███████████████ | ETA: 0:00:08 Bin 3 ray tracing: 56%|████████████████▉ | ETA: 0:00:07 Bin 3 ray tracing: 62%|██████████████████▊ | ETA: 0:00:06 Bin 3 ray tracing: 69%|████████████████████▌ | ETA: 0:00:05 Bin 3 ray tracing: 74%|██████████████████████▍ | ETA: 0:00:04 Bin 3 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:03 Bin 3 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 3 ray tracing: 93%|███████████████████████████▊ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 10%|███ | ETA: 0:00:11 Bin 4 ray tracing: 19%|█████▊ | ETA: 0:00:09 Bin 4 ray tracing: 28%|████████▍ | ETA: 0:00:09 Bin 4 ray tracing: 35%|██████████▍ | ETA: 0:00:09 Bin 4 ray tracing: 41%|████████████▍ | ETA: 0:00:08 Bin 4 ray tracing: 49%|██████████████▊ | ETA: 0:00:07 Bin 4 ray tracing: 57%|█████████████████ | ETA: 0:00:06 Bin 4 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 4 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 4 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 4 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 4 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 4 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██ | ETA: 0:00:14 Bin 5 ray tracing: 13%|████ | ETA: 0:00:13 Bin 5 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 5 ray tracing: 27%|████████ | ETA: 0:00:11 Bin 5 ray tracing: 34%|██████████▏ | ETA: 0:00:10 Bin 5 ray tracing: 41%|████████████▎ | ETA: 0:00:09 Bin 5 ray tracing: 47%|██████████████▎ | ETA: 0:00:08 Bin 5 ray tracing: 54%|████████████████▏ | ETA: 0:00:07 Bin 5 ray tracing: 60%|██████████████████▏ | ETA: 0:00:06 Bin 5 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 5 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 5 ray tracing: 81%|████████████████████████▏ | ETA: 0:00:03 Bin 5 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 5 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 6 ray tracing: 13%|███▉ | ETA: 0:00:13 Bin 6 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 6 ray tracing: 27%|████████ | ETA: 0:00:11 Bin 6 ray tracing: 34%|██████████▍ | ETA: 0:00:10 Bin 6 ray tracing: 42%|████████████▋ | ETA: 0:00:09 Bin 6 ray tracing: 49%|██████████████▊ | ETA: 0:00:08 Bin 6 ray tracing: 56%|████████████████▊ | ETA: 0:00:06 Bin 6 ray tracing: 63%|██████████████████▉ | ETA: 0:00:05 Bin 6 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:04 Bin 6 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:03 Bin 6 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 6 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 6 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 7 ray tracing: 14%|████▎ | ETA: 0:00:13 Bin 7 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 7 ray tracing: 27%|████████▎ | ETA: 0:00:11 Bin 7 ray tracing: 34%|██████████▎ | ETA: 0:00:10 Bin 7 ray tracing: 41%|████████████▎ | ETA: 0:00:09 Bin 7 ray tracing: 47%|██████████████▏ | ETA: 0:00:08 Bin 7 ray tracing: 54%|████████████████▎ | ETA: 0:00:07 Bin 7 ray tracing: 61%|██████████████████▍ | ETA: 0:00:06 Bin 7 ray tracing: 68%|████████████████████▍ | ETA: 0:00:05 Bin 7 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:04 Bin 7 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 7 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██ | ETA: 0:00:14 Bin 8 ray tracing: 13%|████ | ETA: 0:00:13 Bin 8 ray tracing: 20%|██████▏ | ETA: 0:00:12 Bin 8 ray tracing: 27%|████████▏ | ETA: 0:00:11 Bin 8 ray tracing: 34%|██████████▏ | ETA: 0:00:10 Bin 8 ray tracing: 41%|████████████▎ | ETA: 0:00:09 Bin 8 ray tracing: 48%|██████████████▎ | ETA: 0:00:08 Bin 8 ray tracing: 55%|████████████████▍ | ETA: 0:00:07 Bin 8 ray tracing: 61%|██████████████████▍ | ETA: 0:00:06 Bin 8 ray tracing: 68%|████████████████████▍ | ETA: 0:00:05 Bin 8 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:04 Bin 8 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 8 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 8 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 7%|██ | ETA: 0:00:14 Bin 9 ray tracing: 13%|████ | ETA: 0:00:13 Bin 9 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 9 ray tracing: 27%|████████ | ETA: 0:00:11 Bin 9 ray tracing: 34%|██████████ | ETA: 0:00:10 Bin 9 ray tracing: 40%|████████████▏ | ETA: 0:00:09 Bin 9 ray tracing: 47%|██████████████▏ | ETA: 0:00:08 Bin 9 ray tracing: 53%|████████████████ | ETA: 0:00:07 Bin 9 ray tracing: 60%|██████████████████ | ETA: 0:00:06 Bin 9 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 9 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:04 Bin 9 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 9 ray tracing: 86%|█████████████████████████▋ | ETA: 0:00:02 Bin 9 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 9 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 10 ray tracing: 13%|███▊ | ETA: 0:00:14 Bin 10 ray tracing: 19%|█████▌ | ETA: 0:00:13 Bin 10 ray tracing: 26%|███████▍ | ETA: 0:00:12 Bin 10 ray tracing: 32%|█████████▎ | ETA: 0:00:11 Bin 10 ray tracing: 38%|███████████ | ETA: 0:00:10 Bin 10 ray tracing: 44%|████████████▉ | ETA: 0:00:09 Bin 10 ray tracing: 51%|██████████████▋ | ETA: 0:00:08 Bin 10 ray tracing: 57%|████████████████▌ | ETA: 0:00:07 Bin 10 ray tracing: 63%|██████████████████▍ | ETA: 0:00:06 Bin 10 ray tracing: 70%|████████████████████▏ | ETA: 0:00:05 Bin 10 ray tracing: 76%|██████████████████████ | ETA: 0:00:04 Bin 10 ray tracing: 82%|███████████████████████▉ | ETA: 0:00:03 Bin 10 ray tracing: 89%|█████████████████████████▊ | ETA: 0:00:02 Bin 10 ray tracing: 95%|███████████████████████████▋ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2464954299217 K, F = -7462.917172918638, relative_change = 0.032753504570078404 Iter 2: T = 936.564975264262 K, F = -6326.236788309833, relative_change = 0.03172047695248808 Iter 3: T = 907.9242736286872 K, F = -5361.182946157372, relative_change = 0.030580581584842552 Iter 5: T = 856.6283532209857 K, F = -3846.5799070229436, relative_change = 0.027984776764420877 Iter 10: T = 761.1231395308351 K, F = -1665.834961249608, relative_change = 0.020084576883642527 Iter 15: T = 705.1040236429957 K, F = -713.331325487931, relative_change = 0.012063367961584939 Iter 20: T = 676.2486637356914 K, F = -302.3648023897336, relative_change = 0.0061884449721429785 Iter 25: T = 662.7789469824947 K, F = -127.29740320581638, relative_change = 0.002861666464586335 Iter 30: T = 656.8459207219944 K, F = -53.398331369121884, relative_change = 0.0012524083676903012 Iter 35: T = 654.307063565622 K, F = -22.361091475235646, relative_change = 0.000534178279637151 Iter 40: T = 653.2347854677 K, F = -9.356880859646783, relative_change = 0.00022527331848821785 Iter 45: T = 652.7844772061252 K, F = -3.9140761711567755, relative_change = 9.454373278828346e-5 Iter 50: T = 652.5958236207932 K, F = -1.6370742319688727, relative_change = 3.959764035155509e-5 Iter 55: T = 652.5168686642326 K, F = -0.6846721593326804, relative_change = 1.657042881520752e-5 Iter 60: T = 652.4838386404526 K, F = -0.28634300230128146, relative_change = 6.931740809791415e-6 Iter 65: T = 652.4700233194221 K, F = -0.11975292539759691, relative_change = 2.8992499081885037e-6 Iter 70: T = 652.4642452774231 K, F = -0.05008225435449387, relative_change = 1.2125557093513075e-6 Iter 75: T = 652.4618287770734 K, F = -0.020945023252546158, relative_change = 5.071148591137669e-7 Iter 80: T = 652.4608181582914 K, F = -0.008759463471672835, relative_change = 2.120831659565153e-7 Iter 85: T = 652.4603955037901 K, F = -0.003663313039545424, relative_change = 8.869600586535474e-8 Iter 90: T = 652.4602187443403 K, F = -0.0015320414033015428, relative_change = 3.709378016430348e-8 Iter 95: T = 652.4601448213767 K, F = -0.0006407180368951382, relative_change = 1.5513070845781387e-8 Iter 100: T = 652.4601139059016 K, F = -0.00026795593955297736, relative_change = 6.4877530711026014e-9 Iter 105: T = 652.4601009766792 K, F = -0.00011206237452260348, relative_change = 2.7132560833284835e-9 Iter 110: T = 652.4600955695237 K, F = -4.686582333646161e-5, relative_change = 1.1347161420305571e-9 Iter 115: T = 652.4600933081866 K, F = -1.9599848227414007e-5, relative_change = 4.745518791447589e-10 Iter 120: T = 652.4600923624685 K, F = -8.19689014930347e-6, relative_change = 1.984632536540827e-10 Iter 125: T = 652.4600919669577 K, F = -3.428037515185167e-6, relative_change = 8.299970702098742e-11 Iter 130: T = 652.4600918015504 K, F = -1.4336448848073502e-6, relative_change = 3.471143621610619e-11 Iter 135: T = 652.4600917323753 K, F = -5.995686470638972e-7, relative_change = 1.4516767074461059e-11 Iter 140: T = 652.4600917034453 K, F = -2.5074722370677094e-7, relative_change = 6.071096378559419e-12 Iter 145: T = 652.4600916913464 K, F = -1.0486501356155031e-7, relative_change = 2.5389936315778573e-12 Iter 150: T = 652.4600916862864 K, F = -4.385435481424338e-8, relative_change = 1.0618024430910567e-12 Iter 155: T = 652.4600916841704 K, F = -1.83395842401346e-8, relative_change = 4.4403834999358466e-13 Converged in 159 iterations to T = 652.4600916834066 K Iter 1: T = 970.2546614563994 K, F = -6777.503682281064, relative_change = 0.029745338543600664 Iter 2: T = 942.6718751579673 K, F = -5740.527976240623, relative_change = 0.02842839864023843 Iter 3: T = 917.2074180587658 K, F = -4860.46760707112, relative_change = 0.027013065489976888 Iter 5: T = 872.4202361765525 K, F = -3480.2940054895853, relative_change = 0.023931087229981857 Iter 10: T = 792.8191244156493 K, F = -1498.2495357529526, relative_change = 0.0156254986975758 Iter 15: T = 749.364719357512 K, F = -637.8614630324114, relative_change = 0.00857591389518834 Iter 20: T = 728.2411259588454 K, F = -269.2701425014804, relative_change = 0.004132136602546949 Iter 25: T = 718.7257998995161 K, F = -113.10780902875061, relative_change = 0.0018463136300913621 Iter 30: T = 714.6100332913358 K, F = -47.394778100940606, relative_change = 0.0007949627610228917 Iter 35: T = 712.8634316856859 K, F = -19.837507795265786, relative_change = 0.0003366280761301257 Iter 40: T = 712.1284324188509 K, F = -8.29918937000997, relative_change = 0.00014152384199251074 Iter 45: T = 711.8202423070991 K, F = -3.4713307477346254, relative_change = 5.931773687560709e-5 Iter 50: T = 711.6912121284854 K, F = -1.4518414525020225, relative_change = 2.483033310254261e-5 Iter 55: T = 711.6372253883759 K, F = -0.607193095862164, relative_change = 1.0388360773110126e-5 Iter 60: T = 711.614643151579 K, F = -0.25393814421980465, relative_change = 4.345239853512813e-6 Iter 65: T = 711.6051982315952 K, F = -0.10620044387065242, relative_change = 1.8173542394336225e-6 Iter 70: T = 711.6012481205167 K, F = -0.04441437775487933, relative_change = 7.600607685120384e-7 Iter 75: T = 711.599596113671 K, F = -0.018574637854832043, relative_change = 3.178702547137579e-7 Iter 80: T = 711.5989052206181 K, F = -0.007768137941837616, relative_change = 1.3293779506847154e-7 Iter 85: T = 711.5986162801821 K, F = -0.0032487285056280735, relative_change = 5.559628864328606e-8 Iter 90: T = 711.598495441717 K, F = -0.0013586571373421785, relative_change = 2.325105200856817e-8 Iter 95: T = 711.598444905606 K, F = -0.0005682066534223873, relative_change = 9.72387113299598e-9 Iter 100: T = 711.5984237707971 K, F = -0.00023763081065886205, relative_change = 4.066639651099452e-9 Iter 105: T = 711.598414931967 K, F = -9.938004424248081e-5, relative_change = 1.7007173910838083e-9 Iter 110: T = 711.5984112354625 K, F = -4.156192188953245e-5, relative_change = 7.112603506206926e-10 Iter 115: T = 711.5984096895403 K, F = -1.7381693223850192e-5, relative_change = 2.9745759538047295e-10 Iter 120: T = 711.598409043017 K, F = -7.269231079964911e-6, relative_change = 1.2440030892375093e-10 Iter 125: T = 711.5984087726333 K, F = -3.0400798479712776e-6, relative_change = 5.2025705162545096e-11 Iter 130: T = 711.5984086595556 K, F = -1.2713980319656315e-6, relative_change = 2.175777693782237e-11 Iter 135: T = 711.5984086122652 K, F = -5.31715431462132e-7, relative_change = 9.099389384711807e-12 Iter 140: T = 711.5984085924878 K, F = -2.223691483171919e-7, relative_change = 3.8054631259967866e-12 Iter 145: T = 711.5984085842166 K, F = -9.299891257086301e-8, relative_change = 1.5915154383781123e-12 Iter 150: T = 711.5984085807575 K, F = -3.8892835729775754e-8, relative_change = 6.655835729316655e-13 Iter 155: T = 711.5984085793109 K, F = -1.6266061386716046e-8, relative_change = 2.7836548948557413e-13 Converged in 157 iterations to T = 711.5984085790047 K Iter 1: T = 974.3643422089394 K, F = -5841.10901349917, relative_change = 0.025635657791060546 Iter 2: T = 950.9182707630932 K, F = -4941.854155623106, relative_change = 0.02406294076063231 Iter 3: T = 929.5874662524847 K, F = -4179.238166555662, relative_change = 0.022431795840341783 Iter 5: T = 892.9199849920303 K, F = -2984.8450243402667, relative_change = 0.019078319638504457 Iter 10: T = 831.1179335595941 K, F = -1276.4368561828069, relative_change = 0.011221706674127876 Iter 15: T = 799.7218589115425 K, F = -540.5092215143655, relative_change = 0.005668606399234388 Iter 20: T = 785.196487496746 K, F = -227.42622111807114, relative_change = 0.0025984042593095243 Iter 25: T = 778.8283881539652 K, F = -95.3731851941913, relative_change = 0.0011323689330249099 Iter 30: T = 776.1092901241651 K, F = -39.93344300793638, relative_change = 0.0004820627396316905 Iter 35: T = 774.9619851715262 K, F = -16.70902959162171, relative_change = 0.0002031291516923329 Iter 40: T = 774.4803655498054 K, F = -6.989391926498698, relative_change = 8.522068934131924e-5 Iter 45: T = 774.2786290007639 K, F = -2.9233060535683304, relative_change = 3.568769258957442e-5 Iter 50: T = 774.1942046837048 K, F = -1.2226068319342451, relative_change = 1.4933322689562824e-5 Iter 55: T = 774.1588876755361 K, F = -0.5113167097894584, relative_change = 6.246747358762333e-6 Iter 60: T = 774.1441159747243 K, F = -0.21384014194002732, relative_change = 2.6127186472048723e-6 Iter 65: T = 774.1379379745523 K, F = -0.08943074382883154, relative_change = 1.0927146242335516e-6 Iter 70: T = 774.1353542088908 K, F = -0.03740104753731932, relative_change = 4.5699408622733715e-7 Iter 75: T = 774.134273638103 K, F = -0.015641572163174855, relative_change = 1.9112174536186614e-7 Iter 80: T = 774.1338217288977 K, F = -0.006541493576362356, relative_change = 7.99296344020614e-8 Iter 85: T = 774.1336327347918 K, F = -0.002735730962839189, relative_change = 3.342756930112233e-8 Iter 90: T = 774.1335536951508 K, F = -0.0011441153996285536, relative_change = 1.3979815969076797e-8 Iter 95: T = 774.1335206398205 K, F = -0.0004784827306059114, relative_change = 5.8465272649409895e-9 Iter 100: T = 774.1335068156851 K, F = -0.00020010719403873445, relative_change = 2.4450877544710675e-9 Iter 105: T = 774.1335010342664 K, F = -8.36872198762828e-5, relative_change = 1.022564954669164e-9 Iter 110: T = 774.1334986164079 K, F = -3.499899490044811e-5, relative_change = 4.2764888377170107e-10 Iter 115: T = 774.1334976052306 K, F = -1.4636997549111186e-5, relative_change = 1.7884787035684334e-10 Iter 120: T = 774.1334971823442 K, F = -6.12136612654357e-6, relative_change = 7.479630262838861e-11 Iter 125: T = 774.133497005488 K, F = -2.560028625087085e-6, relative_change = 3.1280709571892716e-11 Iter 130: T = 774.1334969315246 K, F = -1.0706346060818106e-6, relative_change = 1.3081967075488633e-11 Iter 135: T = 774.1334969005923 K, F = -4.4775125529472604e-7, relative_change = 5.4710235850914454e-12 Iter 140: T = 774.133496887656 K, F = -1.8725430772636997e-7, relative_change = 2.288039892569607e-12 Iter 145: T = 774.1334968822459 K, F = -7.831283921344578e-8, relative_change = 9.568960116450347e-13 Iter 150: T = 774.1334968799833 K, F = -3.2750504752598886e-8, relative_change = 4.001748333008858e-13 Converged in 154 iterations to T = 774.1334968791666 K Iter 1: T = 970.3998315268286 K, F = -6744.42654364136, relative_change = 0.02960016847317136 Iter 2: T = 942.9650603393 K, F = -5712.285968400544, relative_change = 0.02827161577755301 Iter 3: T = 917.650589435129 K, F = -4836.3484095393205, relative_change = 0.026845608569062204 Iter 5: T = 873.1648052758644 K, F = -3462.6973348191896, relative_change = 0.02374690271006014 Iter 10: T = 794.2622335997629 K, F = -1490.2841191630425, relative_change = 0.015441339636346784 Iter 15: T = 751.3174431784363 K, F = -634.323341236524, relative_change = 0.008444514415691313 Iter 20: T = 730.4876564683661 K, F = -267.7361726405375, relative_change = 0.004059479474396096 Iter 25: T = 721.1166186971685 K, F = -112.45456974080199, relative_change = 0.00181168253140068 Iter 30: T = 717.0657908838105 K, F = -47.119325953748124, relative_change = 0.0007796207857600247 Iter 35: T = 715.3472292263783 K, F = -19.721897819805022, relative_change = 0.0003300517822183682 Iter 40: T = 714.6241171391094 K, F = -8.250766394266368, relative_change = 0.0001387447844297301 Iter 45: T = 714.3209269490098 K, F = -3.4510667249802314, relative_change = 5.815041134968499e-5 Iter 50: T = 714.1939928287165 K, F = -1.4433645227641212, relative_change = 2.4341249002458937e-5 Iter 55: T = 714.1408835678751 K, F = -0.603647544443007, relative_change = 1.0183663174907607e-5 Iter 60: T = 714.1186684579579 K, F = -0.25245528259197, relative_change = 4.259605427994637e-6 Iter 65: T = 714.1093771018686 K, F = -0.10558028123948071, relative_change = 1.7815360980931413e-6 Iter 70: T = 714.1054912177766 K, F = -0.04415501620268347, relative_change = 7.45080354040855e-7 Iter 75: T = 714.1038660722515 K, F = -0.01846616938458656, relative_change = 3.116051195772264e-7 Iter 80: T = 714.1031864130683 K, F = -0.007722775066602905, relative_change = 1.3031761502945641e-7 Iter 85: T = 714.1029021707961 K, F = -0.0032297571973259886, relative_change = 5.450049355292831e-8 Iter 90: T = 714.1027832971637 K, F = -0.0013507231078173643, relative_change = 2.279277663198107e-8 Iter 95: T = 714.10273358277 K, F = -0.0005648885486461142, relative_change = 9.532214785117014e-9 Iter 100: T = 714.1027127916133 K, F = -0.00023624314080206155, relative_change = 3.986486674577095e-9 Iter 105: T = 714.1027040965024 K, F = -9.879970208914735e-5, relative_change = 1.6671964202930657e-9 Iter 110: T = 714.1027004601032 K, F = -4.131921472139144e-5, relative_change = 6.972414601092141e-10 Iter 115: T = 714.1026989393175 K, F = -1.728018952318333e-5, relative_change = 2.9159471634480055e-10 Iter 120: T = 714.102698303307 K, F = -7.226783542368942e-6, relative_change = 1.2194842557896056e-10 Iter 125: T = 714.1026980373196 K, F = -3.0223267537543563e-6, relative_change = 5.1000280788584745e-11 Iter 130: T = 714.1026979260805 K, F = -1.2639735096353633e-6, relative_change = 2.132893270672005e-11 Iter 135: T = 714.102697879559 K, F = -5.286069316712272e-7, relative_change = 8.919982572001062e-12 Iter 140: T = 714.1026978601031 K, F = -2.2107048414099495e-7, relative_change = 3.730455935836612e-12 Iter 145: T = 714.1026978519665 K, F = -9.245408560953905e-8, relative_change = 1.5601173255367416e-12 Iter 150: T = 714.1026978485636 K, F = -3.866419506781682e-8, relative_change = 6.524393184672649e-13 Iter 155: T = 714.1026978471405 K, F = -1.6169288019618477e-8, relative_change = 2.7284880073714577e-13 Converged in 157 iterations to T = 714.1026978468393 K Iter 1: T = 969.2919158263045 K, F = -6996.866189905703, relative_change = 0.030708084173695548 Iter 2: T = 940.7239762063656 K, F = -5927.879510365267, relative_change = 0.029472998952627453 Iter 3: T = 914.2572507690445 K, F = -5020.526127535208, relative_change = 0.02813442211184284 Iter 5: T = 867.4424339552774 K, F = -3597.1756580026104, relative_change = 0.025178296332902576 Iter 10: T = 783.0585439867209 K, F = -1551.345057875242, relative_change = 0.01691230058198746 Iter 15: T = 736.0252007771303 K, F = -661.5470315039594, relative_change = 0.009520434610554398 Iter 20: T = 712.7972742866867 K, F = -279.5737491458754, relative_change = 0.0046642869688165965 Iter 25: T = 702.2363195707261 K, F = -117.50412792502583, relative_change = 0.0021024874965124025 Iter 30: T = 697.6471847177355 K, F = -49.25033158025949, relative_change = 0.0009089781638660953 Iter 35: T = 695.6956417393387 K, F = -20.616630714711725, relative_change = 0.0003856000306855423 Iter 40: T = 694.8736597202025 K, F = -8.625582510028636, relative_change = 0.00016223675564558317 Iter 45: T = 694.5288654292448 K, F = -3.607930085677193, relative_change = 6.8021255577118e-5 Iter 50: T = 694.3844869407494 K, F = -1.5089860981856376, relative_change = 2.8477480090203864e-5 Iter 55: T = 694.3240743343164 K, F = -0.6310946768695335, relative_change = 1.1914908773390636e-5 Iter 60: T = 694.298803494023 K, F = -0.2639345972235239, relative_change = 4.983882361368227e-6 Iter 65: T = 694.2882339527914 K, F = -0.11038117198827918, relative_change = 2.0844809892234597e-6 Iter 70: T = 694.2838134740362 K, F = -0.046162824290253535, relative_change = 8.717831572321802e-7 Iter 75: T = 694.2819647472267 K, F = -0.019305861893658016, relative_change = 3.6459507987802314e-7 Iter 80: T = 694.281191582384 K, F = -0.008073945060602106, relative_change = 1.5247888275075732e-7 Iter 85: T = 694.2808682347016 K, F = -0.003376620782234774, relative_change = 6.376864124502315e-8 Iter 90: T = 694.2807330066798 K, F = -0.0014121432291036573, relative_change = 2.6668833807015056e-8 Iter 95: T = 694.2806764526783 K, F = -0.000590575179932995, relative_change = 1.1153229437217833e-8 Iter 100: T = 694.2806528011147 K, F = -0.00024698559642610807, relative_change = 4.664414565698886e-9 Iter 105: T = 694.2806429097474 K, F = -0.00010329232680461597, relative_change = 1.9507140226998033e-9 Iter 110: T = 694.2806387730593 K, F = -4.319808472297293e-5, relative_change = 8.158119254370615e-10 Iter 115: T = 694.2806370430469 K, F = -1.8065955465718098e-5, relative_change = 3.411823043247695e-10 Iter 120: T = 694.280636319535 K, F = -7.555397150804666e-6, relative_change = 1.4268649270622017e-10 Iter 125: T = 694.2806360169537 K, F = -3.1597580770759137e-6, relative_change = 5.967320972738166e-11 Iter 130: T = 694.2806358904106 K, F = -1.3214489360535708e-6, relative_change = 2.4956056017602718e-11 Iter 135: T = 694.2806358374888 K, F = -5.526459939675377e-7, relative_change = 1.0436925719999061e-11 Iter 140: T = 694.2806358153563 K, F = -2.3112309999184788e-7, relative_change = 4.364845947474002e-12 Iter 145: T = 694.2806358061002 K, F = -9.665968336847186e-8, relative_change = 1.82545417258879e-12 Iter 150: T = 694.2806358022293 K, F = -4.042561763117902e-8, relative_change = 7.634528669513921e-13 Iter 155: T = 694.2806358006104 K, F = -1.6908146216465525e-8, relative_change = 3.193166477184818e-13 Converged in 158 iterations to T = 694.2806358001363 K Iter 1: T = 963.5596133523279 K, F = -8302.976761428616, relative_change = 0.03644038664767208 Iter 2: T = 928.9967670070689 K, F = -7045.357966926805, relative_change = 0.03586996161556738 Iter 3: T = 896.2779091065896 K, F = -5977.306945979401, relative_change = 0.03521956056519876 Iter 5: T = 836.2532578353399 K, F = -4300.031646617929, relative_change = 0.03364958383436539 Iter 10: T = 716.522235142962 K, F = -1879.1407200002652, relative_change = 0.027932445333009637 Iter 15: T = 636.8343378901136 K, F = -813.7314185858984, relative_change = 0.020021086558922676 Iter 20: T = 590.141403625359 K, F = -348.4197740307343, relative_change = 0.012009019041120306 Iter 25: T = 566.1116843124827 K, F = -147.6774129667569, relative_change = 0.006154338785884626 Iter 30: T = 554.901206570105 K, F = -62.17069407131618, relative_change = 0.002844240791308117 Iter 35: T = 549.964853354465 K, F = -26.078684150156217, relative_change = 0.0012444289834815621 Iter 40: T = 547.852800396716 K, F = -10.920620334470476, relative_change = 0.0005307074431437635 Iter 45: T = 546.9608388962664 K, F = -4.569659319044531, relative_change = 0.00022379734247042902 Iter 50: T = 546.5862657081152 K, F = -1.9115309071969533, relative_change = 9.392210985240896e-5 Iter 55: T = 546.4293426316256 K, F = -0.7995030800060252, relative_change = 3.933690312101484e-5 Iter 60: T = 546.3636677889128 K, F = -0.3343753997732155, relative_change = 1.6461250790653998e-5 Iter 65: T = 546.3361934250439 K, F = -0.13984217646559324, relative_change = 6.886057682253425e-6 Iter 70: T = 546.3247018549348 K, F = -0.058484086533890145, relative_change = 2.8801405532262038e-6 Iter 75: T = 546.3198956871342 K, F = -0.02445881659408322, relative_change = 1.2045632271782483e-6 Iter 80: T = 546.3178856455937 K, F = -0.010228981993886721, relative_change = 5.037721813754181e-7 Iter 85: T = 546.3170450143862 K, F = -0.004277884666693793, relative_change = 2.106851961288524e-7 Iter 90: T = 546.3166934510066 K, F = -0.0017890628475578374, relative_change = 8.811135434582905e-8 Iter 95: T = 546.316546422763 K, F = -0.0007482075170958391, relative_change = 3.6849271238122996e-8 Iter 100: T = 546.3164849337538 K, F = -0.00031290933107513963, relative_change = 1.5410814150895232e-8 Iter 105: T = 546.3164592183086 K, F = -0.00013086242175464058, relative_change = 6.4449880928831956e-9 Iter 110: T = 546.316448463801 K, F = -5.472822785296261e-5, relative_change = 2.6953712546707357e-9 Iter 115: T = 546.3164439661373 K, F = -2.2887998776421892e-5, relative_change = 1.1272365069565429e-9 Iter 120: T = 546.3164420851606 K, F = -9.57203437018661e-6, relative_change = 4.71423774100255e-10 Iter 125: T = 546.3164412985136 K, F = -4.003139368408126e-6, relative_change = 1.9715506748691914e-10 Iter 130: T = 546.3164409695283 K, F = -1.674160253983814e-6, relative_change = 8.24525824429731e-11 Iter 135: T = 546.3164408319429 K, F = -7.001543880780225e-7, relative_change = 3.448268308703226e-11 Iter 140: T = 546.316440774403 K, F = -2.9281269423031553e-7, relative_change = 1.4421058435103038e-11 Iter 145: T = 546.3164407503391 K, F = -1.2245762834317553e-7, relative_change = 6.031052100297095e-12 Iter 150: T = 546.3164407402753 K, F = -5.12128683072266e-8, relative_change = 2.522239579293947e-12 Iter 155: T = 546.3164407360665 K, F = -2.1418068041345606e-8, relative_change = 1.0548422830722622e-12 Iter 160: T = 546.3164407343063 K, F = -8.957052072267047e-9, relative_change = 4.4113583164518896e-13 Converged in 164 iterations to T = 546.316440733671 K Iter 1: T = 966.9218310641265 K, F = -7536.892257500593, relative_change = 0.03307816893587351 Iter 2: T = 935.902239460651 K, F = -6389.50643243123, relative_change = 0.032080764552949975 Iter 3: T = 906.9107782732988 K, F = -5415.330142779496, relative_change = 0.030977018715180778 Iter 5: T = 854.8809410824268 K, F = -3886.3056695880096, relative_change = 0.028450999670219496 Iter 10: T = 757.476434093095 K, F = -1684.2369346865307, relative_change = 0.02065233872750976 Iter 15: T = 699.8201846834414 K, F = -721.7633528520147, relative_change = 0.01255377920837404 Iter 20: T = 669.8815171523554 K, F = -306.11969325866556, relative_change = 0.006498752495271532 Iter 25: T = 655.8316372676018 K, F = -128.922927818129, relative_change = 0.0030210234931740253 Iter 30: T = 649.62552353377 K, F = -54.08945420174255, relative_change = 0.0013255674953011436 Iter 35: T = 646.9662786128388 K, F = -22.652252121125443, relative_change = 0.0005660378897213146 Iter 40: T = 645.842498710085 K, F = -9.479031060146514, relative_change = 0.00023882849846191883 Iter 45: T = 645.370444133239 K, F = -3.9652287793098364, relative_change = 0.00010025386638302232 Iter 50: T = 645.1726592261098 K, F = -1.658478811625071, relative_change = 4.19929492663989e-5 Iter 55: T = 645.0898789812882 K, F = -0.6936259047565776, relative_change = 1.7573450147454487e-5 Iter 60: T = 645.0552480439618 K, F = -0.2900879322688366, relative_change = 7.35143954012313e-6 Iter 65: T = 645.0407630035506 K, F = -0.12131916399623499, relative_change = 3.07481199563177e-6 Iter 70: T = 645.0347048422273 K, F = -0.0507372852645655, relative_change = 1.2859847053408816e-6 Iter 75: T = 645.0321711865643 K, F = -0.021218966964785257, relative_change = 5.378249376174329e-7 Iter 80: T = 645.03111157097 K, F = -0.008874030346310235, relative_change = 2.2492669661738818e-7 Iter 85: T = 645.030668425231 K, F = -0.003711226336030604, relative_change = 9.406736037377387e-8 Iter 90: T = 645.0304830960685 K, F = -0.0015520793264011123, relative_change = 3.9340151158521235e-8 Iter 95: T = 645.0304055891429 K, F = -0.0006490981358384662, relative_change = 1.645253110119583e-8 Iter 100: T = 645.0303731748112 K, F = -0.00027146059629573616, relative_change = 6.880646739324692e-9 Iter 105: T = 645.0303596187489 K, F = -0.00011352806382730618, relative_change = 2.8775689400771832e-9 Iter 110: T = 645.0303539494414 K, F = -4.747879298466762e-5, relative_change = 1.2034337688516616e-9 Iter 115: T = 645.0303515784693 K, F = -1.9856198162471195e-5, relative_change = 5.032903809417831e-10 Iter 120: T = 645.0303505869003 K, F = -8.30409888108452e-6, relative_change = 2.1048204120598482e-10 Iter 125: T = 645.0303501722144 K, F = -3.472873404408716e-6, relative_change = 8.802610562747243e-11 Iter 130: T = 645.0303499987878 K, F = -1.4523965091717272e-6, relative_change = 3.6813552872580494e-11 Iter 135: T = 645.0303499262587 K, F = -6.074092214203297e-7, relative_change = 1.5395858747122005e-11 Iter 140: T = 645.0303498959262 K, F = -2.540258363104009e-7, relative_change = 6.4387331586520085e-12 Iter 145: T = 645.0303498832408 K, F = -1.0623666163445122e-7, relative_change = 2.6927556894584853e-12 Iter 150: T = 645.0303498779356 K, F = -4.4429866730144596e-8, relative_change = 1.1261533879502715e-12 Iter 155: T = 645.030349875717 K, F = -1.85816090847446e-8, relative_change = 4.709836775291911e-13 Converged in 160 iterations to T = 645.030349874789 K Iter 1: T = 965.1438443380487 K, F = -7942.008224339439, relative_change = 0.03485615566195137 Iter 2: T = 932.2601606103868 K, F = -6736.186215646059, relative_change = 0.034071277479074 Iter 3: T = 901.3194530868627 K, F = -5712.230820850693, relative_change = 0.03318891960723281 Iter 5: T = 845.1540760365714 K, F = -4104.552602970958, relative_change = 0.031112705038836952 Iter 10: T = 736.5953371124267 K, F = -1786.2591235397706, relative_change = 0.02414658647655018 Iter 15: T = 668.6280196929954 K, F = -769.2109099851422, relative_change = 0.0158425409199669 Iter 20: T = 631.3944340889841 K, F = -327.5714885343239, relative_change = 0.008731859262892935 Iter 25: T = 613.2475039631362 K, F = -138.30744251128155, relative_change = 0.004218770460068948 Iter 30: T = 605.0606667274021 K, F = -58.10196374705889, relative_change = 0.001887709096938157 Iter 35: T = 601.5168913908351 K, F = -24.347127830984576, relative_change = 0.0008133226612204711 Iter 40: T = 600.0125214001883 K, F = -10.190903487322368, relative_change = 0.00034450199091386587 Iter 45: T = 599.3793657618347 K, F = -4.2634856891994275, relative_change = 0.00014485197853775632 Iter 50: T = 599.1138630985799 K, F = -1.7833091196740385, relative_change = 6.07158273245881e-5 Iter 55: T = 599.0027020404987 K, F = -0.7458482191141158, relative_change = 2.5416125176101626e-5 Iter 60: T = 598.9561913090454 K, F = -0.31193086780709406, relative_change = 1.0633537741896638e-5 Iter 65: T = 598.9367361409917 K, F = -0.13045465497323416, relative_change = 4.447809352181034e-6 Iter 70: T = 598.9285990881882 K, F = -0.05455794669368608, relative_change = 1.8602559009204935e-6 Iter 75: T = 598.9251959584719 K, F = -0.022816828945177003, relative_change = 7.780037829017984e-7 Iter 80: T = 598.9237727085081 K, F = -0.009542278062979637, relative_change = 3.2537441728487734e-7 Iter 85: T = 598.923177484795 K, F = -0.003990695991928861, relative_change = 1.360761568805135e-7 Iter 90: T = 598.9229285545035 K, F = -0.0016689569579439456, relative_change = 5.690879452830871e-8 Iter 95: T = 598.9228244487732 K, F = -0.0006979777724857028, relative_change = 2.379995860408702e-8 Iter 100: T = 598.9227809104945 K, F = -0.00029190264701478563, relative_change = 9.953430601433267e-9 Iter 105: T = 598.922762702263 K, F = -0.00012207717452733524, relative_change = 4.1626441999597855e-9 Iter 110: T = 598.9227550873625 K, F = -5.105413205458431e-5, relative_change = 1.7408676140167056e-9 Iter 115: T = 598.92275190272 K, F = -2.1351447829942583e-5, relative_change = 7.280516480183029e-10 Iter 120: T = 598.9227505708645 K, F = -8.92943070451846e-6, relative_change = 3.0447990510512205e-10 Iter 125: T = 598.9227500138667 K, F = -3.7343948768309154e-6, relative_change = 1.2733714392135213e-10 Iter 130: T = 598.9227497809235 K, F = -1.5617682477819805e-6, relative_change = 5.325390459956634e-11 Iter 135: T = 598.9227496835039 K, F = -6.531505355455991e-7, relative_change = 2.227143264401454e-11 Iter 140: T = 598.9227496427618 K, F = -2.7315524775417543e-7, relative_change = 9.314175481161738e-12 Iter 145: T = 598.922749625723 K, F = -1.1423671003596425e-7, relative_change = 3.895296804867674e-12 Iter 150: T = 598.9227496185971 K, F = -4.777438789016486e-8, relative_change = 1.62903343815681e-12 Iter 155: T = 598.922749615617 K, F = -1.9979672083447753e-8, relative_change = 6.812762098165156e-13 Iter 160: T = 598.9227496143708 K, F = -8.356231651074353e-9, relative_change = 2.8493469782046347e-13 Converged in 162 iterations to T = 598.922749614107 K Iter 1: T = 980.1386086854255 K, F = -4525.436904086377, relative_change = 0.019861391314574435 Iter 2: T = 962.3210738982463 K, F = -3822.6513638477304, relative_change = 0.018178586813426725 Iter 3: T = 946.4265180622157 K, F = -3227.501307722765, relative_change = 0.016516894690504588 Iter 5: T = 919.883189805276 K, F = -2297.5942416798866, relative_change = 0.013345617790710937 Iter 10: T = 877.7384681826243 K, F = -975.4117406557511, relative_change = 0.0070117921463703605 Iter 15: T = 857.7863356775036 K, F = -411.03361744516593, relative_change = 0.00328820474461312 Iter 20: T = 848.9312186426444 K, F = -172.4982862809632, relative_change = 0.0014490808324790793 Iter 25: T = 845.1283963201088 K, F = -72.25039177725805, relative_change = 0.0006199945594964025 Iter 30: T = 843.5197563508465 K, F = -30.235509226116854, relative_change = 0.0002618163111441966 Iter 35: T = 842.8437451565649 K, F = -12.64829534492707, relative_change = 0.00010994306580051924 Iter 40: T = 842.5604542851271 K, F = -5.2902726529106125, relative_change = 4.605839362474476e-5 Iter 45: T = 842.4418777392578 K, F = -2.2125610804412092, relative_change = 1.9276003089631242e-5 Iter 50: T = 842.3922699336706 K, F = -0.9253379965893462, relative_change = 8.063876623731139e-6 Iter 55: T = 842.3715202630566 K, F = -0.38699064257445903, relative_change = 3.3728332914428355e-6 Iter 60: T = 842.3628419617369 K, F = -0.1618446753470404, relative_change = 1.4106332964403891e-6 Iter 65: T = 842.3592124978063 K, F = -0.06768547522448132, relative_change = 5.899566581109517e-7 Iter 70: T = 842.3576945960857 K, F = -0.028306891411786772, relative_change = 2.467291879608215e-7 Iter 75: T = 842.3570597885623 K, F = -0.0118382830753887, relative_change = 1.0318548964028768e-7 Iter 80: T = 842.3567943039683 K, F = -0.004950911889726628, relative_change = 4.315347342696178e-8 Iter 85: T = 842.356683275052 K, F = -0.0020705305741006708, relative_change = 1.8047310106406323e-8 Iter 90: T = 842.3566368414178 K, F = -0.0008659206297108035, relative_change = 7.547602739607254e-9 Iter 95: T = 842.3566174223146 K, F = -0.00036213835070575406, relative_change = 3.1564979677538356e-9 Iter 100: T = 842.3566093010132 K, F = -0.00015145058305776615, relative_change = 1.3200852068004628e-9 Iter 105: T = 842.356605904588 K, F = -6.333844490336027e-5, relative_change = 5.520754298578789e-10 Iter 110: T = 842.3566044841624 K, F = -2.6488895153331526e-5, relative_change = 2.308845491543073e-10 Iter 115: T = 842.3566038901234 K, F = -1.1077970512696211e-5, relative_change = 9.65586605689381e-11 Iter 120: T = 842.3566036416893 K, F = -4.632940814985886e-6, relative_change = 4.0381995935599416e-11 Iter 125: T = 842.3566035377911 K, F = -1.9375527238185697e-6, relative_change = 1.6888246448371414e-11 Iter 130: T = 842.3566034943395 K, F = -8.103051640784287e-7, relative_change = 7.062844352300041e-12 Iter 135: T = 842.3566034761676 K, F = -3.3887776695884497e-7, relative_change = 2.9537525229192646e-12 Iter 140: T = 842.356603468568 K, F = -1.4172317586158556e-7, relative_change = 1.2352984736414111e-12 Iter 145: T = 842.3566034653898 K, F = -5.9272119656839095e-8, relative_change = 5.166322198029849e-13 Converged in 150 iterations to T = 842.3566034640605 K Iter 1: T = 976.5147143772916 K, F = -5351.144669408112, relative_change = 0.023485285622708345 Iter 2: T = 955.1895059232079 K, F = -4524.649474633508, relative_change = 0.021838082048443577 Iter 3: T = 935.9320853481727 K, F = -3824.0732040285775, relative_change = 0.020160837672125096 Iter 5: T = 903.1971499531066 K, F = -2727.7462146541666, relative_change = 0.01680959459229834 Iter 10: T = 849.3307004931762 K, F = -1163.0528437457372, relative_change = 0.009443395247801467 Iter 15: T = 822.762209235712 K, F = -491.46935150819866, relative_change = 0.004620245647906163 Iter 20: T = 810.6916373822606 K, F = -206.55338635483912, relative_change = 0.0020811208362959267 Iter 25: T = 805.4485202464892 K, F = -86.5722149073629, relative_change = 0.0008994338027852697 Iter 30: T = 803.2192561133771 K, F = -36.239544541437986, relative_change = 0.0003814939638786564 Iter 35: T = 802.2803696648899 K, F = -15.161829905591656, relative_change = 0.00016049888762695262 Iter 40: T = 801.8865504045048 K, F = -6.341916465607296, relative_change = 6.729079664354336e-5 Iter 45: T = 801.7216455123374 K, F = -2.6524506622784667, relative_change = 2.817134943388645e-5 Iter 50: T = 801.6526443868553 K, F = -1.1093190091806393, relative_change = 1.1786768377639681e-5 Iter 55: T = 801.6237810020356 K, F = -0.4639361379405157, relative_change = 4.930272752143551e-6 Iter 60: T = 801.6117088892294 K, F = -0.1940246270540228, relative_change = 2.0620573520041475e-6 Iter 65: T = 801.6066599949604 K, F = -0.08114358995811222, relative_change = 8.624047193754222e-7 Iter 70: T = 801.6045484534062 K, F = -0.03393524877043719, relative_change = 3.6067279938006226e-7 Iter 75: T = 801.6036653756214 K, F = -0.014192131620235915, relative_change = 1.508385196734459e-7 Iter 80: T = 801.6032960609155 K, F = -0.005935319861136268, relative_change = 6.308261855796878e-8 Iter 85: T = 801.6031416089148 K, F = -0.0024822218103243143, relative_change = 2.638193036780196e-8 Iter 90: T = 801.6030770152121 K, F = -0.0010380948309414162, relative_change = 1.1033242854679878e-8 Iter 95: T = 801.6030500013487 K, F = -0.0004341436614363481, relative_change = 4.6142347271656705e-9 Iter 100: T = 801.6030387038275 K, F = -0.0001815640630287163, relative_change = 1.929728187850521e-9 Iter 105: T = 801.6030339790691 K, F = -7.593226051105795e-5, relative_change = 8.070354074656786e-10 Iter 110: T = 801.6030320031185 K, F = -3.175577789060746e-5, relative_change = 3.375118464488104e-10 Iter 115: T = 801.6030311767524 K, F = -1.3280645075886e-5, relative_change = 1.4115148049704632e-10 Iter 120: T = 801.6030308311563 K, F = -5.554123384765575e-6, relative_change = 5.90312244437349e-11 Iter 125: T = 801.6030306866239 K, F = -2.3228010439524382e-6, relative_change = 2.4687566404720343e-11 Iter 130: T = 801.6030306261787 K, F = -9.714230062574103e-7, relative_change = 1.0324633719750515e-11 Iter 135: T = 801.6030306008998 K, F = -4.062600826859608e-7, relative_change = 4.317878537258393e-12 Iter 140: T = 801.6030305903279 K, F = -1.6990358497892544e-7, relative_change = 1.8057965187707533e-12 Iter 145: T = 801.6030305859066 K, F = -7.105628196946157e-8, relative_change = 7.552117669355367e-13 Iter 150: T = 801.6030305840576 K, F = -2.9717644567384127e-8, relative_change = 3.1584983397792273e-13 Converged in 153 iterations to T = 801.6030305835162 K Iter 1: T = 980.7825450355417 K, F = -4378.715394170799, relative_change = 0.01921745496445824 Iter 2: T = 963.5796773202594 K, F = -3698.0561083781076, relative_change = 0.017539940736464588 Iter 3: T = 948.2660677328262 K, F = -3121.7510006382226, relative_change = 0.015892416525450953 Iter 5: T = 922.7698910936972 K, F = -2221.5533222731056, relative_change = 0.012772850216926908 Iter 10: T = 882.5224909767758 K, F = -942.4727158184355, relative_change = 0.006639263101348471 Iter 15: T = 863.5892577058303 K, F = -396.9870129385845, relative_change = 0.0030937530671327094 Iter 20: T = 855.2152359834755 K, F = -166.5684750666256, relative_change = 0.0013590864008750719 Iter 25: T = 851.6248796409843 K, F = -69.76008396501116, relative_change = 0.0005806602673768261 Iter 30: T = 850.1072098799117 K, F = -29.192158838086304, relative_change = 0.0002450544996624443 Iter 35: T = 849.4696247071039 K, F = -12.211621689015923, relative_change = 0.00010287741132973626 Iter 40: T = 849.2024715890868 K, F = -5.107592116058254, relative_change = 4.309363147626596e-5 Iter 45: T = 849.090655919793 K, F = -2.136151660605255, relative_change = 1.803438014532638e-5 Iter 50: T = 849.0438776752483 K, F = -0.8933808723862631, relative_change = 7.544313087591212e-6 Iter 55: T = 849.0243117252937 K, F = -0.3736254779817637, relative_change = 3.1554927630243774e-6 Iter 60: T = 849.0161285338565 K, F = -0.1562551490463997, relative_change = 1.3197296454281302e-6 Iter 65: T = 849.0127061419461 K, F = -0.06534785897488127, relative_change = 5.519380482229905e-7 Iter 70: T = 849.0112748421684 K, F = -0.0273292707009698, relative_change = 2.308290683720637e-7 Iter 75: T = 849.010676252953 K, F = -0.011429430124574758, relative_change = 9.653582025478347e-8 Iter 80: T = 849.0104259153476 K, F = -0.004779924652726031, relative_change = 4.0372493631764415e-8 Iter 85: T = 849.0103212210932 K, F = -0.0019990216585845655, relative_change = 1.688426961286304e-8 Iter 90: T = 849.0102774366921 K, F = -0.0008360147460950706, relative_change = 7.061205054374976e-9 Iter 95: T = 849.0102591255303 K, F = -0.00034963135350651875, relative_change = 2.9530806072541648e-9 Iter 100: T = 849.0102514675832 K, F = -0.000146220007065212, relative_change = 1.2350136264108944e-9 Iter 105: T = 849.0102482649382 K, F = -6.115095077730004e-5, relative_change = 5.164974366380313e-10 Iter 110: T = 849.0102469255539 K, F = -2.557405685332803e-5, relative_change = 2.160053889677149e-10 Iter 115: T = 849.0102463654074 K, F = -1.0695376328140327e-5, relative_change = 9.033603641468056e-11 Iter 120: T = 849.0102461311475 K, F = -4.472935412280776e-6, relative_change = 3.777962031611934e-11 Iter 125: T = 849.0102460331772 K, F = -1.8706352669095594e-6, relative_change = 1.5799890599488568e-11 Iter 130: T = 849.0102459922049 K, F = -7.823237058168786e-7, relative_change = 6.607717274866786e-12 Iter 135: T = 849.0102459750697 K, F = -3.27176781667049e-7, relative_change = 2.7634234477236562e-12 Iter 140: T = 849.0102459679034 K, F = -1.368276318913786e-7, relative_change = 1.1556831274938033e-12 Iter 145: T = 849.0102459649065 K, F = -5.7221640314963906e-8, relative_change = 4.833094260750799e-13 Converged in 150 iterations to T = 849.0102459636532 K Iter 1: T = 967.308240205411 K, F = -7448.848567088912, relative_change = 0.03269175979458891 Iter 2: T = 936.6909339965855 K, F = -6314.2053669048155, relative_change = 0.03165206801331892 Iter 3: T = 908.1167613706143 K, F = -5350.8875664867255, relative_change = 0.030505443779682558 Iter 5: T = 856.9596967050903 K, F = -3839.0292036177675, relative_change = 0.02789677642898437 Iter 10: T = 761.811249531977 K, F = -1662.3427520604716, relative_change = 0.01997879028456781 Iter 15: T = 706.0961083357188 K, F = -711.7349428293375, relative_change = 0.011973245827674622 Iter 20: T = 677.4398104141218 K, F = -301.6555138022796, relative_change = 0.006132019510353609 Iter 25: T = 664.0759596244532 K, F = -126.99079937335452, relative_change = 0.0028328676197688736 Iter 30: T = 658.1925781445934 K, F = -53.26807298405467, relative_change = 0.0012392271858680305 Iter 35: T = 655.6755674892621 K, F = -22.30623482567942, relative_change = 0.000528445922279309 Iter 40: T = 654.6126279726806 K, F = -9.333870485902462, relative_change = 0.00022283583260696778 Iter 45: T = 654.1662615430157 K, F = -3.9044407945433193, relative_change = 9.351719582841814e-5 Iter 50: T = 653.9792629058036 K, F = -1.6330424635904626, relative_change = 3.9167069902757356e-5 Iter 55: T = 653.9010011978378 K, F = -0.6829856507290613, relative_change = 1.6390137947349463e-5 Iter 60: T = 653.8682612968554 K, F = -0.2856376186267659, relative_change = 6.856302281547635e-6 Iter 65: T = 653.8545673432958 K, F = -0.11945791403698841, relative_change = 2.8676938362755544e-6 Iter 70: T = 653.8488400646852 K, F = -0.04995887507093483, relative_change = 1.1993573973638263e-6 Iter 75: T = 653.8464447952514 K, F = -0.020893424209810607, relative_change = 5.015949599580045e-7 Iter 80: T = 653.8454430556776 K, F = -0.0087378840750017, relative_change = 2.097746419443611e-7 Iter 85: T = 653.8450241145996 K, F = -0.0036542882680311584, relative_change = 8.773054722376611e-8 Iter 90: T = 653.8448489081534 K, F = -0.0015282671341282916, relative_change = 3.669001271892998e-8 Iter 95: T = 653.8447756346754 K, F = -0.0006391395913860065, relative_change = 1.5344210266108826e-8 Iter 100: T = 653.8447449908232 K, F = -0.00026729581390144697, relative_change = 6.4171335060638725e-9 Iter 105: T = 653.8447321751968 K, F = -0.00011178630280433977, relative_change = 2.683722149314491e-9 Iter 110: T = 653.8447268155485 K, F = -4.675036636675456e-5, relative_change = 1.1223646856191942e-9 Iter 115: T = 653.8447245740795 K, F = -1.9551562064179517e-5, relative_change = 4.693863358318019e-10 Iter 120: T = 653.8447236366704 K, F = -8.176697586681492e-6, relative_change = 1.9630299272335883e-10 Iter 125: T = 653.8447232446347 K, F = -3.419593065934201e-6, relative_change = 8.209626778280102e-11 Iter 130: T = 653.8447230806808 K, F = -1.4301151005091661e-6, relative_change = 3.4333650270085436e-11 Iter 135: T = 653.8447230121131 K, F = -5.980909388303424e-7, relative_change = 1.4358735969188508e-11 Iter 140: T = 653.8447229834375 K, F = -2.501292392653731e-7, relative_change = 6.005006049011888e-12 Iter 145: T = 653.8447229714448 K, F = -1.0460668081746505e-7, relative_change = 2.5113567409220055e-12 Iter 150: T = 653.8447229664295 K, F = -4.374796064299247e-8, relative_change = 1.0502841215093675e-12 Iter 155: T = 653.8447229643319 K, F = -1.8295949866242722e-8, relative_change = 4.3924208923822494e-13 Converged in 159 iterations to T = 653.8447229635748 K Iter 1: T = 973.5181360714861 K, F = -6033.917886867764, relative_change = 0.026481863928513916 Iter 2: T = 949.2293030269373 K, F = -5106.162673506802, relative_change = 0.02494954345952245 Iter 3: T = 927.0660506268576 K, F = -4319.242146964569, relative_change = 0.023348681218968537 Iter 5: T = 888.7939231214818 K, F = -3086.412327780469, relative_change = 0.020019354601968596 Iter 10: T = 823.6328987610308 K, F = -1321.5260375997673, relative_change = 0.012007912485016758 Iter 15: T = 790.0988453218977 K, F = -560.1276871286434, relative_change = 0.0061537499809820794 Iter 20: T = 774.454345463784 K, F = -235.8080835731319, relative_change = 0.002843962865913969 Iter 25: T = 767.565541510857 K, F = -98.91420118096049, relative_change = 0.0012443061155534044 Iter 30: T = 764.6181189781704 K, F = -41.42097160728957, relative_change = 0.0005306547983763796 Iter 35: T = 763.3733644906238 K, F = -17.332323894942338, relative_change = 0.00022377509744243233 Iter 40: T = 762.8506382812478 K, F = -7.250271955397032, relative_change = 9.39127661664665e-5 Iter 45: T = 762.6316482218981 K, F = -3.032446264113106, relative_change = 3.933298834239417e-5 Iter 50: T = 762.5399973442368 K, F = -1.2682570675964504, relative_change = 1.6459612331784476e-5 Iter 55: T = 762.5016561856377 K, F = -0.5304093206800768, relative_change = 6.88537224003842e-6 Iter 60: T = 762.4856194135356 K, F = -0.22182509878702183, relative_change = 2.8798538547943634e-6 Iter 65: T = 762.4789122867494 K, F = -0.09277018294584027, relative_change = 1.2044433197615684e-6 Iter 70: T = 762.4761072237518 K, F = -0.038797646944577435, relative_change = 5.037220334770846e-7 Iter 75: T = 762.4749341019793 K, F = -0.016225647777946217, relative_change = 2.1066422346335413e-7 Iter 80: T = 762.4744434865329 K, F = -0.006785761157630632, relative_change = 8.810258326344546e-8 Iter 85: T = 762.4742383049597 K, F = -0.002837886612484075, relative_change = 3.6845603035925844e-8 Iter 90: T = 762.4741524955172 K, F = -0.001186838118478084, relative_change = 1.5409280068025933e-8 Iter 95: T = 762.4741166089732 K, F = -0.0004963498820256262, relative_change = 6.444346485606001e-9 Iter 100: T = 762.4741016007902 K, F = -0.00020757944851645949, relative_change = 2.6951029169964143e-9 Iter 105: T = 762.4740953241885 K, F = -8.681220387496413e-5, relative_change = 1.1271242636807609e-9 Iter 110: T = 762.4740926992387 K, F = -3.6305900478761366e-5, relative_change = 4.713768363038203e-10 Iter 115: T = 762.4740916014533 K, F = -1.5183560858944567e-5, relative_change = 1.971354197581567e-10 Iter 120: T = 762.4740911423463 K, F = -6.349947425876579e-6, relative_change = 8.244439933822931e-11 Iter 125: T = 762.4740909503423 K, F = -2.6556232426422355e-6, relative_change = 3.4479224580439187e-11 Iter 130: T = 762.474090870044 K, F = -1.1106138653182995e-6, relative_change = 1.4419630122516929e-11 Iter 135: T = 762.4740908364623 K, F = -4.6447273505112463e-7, relative_change = 6.030471302387338e-12 Iter 140: T = 762.4740908224179 K, F = -1.9424831154690736e-7, relative_change = 2.522018581552723e-12 Iter 145: T = 762.4740908165445 K, F = -8.123762629264064e-8, relative_change = 1.0547468928156665e-12 Iter 150: T = 762.4740908140882 K, F = -3.397532444271434e-8, relative_change = 4.4111786033503435e-13 Converged in 154 iterations to T = 762.4740908132015 K Iter 1: T = 970.0166876337491 K, F = -6831.726244143453, relative_change = 0.029983312366250844 Iter 2: T = 942.1909615700184 K, F = -5786.829116767673, relative_change = 0.02868582202601954 Iter 3: T = 916.4799903235681 K, F = -4900.0144847362035, relative_change = 0.02728849277391376 Iter 5: T = 871.1962946626035 K, F = -3509.1553898308207, relative_change = 0.024235188567027527 Iter 10: T = 790.4375363405052 K, F = -1511.3297442092824, relative_change = 0.015932802696659313 Iter 15: T = 746.1313697025276 K, F = -643.6797881860164, relative_change = 0.008797246593122478 Iter 20: T = 724.5135212921523 K, F = -271.7954870070242, relative_change = 0.004255272367793412 Iter 25: T = 714.7545388491884 K, F = -114.18390250553857, relative_change = 0.0019051931698486632 Iter 30: T = 710.5289035092491 K, F = -47.848674063308515, relative_change = 0.00082108594384579 Iter 35: T = 708.7348209300973 K, F = -20.028038293832083, relative_change = 0.0003478330080015562 Iter 40: T = 707.9796852331153 K, F = -8.378997298889992, relative_change = 0.0001462602197752843 Iter 45: T = 707.6630241095268 K, F = -3.504729555421898, relative_change = 6.130745570942078e-5 Iter 50: T = 707.5304424928204 K, F = -1.4658131248484612, relative_change = 2.5664023211476398e-5 Iter 55: T = 707.4749689620471 K, F = -0.6130368977817716, relative_change = 1.0737294383722854e-5 Iter 60: T = 707.4517646624953 K, F = -0.2563822112698422, relative_change = 4.491216099964611e-6 Iter 65: T = 707.4420595413396 K, F = -0.10722260277083684, relative_change = 1.8784116549229483e-6 Iter 70: T = 707.438000602784 K, F = -0.04484186046463634, relative_change = 7.855971792661369e-7 Iter 75: T = 707.4363030815465 K, F = -0.018753416868942052, relative_change = 3.285501438730317e-7 Iter 80: T = 707.4355931535792 K, F = -0.007842905571135761, relative_change = 1.374042972236311e-7 Iter 85: T = 707.4352962524707 K, F = -0.003279997241317001, relative_change = 5.746424106504023e-8 Iter 90: T = 707.4351720847494 K, F = -0.0013717340994386928, relative_change = 2.4032253395245728e-8 Iter 95: T = 707.4351201563024 K, F = -0.0005736755962547635, relative_change = 1.00505791317372e-8 Iter 100: T = 707.4350984392017 K, F = -0.00023991798762423855, relative_change = 4.203272873940433e-9 Iter 105: T = 707.4350893568501 K, F = -0.00010033656726204931, relative_change = 1.7578590142083261e-9 Iter 110: T = 707.4350855585021 K, F = -4.196195053918217e-5, relative_change = 7.35157648976087e-10 Iter 115: T = 707.4350839699877 K, F = -1.7548988803350873e-5, relative_change = 3.074517109603532e-10 Iter 120: T = 707.4350833056519 K, F = -7.339196710809404e-6, relative_change = 1.2857997809371275e-10 Iter 125: T = 707.4350830278187 K, F = -3.0693392419900434e-6, relative_change = 5.377367425701214e-11 Iter 130: T = 707.4350829116256 K, F = -1.2836341585220623e-6, relative_change = 2.2488789839588826e-11 Iter 135: T = 707.4350828630322 K, F = -5.368310472819715e-7, relative_change = 9.405078951419454e-12 Iter 140: T = 707.4350828427098 K, F = -2.2450745185143006e-7, relative_change = 3.933286498283365e-12 Iter 145: T = 707.4350828342108 K, F = -9.389088762024045e-8, relative_change = 1.6449331973802097e-12 Iter 150: T = 707.4350828306565 K, F = -3.926677250021271e-8, relative_change = 6.879391523315097e-13 Iter 155: T = 707.4350828291701 K, F = -1.642269831236831e-8, relative_change = 2.8771952561312727e-13 Converged in 157 iterations to T = 707.4350828288556 K Iter 1: T = 973.4977492705151 K, F = -6038.563038861847, relative_change = 0.02650225072948486 Iter 2: T = 949.1885551487724 K, F = -5110.122110859691, relative_change = 0.024970981329909228 Iter 3: T = 927.0051301184967 K, F = -4322.616809456332, relative_change = 0.023370936058956904 Iter 5: T = 888.6939305725191 K, F = -3088.8620934641376, relative_change = 0.020042378701138404 Iter 10: T = 823.4502000971502 K, F = -1322.6158060476273, relative_change = 0.012027527230108628 Iter 15: T = 789.8627544476211 K, F = -560.6027780727762, relative_change = 0.006166030731047663 Iter 20: T = 774.1900436481997 K, F = -236.01132364949902, relative_change = 0.0028502307884022485 Iter 25: T = 767.2880481366234 K, F = -99.00011959372057, relative_change = 0.0012471749282672486 Iter 30: T = 764.3348276512875 K, F = -41.45707576094474, relative_change = 0.0005319024138850763 Iter 35: T = 763.087596027444 K, F = -17.347454044699358, relative_change = 0.00022430560242441333 Iter 40: T = 762.5638244406714 K, F = -7.256605045855944, relative_change = 9.413618608241766e-5 Iter 45: T = 762.3443955273758 K, F = -3.0350958017268796, relative_change = 3.942669953955108e-5 Iter 50: T = 762.2525608232058 K, F = -1.269365304754933, relative_change = 1.6498851607645073e-5 Iter 55: T = 762.2141427348953 K, F = -0.5308728282592083, relative_change = 6.90179100390286e-6 Iter 60: T = 762.1980737808947 K, F = -0.22201894836584601, relative_change = 2.88672185320232e-6 Iter 65: T = 762.1913531936839 K, F = -0.09285125405917316, relative_change = 1.2073158567975838e-6 Iter 70: T = 762.1885425011013 K, F = -0.03883155201251953, relative_change = 5.049234079392922e-7 Iter 75: T = 762.1873670249212 K, F = -0.01623982731222906, relative_change = 2.1116666053645904e-7 Iter 80: T = 762.186875424825 K, F = -0.006791691214683815, relative_change = 8.831270985004306e-8 Iter 85: T = 762.1866698314581 K, F = -0.0028403666371783487, relative_change = 3.693348076657876e-8 Iter 90: T = 762.186583849798 K, F = -0.0011878752951524074, relative_change = 1.544603163427708e-8 Iter 95: T = 762.1865478912306 K, F = -0.0004967836415759042, relative_change = 6.45971643497424e-9 Iter 100: T = 762.1865328529265 K, F = -0.00020776085244134102, relative_change = 2.701530821099584e-9 Iter 105: T = 762.1865265637277 K, F = -8.68880688138507e-5, relative_change = 1.1298124856059088e-9 Iter 110: T = 762.1865239335098 K, F = -3.6337628477212114e-5, relative_change = 4.725010877311938e-10 Iter 115: T = 762.1865228335212 K, F = -1.5196830385422189e-5, relative_change = 1.9760560161545822e-10 Iter 120: T = 762.1865223734928 K, F = -6.355495983934034e-6, relative_change = 8.264102310990167e-11 Iter 125: T = 762.1865221811034 K, F = -2.657943782291561e-6, relative_change = 3.456145584175083e-11 Iter 130: T = 762.1865221006439 K, F = -1.1115839232411773e-6, relative_change = 1.4454014773663563e-11 Iter 135: T = 762.1865220669948 K, F = -4.648774870608108e-7, relative_change = 6.044839194633681e-12 Iter 140: T = 762.1865220529223 K, F = -1.9441866383473894e-7, relative_change = 2.528041456363575e-12 Iter 145: T = 762.1865220470371 K, F = -8.130833195618692e-8, relative_change = 1.0572587522527795e-12 Iter 150: T = 762.1865220445759 K, F = -3.4005500526568255e-8, relative_change = 4.421762467882953e-13 Converged in 154 iterations to T = 762.1865220436874 K Iter 1: T = 964.2836165958835 K, F = -8138.0119336795915, relative_change = 0.03571638340411648 Iter 2: T = 930.4902986705863 K, F = -6904.032919637584, relative_change = 0.03504499852916136 Iter 3: T = 898.5889769082952 K, F = -5856.103281048172, relative_change = 0.034284421673035435 Iter 5: T = 840.3491846200793 K, F = -4210.575419059368, relative_change = 0.032469957089841774 Iter 10: T = 725.8833337881204 K, F = -1836.4433611592062, relative_change = 0.02611154732211767 Iter 15: T = 651.912554199199 K, F = -793.0787944689848, relative_change = 0.017922332563796647 Iter 20: T = 610.007261080132 K, F = -338.63711439318564, relative_change = 0.010295438875773015 Iter 25: T = 589.0433148588363 K, F = -143.2395532779478, relative_change = 0.005114237949282734 Iter 30: T = 579.4369491914592 K, F = -60.23295370801656, relative_change = 0.0023226140692780596 Iter 35: T = 575.2461241083892 K, F = -25.251775621762352, relative_change = 0.0010076963475898742 Iter 40: T = 573.4607546471628 K, F = -10.57171472966303, relative_change = 0.00042814349922573505 Iter 45: T = 572.7081763483641 K, F = -4.423188458875051, relative_change = 0.00018025645182360685 Iter 50: T = 572.3923897479747 K, F = -1.850176933774019, relative_change = 7.559766117268731e-5 Iter 55: T = 572.2601393867126 K, F = -0.7738268706245741, relative_change = 3.165312294323979e-5 Iter 60: T = 572.2047983326663 K, F = -0.3236342799273121, relative_change = 1.3244245327168191e-5 Iter 65: T = 572.181648374843 K, F = -0.13534958278116846, relative_change = 5.540044723470401e-6 Iter 70: T = 572.1719657942201 K, F = -0.05660513763129063, relative_change = 2.317112865390247e-6 Iter 75: T = 572.1679162498723 K, F = -0.023673001530394644, relative_change = 9.690792569788485e-7 Iter 80: T = 572.1662226517174 K, F = -0.009900341916931177, relative_change = 4.0528663759550257e-7 Iter 85: T = 572.1655143634354 K, F = -0.00414044296641114, relative_change = 1.6949678221958279e-7 Iter 90: T = 572.1652181478888 K, F = -0.0017315829998459376, relative_change = 7.088576570276545e-8 Iter 95: T = 572.1650942668473 K, F = -0.0007241687426939869, relative_change = 2.9645306486899433e-8 Iter 100: T = 572.165042458288 K, F = -0.000302856026114795, relative_change = 1.2398026946902707e-8 Iter 105: T = 572.1650207913247 K, F = -0.00012665800775096825, relative_change = 5.185003899012366e-9 Iter 110: T = 572.165011729941 K, F = -5.296989091196913e-5, relative_change = 2.1684306937538644e-9 Iter 115: T = 572.1650079403621 K, F = -2.2152640699268922e-5, relative_change = 9.068636300297037e-10 Iter 120: T = 572.1650063555148 K, F = -9.264498395167298e-6, relative_change = 3.7926118470010184e-10 Iter 125: T = 572.1650056927128 K, F = -3.874523730129642e-6, relative_change = 1.5861155191179135e-10 Iter 130: T = 572.1650054155211 K, F = -1.6203720982765901e-6, relative_change = 6.633324549709264e-11 Iter 135: T = 572.1650052995963 K, F = -6.776589477897055e-7, relative_change = 2.7741354864234878e-11 Iter 140: T = 572.1650052511151 K, F = -2.834054368960892e-7, relative_change = 1.1601781138141643e-11 Iter 145: T = 572.1650052308397 K, F = -1.1852355935593195e-7, relative_change = 4.852004289872628e-12 Iter 150: T = 572.1650052223604 K, F = -4.956821614277018e-8, relative_change = 2.0291762978596935e-12 Iter 155: T = 572.1650052188141 K, F = -2.0730367533694505e-8, relative_change = 8.48639989895415e-13 Iter 160: T = 572.1650052173311 K, F = -8.669979012498885e-9, relative_change = 3.549233215326425e-13 Converged in 163 iterations to T = 572.1650052168968 K Iter 1: T = 963.5187402237862 K, F = -8312.289742647246, relative_change = 0.036481259776213866 Iter 2: T = 928.9123428296645 K, F = -7053.337967641116, relative_change = 0.035916683245916 Iter 3: T = 896.1470824831871 K, F = -5984.152552819899, relative_change = 0.03527271501923145 Iter 5: T = 836.0205821836565 K, F = -4305.087994136173, relative_change = 0.03371722648848305 Iter 10: T = 715.9837799570515 K, F = -1881.564367504833, relative_change = 0.02804024798938716 Iter 15: T = 635.9523992038157 K, F = -814.9144669660697, relative_change = 0.020150945236471787 Iter 20: T = 588.9603370236227 K, F = -348.9871385015986, relative_change = 0.012119890181652347 Iter 25: T = 564.7325735163242 K, F = -147.93757795967286, relative_change = 0.0062238702851572306 Iter 30: T = 553.4162156662849 K, F = -62.285050525617116, relative_change = 0.0028797629438178773 Iter 35: T = 548.4300918395562 K, F = -26.12764855109232, relative_change = 0.0012606950829162058 Iter 40: T = 546.2961140315313 K, F = -10.941311924778898, relative_change = 0.0005377828979854017 Iter 45: T = 545.3947762620127 K, F = -4.578351416555295, relative_change = 0.00022680620893742454 Iter 50: T = 545.0162445861819 K, F = -1.9151728918307804, relative_change = 9.518933043294431e-5 Iter 55: T = 544.8576594369653 K, F = -0.8010274054486561, relative_change = 3.986843451520754e-5 Iter 60: T = 544.7912883380694 K, F = -0.3350131019450098, relative_change = 1.6683818110212783e-5 Iter 65: T = 544.7635225886837 K, F = -0.14010890808136367, relative_change = 6.979186076443934e-6 Iter 70: T = 544.7519091221596 K, F = -0.058595643346835646, relative_change = 2.9190963744535873e-6 Iter 75: T = 544.7470519696093 K, F = -0.024505472116865434, relative_change = 1.2208564889296332e-6 Iter 80: T = 544.7450206045506 K, F = -0.01024849408838252, relative_change = 5.105864755062341e-7 Iter 85: T = 544.7441710554032 K, F = -0.0042860448922386885, relative_change = 2.1353506035122334e-7 Iter 90: T = 544.7438157624011 K, F = -0.0017924755573305862, relative_change = 8.930320947254059e-8 Iter 95: T = 544.7436671743793 K, F = -0.0007496347535553005, relative_change = 3.734772063452833e-8 Iter 100: T = 544.7436050330513 K, F = -0.00031350621896100717, relative_change = 1.5619271900530277e-8 Iter 105: T = 544.7435790447983 K, F = -0.00013111204745547278, relative_change = 6.532167657018215e-9 Iter 110: T = 544.7435681761991 K, F = -5.483262478472861e-5, relative_change = 2.731830820597101e-9 Iter 115: T = 544.743563630821 K, F = -2.293165887140569e-5, relative_change = 1.142484336776733e-9 Iter 120: T = 544.7435617298894 K, F = -9.590293755246115e-6, relative_change = 4.778006093640336e-10 Iter 125: T = 544.7435609348971 K, F = -4.010775348450846e-6, relative_change = 1.9982192076008638e-10 Iter 130: T = 544.7435606024219 K, F = -1.677353959783634e-6, relative_change = 8.356790443071683e-11 Iter 135: T = 544.7435604633768 K, F = -7.014895768153728e-7, relative_change = 3.4949101615529286e-11 Iter 140: T = 544.7435604052263 K, F = -2.93370297499429e-7, relative_change = 1.4616080811981698e-11 Iter 145: T = 544.7435603809073 K, F = -1.2269125956865246e-7, relative_change = 6.112634375209292e-12 Iter 150: T = 544.7435603707368 K, F = -5.131125430102301e-8, relative_change = 2.5563918571388963e-12 Iter 155: T = 544.7435603664833 K, F = -2.1459123950018366e-8, relative_change = 1.0691208093914545e-12 Iter 160: T = 544.7435603647044 K, F = -8.974129883654314e-9, relative_change = 4.471025484214837e-13 Converged in 165 iterations to T = 544.7435603639603 K Iter 1: T = 969.2325552515335 K, F = -7010.391553333734, relative_change = 0.030767444748466436 Iter 2: T = 940.6036716132351 K, F = -5939.434273065032, relative_change = 0.029537682657459645 Iter 3: T = 914.0747143451456 K, F = -5030.400860171954, relative_change = 0.028204182131874457 Iter 5: T = 867.1332145257471 K, F = -3604.3928077926926, relative_change = 0.02525668888187521 Iter 10: T = 782.445569047991 K, F = -1554.6345990521297, relative_change = 0.016995568150183712 Iter 15: T = 735.1794725344264 K, F = -663.0206254823457, relative_change = 0.00958318748105513 Iter 20: T = 711.8121390407038 K, F = -280.2169386485351, relative_change = 0.004700268202835147 Iter 25: T = 701.181141749828 K, F = -117.77910133439411, relative_change = 0.0021199709596729623 Iter 30: T = 696.5601207941165 K, F = -49.36650096741648, relative_change = 0.0009167935621406061 Iter 35: T = 694.5947379387374 K, F = -20.665429715285274, relative_change = 0.00038896334584197743 Iter 40: T = 693.7668754334926 K, F = -8.64602935950476, relative_change = 0.0001636604505091404 Iter 45: T = 693.4196053535387 K, F = -3.6164880018994863, relative_change = 6.8619695605899e-5 Iter 50: T = 693.2741885505282 K, F = -1.5125663147598853, relative_change = 2.872828845718253e-5 Iter 55: T = 693.2133411978168 K, F = -0.6325921753300374, relative_change = 1.201989337416295e-5 Iter 60: T = 693.1878884519763 K, F = -0.26456090556673334, relative_change = 5.0278045526580726e-6 Iter 65: T = 693.1772428200159 K, F = -0.11064310802000532, relative_change = 2.10285263975993e-6 Iter 70: T = 693.17279051647 K, F = -0.046272370186678624, relative_change = 8.794669021677964e-7 Iter 75: T = 693.170928479674 K, F = -0.019351675492878306, relative_change = 3.6780860147639676e-7 Iter 80: T = 693.1701497483522 K, F = -0.008093104889479008, relative_change = 1.538228312020927e-7 Iter 85: T = 693.1698240726871 K, F = -0.003384633656955627, relative_change = 6.433069920983451e-8 Iter 90: T = 693.1696878710725 K, F = -0.0014154943102504536, relative_change = 2.690389363305442e-8 Iter 95: T = 693.1696309099025 K, F = -0.0005919766420449113, relative_change = 1.125153434148159e-8 Iter 100: T = 693.1696070880558 K, F = -0.0002475717035219649, relative_change = 4.705526843618291e-9 Iter 105: T = 693.1695971254743 K, F = -0.00010353744421875977, relative_change = 1.967907678860548e-9 Iter 110: T = 693.1695929590036 K, F = -4.330059583290691e-5, relative_change = 8.230025197197501e-10 Iter 115: T = 693.1695912165358 K, F = -1.8108827096074975e-5, relative_change = 3.4418950180550964e-10 Iter 120: T = 693.1695904878148 K, F = -7.5733273071643126e-6, relative_change = 1.439441523230963e-10 Iter 125: T = 693.1695901830551 K, F = -3.1672559714923665e-6, relative_change = 6.01991645772113e-11 Iter 130: T = 693.1695900556009 K, F = -1.32458466095553e-6, relative_change = 2.517601696510359e-11 Iter 135: T = 693.1695900022979 K, F = -5.539564340573122e-7, relative_change = 1.052889784847766e-11 Iter 140: T = 693.169589980006 K, F = -2.316695797421886e-7, relative_change = 4.403280095897166e-12 Iter 145: T = 693.1695899706833 K, F = -9.68864080075349e-8, relative_change = 1.8414933563768973e-12 Iter 150: T = 693.1695899667845 K, F = -4.051995106113537e-8, relative_change = 7.701515848950966e-13 Iter 155: T = 693.169589965154 K, F = -1.69469902555619e-8, relative_change = 3.2210679092323697e-13 Converged in 158 iterations to T = 693.1695899646766 K Iter 1: T = 966.441437265627 K, F = -7646.350441461195, relative_change = 0.033558562734373076 Iter 2: T = 934.9203053836557 K, F = -6483.143942081816, relative_change = 0.03261566678179142 Iter 3: T = 905.4069285790392 K, F = -5495.487916039223, relative_change = 0.03156779955966966 Iter 5: T = 852.2793202798181 K, F = -3945.157450141922, relative_change = 0.029151816441936103 Iter 10: T = 751.9902566678903 K, F = -1711.589870655583, relative_change = 0.02152955712367819 Iter 15: T = 691.7849044899014 K, F = -734.3622814457057, relative_change = 0.01333443311579252 Iter 20: T = 660.12070110051 K, F = -311.7586783705136, relative_change = 0.007004340137732503 Iter 25: T = 645.1322946192021 K, F = -131.37235788503426, relative_change = 0.003284266306894783 Iter 30: T = 638.480664406677 K, F = -55.13272583005705, relative_change = 0.001447247510505215 Iter 35: T = 635.6242287166127 K, F = -23.092129823785772, relative_change = 0.0006191912233533035 Iter 40: T = 634.4159407148055 K, F = -9.663638665445577, relative_change = 0.0002614736079357497 Iter 45: T = 633.9081759309367 K, F = -4.0425484017097535, relative_change = 0.00010979853895879655 Iter 50: T = 633.6953914077836 K, F = -1.6908349507455662, relative_change = 4.599773822368417e-5 Iter 55: T = 633.6063266823837 K, F = -0.7071611616200029, relative_change = 1.925059895946095e-5 Iter 60: T = 633.5690654909587 K, F = -0.2957491569226198, relative_change = 8.053245775876138e-6 Iter 65: T = 633.5534800951149 K, F = -0.12368686399577189, relative_change = 3.368386199806821e-6 Iter 70: T = 633.5469616904614 K, F = -0.05172750461562914, relative_change = 1.4087732694635168e-6 Iter 75: T = 633.5442355447749 K, F = -0.021633091834115104, relative_change = 5.891787375619076e-7 Iter 80: T = 633.5430954256708 K, F = -0.009047222892140383, relative_change = 2.4640384617013134e-7 Iter 85: T = 633.5426186120733 K, F = -0.0037836576274698497, relative_change = 1.030494267424644e-7 Iter 90: T = 633.5424192025525 K, F = -0.0015823709757889493, relative_change = 4.309657013381862e-8 Iter 95: T = 633.5423358070431 K, F = -0.0006617664689126945, relative_change = 1.802351240619429e-8 Iter 100: T = 633.5423009300335 K, F = -0.000276758646406694, relative_change = 7.537650272021468e-9 Iter 105: T = 633.5422863440494 K, F = -0.00011574377113171552, relative_change = 3.1523357080712175e-9 Iter 110: T = 633.5422802440164 K, F = -4.840542786954671e-5, relative_change = 1.3183445142709916e-9 Iter 115: T = 633.5422776929096 K, F = -2.0243727338831174e-5, relative_change = 5.513474123009115e-10 Iter 120: T = 633.5422766260064 K, F = -8.466169406529112e-6, relative_change = 2.3058009790825968e-10 Iter 125: T = 633.5422761798146 K, F = -3.5406532640225308e-6, relative_change = 9.643135399409479e-11 Iter 130: T = 633.5422759932119 K, F = -1.4807428790897248e-6, relative_change = 4.032872758225049e-11 Iter 135: T = 633.5422759151725 K, F = -6.192648485670027e-7, relative_change = 1.686596893116327e-11 Iter 140: T = 633.5422758825355 K, F = -2.5898414135472336e-7, relative_change = 7.05355469946631e-12 Iter 145: T = 633.5422758688862 K, F = -1.0831071373118561e-7, relative_change = 2.949893147600575e-12 Iter 150: T = 633.542275863178 K, F = -4.529721714385815e-8, relative_change = 1.2336909790420943e-12 Iter 155: T = 633.5422758607907 K, F = -1.8943519919378815e-8, relative_change = 5.159356602865824e-13 Converged in 160 iterations to T = 633.5422758597923 K Iter 1: T = 966.4917357068989 K, F = -7634.889893771212, relative_change = 0.03350826429310113 Iter 2: T = 935.0231896652359 K, F = -6473.338753674887, relative_change = 0.03255956039670286 Iter 3: T = 905.5646222537341 K, F = -5487.093056984211, relative_change = 0.03150570781249696 Iter 5: T = 852.5526214084932 K, F = -3938.9915242943366, relative_change = 0.029077817628837797 Iter 10: T = 752.5698437154049 K, F = -1708.7188557372685, relative_change = 0.021435551765238713 Iter 15: T = 692.6388436152246 K, F = -733.0360265043772, relative_change = 0.013249408436181569 Iter 20: T = 661.1626808287643 K, F = -311.1633628375499, relative_change = 0.006948567070127328 Iter 25: T = 646.2774287974909 K, F = -131.11326345434847, relative_change = 0.0032550055423146242 Iter 30: T = 639.6749958922849 K, F = -55.02225732969613, relative_change = 0.0014336709072721536 Iter 35: T = 636.8403842417852 K, F = -23.045530308098197, relative_change = 0.000613250413617501 Iter 40: T = 635.6414584342428 K, F = -9.644077699123489, relative_change = 0.00025894074790615567 Iter 45: T = 635.1376514743962 K, F = -4.0343549035233375, relative_change = 0.00010873062989265691 Iter 50: T = 634.9265296837119 K, F = -1.6874060671382296, relative_change = 4.55496017450434e-5 Iter 55: T = 634.838161656122 K, F = -0.7057267643864202, relative_change = 1.9062915353784027e-5 Iter 60: T = 634.8011920640226 K, F = -0.2951492053283405, relative_change = 7.974707377176618e-6 Iter 65: T = 634.785728659113 K, F = -0.12343594490397614, relative_change = 3.3355322998765678e-6 Iter 70: T = 634.7792612796317 K, F = -0.051622565126276665, relative_change = 1.395031940944967e-6 Iter 75: T = 634.7765564745246 K, F = -0.02158920451513413, relative_change = 5.83431698849242e-7 Iter 80: T = 634.7754252805231 K, F = -0.009028868626052733, relative_change = 2.4400032203487014e-7 Iter 85: T = 634.774952199548 K, F = -0.003775981642427373, relative_change = 1.0204423655471206e-7 Iter 90: T = 634.7747543510612 K, F = -0.0015791607843132494, relative_change = 4.267618622599585e-8 Iter 95: T = 634.774671608396 K, F = -0.0006604239289811353, relative_change = 1.7847702623038843e-8 Iter 100: T = 634.7746370044138 K, F = -0.00027619717899352025, relative_change = 7.46412444958482e-9 Iter 105: T = 634.7746225326131 K, F = -0.00011550895856732302, relative_change = 3.121586319284759e-9 Iter 110: T = 634.774616480333 K, F = -4.8307225809562926e-5, relative_change = 1.3054847340436266e-9 Iter 115: T = 634.774613949197 K, F = -2.0202658573720278e-5, relative_change = 5.459693123293146e-10 Iter 120: T = 634.7746128906458 K, F = -8.448992880938366e-6, relative_change = 2.2833088293169047e-10 Iter 125: T = 634.774612447947 K, F = -3.5334693805344486e-6, relative_change = 9.549069309415702e-11 Iter 130: T = 634.7746122628051 K, F = -1.4777388457343221e-6, relative_change = 3.9935341612026456e-11 Iter 135: T = 634.7746121853766 K, F = -6.180079570872188e-7, relative_change = 1.670143474322572e-11 Iter 140: T = 634.774612152995 K, F = -2.584586094589447e-7, relative_change = 6.98474760923282e-12 Iter 145: T = 634.7746121394526 K, F = -1.080901778638399e-7, relative_change = 2.9210967786028343e-12 Iter 150: T = 634.7746121337892 K, F = -4.520574908850605e-8, relative_change = 1.2216685239311455e-12 Iter 155: T = 634.7746121314206 K, F = -1.8905680077008213e-8, relative_change = 5.109189591966274e-13 Converged in 160 iterations to T = 634.77461213043 K Iter 1: T = 976.424791373284 K, F = -5371.633711410108, relative_change = 0.023575208626715968 Iter 2: T = 955.0114871551212 K, F = -4542.086250038153, relative_change = 0.021930315992946377 Iter 3: T = 935.6685508479388 K, F = -3838.907768760576, relative_change = 0.020254139942130926 Iter 5: T = 902.7731955500585 K, F = -2738.469122778686, relative_change = 0.01690110016442291 Iter 10: T = 848.5908883724641 K, F = -1167.7617566583638, relative_change = 0.009512094257653637 Iter 15: T = 821.8359319447253 K, F = -493.4985631734178, relative_change = 0.004659534638152781 Iter 20: T = 809.6723220735986 K, F = -207.41514128088548, relative_change = 0.0021001850292677415 Iter 25: T = 804.3869829304363 K, F = -86.93516232226439, relative_change = 0.0009079502377351994 Iter 30: T = 802.139417618471 K, F = -36.39180123091356, relative_change = 0.00038515790967985565 Iter 35: T = 801.1927595967861 K, F = -15.225588951695526, relative_change = 0.0001620496484932291 Iter 40: T = 800.7956691629911 K, F = -6.368595986257787, relative_change = 6.794261402519655e-5 Iter 45: T = 800.6293925223232 K, F = -2.6636109413156523, relative_change = 2.844452246923454e-5 Iter 50: T = 800.5598170650427 K, F = -1.1139868239350301, relative_change = 1.1901113444216567e-5 Iter 55: T = 800.5307133739223 K, F = -0.46588835305611964, relative_change = 4.978110878857263e-6 Iter 60: T = 800.5185407422209 K, F = -0.194841080592564, relative_change = 2.0820669169163907e-6 Iter 65: T = 800.5134498062627 K, F = -0.08148504300080905, relative_change = 8.707734987226257e-7 Iter 70: T = 800.5113206817622 K, F = -0.034078048933226746, relative_change = 3.6417281734681405e-7 Iter 75: T = 800.5104302504725 K, F = -0.014251852428082468, relative_change = 1.5230228551958762e-7 Iter 80: T = 800.5100578604245 K, F = -0.00596029582832136, relative_change = 6.369478579812921e-8 Iter 85: T = 800.5099021222758 K, F = -0.002492667062401588, relative_change = 2.6637946546084602e-8 Iter 90: T = 800.5098369906899 K, F = -0.001042463161270324, relative_change = 1.1140311974453423e-8 Iter 95: T = 800.5098097518774 K, F = -0.0004359705482080978, relative_change = 4.65901231430893e-9 Iter 100: T = 800.5097983602797 K, F = -0.00018232809168039488, relative_change = 1.9484547417947497e-9 Iter 105: T = 800.5097935961772 K, F = -7.625178449821579e-5, relative_change = 8.148670559566844e-10 Iter 110: T = 800.5097916037728 K, F = -3.1889407351326504e-5, relative_change = 3.4078714306189847e-10 Iter 115: T = 800.5097907705255 K, F = -1.3336532036278825e-5, relative_change = 1.4252126492819182e-10 Iter 120: T = 800.5097904220513 K, F = -5.577496100972468e-6, relative_change = 5.960408589938218e-11 Iter 125: T = 800.5097902763154 K, F = -2.3325757834147254e-6, relative_change = 2.4927143823147093e-11 Iter 130: T = 800.5097902153668 K, F = -9.75510726641815e-7, relative_change = 1.0424825793758497e-11 Iter 135: T = 800.5097901898774 K, F = -4.079706946713557e-7, relative_change = 4.359791548569934e-12 Iter 140: T = 800.5097901792175 K, F = -1.7061920520866636e-7, relative_change = 1.823327456249897e-12 Iter 145: T = 800.5097901747594 K, F = -7.135392132706642e-8, relative_change = 7.62525905047275e-13 Iter 150: T = 800.5097901728949 K, F = -2.984144753526152e-8, relative_change = 3.1890155953302707e-13 Converged in 153 iterations to T = 800.5097901723491 K Iter 1: T = 965.135514682633 K, F = -7943.906144249443, relative_change = 0.03486448531736702 Iter 2: T = 932.2430472049609 K, F = -6737.811127779051, relative_change = 0.03408067258667626 Iter 3: T = 901.2930933820219 K, F = -5713.623242142495, relative_change = 0.03319944719966831 Iter 5: T = 845.1078652760922 K, F = -4105.5778670544405, relative_change = 0.031125623191559794 Iter 10: T = 736.4936325887614 K, F = -1786.7423496323777, relative_change = 0.024164669985001865 Iter 15: T = 668.4717914752216 K, F = -769.4388707040767, relative_change = 0.015860871645322093 Iter 20: T = 631.1972840478037 K, F = -327.676153785018, relative_change = 0.00874509802920061 Iter 25: T = 613.0263717284962 K, F = -138.35374175425775, relative_change = 0.004226148836788424 Iter 30: T = 604.8276565724103 K, F = -58.12188098058362, relative_change = 0.0018912404996012466 Iter 35: T = 601.2785141210081 K, F = -24.355565208284105, relative_change = 0.0008148901252717824 Iter 40: T = 599.7718225878361 K, F = -10.194451840984975, relative_change = 0.00034517444608056654 Iter 45: T = 599.1376820202456 K, F = -4.264973175148303, relative_change = 0.00014513625158530318 Iter 50: T = 598.8717649496108 K, F = -1.7839318252593612, relative_change = 6.0835252508663504e-5 Iter 55: T = 598.7604301411984 K, F = -0.7461087510575755, relative_change = 2.546616492170788e-5 Iter 60: T = 598.7138466680458 K, F = -0.31203984447531125, relative_change = 1.0654481560145589e-5 Iter 65: T = 598.6943610650184 K, F = -0.13050023366062877, relative_change = 4.456571212853434e-6 Iter 70: T = 598.6862112815783 K, F = -0.05457700882924116, relative_change = 1.863920724073223e-6 Iter 75: T = 598.6828028273436 K, F = -0.02282480106054935, relative_change = 7.795365446567195e-7 Iter 80: T = 598.6813773505303 K, F = -0.009545612115152424, relative_change = 3.2601545212582206e-7 Iter 85: T = 598.6807811955094 K, F = -0.003992090336716547, relative_change = 1.363442480690196e-7 Iter 90: T = 598.6805318757316 K, F = -0.0016695400901891588, relative_change = 5.702091394276018e-8 Iter 95: T = 598.6804276071132 K, F = -0.0006982216449658019, relative_change = 2.3846848348870116e-8 Iter 100: T = 598.6803840007125 K, F = -0.00029200463833362056, relative_change = 9.973040498594594e-9 Iter 105: T = 598.6803657639915 K, F = -0.00012211982752613482, relative_change = 4.170845261832865e-9 Iter 110: T = 598.6803581371765 K, F = -5.1071971355287626e-5, relative_change = 1.744297441082087e-9 Iter 115: T = 598.6803549475512 K, F = -2.1358908582236324e-5, relative_change = 7.29486047643138e-10 Iter 120: T = 598.6803536136118 K, F = -8.932550813023354e-6, relative_change = 3.050797858888183e-10 Iter 125: T = 598.6803530557424 K, F = -3.7356996577808665e-6, relative_change = 1.275880183222909e-10 Iter 130: T = 598.6803528224348 K, F = -1.562313806102722e-6, relative_change = 5.335881927040274e-11 Iter 135: T = 598.6803527248627 K, F = -6.533775909756123e-7, relative_change = 2.2315271543441892e-11 Iter 140: T = 598.680352684057 K, F = -2.732502530911063e-7, relative_change = 9.332511067476396e-12 Iter 145: T = 598.6803526669916 K, F = -1.1427690804755031e-7, relative_change = 3.902980865309185e-12 Iter 150: T = 598.6803526598545 K, F = -4.779199719306959e-8, relative_change = 1.6322742166985526e-12 Iter 155: T = 598.6803526568697 K, F = -1.9986834298713063e-8, relative_change = 6.826246278889737e-13 Iter 160: T = 598.6803526556214 K, F = -8.35788704911522e-9, relative_change = 2.854528862164204e-13 Converged in 162 iterations to T = 598.6803526553572 K Iter 1: T = 964.50586037568 K, F = -8087.373477044573, relative_change = 0.03549413962432009 Iter 2: T = 930.9480370391362 K, F = -6860.661740325179, relative_change = 0.034792762506878724 Iter 3: T = 899.2960057721506 K, F = -5818.919020542528, relative_change = 0.03399978302511315 Iter 5: T = 841.5968987714864 K, F = -4183.1565644673165, relative_change = 0.03211477273966118 Iter 10: T = 728.6920983192977 K, F = -1823.4228010454403, relative_change = 0.025584357046366888 Iter 15: T = 656.3481267732027 K, F = -786.8468870370051, relative_change = 0.017346393369422106 Iter 20: T = 615.7428658978756 K, F = -335.7256267006409, relative_change = 0.009849688893627561 Iter 25: T = 595.5793037670971 K, F = -141.93398422544846, relative_change = 0.0048539264042479265 Iter 30: T = 586.3813538266643 K, F = -59.666877801252966, relative_change = 0.0021948610028111495 Iter 35: T = 582.3778751346675 K, F = -25.011052961395222, relative_change = 0.0009503187635198648 Iter 40: T = 580.6741014333483 K, F = -10.470304862688723, relative_change = 0.0004033998938633996 Iter 45: T = 579.9562442684223 K, F = -4.380645640573092, relative_change = 0.00016977311658771668 Iter 50: T = 579.6550851018134 K, F = -1.8323616958626274, relative_change = 7.118940618023769e-5 Iter 55: T = 579.5289709287351 K, F = -0.7663722286307902, relative_change = 2.980531528267278e-5 Iter 60: T = 579.4761994061189 K, F = -0.32051594180959025, relative_change = 1.2470729663615737e-5 Iter 65: T = 579.4541246358609 K, F = -0.13404533090049522, relative_change = 5.216421596110449e-6 Iter 70: T = 579.444891812824 K, F = -0.056059661936832705, relative_change = 2.1817471245962668e-6 Iter 75: T = 579.4410303801934 K, F = -0.023444873235824504, relative_change = 9.124637193915714e-7 Iter 80: T = 579.4394154557054 K, F = -0.009804935267504256, relative_change = 3.816086495662986e-7 Iter 85: T = 579.4387400702327 K, F = -0.004100542647923533, relative_change = 1.5959424342478176e-7 Iter 90: T = 579.4384576151288 K, F = -0.0017148961903473703, relative_change = 6.674438451579275e-8 Iter 95: T = 579.4383394888854 K, F = -0.0007171901160432648, relative_change = 2.79133277019538e-8 Iter 100: T = 579.4382900870542 K, F = -0.00029993748059531367, relative_change = 1.1673692089476609e-8 Iter 105: T = 579.4382694266139 K, F = -0.00012543743785564665, relative_change = 4.8820783307521876e-9 Iter 110: T = 579.4382607861703 K, F = -5.245943458631608e-5, relative_change = 2.0417436085893595e-9 Iter 115: T = 579.4382571726334 K, F = -2.1939161991724188e-5, relative_change = 8.538815840772939e-10 Iter 120: T = 579.4382556614091 K, F = -9.175219154222702e-6, relative_change = 3.571034648406264e-10 Iter 125: T = 579.4382550293972 K, F = -3.837186870359055e-6, relative_change = 1.493449595840111e-10 Iter 130: T = 579.4382547650821 K, F = -1.6047574035726875e-6, relative_change = 6.245784690615299e-11 Iter 135: T = 579.4382546545424 K, F = -6.711283014881886e-7, relative_change = 2.6120601564751134e-11 Iter 140: T = 579.4382546083135 K, F = -2.806745818539902e-7, relative_change = 1.0923975204873642e-11 Iter 145: T = 579.4382545889799 K, F = -1.1738146737938493e-7, relative_change = 4.568537096938934e-12 Iter 150: T = 579.4382545808944 K, F = -4.9090246256877634e-8, relative_change = 1.910613456657978e-12 Iter 155: T = 579.4382545775129 K, F = -2.0530405653307326e-8, relative_change = 7.990522008728006e-13 Iter 160: T = 579.4382545760988 K, F = -8.586092392626199e-9, relative_change = 3.3417440157592154e-13 Converged in 163 iterations to T = 579.4382545756847 K Iter 1: T = 964.2900780562147 K, F = -8136.539683796697, relative_change = 0.035709921943785305 Iter 2: T = 930.5036116337018 K, F = -6902.7718858691, relative_change = 0.035037658471627826 Iter 3: T = 898.6095486678598 K, F = -5855.022055765391, relative_change = 0.03427613022355177 Iter 5: T = 840.3855234036286 K, F = -4209.777979181332, relative_change = 0.03245958528369492 Iter 10: T = 725.96541325648 K, F = -1836.06424717159, relative_change = 0.02609601828356524 Iter 15: T = 652.0427290399763 K, F = -792.8969295783734, relative_change = 0.01790517187048069 Iter 20: T = 610.176249762163 K, F = -338.55190516392963, relative_change = 0.010282010715206121 Iter 25: T = 589.2363907057725 K, F = -143.20125468072035, relative_change = 0.005106336026078136 Iter 30: T = 579.6423768227711 K, F = -60.21632507421062, relative_change = 0.002318719824302716 Iter 35: T = 575.4572320156561 K, F = -25.244699523086283, relative_change = 0.0010059438610319853 Iter 40: T = 573.6743393843101 K, F = -10.568732852427775, relative_change = 0.00042738709128063094 Iter 45: T = 572.922815575584 K, F = -4.421937355993482, relative_change = 0.00017993585762721275 Iter 50: T = 572.6074733100804 K, F = -1.8496529924654297, relative_change = 7.54628295407303e-5 Iter 55: T = 572.4754093636295 K, F = -0.7736076264803369, relative_change = 3.159660181983788e-5 Iter 60: T = 572.420146373842 K, F = -0.3235425673934579, relative_change = 1.3220584209283979e-5 Iter 65: T = 572.3970290815313 K, F = -0.13531122365136444, relative_change = 5.5301452802057025e-6 Iter 70: T = 572.3873601651848 K, F = -0.05658909471039511, relative_change = 2.312972085838302e-6 Iter 75: T = 572.383316335955 K, F = -0.023666292071535477, relative_change = 9.67347408600181e-7 Iter 80: T = 572.3816251280277 K, F = -0.00989753592084891, relative_change = 4.0456233608458743e-7 Iter 85: T = 572.3809178393846 K, F = -0.004139269461573891, relative_change = 1.6919386684939055e-7 Iter 90: T = 572.3806220419018 K, F = -0.0017310922259648476, relative_change = 7.07590822288768e-8 Iter 95: T = 572.3804983357 K, F = -0.0007239634954740448, relative_change = 2.959232584420205e-8 Iter 100: T = 572.3804466002608 K, F = -0.0003027701889676271, relative_change = 1.2375869777117065e-8 Iter 105: T = 572.3804249638773 K, F = -0.00012662210955455278, relative_change = 5.1757374994890755e-9 Iter 110: T = 572.3804159152826 K, F = -5.295487919459996e-5, relative_change = 2.16455542891283e-9 Iter 115: T = 572.380412131052 K, F = -2.2146362614217097e-5, relative_change = 9.052429476798291e-10 Iter 120: T = 572.3804105484415 K, F = -9.261872868981946e-6, relative_change = 3.7858339779636794e-10 Iter 125: T = 572.380409886575 K, F = -3.87342570762339e-6, relative_change = 1.5832809349908319e-10 Iter 130: T = 572.3804096097746 K, F = -1.619913723049926e-6, relative_change = 6.621473376634458e-11 Iter 135: T = 572.3804094940133 K, F = -6.774674665144254e-7, relative_change = 2.769180070241481e-11 Iter 140: T = 572.3804094456005 K, F = -2.8332533869024346e-7, relative_change = 1.1581056218803248e-11 Iter 145: T = 572.3804094253537 K, F = -1.1849034414757043e-7, relative_change = 4.8433484401114995e-12 Iter 150: T = 572.3804094168862 K, F = -4.9553910808075585e-8, relative_change = 2.0255393665808866e-12 Iter 155: T = 572.3804094133451 K, F = -2.0724411464723147e-8, relative_change = 8.471200473931595e-13 Iter 160: T = 572.3804094118641 K, F = -8.66765781371015e-9, relative_change = 3.542945820452697e-13 Converged in 163 iterations to T = 572.3804094114305 K Iter 1: T = 980.0858658741847 K, F = -4537.454403798961, relative_change = 0.01991413412581524 Iter 2: T = 962.2178712513282 K, F = -3832.8585021550716, relative_change = 0.018231050201830214 Iter 3: T = 946.2755144590506 K, F = -3236.1663830113566, relative_change = 0.016568344102303192 Iter 5: T = 919.6457370424333 K, F = -2303.8276612230497, relative_change = 0.013393072615812107 Iter 10: T = 877.3433327828236 K, F = -978.1147483239534, relative_change = 0.007043011028926238 Iter 15: T = 857.3059038905559 K, F = -412.1871503635121, relative_change = 0.0033046120443082946 Iter 20: T = 848.4103494395241 K, F = -172.98544866028277, relative_change = 0.0014567002679768929 Iter 25: T = 844.5896341489824 K, F = -72.45502107267534, relative_change = 0.0006233299750770989 Iter 30: T = 842.9733264628263 K, F = -30.321248735687803, relative_change = 0.00026323860823638476 Iter 35: T = 842.2940752098505 K, F = -12.684181192178222, relative_change = 0.00011054278116397067 Iter 40: T = 842.0094234000799 K, F = -5.3052855666758685, relative_change = 4.631006543323251e-5 Iter 45: T = 841.8902766545996 K, F = -2.2188405410615193, relative_change = 1.9381406877437463e-5 Iter 50: T = 841.840430202586 K, F = -0.9279642962211949, relative_change = 8.107984309267572e-6 Iter 55: T = 841.819580695299 K, F = -0.38808901942755736, relative_change = 3.3912843012185605e-6 Iter 60: T = 841.8108606355107 K, F = -0.16230403438713803, relative_change = 1.4183505424314422e-6 Iter 65: T = 841.8072137067137 K, F = -0.06787758548022071, relative_change = 5.931842447607275e-7 Iter 70: T = 841.8056885008069 K, F = -0.02838723436298296, relative_change = 2.480790281583813e-7 Iter 75: T = 841.8050506385557 K, F = -0.011871883480584211, relative_change = 1.0375001326842112e-7 Iter 80: T = 841.8047838764328 K, F = -0.004964963986264337, relative_change = 4.3389564723458794e-8 Iter 85: T = 841.8046723132378 K, F = -0.0020764073284802453, relative_change = 1.814604643074242e-8 Iter 90: T = 841.8046256561615 K, F = -0.0008683783567362546, relative_change = 7.588895455637496e-9 Iter 95: T = 841.8046061436123 K, F = -0.0003631662018328541, relative_change = 3.1737670815012837e-9 Iter 100: T = 841.8045979832307 K, F = -0.00015188044192893102, relative_change = 1.3273073505565824e-9 Iter 105: T = 841.8045945704615 K, F = -6.351821365857546e-5, relative_change = 5.550957874489775e-10 Iter 110: T = 841.8045931432008 K, F = -2.656407621670631e-5, relative_change = 2.3214769552029173e-10 Iter 115: T = 841.8045925463034 K, F = -1.1109416065968603e-5, relative_change = 9.708695781319038e-11 Iter 120: T = 841.8045922966737 K, F = -4.646091853688361e-6, relative_change = 4.060293734194605e-11 Iter 125: T = 841.8045921922755 K, F = -1.9430513991114395e-6, relative_change = 1.6980635928292502e-11 Iter 130: T = 841.8045921486149 K, F = -8.126065158542417e-7, relative_change = 7.101497885437698e-12 Iter 135: T = 841.8045921303556 K, F = -3.3984011649224044e-7, relative_change = 2.9699169546638e-12 Iter 140: T = 841.8045921227192 K, F = -1.421232294074315e-7, relative_change = 1.2420375588488602e-12 Iter 145: T = 841.8045921195258 K, F = -5.9438022281810277e-8, relative_change = 5.194383522443169e-13 Converged in 150 iterations to T = 841.8045921181902 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016567029646715355 Iteration 10: d = 1.2756389737054429e-5 Iteration 20: d = 1.0420556440356535e-7 Iteration 30: d = 1.0707178153277137e-9 Iteration 40: d = 1.2752123381986311e-11 Iteration 50: d = 1.658271864648471e-13 Iteration 60: d = 2.2697461732065087e-15 Converged after 61 iterations. d = 1.4286460710564758e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.729845709917 Iteration 2: convergence error = 4818.590896320196 Iteration 3: convergence error = 1096.2585544189658 Iteration 4: convergence error = 320.3869013243061 Iteration 5: convergence error = 95.08451309789689 Iteration 6: convergence error = 28.35982558817841 Iteration 7: convergence error = 8.509113949435005 Iteration 8: convergence error = 2.551233918629123 Iteration 9: convergence error = 0.7630952896493 Iteration 10: convergence error = 0.22793398116800745 Iteration 11: convergence error = 0.06802968039573898 Iteration 12: convergence error = 0.02029522506450121 Iteration 13: convergence error = 0.00605311294339117 Iteration 14: convergence error = 0.0018050964963549632 Iteration 15: convergence error = 0.0005382520660077716 Iteration 16: convergence error = 0.00016049074974944233 Iteration 17: convergence error = 4.7852224724920234e-5 Iteration 18: convergence error = 1.4267474625739851e-5 Iteration 19: convergence error = 4.253911356499884e-6 Iteration 20: convergence error = 1.26831423585827e-6 Iteration 21: convergence error = 3.7815357245563064e-7 Iteration 22: convergence error = 1.1260476640018169e-7 Iteration 23: convergence error = 3.2672687666490674e-8 Iteration 24: convergence error = 9.426003089174628e-9 Iteration 25: convergence error = 2.706201485125348e-9 Iteration 26: convergence error = 7.719336281297728e-10 Iteration 27: convergence error = 2.248725650133565e-10 Iteration 28: convergence error = 6.502887117676437e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013073883977745982 Iteration 10: d = 1.5548736700096293e-5 Iteration 20: d = 1.7309240096921874e-7 Iteration 30: d = 2.093489129987493e-9 Iteration 40: d = 2.5911574553775194e-11 Iteration 50: d = 3.244633127881918e-13 Iteration 60: d = 4.089661950178916e-15 Converged after 62 iterations. d = 1.6811417933291853e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12263.537400202036 Iteration 2: convergence error = 8310.842097847737 Iteration 3: convergence error = 1957.799755265707 Iteration 4: convergence error = 482.6986360482563 Iteration 5: convergence error = 123.1262357704104 Iteration 6: convergence error = 32.88687049584837 Iteration 7: convergence error = 8.96285229606542 Iteration 8: convergence error = 2.456698051804551 Iteration 9: convergence error = 0.6741924949135409 Iteration 10: convergence error = 0.18504286915140256 Iteration 11: convergence error = 0.050784937703838295 Iteration 12: convergence error = 0.01393707920919951 Iteration 13: convergence error = 0.003824663915338533 Iteration 14: convergence error = 0.0010495592177903745 Iteration 15: convergence error = 0.0002880161862321984 Iteration 16: convergence error = 7.903603818704141e-5 Iteration 17: convergence error = 2.1688657170670922e-5 Iteration 18: convergence error = 5.951684443061822e-6 Iteration 19: convergence error = 1.6332296581822447e-6 Iteration 20: convergence error = 4.48183072876418e-7 Iteration 21: convergence error = 1.2383907233015634e-7 Iteration 22: convergence error = 3.33218395098811e-8 Iteration 23: convergence error = 8.91395757207647e-9 Iteration 24: convergence error = 2.385831976425834e-9 Iteration 25: convergence error = 6.325535650830716e-10 Iteration 26: convergence error = 1.687112671788782e-10 Iteration 27: convergence error = 4.615685611497611e-11 Iteration 28: convergence error = 1.2960299500264227e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013073883977745982 Iteration 10: d = 1.5548736700096293e-5 Iteration 20: d = 1.7309240096921874e-7 Iteration 30: d = 2.093489129987493e-9 Iteration 40: d = 2.5911574553775194e-11 Iteration 50: d = 3.244633127881918e-13 Iteration 60: d = 4.089661950178916e-15 Converged after 62 iterations. d = 1.6811417933291853e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.959207600867 Iteration 2: convergence error = 5731.606654557476 Iteration 3: convergence error = 2011.2357256929504 Iteration 4: convergence error = 892.0491693321746 Iteration 5: convergence error = 411.8775604054026 Iteration 6: convergence error = 194.29616009386837 Iteration 7: convergence error = 91.74960860679903 Iteration 8: convergence error = 43.35088547297164 Iteration 9: convergence error = 20.484389083020233 Iteration 10: convergence error = 9.677701476012771 Iteration 11: convergence error = 4.571085531169956 Iteration 12: convergence error = 2.1586098191078236 Iteration 13: convergence error = 1.01919401592113 Iteration 14: convergence error = 0.4811575797612022 Iteration 15: convergence error = 0.227133667074213 Iteration 16: convergence error = 0.10712511983001605 Iteration 17: convergence error = 0.05008796245738267 Iteration 18: convergence error = 0.022886018295594113 Iteration 19: convergence error = 0.01041764714045712 Iteration 20: convergence error = 0.00473185535201992 Iteration 21: convergence error = 0.002146610877389321 Iteration 22: convergence error = 0.0009731097879921435 Iteration 23: convergence error = 0.0004409475513966754 Iteration 24: convergence error = 0.00019975777468062006 Iteration 25: convergence error = 9.048069068740006e-5 Iteration 26: convergence error = 4.097974670003168e-5 Iteration 27: convergence error = 1.8559195268608164e-5 Iteration 28: convergence error = 8.404939308093162e-6 Iteration 29: convergence error = 3.806285803875653e-6 Iteration 30: convergence error = 1.7237052816199139e-6 Iteration 31: convergence error = 7.805824679962825e-7 Iteration 32: convergence error = 3.534878487698734e-7 Iteration 33: convergence error = 1.6007879821700044e-7 Iteration 34: convergence error = 7.24926394468639e-8 Iteration 35: convergence error = 3.283003024989739e-8 Iteration 36: convergence error = 1.486341716372408e-8 Iteration 37: convergence error = 6.7298060457687825e-9 Iteration 38: convergence error = 3.049990482395515e-9 Iteration 39: convergence error = 1.3797034625895321e-9 Iteration 40: convergence error = 6.298250809777528e-10 Iteration 41: convergence error = 2.842170943040401e-10 Iteration 42: convergence error = 1.305124897044152e-10 Iteration 43: convergence error = 6.048139766789973e-11 Iteration 44: convergence error = 2.6830093702301383e-11 Iteration 45: convergence error = 1.2732925824820995e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013073883977745982 Iteration 10: d = 1.5548736700096293e-5 Iteration 20: d = 1.7309240096921874e-7 Iteration 30: d = 2.093489129987493e-9 Iteration 40: d = 2.5911574553775194e-11 Iteration 50: d = 3.244633127881918e-13 Iteration 60: d = 4.089661950178916e-15 Converged after 62 iterations. d = 1.6811417933291853e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10827.127823660741 Iteration 2: convergence error = 7347.549265701637 Iteration 3: convergence error = 1727.907610909877 Iteration 4: convergence error = 507.10655532778947 Iteration 5: convergence error = 157.58260479010096 Iteration 6: convergence error = 48.97122590196523 Iteration 7: convergence error = 15.19394795103608 Iteration 8: convergence error = 4.7064293915486815 Iteration 9: convergence error = 1.456179360022361 Iteration 10: convergence error = 0.45022646407096545 Iteration 11: convergence error = 0.13914495116796388 Iteration 12: convergence error = 0.04299333124072291 Iteration 13: convergence error = 0.013282396522754425 Iteration 14: convergence error = 0.004103163055788173 Iteration 15: convergence error = 0.0012674837325903354 Iteration 16: convergence error = 0.0003915212914762378 Iteration 17: convergence error = 0.00012093787336198147 Iteration 18: convergence error = 3.735647032954148e-5 Iteration 19: convergence error = 1.1538970284163952e-5 Iteration 20: convergence error = 3.5642460716189817e-6 Iteration 21: convergence error = 1.1009537956852e-6 Iteration 22: convergence error = 3.3990545489359647e-7 Iteration 23: convergence error = 1.0378198567195795e-7 Iteration 24: convergence error = 3.090235622948967e-8 Iteration 25: convergence error = 9.165432857116684e-9 Iteration 26: convergence error = 2.724846126511693e-9 Iteration 27: convergence error = 8.076312951743603e-10 Iteration 28: convergence error = 2.3374013835564256e-10 Iteration 29: convergence error = 7.594280759803951e-11 Iteration 30: convergence error = 1.864464138634503e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013073883977745982 Iteration 10: d = 1.5548736700096293e-5 Iteration 20: d = 1.7309240096921874e-7 Iteration 30: d = 2.093489129987493e-9 Iteration 40: d = 2.5911574553775194e-11 Iteration 50: d = 3.244633127881918e-13 Iteration 60: d = 4.089661950178916e-15 Converged after 62 iterations. d = 1.6811417933291853e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.84762925669 Iteration 2: convergence error = 5515.934910663806 Iteration 3: convergence error = 934.5042274930299 Iteration 4: convergence error = 169.97142792006662 Iteration 5: convergence error = 30.842910047012538 Iteration 6: convergence error = 5.6342984906495985 Iteration 7: convergence error = 1.0340802406267358 Iteration 8: convergence error = 0.18932538842091162 Iteration 9: convergence error = 0.03462195835663806 Iteration 10: convergence error = 0.0063276322084675485 Iteration 11: convergence error = 0.0011561209598767164 Iteration 12: convergence error = 0.00021120306382726994 Iteration 13: convergence error = 3.8580077216465725e-5 Iteration 14: convergence error = 7.047072813293198e-6 Iteration 15: convergence error = 1.2872105799033307e-6 Iteration 16: convergence error = 2.3511665858677588e-7 Iteration 17: convergence error = 4.294179234420881e-8 Iteration 18: convergence error = 7.835751603124663e-9 Iteration 19: convergence error = 1.4360921340994537e-9 Iteration 20: convergence error = 2.6147972675971687e-10 Iteration 21: convergence error = 4.5929482439532876e-11 Iteration 22: convergence error = 8.640199666842818e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013073883977745982 Iteration 10: d = 1.5548736700096293e-5 Iteration 20: d = 1.7309240096921874e-7 Iteration 30: d = 2.093489129987493e-9 Iteration 40: d = 2.5911574553775194e-11 Iteration 50: d = 3.244633127881918e-13 Iteration 60: d = 4.089661950178916e-15 Converged after 62 iterations. d = 1.6811417933291853e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.508563267033 Iteration 2: convergence error = 2712.288318242247 Iteration 3: convergence error = 204.13964878956563 Iteration 4: convergence error = 19.265634259901233 Iteration 5: convergence error = 1.5927895001819907 Iteration 6: convergence error = 0.12977671598440044 Iteration 7: convergence error = 0.010588279392949082 Iteration 8: convergence error = 0.0008665595818213839 Iteration 9: convergence error = 7.103646003059939e-5 Iteration 10: convergence error = 5.826757454448261e-6 Iteration 11: convergence error = 4.782176718532159e-7 Iteration 12: convergence error = 3.9244176642226357e-8 Iteration 13: convergence error = 3.221416831293806e-9 Iteration 14: convergence error = 2.631751706539706e-10 Iteration 15: convergence error = 2.148681232938543e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016567029646715355 Iteration 10: d = 1.2756389737054429e-5 Iteration 20: d = 1.0420556440356535e-7 Iteration 30: d = 1.0707178153277137e-9 Iteration 40: d = 1.2752123381986311e-11 Iteration 50: d = 1.658271864648471e-13 Iteration 60: d = 2.2697461732065087e-15 Converged after 61 iterations. d = 1.4286460710564758e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.350394170956 Iteration 2: convergence error = 3606.6492956286947 Iteration 3: convergence error = 592.4206499830685 Iteration 4: convergence error = 104.67903390603419 Iteration 5: convergence error = 18.627411175433735 Iteration 6: convergence error = 3.2841496709120293 Iteration 7: convergence error = 0.5768469297945558 Iteration 8: convergence error = 0.10116417533686217 Iteration 9: convergence error = 0.01773047808978845 Iteration 10: convergence error = 0.0031067399743278656 Iteration 11: convergence error = 0.0005443096872568276 Iteration 12: convergence error = 9.536088191453018e-5 Iteration 13: convergence error = 1.6706591850379482e-5 Iteration 14: convergence error = 2.9268644539115485e-6 Iteration 15: convergence error = 5.127624262968311e-7 Iteration 16: convergence error = 8.983988664112985e-8 Iteration 17: convergence error = 1.574699126649648e-8 Iteration 18: convergence error = 2.7403075364418328e-9 Iteration 19: convergence error = 4.865796654485166e-10 Iteration 20: convergence error = 8.230927051045e-11 Iteration 21: convergence error = 1.4551915228366852e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 10m03.6s Testing RayTraceHeatTransfer tests passed Testing completed after 593.99s PkgEval succeeded after 718.64s