Package evaluation to test RayTraceHeatTransfer on Julia 1.13.0-DEV.1319 (9cddfda8ef*) started at 2025-10-16T15:15:22.576 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 10.18s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.13/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.1 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.9.9 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.46.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.67.1+0 [3f19e933] + p7zip_jll v17.6.0+0 Installation completed after 5.88s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 51.23s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_7FMW2m/Project.toml` [5c1252a2] GeometryBasics v0.5.10 [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_7FMW2m/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.1 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.46.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:43 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 98%|████████████████████████████████▍| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:06 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012371900703918896 Iteration 10: d = 1.4177246459331178e-5 Iteration 20: d = 2.423988116974892e-7 Iteration 30: d = 4.408978177499961e-9 Iteration 40: d = 8.051136692232178e-11 Iteration 50: d = 1.4680800156862865e-12 Iteration 60: d = 2.6702793744986747e-14 Converged after 67 iterations. d = 1.6246117659070396e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 37%|████████████▎ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011052393934819081 Iteration 10: d = 6.682029472905437e-6 Iteration 20: d = 7.298162711358669e-8 Iteration 30: d = 1.060206284294826e-9 Iteration 40: d = 1.6976382268168825e-11 Iteration 50: d = 2.8578192818063655e-13 Iteration 60: d = 4.946551455435586e-15 Converged after 63 iterations. d = 1.4271852706143038e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 37%|████████████▎ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011197881551850964 Iteration 10: d = 8.286900351801726e-6 Iteration 20: d = 1.1820571605278489e-7 Iteration 30: d = 1.936934338213425e-9 Iteration 40: d = 3.280498902422266e-11 Iteration 50: d = 5.676482441734067e-13 Iteration 60: d = 9.943243480753051e-15 Converged after 64 iterations. d = 1.968228355565956e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 28%|█████████▍ | ETA: 0:00:03 Bin 1 progress: 61%|████████████████████ | ETA: 0:00:01 Bin 1 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011147691304241967 Iteration 10: d = 9.521613131461405e-6 Iteration 20: d = 1.363303413821928e-7 Iteration 30: d = 2.1974647313807292e-9 Iteration 40: d = 3.7233216296513404e-11 Iteration 50: d = 6.510420068696011e-13 Iteration 60: d = 1.16276254514215e-14 Converged after 65 iterations. d = 1.5542268808652116e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 32%|██████████▊ | ETA: 0:00:02 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013686734839550789 Iteration 10: d = 1.971131136194999e-5 Iteration 20: d = 2.9161563408810647e-7 Iteration 30: d = 4.4465292022181614e-9 Iteration 40: d = 6.801325826664254e-11 Iteration 50: d = 1.04046784782505e-12 Iteration 60: d = 1.5912155816988222e-14 Converged after 65 iterations. d = 1.918964124619956e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 35%|███████████▋ | ETA: 0:00:02 Bin 1 progress: 74%|████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012923528667640012 Iteration 10: d = 1.642809824470836e-5 Iteration 20: d = 2.4754243837137006e-7 Iteration 30: d = 3.833982064197217e-9 Iteration 40: d = 5.934770754217414e-11 Iteration 50: d = 9.172211923501641e-13 Iteration 60: d = 1.41501858953526e-14 Converged after 65 iterations. d = 1.7345121984823642e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012212864021688267 Iteration 10: d = 1.2971082784695514e-5 Iteration 20: d = 1.84446551822217e-7 Iteration 30: d = 2.859184181485542e-9 Iteration 40: d = 4.450203920779253e-11 Iteration 50: d = 6.909987949098062e-13 Iteration 60: d = 1.068737470932097e-14 Converged after 64 iterations. d = 2.0481995382895805e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011467762813134152 Iteration 10: d = 1.2331700592413923e-5 Iteration 20: d = 1.8150558996794455e-7 Iteration 30: d = 2.8008530940222884e-9 Iteration 40: d = 4.3274570267148116e-11 Iteration 50: d = 6.68324766771305e-13 Iteration 60: d = 1.0332657794915411e-14 Converged after 64 iterations. d = 1.9445810593087767e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 35%|███████████▋ | ETA: 0:00:02 Bin 1 progress: 74%|████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001176612484241107 Iteration 10: d = 1.6058415556122256e-5 Iteration 20: d = 2.3355619983194121e-7 Iteration 30: d = 3.546353281411676e-9 Iteration 40: d = 5.427358529112761e-11 Iteration 50: d = 8.324172870448212e-13 Iteration 60: d = 1.2791207793588593e-14 Converged after 65 iterations. d = 1.5802500172656462e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 35%|███████████▋ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011637367048396852 Iteration 10: d = 1.3647652767663604e-5 Iteration 20: d = 1.7569163748376843e-7 Iteration 30: d = 2.5079833498370616e-9 Iteration 40: d = 3.7195082562538046e-11 Iteration 50: d = 5.621598551319417e-13 Iteration 60: d = 8.575705339331595e-15 Converged after 64 iterations. d = 1.6552892257567733e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.005661655104346311 Iteration 10: d = 8.268716644164609e-5 Iteration 20: d = 1.0692802831902254e-6 Iteration 30: d = 1.4478187345229874e-8 Iteration 40: d = 1.9893975760552541e-10 Iteration 50: d = 2.758123299560581e-12 Iteration 60: d = 3.853930768030026e-14 Converged after 67 iterations. d = 1.9296714959487577e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003263672300996696 Iteration 10: d = 3.0977553436552003e-5 Iteration 20: d = 4.779702442465976e-7 Iteration 30: d = 7.868227983652313e-9 Iteration 40: d = 1.2933687617133037e-10 Iteration 50: d = 2.1226346583271728e-12 Iteration 60: d = 3.486186989747532e-14 Converged after 67 iterations. d = 1.9578179619616966e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00285097644193481 Iteration 10: d = 3.741174784386926e-5 Iteration 20: d = 6.102958110672347e-7 Iteration 30: d = 1.0637945509559662e-8 Iteration 40: d = 1.8755202749361186e-10 Iteration 50: d = 3.3190894872431688e-12 Iteration 60: d = 5.88303847300201e-14 Converged after 69 iterations. d = 1.5289402492168734e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0026131776297055632 Iteration 10: d = 3.2854286539487986e-5 Iteration 20: d = 5.048629807432939e-7 Iteration 30: d = 8.437741703350419e-9 Iteration 40: d = 1.45004742819482e-10 Iteration 50: d = 2.5292043876196523e-12 Iteration 60: d = 4.4490633393918344e-14 Converged after 68 iterations. d = 1.7830218084775328e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013686734839550789 Iteration 10: d = 1.971131136194999e-5 Iteration 20: d = 2.9161563408810647e-7 Iteration 30: d = 4.4465292022181614e-9 Iteration 40: d = 6.801325826664254e-11 Iteration 50: d = 1.04046784782505e-12 Iteration 60: d = 1.5912155816988222e-14 Converged after 65 iterations. d = 1.918964124619956e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013723645051500514 Iteration 10: d = 1.1657313203809666e-5 Iteration 20: d = 1.1407555384676895e-7 Iteration 30: d = 1.4238394454701802e-9 Iteration 40: d = 1.9087295451062804e-11 Iteration 50: d = 2.6154971056382905e-13 Iteration 60: d = 3.593488247714127e-15 Converged after 62 iterations. d = 1.5237805102455736e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 29%|█████████▌ | ETA: 0:00:02 Bin 1 progress: 60%|███████████████████▊ | ETA: 0:00:01 Bin 1 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013407599117654413 Iteration 10: d = 1.704019599122209e-5 Iteration 20: d = 2.142219652375047e-7 Iteration 30: d = 2.9862276098666554e-9 Iteration 40: d = 4.2384292610606946e-11 Iteration 50: d = 6.03285154349202e-13 Iteration 60: d = 8.586181776591677e-15 Converged after 64 iterations. d = 1.5562634528217047e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.718636538788 Iteration 2: convergence error = 4828.704152436485 Iteration 3: convergence error = 1105.8607511715002 Iteration 4: convergence error = 316.60439967807815 Iteration 5: convergence error = 93.7665052222153 Iteration 6: convergence error = 28.09211409539489 Iteration 7: convergence error = 8.44525326625967 Iteration 8: convergence error = 2.528646507097392 Iteration 9: convergence error = 0.7552952799535433 Iteration 10: convergence error = 0.22528889329737467 Iteration 11: convergence error = 0.06714546463808801 Iteration 12: convergence error = 0.020003053566824747 Iteration 13: convergence error = 0.005957488770036434 Iteration 14: convergence error = 0.0017740488005983934 Iteration 15: convergence error = 0.0005282392849039752 Iteration 16: convergence error = 0.00015728030052741815 Iteration 17: convergence error = 4.682798316935077e-5 Iteration 18: convergence error = 1.3942136774858227e-5 Iteration 19: convergence error = 4.150962695348426e-6 Iteration 20: convergence error = 1.2358534604572924e-6 Iteration 21: convergence error = 3.6793994695472065e-7 Iteration 22: convergence error = 1.0939834282908123e-7 Iteration 23: convergence error = 3.166019268974196e-8 Iteration 24: convergence error = 9.115410648519173e-9 Iteration 25: convergence error = 2.615024641272612e-9 Iteration 26: convergence error = 7.457856554538012e-10 Iteration 27: convergence error = 2.128217602148652e-10 Iteration 28: convergence error = 6.389200279954821e-11 Iteration 29: convergence error = 1.750777300912887e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 31%|██████████▎ | ETA: 0:00:03 Bin 1 progress: 67%|██████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013723645051500514 Iteration 10: d = 1.1657313203809666e-5 Iteration 20: d = 1.1407555384676895e-7 Iteration 30: d = 1.4238394454701802e-9 Iteration 40: d = 1.9087295451062804e-11 Iteration 50: d = 2.6154971056382905e-13 Iteration 60: d = 3.593488247714127e-15 Converged after 62 iterations. d = 1.5237805102455736e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.864064445856 Iteration 2: convergence error = 4818.792014126751 Iteration 3: convergence error = 1097.470564767049 Iteration 4: convergence error = 320.9705115617912 Iteration 5: convergence error = 95.25009793754703 Iteration 6: convergence error = 28.407969446455127 Iteration 7: convergence error = 8.506363372237502 Iteration 8: convergence error = 2.549582487908083 Iteration 9: convergence error = 0.7624120966668215 Iteration 10: convergence error = 0.2276830085295387 Iteration 11: convergence error = 0.06794242784917515 Iteration 12: convergence error = 0.0202658017617523 Iteration 13: convergence error = 0.006043376801017075 Iteration 14: convergence error = 0.0018019158455899742 Iteration 15: convergence error = 0.0005372226353301812 Iteration 16: convergence error = 0.00016015994378903997 Iteration 17: convergence error = 4.774653757522174e-5 Iteration 18: convergence error = 1.4233866522772587e-5 Iteration 19: convergence error = 4.243266857884009e-6 Iteration 20: convergence error = 1.2649554719246225e-6 Iteration 21: convergence error = 3.7709014577558264e-7 Iteration 22: convergence error = 1.1227393770241179e-7 Iteration 23: convergence error = 3.256218406022526e-8 Iteration 24: convergence error = 9.387804311700165e-9 Iteration 25: convergence error = 2.6959696697304025e-9 Iteration 26: convergence error = 7.785274647176266e-10 Iteration 27: convergence error = 2.219167072325945e-10 Iteration 28: convergence error = 6.298250809777528e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 13:02:31 Bin 1 ray tracing: 8%|██▌ | ETA: 0:01:05 Bin 1 ray tracing: 16%|████▊ | ETA: 0:00:36 Bin 1 ray tracing: 24%|███████▏ | ETA: 0:00:26 Bin 1 ray tracing: 31%|█████████▍ | ETA: 0:00:20 Bin 1 ray tracing: 39%|███████████▌ | ETA: 0:00:16 Bin 1 ray tracing: 46%|█████████████▊ | ETA: 0:00:13 Bin 1 ray tracing: 53%|███████████████▉ | ETA: 0:00:11 Bin 1 ray tracing: 60%|██████████████████ | ETA: 0:00:09 Bin 1 ray tracing: 68%|████████████████████▎ | ETA: 0:00:07 Bin 1 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:05 Bin 1 ray tracing: 83%|████████████████████████▊ | ETA: 0:00:03 Bin 1 ray tracing: 90%|███████████████████████████ | ETA: 0:00:02 Bin 1 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:18 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 2 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 2 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 2 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 2 ray tracing: 40%|████████████▏ | ETA: 0:00:08 Bin 2 ray tracing: 48%|██████████████▎ | ETA: 0:00:07 Bin 2 ray tracing: 55%|████████████████▌ | ETA: 0:00:06 Bin 2 ray tracing: 62%|██████████████████▊ | ETA: 0:00:05 Bin 2 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 2 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 2 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 2 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 2 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 3 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 3 ray tracing: 21%|██████▍ | ETA: 0:00:11 Bin 3 ray tracing: 28%|████████▌ | ETA: 0:00:10 Bin 3 ray tracing: 36%|██████████▉ | ETA: 0:00:09 Bin 3 ray tracing: 44%|█████████████▏ | ETA: 0:00:08 Bin 3 ray tracing: 52%|███████████████▌ | ETA: 0:00:07 Bin 3 ray tracing: 60%|█████████████████▉ | ETA: 0:00:06 Bin 3 ray tracing: 68%|████████████████████▎ | ETA: 0:00:04 Bin 3 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:03 Bin 3 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 3 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 4 ray tracing: 18%|█████▎ | ETA: 0:00:09 Bin 4 ray tracing: 27%|████████ | ETA: 0:00:08 Bin 4 ray tracing: 35%|██████████▌ | ETA: 0:00:07 Bin 4 ray tracing: 44%|█████████████▏ | ETA: 0:00:07 Bin 4 ray tracing: 52%|███████████████▊ | ETA: 0:00:06 Bin 4 ray tracing: 61%|██████████████████▎ | ETA: 0:00:05 Bin 4 ray tracing: 69%|████████████████████▉ | ETA: 0:00:04 Bin 4 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 4 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 4 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 5 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 5 ray tracing: 28%|████████▎ | ETA: 0:00:08 Bin 5 ray tracing: 36%|██████████▉ | ETA: 0:00:07 Bin 5 ray tracing: 45%|█████████████▌ | ETA: 0:00:06 Bin 5 ray tracing: 54%|████████████████▏ | ETA: 0:00:05 Bin 5 ray tracing: 62%|██████████████████▋ | ETA: 0:00:04 Bin 5 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:03 Bin 5 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 5 ray tracing: 86%|██████████████████████████ | ETA: 0:00:02 Bin 5 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 6 ray tracing: 16%|████▋ | ETA: 0:00:11 Bin 6 ray tracing: 24%|███████ | ETA: 0:00:10 Bin 6 ray tracing: 32%|█████████▌ | ETA: 0:00:09 Bin 6 ray tracing: 40%|███████████▉ | ETA: 0:00:08 Bin 6 ray tracing: 48%|██████████████▍ | ETA: 0:00:07 Bin 6 ray tracing: 56%|████████████████▊ | ETA: 0:00:06 Bin 6 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 6 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 6 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 6 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 6 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 7 ray tracing: 16%|████▉ | ETA: 0:00:11 Bin 7 ray tracing: 24%|███████▎ | ETA: 0:00:10 Bin 7 ray tracing: 33%|█████████▊ | ETA: 0:00:08 Bin 7 ray tracing: 41%|████████████▎ | ETA: 0:00:07 Bin 7 ray tracing: 49%|██████████████▊ | ETA: 0:00:06 Bin 7 ray tracing: 58%|█████████████████▎ | ETA: 0:00:05 Bin 7 ray tracing: 66%|███████████████████▉ | ETA: 0:00:04 Bin 7 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 7 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 7 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 9%|██▊ | ETA: 0:00:11 Bin 8 ray tracing: 18%|█████▎ | ETA: 0:00:10 Bin 8 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 8 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 8 ray tracing: 42%|████████████▋ | ETA: 0:00:07 Bin 8 ray tracing: 50%|███████████████▏ | ETA: 0:00:06 Bin 8 ray tracing: 59%|█████████████████▌ | ETA: 0:00:05 Bin 8 ray tracing: 67%|████████████████████ | ETA: 0:00:04 Bin 8 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 8 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 8 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 9 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 9 ray tracing: 24%|███████▎ | ETA: 0:00:10 Bin 9 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 9 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 9 ray tracing: 48%|██████████████▎ | ETA: 0:00:07 Bin 9 ray tracing: 56%|████████████████▊ | ETA: 0:00:06 Bin 9 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 9 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:04 Bin 9 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 9 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 9 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 10 ray tracing: 16%|████▋ | ETA: 0:00:11 Bin 10 ray tracing: 24%|██████▉ | ETA: 0:00:10 Bin 10 ray tracing: 32%|█████████▍ | ETA: 0:00:09 Bin 10 ray tracing: 41%|███████████▉ | ETA: 0:00:07 Bin 10 ray tracing: 50%|██████████████▌ | ETA: 0:00:06 Bin 10 ray tracing: 59%|█████████████████▏ | ETA: 0:00:05 Bin 10 ray tracing: 67%|███████████████████▌ | ETA: 0:00:04 Bin 10 ray tracing: 76%|██████████████████████ | ETA: 0:00:03 Bin 10 ray tracing: 84%|████████████████████████▌ | ETA: 0:00:02 Bin 10 ray tracing: 93%|███████████████████████████ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 20%|██████▋ | ETA: 0:00:04 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 1 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 1 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 20%|██████▋ | ETA: 0:00:04 Bin 2 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 2 progress: 60%|███████████████████▊ | ETA: 0:00:02 Bin 2 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 22%|███████▍ | ETA: 0:00:04 Bin 3 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 3 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 3 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 20%|██████▋ | ETA: 0:00:04 Bin 4 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 4 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 4 progress: 87%|████████████████████████████▋ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 20%|██████▋ | ETA: 0:00:04 Bin 5 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 5 progress: 60%|███████████████████▊ | ETA: 0:00:02 Bin 5 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 20%|██████▋ | ETA: 0:00:04 Bin 6 progress: 38%|████████████▌ | ETA: 0:00:04 Bin 6 progress: 58%|███████████████████▏ | ETA: 0:00:02 Bin 6 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 6 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 18%|█████▉ | ETA: 0:00:05 Bin 7 progress: 36%|███████████▊ | ETA: 0:00:04 Bin 7 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 7 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 7 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 18%|█████▉ | ETA: 0:00:05 Bin 8 progress: 36%|███████████▊ | ETA: 0:00:04 Bin 8 progress: 58%|███████████████████▏ | ETA: 0:00:02 Bin 8 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 18%|█████▉ | ETA: 0:00:05 Bin 9 progress: 38%|████████████▌ | ETA: 0:00:03 Bin 9 progress: 58%|███████████████████▏ | ETA: 0:00:02 Bin 9 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 9 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 20%|██████▍ | ETA: 0:00:04 Bin 10 progress: 40%|████████████▊ | ETA: 0:00:03 Bin 10 progress: 60%|███████████████████▎ | ETA: 0:00:02 Bin 10 progress: 82%|██████████████████████████▎ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:05 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013723645051500514 Iteration 10: d = 1.1657313203809666e-5 Iteration 20: d = 1.1407555384676895e-7 Iteration 30: d = 1.4238394454701802e-9 Iteration 40: d = 1.9087295451062804e-11 Iteration 50: d = 2.6154971056382905e-13 Iteration 60: d = 3.593488247714127e-15 Converged after 62 iterations. d = 1.5237805102455736e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013447347444456785 Iteration 10: d = 1.6579812801832846e-5 Iteration 20: d = 2.064140580729611e-7 Iteration 30: d = 2.8701432755136444e-9 Iteration 40: d = 4.069720404605004e-11 Iteration 50: d = 5.789296819076161e-13 Iteration 60: d = 8.25723829624564e-15 Converged after 64 iterations. d = 1.500580492673098e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013992206740784472 Iteration 10: d = 1.4677464805816623e-5 Iteration 20: d = 1.7876055256440178e-7 Iteration 30: d = 2.458026504383871e-9 Iteration 40: d = 3.445323301061549e-11 Iteration 50: d = 4.857528554918736e-13 Iteration 60: d = 6.870656003001781e-15 Converged after 63 iterations. d = 1.8978009209958647e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018062661369213347 Iteration 10: d = 2.3249632734506876e-5 Iteration 20: d = 2.9420901558706473e-7 Iteration 30: d = 3.938119054443975e-9 Iteration 40: d = 5.326869890501302e-11 Iteration 50: d = 7.238169003122083e-13 Iteration 60: d = 9.872716196364689e-15 Converged after 64 iterations. d = 1.7828295756063507e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011789191443301573 Iteration 10: d = 8.675050162805668e-6 Iteration 20: d = 8.10695293801491e-8 Iteration 30: d = 1.032790235700943e-9 Iteration 40: d = 1.4140783357815418e-11 Iteration 50: d = 1.9762422834609263e-13 Iteration 60: d = 2.7971689270656925e-15 Converged after 61 iterations. d = 1.7470825363382423e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014367402485017584 Iteration 10: d = 1.0861791824727577e-5 Iteration 20: d = 7.958640135691846e-8 Iteration 30: d = 7.95861153655458e-10 Iteration 40: d = 9.847900385458086e-12 Iteration 50: d = 1.3369197957696114e-13 Converged after 60 iterations. d = 1.875233045526637e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012804586443679986 Iteration 10: d = 1.484819995488062e-5 Iteration 20: d = 1.554697202431182e-7 Iteration 30: d = 1.8435323222087678e-9 Iteration 40: d = 2.3530846018097486e-11 Iteration 50: d = 3.1450224552208195e-13 Iteration 60: d = 4.305076961185059e-15 Converged after 62 iterations. d = 1.8433310689134996e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011822443461137308 Iteration 10: d = 9.405690672255982e-6 Iteration 20: d = 1.0523797328493049e-7 Iteration 30: d = 1.3970858450404179e-9 Iteration 40: d = 1.9083458324296033e-11 Iteration 50: d = 2.6307732715181383e-13 Iteration 60: d = 3.6529071252804954e-15 Converged after 62 iterations. d = 1.5306408226051982e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016907633564977789 Iteration 10: d = 2.1435940817055352e-5 Iteration 20: d = 2.6933497201764547e-7 Iteration 30: d = 3.688347519648133e-9 Iteration 40: d = 5.162997320266285e-11 Iteration 50: d = 7.288700595597672e-13 Iteration 60: d = 1.0353287078692822e-14 Converged after 64 iterations. d = 1.8591279622275668e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015521634167738935 Iteration 10: d = 1.3257436325680498e-5 Iteration 20: d = 1.4061081034955243e-7 Iteration 30: d = 1.7693434061650948e-9 Iteration 40: d = 2.2934718782098954e-11 Iteration 50: d = 2.9952020665817687e-13 Iteration 60: d = 3.8913646842688405e-15 Converged after 62 iterations. d = 1.6199203571686893e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.8062956431 Iteration 2: convergence error = 4815.11746330905 Iteration 3: convergence error = 1088.7529653718784 Iteration 4: convergence error = 320.9675218293403 Iteration 5: convergence error = 95.35752570826617 Iteration 6: convergence error = 28.55857159833363 Iteration 7: convergence error = 8.622288695008592 Iteration 8: convergence error = 2.593400601793519 Iteration 9: convergence error = 0.7782475506969604 Iteration 10: convergence error = 0.23322688484404352 Iteration 11: convergence error = 0.06983924681753706 Iteration 12: convergence error = 0.020903778039382814 Iteration 13: convergence error = 0.006255144770875631 Iteration 14: convergence error = 0.001871478946213756 Iteration 15: convergence error = 0.0005598799368726759 Iteration 16: convergence error = 0.00016748774510233488 Iteration 17: convergence error = 5.010238623981422e-5 Iteration 18: convergence error = 1.4987403801569599e-5 Iteration 19: convergence error = 4.483220209294814e-6 Iteration 20: convergence error = 1.341070628768648e-6 Iteration 21: convergence error = 4.011499186162837e-7 Iteration 22: convergence error = 1.1987503967247903e-7 Iteration 23: convergence error = 3.499872036627494e-8 Iteration 24: convergence error = 1.0128132998943329e-8 Iteration 25: convergence error = 2.91879587166477e-9 Iteration 26: convergence error = 8.437837095698342e-10 Iteration 27: convergence error = 2.455635694786906e-10 Iteration 28: convergence error = 6.843947630841285e-11 Iteration 29: convergence error = 1.9554136088117957e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.4140605408405 K, F = -7424.737303000182, relative_change = 0.03258593945915944 Iter 2: T = 936.9067466100744 K, F = -6293.586407258834, relative_change = 0.03153490855168134 Iter 3: T = 908.4464614004797 K, F = -5333.244734659878, relative_change = 0.03037686014384026 Iter 5: T = 857.526840366174 K, F = -3826.0917716421714, relative_change = 0.02774644916720513 Iter 10: T = 762.9865872718372 K, F = -1656.3631719228924, relative_change = 0.019799077512551312 Iter 15: T = 707.7871004704447 K, F = -709.0042451893156, relative_change = 0.011821031616035406 Iter 20: T = 679.4670190049237 K, F = -300.4433727745311, relative_change = 0.006037135579073795 Iter 25: T = 666.2814604145885 K, F = -126.4671457865292, relative_change = 0.0027845628123351475 Iter 30: T = 660.4815580345244 K, F = -53.04567243170197, relative_change = 0.001217145599761425 Iter 35: T = 658.001256149961 K, F = -22.212587205790822, relative_change = 0.000518848223533799 Iter 40: T = 656.9540032564033 K, F = -9.294591179201756, relative_change = 0.00021875572511809857 Iter 45: T = 656.5142572692622 K, F = -3.8879933963277153, relative_change = 9.179905058657783e-5 Iter 50: T = 656.3300380132891 K, F = -1.6261603919585108, relative_change = 3.844644226884184e-5 Iter 55: T = 656.252940544374 K, F = -0.6801068598341722, relative_change = 1.608839812599178e-5 Iter 60: T = 656.220687869544 K, F = -0.2844335642429122, relative_change = 6.730047206437935e-6 Iter 65: T = 656.2071977371041 K, F = -0.11895434492878493, relative_change = 2.8148812774542084e-6 Iter 70: T = 656.2015557089495 K, F = -0.04974827310075869, relative_change = 1.1772685989651531e-6 Iter 75: T = 656.1991960940289 K, F = -0.020805347363956284, relative_change = 4.923568186074499e-7 Iter 80: T = 656.1982092659052 K, F = -0.008701049182922638, relative_change = 2.0591108105990458e-7 Iter 85: T = 656.1977965610273 K, F = -0.0036388834572796402, relative_change = 8.611474943249178e-8 Iter 90: T = 656.1976239626439 K, F = -0.0015218246551945147, relative_change = 3.6014264956537015e-8 Iter 95: T = 656.1975517798907 K, F = -0.0006364452692395606, relative_change = 1.5061604162328232e-8 Iter 100: T = 656.1975215921929 K, F = -0.0002661690163296426, relative_change = 6.298944207860591e-9 Iter 105: T = 656.1975089673356 K, F = -0.00011131506214134834, relative_change = 2.634293952836244e-9 Iter 110: T = 656.1975036874692 K, F = -4.655328728803143e-5, relative_change = 1.1016932077861762e-9 Iter 115: T = 656.1975014793659 K, F = -1.9469139458327955e-5, relative_change = 4.607412343108252e-10 Iter 120: T = 656.1975005559109 K, F = -8.142226669005659e-6, relative_change = 1.9268748876554698e-10 Iter 125: T = 656.197500169711 K, F = -3.4051772521137558e-6, relative_change = 8.05842286174073e-11 Iter 130: T = 656.1975000081975 K, F = -1.424085544654563e-6, relative_change = 3.370128094343207e-11 Iter 135: T = 656.1974999406507 K, F = -5.95569987327238e-7, relative_change = 1.409428776913606e-11 Iter 140: T = 656.1974999124018 K, F = -2.490741251581774e-7, relative_change = 5.894391039244581e-12 Iter 145: T = 656.1974999005877 K, F = -1.0416562745696467e-7, relative_change = 2.4651012655061145e-12 Iter 150: T = 656.197499895647 K, F = -4.3562720153378365e-8, relative_change = 1.030920844087435e-12 Iter 155: T = 656.1974998935807 K, F = -1.8217738595449617e-8, relative_change = 4.3112657759527477e-13 Converged in 159 iterations to T = 656.1974998928349 K Iter 1: T = 970.4713684669349 K, F = -6728.126783788952, relative_change = 0.029528631533065102 Iter 2: T = 943.1094848769071 K, F = -5698.369663551817, relative_change = 0.028194426419041775 Iter 3: T = 917.8688147756242 K, F = -4824.464450268732, relative_change = 0.026763244889406738 Iter 5: T = 873.5311410757297 K, F = -3454.028684565591, relative_change = 0.023656506698285326 Iter 10: T = 794.9706926790475 K, F = -1486.362736571181, relative_change = 0.015351492243410538 Iter 15: T = 752.2743151231084 K, F = -632.5828922173366, relative_change = 0.008380740999239309 Iter 20: T = 731.5872321906306 K, F = -266.9820482126108, relative_change = 0.004024334883720672 Iter 25: T = 722.2861289297499 K, F = -112.13353715651363, relative_change = 0.0017949608179767568 Iter 30: T = 718.2667432802729 K, F = -46.98397823543968, relative_change = 0.0007722189266661739 Iter 35: T = 716.5617516607423 K, F = -19.665095245993555, relative_change = 0.0003268801308190728 Iter 40: T = 715.8443912477557 K, F = -8.22697551980206, relative_change = 0.0001374046895029126 Iter 45: T = 715.5436200871204 K, F = -3.4411108652493394, relative_change = 5.7587549146150844e-5 Iter 50: T = 715.4177000312409 K, F = -1.4391997698557644, relative_change = 2.4105428297305062e-5 Iter 55: T = 715.3650152848018 K, F = -0.6019056035320021, relative_change = 1.008496565721213e-5 Iter 60: T = 715.3429777855243 K, F = -0.25172674858740207, relative_change = 4.218315909508315e-6 Iter 65: T = 715.3337607212131 K, F = -0.10527559375538587, relative_change = 1.7642660472255312e-6 Iter 70: T = 715.3299059090846 K, F = -0.044027591232908336, relative_change = 7.378574134951407e-7 Iter 75: T = 715.3282937586199 K, F = -0.018412878560660983, relative_change = 3.0858432977897497e-7 Iter 80: T = 715.3276195341953 K, F = -0.007700488175573894, relative_change = 1.2905427244149426e-7 Iter 85: T = 715.327337564816 K, F = -0.003220436548960648, relative_change = 5.397214647887353e-8 Iter 90: T = 715.3272196417366 K, F = -0.0013468251006607534, relative_change = 2.2571815206757592e-8 Iter 95: T = 715.327170324876 K, F = -0.0005632583543382363, relative_change = 9.43980599619671e-9 Iter 100: T = 715.3271496999722 K, F = -0.00023556137259639343, relative_change = 3.9478401796221404e-9 Iter 105: T = 715.3271410743906 K, F = -9.851458028675708e-5, relative_change = 1.651034023007137e-9 Iter 110: T = 715.3271374670692 K, F = -4.119997309204315e-5, relative_change = 6.90482147486774e-10 Iter 115: T = 715.3271359584443 K, F = -1.723032050271467e-5, relative_change = 2.8876787845185243e-10 Iter 120: T = 715.3271353275194 K, F = -7.205926110920302e-6, relative_change = 1.2076618097391923e-10 Iter 125: T = 715.327135063659 K, F = -3.013603136259313e-6, relative_change = 5.050583877410102e-11 Iter 130: T = 715.3271349533095 K, F = -1.2603254389009777e-6, relative_change = 2.1122155303366952e-11 Iter 135: T = 715.32713490716 K, F = -5.270835934378937e-7, relative_change = 8.833545033876251e-12 Iter 140: T = 715.3271348878598 K, F = -2.2043337999377854e-7, relative_change = 3.694306204247614e-12 Iter 145: T = 715.3271348797882 K, F = -9.218832808244315e-8, relative_change = 1.5450106169133424e-12 Iter 150: T = 715.3271348764125 K, F = -3.855538277530712e-8, relative_change = 6.461607121790316e-13 Iter 155: T = 715.3271348750008 K, F = -1.6123927082389855e-8, relative_change = 2.702255160452033e-13 Converged in 157 iterations to T = 715.327134874702 K Iter 1: T = 974.3295732053133 K, F = -5849.031164049246, relative_change = 0.025670426794686684 Iter 2: T = 950.8489655714571 K, F = -4948.603817041845, relative_change = 0.024099245552621964 Iter 3: T = 929.4841437428913 K, F = -4184.987975273855, relative_change = 0.022469206574490655 Iter 5: T = 892.7513832489522 K, F = -2989.0137760658463, relative_change = 0.01911642926945505 Iter 10: T = 830.8140996402416 K, F = -1278.2840209121225, relative_change = 0.01125296890169597 Iter 15: T = 799.3330799360353 K, F = -541.3115059540473, relative_change = 0.005687636311364119 Iter 20: T = 784.7636302336069 K, F = -227.76859757719402, relative_change = 0.0026079615068682477 Iter 25: T = 778.3751173847304 K, F = -95.51774007503978, relative_change = 0.0011367090621614351 Iter 30: T = 775.6470877036579 K, F = -39.994151761794974, relative_change = 0.0004839435944698152 Iter 35: T = 774.4959743537253 K, F = -16.734464334770657, relative_change = 0.00020392771032975223 Iter 40: T = 774.0127489161367 K, F = -7.0000371060658395, relative_change = 8.555678349174626e-5 Iter 45: T = 773.8103384808637 K, F = -2.927759412092209, relative_change = 3.5828625872232096e-5 Iter 50: T = 773.7256319298954 K, F = -1.2244695280189504, relative_change = 1.4992328398511955e-5 Iter 55: T = 773.6901968168836 K, F = -0.5120957550113763, relative_change = 6.271435760769364e-6 Iter 60: T = 773.6753757107444 K, F = -0.21416595556260642, relative_change = 2.623045645894866e-6 Iter 65: T = 773.6691770464926 K, F = -0.0895670043060689, relative_change = 1.0970338507474816e-6 Iter 70: T = 773.6665846384844 K, F = -0.03745803352885235, relative_change = 4.58800499968395e-7 Iter 75: T = 773.6655004532971 K, F = -0.015665404425018292, relative_change = 1.9187721992803663e-7 Iter 80: T = 773.6650470324952 K, F = -0.0065514605174065155, relative_change = 8.024558474153259e-8 Iter 85: T = 773.6648574062194 K, F = -0.0027398992561789015, relative_change = 3.355970381552058e-8 Iter 90: T = 773.6647781021973 K, F = -0.0011458586299134543, relative_change = 1.4035076258839264e-8 Iter 95: T = 773.6647449362994 K, F = -0.0004792117692707931, relative_change = 5.869637774716322e-9 Iter 100: T = 773.6647310659234 K, F = -0.00020041208699839164, relative_change = 2.4547528508290005e-9 Iter 105: T = 773.6647252651662 K, F = -8.381472937213363e-5, relative_change = 1.026607009057947e-9 Iter 110: T = 773.6647228392203 K, F = -3.505232047518181e-5, relative_change = 4.2933931410831955e-10 Iter 115: T = 773.6647218246608 K, F = -1.4659299898744926e-5, relative_change = 1.7955484024483682e-10 Iter 120: T = 773.6647214003597 K, F = -6.130692525085912e-6, relative_change = 7.509195714732983e-11 Iter 125: T = 773.664721222912 K, F = -2.563930130095038e-6, relative_change = 3.140436922587242e-11 Iter 130: T = 773.6647211487012 K, F = -1.0722659984363503e-6, relative_change = 1.3133679792348544e-11 Iter 135: T = 773.6647211176654 K, F = -4.4843421664886307e-7, relative_change = 5.492658928952628e-12 Iter 140: T = 773.6647211046859 K, F = -1.8754025266076724e-7, relative_change = 2.2970919817299994e-12 Iter 145: T = 773.6647210992577 K, F = -7.843232363580199e-8, relative_change = 9.606804895595717e-13 Iter 150: T = 773.6647210969875 K, F = -3.2799919558179624e-8, relative_change = 4.017507236611225e-13 Converged in 154 iterations to T = 773.6647210961681 K Iter 1: T = 970.3111581586389 K, F = -6764.630854933524, relative_change = 0.029688841841361023 Iter 2: T = 942.7859923744504 K, F = -5729.536607686737, relative_change = 0.028367359844055612 Iter 3: T = 917.3799416939868 K, F = -4851.080508834583, relative_change = 0.026947844883097316 Iter 5: T = 872.7101901001016 K, F = -3473.444949756698, relative_change = 0.023859288291740794 Iter 10: T = 793.3816164540476 K, F = -1495.1483488900399, relative_change = 0.015553534685610661 Iter 15: T = 750.1264260754183 K, F = -636.4835135880827, relative_change = 0.00852445697669293 Iter 20: T = 729.1178544079203 K, F = -268.67257666394215, relative_change = 0.0041036442257052184 Iter 25: T = 719.6590641912347 K, F = -112.85330007753153, relative_change = 0.0018327232869232058 Iter 30: T = 715.5687531371077 K, F = -47.28745164901813, relative_change = 0.0007889400660326107 Iter 35: T = 713.8331451177316 K, F = -19.792460449124825, relative_change = 0.0003340460868159398 Iter 40: T = 713.1028068313202 K, F = -8.28032114329062, relative_change = 0.0001404326582192667 Iter 45: T = 712.796577265607 K, F = -3.463434737712251, relative_change = 5.8859379970791295e-5 Iter 50: T = 712.6683689958945 K, F = -1.4485383532420484, relative_change = 2.463828936908796e-5 Iter 55: T = 712.6147263361586 K, F = -0.6058115438026941, relative_change = 1.030798385437604e-5 Iter 60: T = 712.5922880588707 K, F = -0.2533603352617489, relative_change = 4.3116144243413155e-6 Iter 65: T = 712.5829033551453 K, F = -0.10595879247344164, relative_change = 1.8032897864703436e-6 Iter 70: T = 712.5789784290922 K, F = -0.04431331541681738, relative_change = 7.541785144990711e-7 Iter 75: T = 712.5773369552516 K, F = -0.018532372231908734, relative_change = 3.154101678035477e-7 Iter 80: T = 712.5766504672843 K, F = -0.007750461928213825, relative_change = 1.3190894719636795e-7 Iter 85: T = 712.5763633691176 K, F = -0.0032413361813242725, relative_change = 5.516601040369118e-8 Iter 90: T = 712.5762433011132 K, F = -0.0013555655784525111, relative_change = 2.307110420306347e-8 Iter 95: T = 712.5761930872184 K, F = -0.000566913726397611, relative_change = 9.648614756812995e-9 Iter 100: T = 712.5761720871642 K, F = -0.00023709009231165368, relative_change = 4.0351665127045954e-9 Iter 105: T = 712.5761633046901 K, F = -9.915390776504829e-5, relative_change = 1.6875549197126164e-9 Iter 110: T = 712.5761596317544 K, F = -4.1467348493529066e-5, relative_change = 7.057556404216741e-10 Iter 115: T = 712.5761580956888 K, F = -1.734214022997005e-5, relative_change = 2.951554380625797e-10 Iter 120: T = 712.5761574532879 K, F = -7.25268986467853e-6, relative_change = 1.2343752471970512e-10 Iter 125: T = 712.5761571846282 K, F = -3.0331616185375054e-6, relative_change = 5.162304881704253e-11 Iter 130: T = 712.5761570722714 K, F = -1.2685045123195238e-6, relative_change = 2.1589377240255357e-11 Iter 135: T = 712.5761570252824 K, F = -5.305024527446633e-7, relative_change = 9.028913552572514e-12 Iter 140: T = 712.5761570056311 K, F = -2.2186321146921983e-7, relative_change = 3.776012244148617e-12 Iter 145: T = 712.5761569974127 K, F = -9.278489065955853e-8, relative_change = 1.5791571793340299e-12 Iter 150: T = 712.5761569939757 K, F = -3.8803372848228435e-8, relative_change = 6.604159834804923e-13 Iter 155: T = 712.5761569925382 K, F = -1.6227722499095876e-8, relative_change = 2.7618855082287333e-13 Converged in 157 iterations to T = 712.5761569922341 K Iter 1: T = 969.3291871607348 K, F = -6988.373880901564, relative_change = 0.030670812839265232 Iter 2: T = 940.7995010838861 K, F = -5920.6246877155945, relative_change = 0.029432401762723298 Iter 3: T = 914.3718238563514 K, F = -5014.326328980429, relative_change = 0.02809065820835104 Iter 5: T = 867.6364488354172 K, F = -3592.6447798659256, relative_change = 0.025129165205489377 Iter 10: T = 783.4427394082818 K, F = -1549.2805788231647, relative_change = 0.01686026153280327 Iter 15: T = 736.5547825292249 K, F = -660.6226047165305, relative_change = 0.009481319541902079 Iter 20: T = 713.413773122209 K, F = -279.1703952576987, relative_change = 0.004641899197593805 Iter 25: T = 702.8964389576998 K, F = -117.33172258419394, relative_change = 0.0020916196217121265 Iter 30: T = 698.3271504902245 K, F = -49.17750184159454, relative_change = 0.0009041222425623969 Iter 35: T = 696.3842193993277 K, F = -20.586038658130196, relative_change = 0.00038351072763770014 Iter 40: T = 695.565896105706 K, F = -8.612764641304677, relative_change = 0.0001613524269206515 Iter 45: T = 695.2226421284252 K, F = -3.60256528090752, relative_change = 6.764954766717848e-5 Iter 50: T = 695.0789096147652 K, F = -1.5067417320501257, relative_change = 2.8321698325595018e-5 Iter 55: T = 695.0187674781617 K, F = -0.6301559263905642, relative_change = 1.1849701288758438e-5 Iter 60: T = 694.9936098068323 K, F = -0.2635419778525363, relative_change = 4.956601712628228e-6 Iter 65: T = 694.9830876038823 K, F = -0.11021696990431001, relative_change = 2.0730701288915625e-6 Iter 70: T = 694.9786869242533 K, F = -0.04609415232145675, relative_change = 8.670106900030065e-7 Iter 75: T = 694.9768464779709 K, F = -0.019277142336132425, relative_change = 3.625991230433539e-7 Iter 80: T = 694.9760767761952 K, F = -0.008061934175153551, relative_change = 1.516441402659182e-7 Iter 85: T = 694.975754876818 K, F = -0.0033715976831222294, relative_change = 6.341954032117513e-8 Iter 90: T = 694.9756202544962 K, F = -0.0014100425089277335, relative_change = 2.6522835351893445e-8 Iter 95: T = 694.9755639538059 K, F = -0.0005896966332175069, relative_change = 1.1092171082722471e-8 Iter 100: T = 694.97554040818 K, F = -0.0002466181758037367, relative_change = 4.638879188530824e-9 Iter 105: T = 694.9755305611172 K, F = -0.00010313866566535879, relative_change = 1.9400347942911136e-9 Iter 110: T = 694.9755264429579 K, F = -4.3133821350571644e-5, relative_change = 8.11345735877635e-10 Iter 115: T = 694.9755247206944 K, F = -1.803907826036788e-5, relative_change = 3.3931446229734133e-10 Iter 120: T = 694.9755240004233 K, F = -7.5441586128155436e-6, relative_change = 1.4190537337202266e-10 Iter 125: T = 694.9755236991974 K, F = -3.1550580452677224e-6, relative_change = 5.934653734446769e-11 Iter 130: T = 694.975523573221 K, F = -1.319483517447928e-6, relative_change = 2.4819441286878006e-11 Iter 135: T = 694.9755235205363 K, F = -5.51824434036341e-7, relative_change = 1.0379799341990216e-11 Iter 140: T = 694.9755234985028 K, F = -2.3077938848814483e-7, relative_change = 4.340952660639122e-12 Iter 145: T = 694.9755234892881 K, F = -9.651369459184878e-8, relative_change = 1.8154194016098964e-12 Iter 150: T = 694.9755234854345 K, F = -4.036257927886311e-8, relative_change = 7.592187806474121e-13 Iter 155: T = 694.9755234838227 K, F = -1.6878971442757518e-8, relative_change = 3.174928943206849e-13 Converged in 158 iterations to T = 694.975523483351 K Iter 1: T = 963.5807579797809 K, F = -8298.15893794972, relative_change = 0.03641924202021909 Iter 2: T = 929.0404370834742 K, F = -7041.229792076789, relative_change = 0.03584579767732491 Iter 3: T = 896.3455737668774 K, F = -5973.765684684991, relative_change = 0.03519207777353103 Iter 5: T = 836.3735653791276 K, F = -4297.416139084669, relative_change = 0.033614635218949994 Iter 10: T = 716.8003610572426 K, F = -1877.8874763728086, relative_change = 0.027876895354551207 Iter 15: T = 637.2892321009164 K, F = -813.1201533465037, relative_change = 0.019954425203853494 Iter 20: T = 590.7497105050468 K, F = -348.1269460508796, relative_change = 0.011952332385502511 Iter 25: T = 566.8212536821896 K, F = -147.54326869233404, relative_change = 0.006118896301772667 Iter 30: T = 555.6648047823477 K, F = -62.111767122569724, relative_change = 0.0028261658652897603 Iter 35: T = 550.7538212492271 K, F = -26.053461199047646, relative_change = 0.0012361593625472426 Iter 40: T = 548.6529384069838 K, F = -10.90996305632708, relative_change = 0.0005271117046997417 Iter 45: T = 547.7657527887744 K, F = -4.56518270526762, relative_change = 0.00022226849558209621 Iter 50: T = 547.3931956962875 K, F = -1.9096552584906386, relative_change = 9.327826309270459e-5 Iter 55: T = 547.2371190950159 K, F = -0.79871805012479, relative_change = 3.9066851820619305e-5 Iter 60: T = 547.1717988418214 K, F = -0.3340469837572882, relative_change = 1.6348174039631644e-5 Iter 65: T = 547.1444728737807 K, F = -0.1397048102078292, relative_change = 6.838743453068785e-6 Iter 70: T = 547.1330433824793 K, F = -0.058426635043390185, relative_change = 2.860348945833095e-6 Iter 75: T = 547.1282631799093 K, F = -0.02443478912060354, relative_change = 1.196285400298319e-6 Iter 80: T = 547.126263997886 K, F = -0.010218933317125034, relative_change = 5.003101658234713e-7 Iter 85: T = 547.125427908354 K, F = -0.0042736821720799345, relative_change = 2.092373172099266e-7 Iter 90: T = 547.1250782443742 K, F = -0.001787305310666648, relative_change = 8.7505830110403e-8 Iter 95: T = 547.1249320104853 K, F = -0.0007474724932661214, relative_change = 3.6596033060179725e-8 Iter 100: T = 547.1248708536851 K, F = -0.0003126019349515008, relative_change = 1.530490678539677e-8 Iter 105: T = 547.1248452771739 K, F = -0.00013073386498901884, relative_change = 6.400696345556591e-9 Iter 110: T = 547.1248345807701 K, F = -5.4674464255277666e-5, relative_change = 2.676847931908945e-9 Iter 115: T = 547.124830107406 K, F = -2.2865513312042562e-5, relative_change = 1.119489788105164e-9 Iter 120: T = 547.1248282365916 K, F = -9.562630084808399e-6, relative_change = 4.681839745099384e-10 Iter 125: T = 547.1248274541948 K, F = -3.999206016264134e-6, relative_change = 1.9580012650498308e-10 Iter 130: T = 547.1248271269872 K, F = -1.6725159127095601e-6, relative_change = 8.188596108595857e-11 Iter 135: T = 547.124826990145 K, F = -6.994662627435311e-7, relative_change = 3.424569345194961e-11 Iter 140: T = 547.124826932916 K, F = -2.925252854668603e-7, relative_change = 1.4321964891827745e-11 Iter 145: T = 547.1248269089821 K, F = -1.223380854398215e-7, relative_change = 5.989642099386801e-12 Iter 150: T = 547.1248268989727 K, F = -5.1163454500846584e-8, relative_change = 2.5049499504041784e-12 Iter 155: T = 547.1248268947867 K, F = -2.139784222032759e-8, relative_change = 1.0476330094097051e-12 Iter 160: T = 547.1248268930359 K, F = -8.94872437262606e-9, relative_change = 4.3812730968307463e-13 Converged in 164 iterations to T = 547.1248268924039 K Iter 1: T = 966.8755225632148 K, F = -7547.443693484099, relative_change = 0.03312447743678528 Iter 2: T = 935.8076520684349 K, F = -6398.531776308063, relative_change = 0.032132233953361525 Iter 3: T = 906.7660313855961 K, F = -5423.05512269584, relative_change = 0.03103374995774778 Iter 5: T = 854.6309899404108 K, F = -3891.9750994245837, relative_change = 0.02851798265677331 Iter 10: T = 756.9523301148375 K, F = -1686.867152461242, relative_change = 0.0207349337221986 Iter 15: T = 699.0571037433234 K, F = -722.9713701244926, relative_change = 0.012626079348732016 Iter 20: T = 668.9586986747885 K, F = -306.65884624502314, relative_change = 0.00654497151394143 Iter 25: T = 654.8226883689517 K, F = -129.15667739147645, relative_change = 0.0030449018702279917 Iter 30: T = 648.5758830867102 K, F = -54.1889140922133, relative_change = 0.0013365622569748946 Iter 35: T = 645.898668497357 K, F = -22.694168178542608, relative_change = 0.000570832306752401 Iter 40: T = 644.7671952712683 K, F = -9.496618783453844, relative_change = 0.00024086953245682272 Iter 45: T = 644.2918911671003 K, F = -3.972594445849819, relative_change = 0.00010111386356861845 Iter 50: T = 644.0927415870873 K, F = -1.661561028013808, relative_change = 4.235374118088601e-5 Iter 55: T = 644.009389620864 K, F = -0.6949152412105322, relative_change = 1.772453610173641e-5 Iter 60: T = 643.9745194077307 K, F = -0.29062720362770583, relative_change = 7.414660252920375e-6 Iter 65: T = 643.9599342686683 K, F = -0.12154470342142581, relative_change = 3.101257736380049e-6 Iter 70: T = 643.9538342395308 K, F = -0.050831610243994296, relative_change = 1.2970456942805898e-6 Iter 75: T = 643.9512830733096 K, F = -0.021258415094231653, relative_change = 5.424509614474647e-7 Iter 80: T = 643.9502161344268 K, F = -0.008890528077163784, relative_change = 2.2686138759351205e-7 Iter 85: T = 643.9497699259723 K, F = -0.00371812589191306, relative_change = 9.487647690805258e-8 Iter 90: T = 643.9495833159405 K, F = -0.0015549648042717523, relative_change = 3.967853434226342e-8 Iter 95: T = 643.9495052733395 K, F = -0.0006503048786282717, relative_change = 1.6594047194674993e-8 Iter 100: T = 643.9494726349817 K, F = -0.0002719652720441501, relative_change = 6.9398305271344814e-9 Iter 105: T = 643.949458985229 K, F = -0.00011373912646023276, relative_change = 2.9023203428289062e-9 Iter 110: T = 643.9494532767391 K, F = -4.756706226305418e-5, relative_change = 1.2137851114024292e-9 Iter 115: T = 643.9494508893803 K, F = -1.989311426514595e-5, relative_change = 5.076194574961753e-10 Iter 120: T = 643.9494498909581 K, F = -8.319537125212051e-6, relative_change = 2.1229249965618488e-10 Iter 125: T = 643.9494494734062 K, F = -3.4793298388513527e-6, relative_change = 8.878326038836703e-11 Iter 130: T = 643.949449298781 K, F = -1.4550968404636322e-6, relative_change = 3.713020835259914e-11 Iter 135: T = 643.9494492257506 K, F = -6.085387991294766e-7, relative_change = 1.5528294602934282e-11 Iter 140: T = 643.9494491952084 K, F = -2.5449750346018263e-7, relative_change = 6.4941006489424515e-12 Iter 145: T = 643.9494491824353 K, F = -1.0643345077498978e-7, relative_change = 2.7158991047645374e-12 Iter 150: T = 643.9494491770935 K, F = -4.451100810154429e-8, relative_change = 1.1358027591860467e-12 Iter 155: T = 643.9494491748595 K, F = -1.861632004107605e-8, relative_change = 4.750390649579627e-13 Converged in 160 iterations to T = 643.9494491739251 K Iter 1: T = 965.2437287429422 K, F = -7919.249467669856, relative_change = 0.034756271257057866 Iter 2: T = 932.4653377003074 K, F = -6716.701760719901, relative_change = 0.03395866770905907 Iter 3: T = 901.6354225468062 K, F = -5695.534786886146, relative_change = 0.03306280019966795 Iter 5: T = 845.707733643058 K, F = -4092.260291657972, relative_change = 0.030958133656767646 Iter 10: T = 737.8119417565223 K, F = -1780.4685688349398, relative_change = 0.02393110014993042 Iter 15: T = 670.4933481856166 K, F = -766.481864431318, relative_change = 0.01562521564879701 Iter 20: T = 633.7446293656395 K, F = -326.31986519194163, relative_change = 0.008575608452108207 Iter 25: T = 615.8809598645734 K, F = -137.7542399555068, relative_change = 0.004131942436518252 Iter 30: T = 607.834155924296 K, F = -57.86409584003811, relative_change = 0.001846215947594066 Iter 35: T = 604.3535972023855 K, F = -24.246384428181994, relative_change = 0.0007949185281182225 Iter 40: T = 602.8765601108785 K, F = -10.14853990859425, relative_change = 0.00033660894351391 Iter 45: T = 602.2549985341443 K, F = -4.245727446537934, relative_change = 0.00014151572630616705 Iter 50: T = 601.9943736794108 K, F = -1.775875129197702, relative_change = 5.931432257467075e-5 Iter 55: T = 601.885257694692 K, F = -0.7427379575759914, relative_change = 2.4828901645349762e-5 Iter 60: T = 601.8396031348361 K, F = -0.31062989544860964, relative_change = 1.0387761497295104e-5 Iter 65: T = 601.8205061851456 K, F = -0.12991053362412916, relative_change = 4.344989120108945e-6 Iter 70: T = 601.8125189710448 K, F = -0.05433038179431765, relative_change = 1.8172493606478998e-6 Iter 75: T = 601.8091785104751 K, F = -0.022721657387847982, relative_change = 7.600169036072982e-7 Iter 80: T = 601.8077814703386 K, F = -0.009502475972142543, relative_change = 3.178519093244997e-7 Iter 85: T = 601.8071972080355 K, F = -0.003974050245713956, relative_change = 1.32930122693024e-7 Iter 90: T = 601.8069528619624 K, F = -0.0016619955027480926, relative_change = 5.559307998171781e-8 Iter 95: T = 601.8068506734113 K, F = -0.0006950664079334312, relative_change = 2.3249710112401047e-8 Iter 100: T = 601.8068079369206 K, F = -0.0002906850797250726, relative_change = 9.723309953425295e-9 Iter 105: T = 601.8067900640066 K, F = -0.00012156797341972281, relative_change = 4.066404970704735e-9 Iter 110: T = 601.80678258934 K, F = -5.0841178775185014e-5, relative_change = 1.7006192379243025e-9 Iter 115: T = 601.8067794633449 K, F = -2.1262388418596956e-5, relative_change = 7.112193020345954e-10 Iter 120: T = 601.8067781560164 K, F = -8.892184247488721e-6, relative_change = 2.9744039168895856e-10 Iter 125: T = 601.8067776092761 K, F = -3.7188176854052735e-6, relative_change = 1.2439312580185207e-10 Iter 130: T = 601.8067773806227 K, F = -1.5552544520569533e-6, relative_change = 5.2022707060317226e-11 Iter 135: T = 601.8067772849972 K, F = -6.504258386885731e-7, relative_change = 2.1756512480258356e-11 Iter 140: T = 601.8067772450055 K, F = -2.720164039016204e-7, relative_change = 9.098851761678854e-12 Iter 145: T = 601.8067772282805 K, F = -1.1376067471369211e-7, relative_change = 3.805254024458644e-12 Iter 150: T = 601.8067772212859 K, F = -4.7576500961099555e-8, relative_change = 1.5914170008004753e-12 Iter 155: T = 601.8067772183607 K, F = -1.9898029224307834e-8, relative_change = 6.655819858760191e-13 Iter 160: T = 601.8067772171372 K, F = -8.321725419868642e-9, relative_change = 2.7835874942622107e-13 Converged in 162 iterations to T = 601.8067772168782 K Iter 1: T = 979.8946777385125 K, F = -4581.016802378752, relative_change = 0.020105322261487493 Iter 2: T = 961.8436251332987 K, F = -3869.8609461588403, relative_change = 0.018421421215261222 Iter 3: T = 945.7277165736541 K, F = -3267.580852150957, relative_change = 0.016755227293221518 Iter 5: T = 918.7836962492197 K, F = -2326.4298355329615, relative_change = 0.013565788316651419 Iter 10: T = 875.9067550438116 K, F = -987.919452105879, relative_change = 0.007157098486399459 Iter 15: T = 855.5577259977197 K, F = -416.3725173589114, relative_change = 0.003364719664558599 Iter 20: T = 846.5142317776825 K, F = -174.75327934967297, relative_change = 0.0014846484660865336 Iter 25: T = 842.6280091913742 K, F = -73.19763762433844, relative_change = 0.0006355712264193298 Iter 30: T = 840.9836206947846 K, F = -30.632413907886065, relative_change = 0.00026845983265187483 Iter 35: T = 840.2925020567939 K, F = -12.814419523425213, relative_change = 0.00011274455296972585 Iter 40: T = 840.0028652443987 K, F = -5.3597713233134225, relative_change = 4.723408396801606e-5 Iter 45: T = 839.8816298556059 K, F = -2.241630384187654, relative_change = 1.9768406276582273e-5 Iter 50: T = 839.8309092320502 K, F = -0.9374958496110956, relative_change = 8.269930849653725e-6 Iter 55: T = 839.80969401744 K, F = -0.3920753284161289, relative_change = 3.4590295650343695e-6 Iter 60: T = 839.8008209937747 K, F = -0.16397117382385828, relative_change = 1.446685445099993e-6 Iter 65: T = 839.7971100900353 K, F = -0.06857480615258882, relative_change = 6.050347685009129e-7 Iter 70: T = 839.7955581284097 K, F = -0.02867882090382534, relative_change = 2.5303515120952004e-7 Iter 75: T = 839.7949090764866 K, F = -0.01199382854915454, relative_change = 1.0582273931597909e-7 Iter 80: T = 839.7946376346899 K, F = -0.0050159628862909145, relative_change = 4.4256406338250736e-8 Iter 85: T = 839.794524114396 K, F = -0.002097735680115065, relative_change = 1.8508570439231832e-8 Iter 90: T = 839.7944766388371 K, F = -0.000877298129656312, relative_change = 7.74050742116182e-9 Iter 95: T = 839.7944567839886 K, F = -0.00036689656026878126, relative_change = 3.237173055827808e-9 Iter 100: T = 839.7944484804533 K, F = -0.00015344052288801535, relative_change = 1.3538244931636279e-9 Iter 105: T = 839.7944450078156 K, F = -6.417066034569707e-5, relative_change = 5.661855929176201e-10 Iter 110: T = 839.794443555517 K, F = -2.6836935020257968e-5, relative_change = 2.3678556539379e-10 Iter 115: T = 839.7944429481483 K, F = -1.1223525110404253e-5, relative_change = 9.902653734950856e-11 Iter 120: T = 839.7944426941395 K, F = -4.6938117896910825e-6, relative_change = 4.1414076647087835e-11 Iter 125: T = 839.79444258791 K, F = -1.9630060630326795e-6, relative_change = 1.7319843070965325e-11 Iter 130: T = 839.7944425434836 K, F = -8.209512043499956e-7, relative_change = 7.24335308973858e-12 Iter 135: T = 839.794442524904 K, F = -3.4333212384218825e-7, relative_change = 3.0292614069186024e-12 Iter 140: T = 839.7944425171337 K, F = -1.4358439659467592e-7, relative_change = 1.2668627286942543e-12 Iter 145: T = 839.7944425138841 K, F = -6.004912922463745e-8, relative_change = 5.29820826711337e-13 Converged in 150 iterations to T = 839.794442512525 K Iter 1: T = 976.3284236165146 K, F = -5393.5911964594325, relative_change = 0.02367157638348543 Iter 2: T = 954.8206525908728 K, F = -4560.77364936763, relative_change = 0.022029237811158585 Iter 3: T = 935.3859579019174 K, F = -3854.807213768073, relative_change = 0.020354288144291775 Iter 5: T = 902.3183042590942 K, F = -2749.9632453244576, relative_change = 0.01699948011862729 Iter 10: T = 847.7960296710655 K, F = -1172.8111908489504, relative_change = 0.009586227516591776 Iter 15: T = 820.8398667204322 K, F = -495.6751788316482, relative_change = 0.004702037767695872 Iter 20: T = 808.5757078324398 K, F = -208.33966378313823, relative_change = 0.0021208366273001962 Iter 25: T = 803.2447021495357 K, F = -87.32458092305023, relative_change = 0.000917181658136024 Iter 30: T = 800.9773354914449 K, F = -36.555169257668965, relative_change = 0.00038913056701939217 Iter 35: T = 800.0222675347181 K, F = -15.294002187595133, relative_change = 0.00016373127213433551 Iter 40: T = 799.6216369953862 K, F = -6.397223233124364, relative_change = 6.864947144639691e-5 Iter 45: T = 799.453875789345 K, F = -2.675586008989687, relative_change = 2.8740768754808786e-5 Iter 50: T = 799.3836787581104 K, F = -1.1189954326703773, relative_change = 1.202511763750333e-5 Iter 55: T = 799.3543149928058 K, F = -0.46798309922466275, relative_change = 5.029990251741868e-6 Iter 60: T = 799.3420335731805 K, F = -0.19571714353528702, relative_change = 2.1037668739273394e-6 Iter 65: T = 799.3368971370004 K, F = -0.08185142562500669, relative_change = 8.798492718281098e-7 Iter 70: T = 799.3347489830967 K, F = -0.03423127498411349, relative_change = 3.6796851758699256e-7 Iter 75: T = 799.3338505933667 K, F = -0.014315933472446751, relative_change = 1.5388971079112466e-7 Iter 80: T = 799.3334748749835 K, F = -0.005987095300483913, relative_change = 6.435866917172441e-8 Iter 85: T = 799.3333177448817 K, F = -0.002503874923191818, relative_change = 2.6915591044760748e-8 Iter 90: T = 799.3332520311639 K, F = -0.0010471504229936368, relative_change = 1.1256426316985499e-8 Iter 95: T = 799.3332245488966 K, F = -0.000437930817756782, relative_change = 4.707572742876722e-9 Iter 100: T = 799.3332130554833 K, F = -0.00018314789946627386, relative_change = 1.9687632920758516e-9 Iter 105: T = 799.3332082488004 K, F = -7.659463883724626e-5, relative_change = 8.233603446695939e-10 Iter 110: T = 799.3332062385881 K, F = -3.20327907625817e-5, relative_change = 3.4433911249136635e-10 Iter 115: T = 799.3332053978934 K, F = -1.3396498438233984e-5, relative_change = 1.4400675982318153e-10 Iter 120: T = 799.3332050463048 K, F = -5.602574936758309e-6, relative_change = 6.022533938391945e-11 Iter 125: T = 799.3332048992662 K, F = -2.343064736010092e-6, relative_change = 2.518696682171309e-11 Iter 130: T = 799.3332048377729 K, F = -9.798966454921398e-7, relative_change = 1.0533479476024333e-11 Iter 135: T = 799.3332048120558 K, F = -4.098061739954417e-7, relative_change = 4.405245128094401e-12 Iter 140: T = 799.3332048013004 K, F = -1.713844157702482e-7, relative_change = 1.842310854643095e-12 Iter 145: T = 799.3332047968025 K, F = -7.167618465420134e-8, relative_change = 7.704890343611933e-13 Iter 150: T = 799.3332047949214 K, F = -2.997684966921099e-8, relative_change = 3.2223860779573445e-13 Converged in 153 iterations to T = 799.3332047943705 K Iter 1: T = 980.8490039418659 K, F = -4363.572669146096, relative_change = 0.01915099605813407 Iter 2: T = 963.7094275991318 K, F = -3685.1994556193813, relative_change = 0.017474225159890135 Iter 3: T = 948.4554976949618 K, F = -3110.8411626367442, relative_change = 0.015828349777766346 Iter 5: T = 923.0665282500507 K, F = -2213.711928134844, relative_change = 0.012714424006696838 Iter 10: T = 883.0120671169866 K, F = -939.0796109879358, relative_change = 0.006601701302565803 Iter 15: T = 864.1816851544916 K, F = -395.54111544068934, relative_change = 0.0030742823027826113 Iter 20: T = 855.8560290418642 K, F = -165.9583278564724, relative_change = 0.0013501062498651874 Iter 25: T = 852.2869906652716 K, F = -69.50389172384052, relative_change = 0.0005767414185042672 Iter 30: T = 850.7784405538727 K, F = -29.084832180110777, relative_change = 0.00024338566467908146 Iter 35: T = 850.1447061047975 K, F = -12.166703809449585, relative_change = 0.00010217414511176875 Iter 40: T = 849.8791699178147 K, F = -5.088801192205421, relative_change = 4.2798575386288954e-5 Iter 45: T = 849.7680316133442 K, F = -2.128292067396962, relative_change = 1.7910818869106257e-5 Iter 50: T = 849.7215368515481 K, F = -0.8900937208029956, relative_change = 7.492609333195554e-6 Iter 55: T = 849.7020894925976 K, F = -0.37225072116619184, relative_change = 3.1338645684176025e-6 Iter 60: T = 849.6939559034815 K, F = -0.15568020394548276, relative_change = 1.3106835896829545e-6 Iter 65: T = 849.6905542569295 K, F = -0.06510740912816693, relative_change = 5.48154724636423e-7 Iter 70: T = 849.6891316332966 K, F = -0.02722871154062223, relative_change = 2.292468101595556e-7 Iter 75: T = 849.6885366725814 K, F = -0.011387375054881188, relative_change = 9.587409623810678e-8 Iter 80: T = 849.6882878524639 K, F = -0.004762336714919879, relative_change = 4.009575191248535e-8 Iter 85: T = 849.688183792842 K, F = -0.0019916661680166037, relative_change = 1.6768532741621126e-8 Iter 90: T = 849.6881402738519 K, F = -0.0008329385886427509, relative_change = 7.012802459458395e-9 Iter 95: T = 849.6881220736883 K, F = -0.0003483448676677714, relative_change = 2.9328380593348327e-9 Iter 100: T = 849.688114462162 K, F = -0.0001456819846685775, relative_change = 1.226547961735621e-9 Iter 105: T = 849.6881112789308 K, F = -6.0925945933876235e-5, relative_change = 5.129570159617927e-10 Iter 110: T = 849.6881099476656 K, F = -2.5479958106977563e-5, relative_change = 2.1452475090125576e-10 Iter 115: T = 849.6881093909144 K, F = -1.0656021967703211e-5, relative_change = 8.971680627393404e-11 Iter 120: T = 849.6881091580746 K, F = -4.456477070924336e-6, relative_change = 3.752065186894388e-11 Iter 125: T = 849.688109060698 K, F = -1.863750943575937e-6, relative_change = 1.569157638411938e-11 Iter 130: T = 849.6881090199741 K, F = -7.794436975849806e-7, relative_change = 6.56241133651659e-12 Iter 135: T = 849.6881090029428 K, F = -3.259724634663286e-7, relative_change = 2.744477114223638e-12 Iter 140: T = 849.6881089958201 K, F = -1.3632747730696337e-7, relative_change = 1.1477891032424094e-12 Iter 145: T = 849.6881089928413 K, F = -5.7012612852958e-8, relative_change = 4.800092914046256e-13 Converged in 150 iterations to T = 849.6881089915956 K Iter 1: T = 967.2476007282182 K, F = -7462.665329650329, relative_change = 0.032752399271781724 Iter 2: T = 936.5672302880882 K, F = -6326.021409418472, relative_change = 0.031719252047801905 Iter 3: T = 907.9277200943885 K, F = -5360.998641116811, relative_change = 0.030579235817262327 Iter 5: T = 856.6342873707225 K, F = -3846.444729055709, relative_change = 0.027983199602714996 Iter 10: T = 761.135472523275 K, F = -1665.772426085645, relative_change = 0.020082677136305686 Iter 15: T = 705.1218183923236 K, F = -713.3027285477303, relative_change = 0.012061746089753878 Iter 20: T = 676.2700408800339 K, F = -302.3520921219196, relative_change = 0.006187427887670916 Iter 25: T = 662.8022313466241 K, F = -127.29190771645403, relative_change = 0.0028611468745161207 Iter 30: T = 656.8700999651766 K, F = -53.395996380589644, relative_change = 0.0012521704438249106 Iter 35: T = 654.331636711273 K, F = -22.3601080723422, relative_change = 0.0005340747878774669 Iter 40: T = 653.2595270121188 K, F = -9.356468348239495, relative_change = 0.00022522930832847535 Iter 45: T = 652.8092898355507 K, F = -3.9139034341949217, relative_change = 9.452519740106853e-5 Iter 50: T = 652.6206660953533 K, F = -1.637001952665131, relative_change = 3.958986575039379e-5 Iter 55: T = 652.5417236408658 K, F = -0.684641924489744, relative_change = 1.6567173369229738e-5 Iter 60: T = 652.5086988491918 K, F = -0.28633035654207417, relative_change = 6.930378640217311e-6 Iter 65: T = 652.4948857169188 K, F = -0.1197476365829307, relative_change = 2.89868010955899e-6 Iter 70: T = 652.4891085903942 K, F = -0.05008004247236453, relative_change = 1.212317391223033e-6 Iter 75: T = 652.4866924729262 K, F = -0.020944098210717188, relative_change = 5.070151878618753e-7 Iter 80: T = 652.4856820142733 K, F = -0.008759076607466554, relative_change = 2.1204148160078682e-7 Iter 85: T = 652.4852594267403 K, F = -0.0036631512483867867, relative_change = 8.867857286123924e-8 Iter 90: T = 652.4850826952976 K, F = -0.0015319737397652133, relative_change = 3.7086489441352055e-8 Iter 95: T = 652.485008784047 K, F = -0.0006406897382644217, relative_change = 1.5510021752433887e-8 Iter 100: T = 652.4849778734704 K, F = -0.00026794410443753414, relative_change = 6.486477896234745e-9 Iter 105: T = 652.4849649462965 K, F = -0.0001120574245843109, relative_change = 2.7127227813539483e-9 Iter 110: T = 652.4849595399978 K, F = -4.686375374923779e-5, relative_change = 1.1344931217359429e-9 Iter 115: T = 652.484957279019 K, F = -1.959898135656113e-5, relative_change = 4.744585768321907e-10 Iter 120: T = 652.4849563334507 K, F = -8.196527822690314e-6, relative_change = 1.9842423857651857e-10 Iter 125: T = 652.4849559380027 K, F = -3.4278857274361307e-6, relative_change = 8.298338419270077e-11 Iter 130: T = 652.4849557726217 K, F = -1.4335826221678616e-6, relative_change = 3.470463927625503e-11 Iter 135: T = 652.4849557034573 K, F = -5.995416817450305e-7, relative_change = 1.4513902083353372e-11 Iter 140: T = 652.484955674532 K, F = -2.50735356643883e-7, relative_change = 6.069883924233521e-12 Iter 145: T = 652.4849556624351 K, F = -1.0486114726537821e-7, relative_change = 2.5385131185267685e-12 Iter 150: T = 652.4849556573761 K, F = -4.385487245572861e-8, relative_change = 1.061653166568503e-12 Iter 155: T = 652.4849556552603 K, F = -1.8340531704463814e-8, relative_change = 4.4399361964969486e-13 Converged in 159 iterations to T = 652.4849556544965 K Iter 1: T = 973.5211249347244 K, F = -6033.236871535766, relative_change = 0.026478875065275582 Iter 2: T = 949.2352767552641 K, F = -5105.582192883243, relative_change = 0.024946400809832132 Iter 3: T = 927.07498135315 K, F = -4318.7474019306665, relative_change = 0.023345419143991183 Iter 5: T = 888.8085804622277 K, F = -3086.0531842783, relative_change = 0.02001598050412196 Iter 10: T = 823.6596742505457 K, F = -1321.366283086562, relative_change = 0.012005039562500744 Iter 15: T = 790.1334407915456 K, F = -560.0580450281872, relative_change = 0.006151951983617841 Iter 20: T = 774.4930717014525 K, F = -235.77829232605234, relative_change = 0.0028430454101249975 Iter 25: T = 767.6061990396627 K, F = -98.90160736536185, relative_change = 0.0012438862469091607 Iter 30: T = 764.6596252911058 K, F = -41.41567955119518, relative_change = 0.0005304722115534825 Iter 35: T = 763.4152334301712 K, F = -17.33010616412967, relative_change = 0.00022369746050480868 Iter 40: T = 762.8926602510811 K, F = -7.249343671994125, relative_change = 9.388007001111914e-5 Iter 45: T = 762.6737344341636 K, F = -3.0320579039409616, relative_change = 3.931927432944061e-5 Iter 50: T = 762.5821104662197 K, F = -1.268094626026948, relative_change = 1.6453869933305943e-5 Iter 55: T = 762.5437805690802 K, F = -0.5303413813496868, relative_change = 6.882969468404371e-6 Iter 60: T = 762.5277485079672 K, F = -0.22179668499194094, relative_change = 2.8788487714151028e-6 Iter 65: T = 762.5210433516024 K, F = -0.09275829982646489, relative_change = 1.2040229441902523e-6 Iter 70: T = 762.5182391126987 K, F = -0.038792677259964936, relative_change = 5.035462208080516e-7 Iter 75: T = 762.5170663355792 K, F = -0.016223569393707282, relative_change = 2.10590695368013e-7 Iter 80: T = 762.5165758642719 K, F = -0.0067848919528168405, relative_change = 8.807183274707724e-8 Iter 85: T = 762.5163707429797 K, F = -0.0028375231017484515, relative_change = 3.683274278330884e-8 Iter 90: T = 762.5162849587473 K, F = -0.0011866860938144486, relative_change = 1.540390174918082e-8 Iter 95: T = 762.5162490827466 K, F = -0.0004962863050429478, relative_change = 6.4420972274899525e-9 Iter 100: T = 762.5162340789728 K, F = -0.00020755285894802356, relative_change = 2.6941622383362707e-9 Iter 105: T = 762.5162278042152 K, F = -8.680108333136705e-5, relative_change = 1.1267308545198509e-9 Iter 110: T = 762.5162251800366 K, F = -3.630125071885093e-5, relative_change = 4.712123206647547e-10 Iter 115: T = 762.5162240825738 K, F = -1.5181617639026257e-5, relative_change = 1.9706663507430623e-10 Iter 120: T = 762.5162236236017 K, F = -6.349134694771941e-6, relative_change = 8.241563206687738e-11 Iter 125: T = 762.5162234316541 K, F = -2.6552840867166694e-6, relative_change = 3.446720334447398e-11 Iter 130: T = 762.5162233513793 K, F = -1.1104708014242348e-6, relative_change = 1.4414586797491371e-11 Iter 135: T = 762.5162233178074 K, F = -4.6441246159822924e-7, relative_change = 6.02835637853945e-12 Iter 140: T = 762.5162233037672 K, F = -1.9422350694409118e-7, relative_change = 2.5211393187469608e-12 Iter 145: T = 762.5162232978955 K, F = -8.122780548180941e-8, relative_change = 1.0543863480035778e-12 Iter 150: T = 762.5162232954399 K, F = -3.396941072875137e-8, relative_change = 4.409436240486878e-13 Converged in 154 iterations to T = 762.5162232945535 K Iter 1: T = 969.9571683256413 K, F = -6845.287775113301, relative_change = 0.030042831674358672 Iter 2: T = 942.0706222008686 K, F = -5798.410342924107, relative_change = 0.028750286131614445 Iter 3: T = 916.2978699740054 K, F = -4909.907221076295, relative_change = 0.02735755857310659 Iter 5: T = 870.8895154229298 K, F = -3516.3769069265054, relative_change = 0.024311671915568454 Iter 10: T = 789.8387495473796 K, F = -1514.6056701633909, relative_change = 0.016010734843343744 Iter 15: T = 745.3162959226064 K, F = -645.13863140528, relative_change = 0.00885379168081685 Iter 20: T = 723.5722996870269 K, F = -272.4292312973461, relative_change = 0.004286882516448986 Iter 25: T = 713.750941316505 K, F = -114.45408895155592, relative_change = 0.0019203464837774097 Iter 30: T = 709.4971373451765 K, F = -47.96266664744612, relative_change = 0.0008278169720012434 Iter 35: T = 707.6908730958977 K, F = -20.075893853984297, relative_change = 0.00035072161823619576 Iter 40: T = 706.9305696939072 K, F = -8.399043607655994, relative_change = 0.00014748151821422748 Iter 45: T = 706.6117343434215 K, F = -3.5131188993966935, relative_change = 6.18205622565725e-5 Iter 50: T = 706.4782411427167 K, F = -1.4693226557587147, relative_change = 2.587902270709455e-5 Iter 55: T = 706.4223859737256 K, F = -0.6145048019140319, relative_change = 1.0827281988974937e-5 Iter 60: T = 706.3990219979518 K, F = -0.2569961371773803, relative_change = 4.528862638679168e-6 Iter 65: T = 706.3892500859449 K, F = -0.1074793593166074, relative_change = 1.8941580998744429e-6 Iter 70: T = 706.3851632124976 K, F = -0.04494924006270096, relative_change = 7.921829176864531e-7 Iter 75: T = 706.3834540081768 K, F = -0.0187983244633112, relative_change = 3.3130444601800595e-7 Iter 80: T = 706.3827391941387 K, F = -0.007861686494612274, relative_change = 1.38556191156783e-7 Iter 85: T = 706.3824402496053 K, F = -0.003287851652417073, relative_change = 5.7945978927803304e-8 Iter 90: T = 706.3823152272975 K, F = -0.0013750189094869913, relative_change = 2.4233722296164883e-8 Iter 95: T = 706.3822629414518 K, F = -0.0005750493452892913, relative_change = 1.0134835932280786e-8 Iter 100: T = 706.3822410748826 K, F = -0.00024049250548596746, relative_change = 4.238510077850577e-9 Iter 105: T = 706.3822319300216 K, F = -0.00010057684090336583, relative_change = 1.7725956955780599e-9 Iter 110: T = 706.3822281055312 K, F = -4.20624354109389e-5, relative_change = 7.413206977595398e-10 Iter 115: T = 706.3822265060836 K, F = -1.7591011024054026e-5, relative_change = 3.100291407244651e-10 Iter 120: T = 706.3822258371756 K, F = -7.356771006827856e-6, relative_change = 1.2965789180154815e-10 Iter 125: T = 706.3822255574303 K, F = -3.0766896856881942e-6, relative_change = 5.422448228384849e-11 Iter 130: T = 706.3822254404374 K, F = -1.2867079076661625e-6, relative_change = 2.267731793794576e-11 Iter 135: T = 706.3822253915097 K, F = -5.381167137441523e-7, relative_change = 9.483926955463385e-12 Iter 140: T = 706.3822253710475 K, F = -2.2504732910544334e-7, relative_change = 3.966300203169837e-12 Iter 145: T = 706.38222536249 K, F = -9.411716372920154e-8, relative_change = 1.6587485269266556e-12 Iter 150: T = 706.3822253589111 K, F = -3.936126224957093e-8, relative_change = 6.937144426056154e-13 Iter 155: T = 706.3822253574143 K, F = -1.6461497720499096e-8, relative_change = 2.9012226903036695e-13 Converged in 157 iterations to T = 706.3822253570976 K Iter 1: T = 973.6286310921619 K, F = -6008.741491298881, relative_change = 0.026371368907838103 Iter 2: T = 949.4501067028334 K, F = -5084.703552286425, relative_change = 0.024833415552094347 Iter 3: T = 927.3960921003886 K, F = -4300.953096596541, relative_change = 0.023228197507957533 Iter 5: T = 889.3353912285174 K, F = -3073.137079026873, relative_change = 0.01989485774211071 Iter 10: T = 824.6211402607308 K, F = -1315.622460828115, relative_change = 0.011902169068061453 Iter 15: T = 791.3748759997642 K, F = -557.5547739105334, relative_change = 0.00608769445402719 Iter 20: T = 775.8822127799563 K, F = -234.70763445542525, relative_change = 0.0028102933327323644 Iter 25: T = 769.064352324121 K, F = -98.44904263697114, relative_change = 0.001228905564558259 Iter 30: T = 766.1480992819384 K, F = -41.22551483239717, relative_change = 0.0005239591997944231 Iter 35: T = 764.9166595662646 K, F = -17.250415667078897, relative_change = 0.00022092838215990638 Iter 40: T = 764.3995519354779 K, F = -7.215987595008285, relative_change = 9.271394738175436e-5 Iter 45: T = 764.1829205097965 K, F = -3.01810297382059, relative_change = 3.8830167226492696e-5 Iter 50: T = 764.0922576009167 K, F = -1.2622576276624806, relative_change = 1.6249070223492338e-5 Iter 55: T = 764.0543298960541 K, F = -0.5279001248878847, relative_change = 6.797276126378329e-6 Iter 60: T = 764.0384660830993 K, F = -0.2207756954314214, relative_change = 2.843003152315665e-6 Iter 65: T = 764.0318312982671 K, F = -0.09233130508384846, relative_change = 1.1890305416222458e-6 Iter 70: T = 764.0290564910033 K, F = -0.0386141021340799, relative_change = 4.97275985211498e-7 Iter 75: T = 764.0278960227964 K, F = -0.01614888700020367, relative_change = 2.07968367080707e-7 Iter 80: T = 764.0274106992669 K, F = -0.0067536588585919155, relative_change = 8.697513658637875e-8 Iter 85: T = 764.0272077308446 K, F = -0.002824461045064619, relative_change = 3.6374090110248234e-8 Iter 90: T = 764.0271228469693 K, F = -0.00118122338657356, relative_change = 1.5212087526029168e-8 Iter 95: T = 764.0270873475089 K, F = -0.0004940017343164627, relative_change = 6.361878175030636e-9 Iter 100: T = 764.0270725012089 K, F = -0.000206597425713273, relative_change = 2.660613686068048e-9 Iter 105: T = 764.0270662923086 K, F = -8.640151112926375e-5, relative_change = 1.1127004661767614e-9 Iter 110: T = 764.0270636956723 K, F = -3.6134143096666627e-5, relative_change = 4.653446217972843e-10 Iter 115: T = 764.027062609728 K, F = -1.5111731600736533e-5, relative_change = 1.946126978913843e-10 Iter 120: T = 764.027062155573 K, F = -6.319904933271836e-6, relative_change = 8.138933283476774e-11 Iter 125: T = 764.0270619656402 K, F = -2.6430623691897637e-6, relative_change = 3.403802515938847e-11 Iter 130: T = 764.0270618862079 K, F = -1.1053592570142712e-6, relative_change = 1.4235095871223248e-11 Iter 135: T = 764.0270618529883 K, F = -4.622734147696761e-7, relative_change = 5.953273867811282e-12 Iter 140: T = 764.0270618390956 K, F = -1.9332987877263008e-7, relative_change = 2.4897510401659467e-12 Iter 145: T = 764.0270618332854 K, F = -8.085319747053177e-8, relative_change = 1.0412479115400279e-12 Iter 150: T = 764.0270618308556 K, F = -3.381314583883466e-8, relative_change = 4.3545423791866956e-13 Converged in 154 iterations to T = 764.0270618299785 K Iter 1: T = 964.3061622714739 K, F = -8132.874880049841, relative_change = 0.035693837728526065 Iter 2: T = 930.536749732135 K, F = -6899.632871093358, relative_change = 0.035019388924979244 Iter 3: T = 898.6607528925896 K, F = -5852.330647779721, relative_change = 0.03425549485146217 Iter 5: T = 840.4759634242583 K, F = -4207.793019434022, relative_change = 0.032433779040758434 Iter 10: T = 726.1696203624655 K, F = -1835.1206820906766, relative_change = 0.02605741561651128 Iter 15: T = 652.3664467633372 K, F = -792.4444008413417, relative_change = 0.01786256514672835 Iter 20: T = 610.5963135958466 K, F = -338.33994668011843, relative_change = 0.010248710450681167 Iter 25: T = 589.7161939415361 K, F = -143.10601061341646, relative_change = 0.005086756388896445 Iter 30: T = 580.1527977621639 K, F = -60.17497781781581, relative_change = 0.0023090749309984714 Iter 35: T = 575.9817293936464 K, F = -25.22710603578454, relative_change = 0.0010016044107385264 Iter 40: T = 574.2049738796152 K, F = -10.561319180387622, relative_change = 0.00042551427834470513 Iter 45: T = 573.4560627536817 K, F = -4.418826854590377, relative_change = 0.0001791421215931761 Iter 50: T = 573.1418213792613 K, F = -1.8483503735641773, relative_change = 7.512901544115417e-5 Iter 55: T = 573.0102192924776 K, F = -0.773062544750581, relative_change = 3.1456668706543086e-5 Iter 60: T = 572.9551497131918 K, F = -0.32331455321984004, relative_change = 1.316200498179404e-5 Iter 65: T = 572.9321133521829 K, F = -0.13521585586433307, relative_change = 5.505636675025937e-6 Iter 70: T = 572.9224782901002 K, F = -0.05654920909452321, relative_change = 2.302720531944651e-6 Iter 75: T = 572.9184486204973 K, F = -0.02364961113886635, relative_change = 9.630597780117711e-7 Iter 80: T = 572.9167633345346 K, F = -0.009890559704759605, relative_change = 4.0276914384586024e-7 Iter 85: T = 572.9160585225695 K, F = -0.0041363519167059715, relative_change = 1.684439230456644e-7 Iter 90: T = 572.9157637608704 K, F = -0.0017298720715391291, relative_change = 7.044544509331028e-8 Iter 95: T = 572.9156404878472 K, F = -0.000723453212113423, relative_change = 2.9461158762614857e-8 Iter 100: T = 572.9155889335686 K, F = -0.00030255678295265653, relative_change = 1.2321014112261885e-8 Iter 105: T = 572.9155673729488 K, F = -0.00012653286167407796, relative_change = 5.152796240300484e-9 Iter 110: T = 572.9155583560391 K, F = -5.2917554370979225e-5, relative_change = 2.154961106802867e-9 Iter 115: T = 572.9155545850597 K, F = -2.2130753559890248e-5, relative_change = 9.012305131476357e-10 Iter 120: T = 572.915553007991 K, F = -9.255345272962678e-6, relative_change = 3.76905361873564e-10 Iter 125: T = 572.915552348442 K, F = -3.870695736429841e-6, relative_change = 1.5762631670794937e-10 Iter 130: T = 572.9155520726107 K, F = -1.618770945732706e-6, relative_change = 6.592119859824082e-11 Iter 135: T = 572.9155519572548 K, F = -6.769893520219838e-7, relative_change = 2.75690329653872e-11 Iter 140: T = 572.9155519090117 K, F = -2.831255766500007e-7, relative_change = 1.1529721015292825e-11 Iter 145: T = 572.9155518888358 K, F = -1.1840633923343447e-7, relative_change = 4.8218605828047736e-12 Iter 150: T = 572.915551880398 K, F = -4.951888310511521e-8, relative_change = 2.016557154892531e-12 Iter 155: T = 572.9155518768691 K, F = -2.07091976345275e-8, relative_change = 8.433405207174529e-13 Iter 160: T = 572.9155518753934 K, F = -8.660364814172539e-9, relative_change = 3.5267598006307733e-13 Converged in 163 iterations to T = 572.9155518749614 K Iter 1: T = 963.5717000278102 K, F = -8300.222800922596, relative_change = 0.03642829997218986 Iter 2: T = 929.0217300402543 K, F = -7042.998217275202, relative_change = 0.03585614852175369 Iter 3: T = 896.3165887805523 K, F = -5975.282681970756, relative_change = 0.03520384960025094 Iter 5: T = 836.3220330314317 K, F = -4298.536550577112, relative_change = 0.03362960282123207 Iter 10: T = 716.6812530547116 K, F = -1878.4242946776183, relative_change = 0.027900673683792676 Iter 15: T = 637.0944767166276 K, F = -813.3819449602018, relative_change = 0.019982938711391018 Iter 20: T = 590.4893465309967 K, F = -348.2523312534912, relative_change = 0.01197656050317788 Iter 25: T = 566.5176091609525 K, F = -147.60069664526523, relative_change = 0.006134035660569401 Iter 30: T = 555.3380768232851 K, F = -62.13699107105003, relative_change = 0.0028338839917006193 Iter 35: T = 550.4162565371336 K, F = -26.064257337782205, relative_change = 0.0012396899623790618 Iter 40: T = 548.3106028080441 K, F = -10.91452454624972, relative_change = 0.0005286467403053423 Iter 45: T = 547.4213774431335 K, F = -4.567098746147723, relative_change = 0.0002229211455556746 Iter 50: T = 547.0479593059177 K, F = -1.9104580530178918, relative_change = 9.355311129557687e-5 Iter 55: T = 546.8915211903933 K, F = -0.799054049248565, relative_change = 3.9182131871834875e-5 Iter 60: T = 546.826049498928 K, F = -0.33418754833417363, relative_change = 1.6396444357849517e-5 Iter 65: T = 546.7986601540093 K, F = -0.1397636039991998, relative_change = 6.858940978866636e-6 Iter 70: T = 546.7872041501109 K, F = -0.058451224709439836, relative_change = 2.868797595190205e-6 Iter 75: T = 546.7824128583213 K, F = -0.024445073056997085, relative_change = 1.199819041725245e-6 Iter 80: T = 546.7804090384205 K, F = -0.010223234223955241, relative_change = 5.01788031986424e-7 Iter 85: T = 546.7795710092322 K, F = -0.0042754808704073, relative_change = 2.0985538814941727e-7 Iter 90: T = 546.7792205340576 K, F = -0.00178805754896752, relative_change = 8.776431643982644e-8 Iter 95: T = 546.7790739609163 K, F = -0.0007477870896621386, relative_change = 3.670413548050141e-8 Iter 100: T = 546.7790126622365 K, F = -0.0003127335031056222, relative_change = 1.5350116567254797e-8 Iter 105: T = 546.7789870263891 K, F = -0.00013078888749282203, relative_change = 6.419603582312489e-9 Iter 110: T = 546.7789763051705 K, F = -5.469747540282066e-5, relative_change = 2.6847551695664477e-9 Iter 115: T = 546.7789718214285 K, F = -2.2875137165395687e-5, relative_change = 1.1227967050523523e-9 Iter 120: T = 546.7789699462741 K, F = -9.5666553821816e-6, relative_change = 4.695669905363687e-10 Iter 125: T = 546.7789691620621 K, F = -4.000889875122038e-6, relative_change = 1.9637854149692643e-10 Iter 130: T = 546.7789688340953 K, F = -1.6732196918278763e-6, relative_change = 8.212784002543715e-11 Iter 135: T = 546.7789686969356 K, F = -6.997607958358909e-7, relative_change = 3.434686015578436e-11 Iter 140: T = 546.7789686395739 K, F = -2.9264862258515656e-7, relative_change = 1.4364281879679492e-11 Iter 145: T = 546.7789686155844 K, F = -1.223886667567342e-7, relative_change = 6.0072905623450966e-12 Iter 150: T = 546.7789686055518 K, F = -5.118446233520757e-8, relative_change = 2.5123236137789032e-12 Iter 155: T = 546.7789686013559 K, F = -2.140548879814297e-8, relative_change = 1.050660933426038e-12 Iter 160: T = 546.7789685996013 K, F = -8.952078023316545e-9, relative_change = 4.394012554873385e-13 Converged in 164 iterations to T = 546.7789685989679 K Iter 1: T = 969.4112023196402 K, F = -6969.6866489284, relative_change = 0.030588797680359783 Iter 2: T = 940.9656601447151 K, F = -5904.661033396953, relative_change = 0.029343112713015557 Iter 3: T = 914.6238377119606 K, F = -5000.684695022183, relative_change = 0.027994456703875115 Iter 5: T = 868.0630025591538 K, F = -3582.676336148229, relative_change = 0.025021296453892585 Iter 10: T = 784.2863206359607 K, F = -1544.7403091436272, relative_change = 0.01674640489441802 Iter 15: T = 737.7162548659579 K, F = -658.5906078709197, relative_change = 0.009396014660803077 Iter 20: T = 714.7648607592648 K, F = -278.2841432677385, relative_change = 0.004593180664857711 Iter 25: T = 704.3425564767804 K, F = -116.95300486715244, relative_change = 0.0020679974693843446 Iter 30: T = 699.8164743317898 K, F = -49.01753811485477, relative_change = 0.0008935733389218767 Iter 35: T = 697.8922856643007 K, F = -20.518849683036766, relative_change = 0.00037897306932208535 Iter 40: T = 697.081923909641 K, F = -8.58461356110366, relative_change = 0.00015943199442593675 Iter 45: T = 696.7420215214719 K, F = -3.590783013121494, relative_change = 6.684237192128607e-5 Iter 50: T = 696.5996945581999 K, F = -1.5018126406049985, relative_change = 2.7983419404432515e-5 Iter 55: T = 696.5401409197785 K, F = -0.6280942400871778, relative_change = 1.1708104820379195e-5 Iter 60: T = 696.515229484561 K, F = -0.2626797067694684, relative_change = 4.897362637666557e-6 Iter 65: T = 696.5048102813448 K, F = -0.10985634922537502, relative_change = 2.0482918362745246e-6 Iter 70: T = 696.5004526810823 K, F = -0.04594333494063396, relative_change = 8.566474466913571e-7 Iter 75: T = 696.4986302517434 K, F = -0.019214068441096965, relative_change = 3.58264974502498e-7 Iter 80: T = 696.4978680849804 K, F = -0.008035555875380407, relative_change = 1.4983152727442226e-7 Iter 85: T = 696.4975493368548 K, F = -0.003360565954374062, relative_change = 6.266148034723352e-8 Iter 90: T = 696.4974160324276 K, F = -0.0014054289062177538, relative_change = 2.6205804983923643e-8 Iter 95: T = 696.497360282897 K, F = -0.0005877671672125384, relative_change = 1.0959585050304036e-8 Iter 100: T = 696.4973369677731 K, F = -0.00024581125216582844, relative_change = 4.583430147297491e-9 Iter 105: T = 696.4973272171089 K, F = -0.00010280120193573161, relative_change = 1.9168453656413474e-9 Iter 110: T = 696.4973231392645 K, F = -4.2992690984511306e-5, relative_change = 8.016476579606743e-10 Iter 115: T = 696.4973214338613 K, F = -1.7980056779443032e-5, relative_change = 3.352586275761255e-10 Iter 120: T = 696.4973207206414 K, F = -7.519475028860967e-6, relative_change = 1.402091729455454e-10 Iter 125: T = 696.4973204223642 K, F = -3.144734153304185e-6, relative_change = 5.863714873379907e-11 Iter 130: T = 696.4973202976211 K, F = -1.31516542078991e-6, relative_change = 2.4522756676630075e-11 Iter 135: T = 696.4973202454521 K, F = -5.50017984157769e-7, relative_change = 1.0255711551464365e-11 Iter 140: T = 696.4973202236343 K, F = -2.3002399296423448e-7, relative_change = 4.2890592490743165e-12 Iter 145: T = 696.49732021451 K, F = -9.619884178135862e-8, relative_change = 1.7937369350094802e-12 Iter 150: T = 696.497320210694 K, F = -4.0232241760307375e-8, relative_change = 7.501759552323519e-13 Iter 155: T = 696.4973202090981 K, F = -1.682512029699268e-8, relative_change = 3.137235246802956e-13 Converged in 157 iterations to T = 696.4973202087604 K Iter 1: T = 966.435506602757 K, F = -7647.70174863764, relative_change = 0.03356449339724307 Iter 2: T = 934.9081732206863 K, F = -6484.300083742846, relative_change = 0.032622283811670406 Iter 3: T = 905.3883313411654 K, F = -5496.477782460913, relative_change = 0.03157512440802322 Iter 5: T = 852.247081461345 K, F = -3945.884533050868, relative_change = 0.02916055126714468 Iter 10: T = 751.921836929077 K, F = -1711.9285013499139, relative_change = 0.021540675364949927 Iter 15: T = 691.6840172663814 K, F = -734.5187719749916, relative_change = 0.013344511269947418 Iter 20: T = 659.9975229247023 K, F = -311.82894996229453, relative_change = 0.007010962650178913 Iter 25: T = 644.9968737315611 K, F = -131.40294988484206, relative_change = 0.0032877444182701733 Iter 30: T = 638.339400805594 K, F = -55.14577102756418, relative_change = 0.0014488621635079598 Iter 35: T = 635.4803724631552 K, F = -23.0976331178884, relative_change = 0.0006198979284998807 Iter 40: T = 634.2709720965798 K, F = -9.66594883786641, relative_change = 0.00026177494260580986 Iter 45: T = 633.762737037587 K, F = -4.043516075327172, relative_change = 0.00010992559385907329 Iter 50: T = 633.5497549408493 K, F = -1.691239913033512, relative_change = 4.605105643101255e-5 Iter 55: T = 633.4606074297047 K, F = -0.7073305689665105, relative_change = 1.9272929280888593e-5 Iter 60: T = 633.4233115885731 K, F = -0.2958200133771617, relative_change = 8.062590190489767e-6 Iter 65: T = 633.4077116969551 K, F = -0.12371649845829935, relative_change = 3.3722951269576523e-6 Iter 70: T = 633.4011872291468 K, F = -0.05173989835577536, relative_change = 1.4104082011930861e-6 Iter 75: T = 633.3984585476278 K, F = -0.02163827508889865, relative_change = 5.898625155783193e-7 Iter 80: T = 633.3973173679825 K, F = -0.009049390599148, relative_change = 2.4668981556123303e-7 Iter 85: T = 633.3968401108493 K, F = -0.0037845641907913175, relative_change = 1.0316902350324385e-7 Iter 90: T = 633.3966405158359 K, F = -0.0015827501111311815, relative_change = 4.314658707446733e-8 Iter 95: T = 633.3965570427509 K, F = -0.0006619250280423539, relative_change = 1.804443012056949e-8 Iter 100: T = 633.3965221332984 K, F = -0.00027682495728148515, relative_change = 7.546398302540013e-9 Iter 105: T = 633.3965075337463 K, F = -0.00011577150463931707, relative_change = 3.155994280814979e-9 Iter 110: T = 633.396501428039 K, F = -4.841702574065465e-5, relative_change = 1.3198745565280152e-9 Iter 115: T = 633.3964988745593 K, F = -2.0248579446380255e-5, relative_change = 5.519873416683453e-10 Iter 120: T = 633.3964978066634 K, F = -8.468197823074952e-6, relative_change = 2.3084770242670878e-10 Iter 125: T = 633.3964973600566 K, F = -3.54150188502933e-6, relative_change = 9.654327793519801e-11 Iter 130: T = 633.3964971732804 K, F = -1.4810989207858505e-6, relative_change = 4.037556652564468e-11 Iter 135: T = 633.3964970951683 K, F = -6.194137076032113e-7, relative_change = 1.688555640810542e-11 Iter 140: T = 633.3964970625009 K, F = -2.590463357710071e-7, relative_change = 7.061744779549571e-12 Iter 145: T = 633.396497048839 K, F = -1.0833665353704447e-7, relative_change = 2.953316422525838e-12 Iter 150: T = 633.3964970431255 K, F = -4.5307871954225476e-8, relative_change = 1.235117367476228e-12 Iter 155: T = 633.3964970407359 K, F = -1.89479758549993e-8, relative_change = 5.165321841002426e-13 Converged in 160 iterations to T = 633.3964970397366 K Iter 1: T = 966.5381283243582 K, F = -7624.319291752327, relative_change = 0.03346187167564178 Iter 2: T = 935.1180694626477 K, F = -6464.295196464768, relative_change = 0.03250783175639643 Iter 3: T = 905.7100213466779 K, F = -5479.350527391298, relative_change = 0.03144848664176568 Iter 5: T = 852.8045114451961 K, F = -3933.305231917817, relative_change = 0.0290096948010809 Iter 10: T = 753.1033389667218 K, F = -1706.072270238827, relative_change = 0.021349302699198578 Iter 15: T = 693.4238002466071 K, F = -731.8142643610585, relative_change = 0.013171691676213808 Iter 20: T = 662.1194892716655 K, F = -310.6153199172396, relative_change = 0.006897740529802756 Iter 25: T = 647.3283209650345 K, F = -130.8748525432478, relative_change = 0.003228388070400681 Iter 30: T = 640.7707093006492 K, F = -54.92063233986402, relative_change = 0.0014213319257410561 Iter 35: T = 637.9559698481701 K, F = -23.00266617590251, relative_change = 0.0006078533750985901 Iter 40: T = 636.7655669012651 K, F = -9.626085623440252, relative_change = 0.00025664013367325534 Iter 45: T = 636.2653625740654 K, F = -4.026818726694567, relative_change = 0.00010776071398338951 Iter 50: T = 636.0557542302129 K, F = -1.6842522931845878, relative_change = 4.5142599971981895e-5 Iter 55: T = 635.9680203371134 K, F = -0.7044074581350096, relative_change = 1.889246160658919e-5 Iter 60: T = 635.9313161567673 K, F = -0.2945973926093935, relative_change = 7.9033794122758e-6 Iter 65: T = 635.9159637868364 K, F = -0.12320515919613279, relative_change = 3.3056947123687874e-6 Iter 70: T = 635.9095428499156 K, F = -0.05152604585569287, relative_change = 1.382552214251588e-6 Iter 75: T = 635.9068574687627 K, F = -0.021548838665763348, relative_change = 5.782123022410846e-7 Iter 80: T = 635.905734398287 K, F = -0.009011987087192364, relative_change = 2.4181746854799866e-7 Iter 85: T = 635.9052647147016 K, F = -0.003768921571175199, relative_change = 1.0113133425458185e-7 Iter 90: T = 635.9050682870497 K, F = -0.001576208176471694, relative_change = 4.229439837540397e-8 Iter 95: T = 635.9049861385956 K, F = -0.0006591891123951532, relative_change = 1.7688034161955003e-8 Iter 100: T = 635.9049517831198 K, F = -0.0002756807634322067, relative_change = 7.397349142990594e-9 Iter 105: T = 635.9049374152477 K, F = -0.00011529298921830744, relative_change = 3.0936601310618313e-9 Iter 110: T = 635.9049314064315 K, F = -4.8216904916686953e-5, relative_change = 1.2938056694166967e-9 Iter 115: T = 635.9049288934727 K, F = -2.0164884158013763e-5, relative_change = 5.410849572926198e-10 Iter 120: T = 635.9049278425234 K, F = -8.433194820411938e-6, relative_change = 2.26288177972684e-10 Iter 125: T = 635.9049274030039 K, F = -3.5268628361118104e-6, relative_change = 9.463642009524614e-11 Iter 130: T = 635.9049272191916 K, F = -1.4749762252130871e-6, relative_change = 3.9578082947436607e-11 Iter 135: T = 635.904927142319 K, F = -6.168533084882633e-7, relative_change = 1.6552044030589964e-11 Iter 140: T = 635.9049271101701 K, F = -2.5797520980530564e-7, relative_change = 6.922256837675915e-12 Iter 145: T = 635.904927096725 K, F = -1.0788907628400679e-7, relative_change = 2.894990943727971e-12 Iter 150: T = 635.9049270911021 K, F = -4.512040135962181e-8, relative_change = 1.2107171348387815e-12 Iter 155: T = 635.9049270887505 K, F = -1.8869397988563463e-8, relative_change = 5.063231438737348e-13 Converged in 160 iterations to T = 635.9049270877671 K Iter 1: T = 976.46349391084 K, F = -5362.815301412355, relative_change = 0.023536506089159963 Iter 2: T = 955.0881121125183 K, F = -4534.581421259619, relative_change = 0.021890610280483752 Iter 3: T = 935.7819940212142 K, F = -3832.5228386731933, relative_change = 0.02021396544094935 Iter 5: T = 902.955724897873 K, F = -2733.853723022582, relative_change = 0.01686168165221524 Iter 10: T = 848.90952376715 K, F = -1165.7347231731146, relative_change = 0.009482470337214511 Iter 15: T = 822.2349725753983 K, F = -492.62498091854667, relative_change = 0.004642581106294311 Iter 20: T = 810.1114984147284 K, F = -207.04413446767003, relative_change = 0.002091955642334074 Iter 25: T = 804.8443773551161 K, F = -86.77890062620398, relative_change = 0.0009042733359984688 Iter 30: T = 802.6047094688589 K, F = -36.32624861368904, relative_change = 0.00038357591024608287 Iter 35: T = 801.6614052226524 K, F = -15.19813799100005, relative_change = 0.0001613800472270015 Iter 40: T = 801.2657264696419 K, F = -6.357109303082299, relative_change = 6.766116266998188e-5 Iter 45: T = 801.1000418140445 K, F = -2.6588059562173303, relative_change = 2.8326567092163396e-5 Iter 50: T = 801.0307142133803 K, F = -1.1119771261223683, relative_change = 1.185173943461259e-5 Iter 55: T = 801.0017142281436 K, F = -0.4650478391874624, relative_change = 4.957454434377197e-6 Iter 60: T = 800.9895849761068 K, F = -0.19448956166568387, relative_change = 2.0734268076692664e-6 Iter 65: T = 800.9845121835513 K, F = -0.08133803253923344, relative_change = 8.671598678776424e-7 Iter 70: T = 800.9823906471024 K, F = -0.034016567219137595, relative_change = 3.626615128464016e-7 Iter 75: T = 800.9815033892728 K, F = -0.014226140010109911, relative_change = 1.5167023278331442e-7 Iter 80: T = 800.9811323264117 K, F = -0.005949542583327028, relative_change = 6.34304525530257e-8 Iter 85: T = 800.9809771433098 K, F = -0.0024881699251450007, relative_change = 2.652739899866794e-8 Iter 90: T = 800.9809122438514 K, F = -0.0010405824051866741, relative_change = 1.1094079638005952e-8 Iter 95: T = 800.9808851021174 K, F = -0.00043518399516073725, relative_change = 4.63967740985176e-9 Iter 100: T = 800.9808737511191 K, F = -0.0001819991463417603, relative_change = 1.9403686584524015e-9 Iter 105: T = 800.9808690039958 K, F = -7.611421583797462e-5, relative_change = 8.114853613922771e-10 Iter 110: T = 800.9808670186923 K, F = -3.1831874325427556e-5, relative_change = 3.393728761600626e-10 Iter 115: T = 800.9808661884144 K, F = -1.3312469964943396e-5, relative_change = 1.4192979015018244e-10 Iter 120: T = 800.9808658411824 K, F = -5.567433699393831e-6, relative_change = 5.93567309704242e-11 Iter 125: T = 800.9808656959658 K, F = -2.328365802051202e-6, relative_change = 2.4823678214153783e-11 Iter 130: T = 800.9808656352346 K, F = -9.737521931008075e-7, relative_change = 1.0381577967384883e-11 Iter 135: T = 800.9808656098361 K, F = -4.0723517680252286e-7, relative_change = 4.341703946476012e-12 Iter 140: T = 800.980865599214 K, F = -1.7031077492735136e-7, relative_change = 1.815754153366588e-12 Iter 145: T = 800.9808655947718 K, F = -7.12261274404824e-8, relative_change = 7.593714301802465e-13 Iter 150: T = 800.9808655929139 K, F = -2.9787970978745193e-8, relative_change = 3.175819736015963e-13 Converged in 153 iterations to T = 800.98086559237 K Iter 1: T = 965.2149816839714 K, F = -7925.799512401866, relative_change = 0.03478501831602867 Iter 2: T = 932.4062940529916 K, F = -6722.309346515372, relative_change = 0.03399106753786581 Iter 3: T = 901.5445083579248 K, F = -5700.339756621528, relative_change = 0.03309907482597157 Iter 5: T = 845.5484789696 K, F = -4095.797669247772, relative_change = 0.031002556399561284 Iter 10: T = 737.4623606883317 K, F = -1782.1343520364114, relative_change = 0.023992861530270047 Iter 15: T = 669.9580199315966 K, F = -767.2664401762141, relative_change = 0.015687296007055894 Iter 20: T = 633.0708503736087 K, F = -326.6794361121715, relative_change = 0.008620110186638006 Iter 25: T = 615.1264654088359 K, F = -137.91307994464242, relative_change = 0.0041566240252699 Iter 30: T = 607.0398075801983 K, F = -57.93237356171862, relative_change = 0.001857998721607414 Iter 35: T = 603.5412681502559 K, F = -24.27529763046283, relative_change = 0.0008001422617039425 Iter 40: T = 602.0564588968282 K, F = -10.160697400013996, relative_change = 0.0003388488007712452 Iter 45: T = 601.4316009189808 K, F = -4.250823561256288, relative_change = 0.000142462390839486 Iter 50: T = 601.1695892852456 K, F = -1.7780084495924289, relative_change = 5.9711985962626753e-5 Iter 55: T = 601.0598918909664 K, F = -0.7436304999457684, relative_change = 2.4995518022612704e-5 Iter 60: T = 601.0139939257031 K, F = -0.31100323078666176, relative_change = 1.0457496575930554e-5 Iter 65: T = 600.99479513666 K, F = -0.13006667802693883, relative_change = 4.374162636524518e-6 Iter 70: T = 600.9867653243724 K, F = -0.05439568519063448, relative_change = 1.82945173115328e-6 Iter 75: T = 600.9834070473761 K, F = -0.02274896838854068, relative_change = 7.651203706514581e-7 Iter 80: T = 600.9820025559599 K, F = -0.009513897817787775, relative_change = 3.199862908912514e-7 Iter 85: T = 600.9814151774011 K, F = -0.003978827008322805, relative_change = 1.3382275542302133e-7 Iter 90: T = 600.9811695280654 K, F = -0.0016639932032381233, relative_change = 5.5966391184489846e-8 Iter 95: T = 600.9810667944732 K, F = -0.0006959018701798714, relative_change = 2.3405833577840686e-8 Iter 100: T = 600.9810238300394 K, F = -0.00029103447955297623, relative_change = 9.78860268127354e-9 Iter 105: T = 600.9810058617969 K, F = -0.00012171409677086409, relative_change = 4.093711183017831e-9 Iter 110: T = 600.9809983472627 K, F = -5.0902289312426685e-5, relative_change = 1.712039023684791e-9 Iter 115: T = 600.9809952045947 K, F = -2.1287945215275883e-5, relative_change = 7.15995181008017e-10 Iter 120: T = 600.9809938902933 K, F = -8.902872906446646e-6, relative_change = 2.994377381212825e-10 Iter 125: T = 600.9809933406368 K, F = -3.7232879105397743e-6, relative_change = 1.2522844332122068e-10 Iter 130: T = 600.980993110764 K, F = -1.5571235955080809e-6, relative_change = 5.237203486932234e-11 Iter 135: T = 600.9809930146283 K, F = -6.512074393616452e-7, relative_change = 2.1902602237721342e-11 Iter 140: T = 600.9809929744233 K, F = -2.7234363786377003e-7, relative_change = 9.1599604265138e-12 Iter 145: T = 600.9809929576089 K, F = -1.1389669124506341e-7, relative_change = 3.8307822897499725e-12 Iter 150: T = 600.980992950577 K, F = -4.763280780917256e-8, relative_change = 1.6020739020767297e-12 Iter 155: T = 600.9809929476362 K, F = -1.992026216202092e-8, relative_change = 6.69994770430019e-13 Iter 160: T = 600.9809929464064 K, F = -8.33150698431595e-9, relative_change = 2.8022051436600903e-13 Converged in 162 iterations to T = 600.9809929461462 K Iter 1: T = 964.5657159379264 K, F = -8073.7353302493675, relative_change = 0.035434284062073586 Iter 2: T = 931.0712589264276 K, F = -6848.981703787539, relative_change = 0.03472490931209323 Iter 3: T = 899.4862347217987 K, F = -5808.906097178073, relative_change = 0.03392331564508612 Iter 5: T = 841.9321768833391 K, F = -4175.7752857007645, relative_change = 0.03201965852085745 Iter 10: T = 729.443551116866 K, F = -1819.9227468865465, relative_change = 0.02544477548022359 Iter 15: T = 657.5282703158548 K, F = -785.1765750885406, relative_change = 0.01719616639103223 Iter 20: T = 617.2612500047773 K, F = -334.9481095849177, relative_change = 0.009735066652243411 Iter 25: T = 597.3037978267896 K, F = -141.5863527104275, relative_change = 0.004787647452065482 Iter 30: T = 588.2103537584551 K, F = -59.51641041469636, relative_change = 0.0021625084626751036 Iter 35: T = 584.2546577290838 K, F = -24.947121381677864, relative_change = 0.0009358254728472689 Iter 40: T = 582.57166391885 K, F = -10.44338251914305, relative_change = 0.00039715685716351466 Iter 45: T = 581.862643381005 K, F = -4.369353210405988, relative_change = 0.00016712935849422123 Iter 50: T = 581.565205905109 K, F = -1.8276332056280697, relative_change = 7.007793053652242e-5 Iter 55: T = 581.4406527936247 K, F = -0.7643936882132051, relative_change = 2.9339458281140553e-5 Iter 60: T = 581.3885349341613 K, F = -0.31968831223598215, relative_change = 1.2275723060864092e-5 Iter 65: T = 581.3667336752728 K, F = -0.1336991747636049, relative_change = 5.1348360545969804e-6 Iter 70: T = 581.3576152627446 K, F = -0.055914889784440425, relative_change = 2.1476215736027937e-6 Iter 75: T = 581.3538016822915 K, F = -0.02338432682645114, relative_change = 8.981910437217468e-7 Iter 80: T = 581.3522067709142 K, F = -0.009779613866781278, relative_change = 3.7563947775164926e-7 Iter 85: T = 581.3515397552961 K, F = -0.0040899529077770835, relative_change = 1.5709783509468656e-7 Iter 90: T = 581.3512608005885 K, F = -0.0017104674291574806, relative_change = 6.570035157889243e-8 Iter 95: T = 581.3511441382567 K, F = -0.0007153379550914885, relative_change = 2.7476699788390082e-8 Iter 100: T = 581.3510953486516 K, F = -0.00029916288461911966, relative_change = 1.1491088924284187e-8 Iter 105: T = 581.3510749442516 K, F = -0.00012511349304272779, relative_change = 4.805711498101434e-9 Iter 110: T = 581.351066410887 K, F = -5.2323956564237495e-5, relative_change = 2.0098060660284372e-9 Iter 115: T = 581.351062842132 K, F = -2.1882503154713184e-5, relative_change = 8.40524909686068e-10 Iter 120: T = 581.351061349636 K, F = -9.15152414165954e-6, relative_change = 3.5151755913349494e-10 Iter 125: T = 581.3510607254564 K, F = -3.827276568224569e-6, relative_change = 1.4700883737428885e-10 Iter 130: T = 581.351060464417 K, F = -1.6006128252810115e-6, relative_change = 6.148085377146253e-11 Iter 135: T = 581.3510603552472 K, F = -6.69394892904851e-7, relative_change = 2.571200787149482e-11 Iter 140: T = 581.351060309591 K, F = -2.79948820347542e-7, relative_change = 1.0753064224686506e-11 Iter 145: T = 581.3510602904972 K, F = -1.1707828240226092e-7, relative_change = 4.497073031497086e-12 Iter 150: T = 581.351060282512 K, F = -4.896384336872117e-8, relative_change = 1.880741458008191e-12 Iter 155: T = 581.3510602791724 K, F = -2.0477901097049056e-8, relative_change = 7.865730081121033e-13 Iter 160: T = 581.3510602777757 K, F = -8.5638723335002e-9, relative_change = 3.289453733858017e-13 Converged in 163 iterations to T = 581.3510602773667 K Iter 1: T = 964.3297664545172 K, F = -8127.496644490068, relative_change = 0.035670233545482835 Iter 2: T = 930.5853779012855 K, F = -6895.0262980004845, relative_change = 0.03499258213017457 Iter 3: T = 898.7358863838617 K, F = -5848.381000290798, relative_change = 0.03422522239630797 Iter 5: T = 840.6086450704803 K, F = -4204.880199557322, relative_change = 0.032395937920241535 Iter 10: T = 726.4690193804381 K, F = -1833.7363416462765, relative_change = 0.02600090145753414 Iter 15: T = 652.8406891011981 K, F = -791.7807595394532, relative_change = 0.017800322451920383 Iter 20: T = 611.2112505132386 K, F = -338.02927267950963, relative_change = 0.010200163718838244 Iter 25: T = 590.4182375794337 K, F = -142.9664697851514, relative_change = 0.005058253567969754 Iter 30: T = 580.8994436664659 K, F = -60.11441631404221, relative_change = 0.0022950456681896103 Iter 35: T = 576.748871246509 K, F = -25.20134010129522, relative_change = 0.0009952947275493175 Iter 40: T = 574.9810496784156 K, F = -10.55046237286843, relative_change = 0.00042279161253292114 Iter 45: T = 574.2359415280171 K, F = -4.414271855502838, relative_change = 0.00017798828372730794 Iter 50: T = 573.9233025253877 K, F = -1.8464428467162803, relative_change = 7.464377145464575e-5 Iter 55: T = 573.7923726740785 K, F = -0.7722643424583278, relative_change = 3.125325957966562e-5 Iter 60: T = 573.7375846011927 K, F = -0.32298065632634243, relative_change = 1.3076853687122566e-5 Iter 65: T = 573.7146660342521 K, F = -0.13507620233929077, relative_change = 5.470010824712308e-6 Iter 70: T = 573.7050802463848 K, F = -0.05649080189951, relative_change = 2.2878188278838557e-6 Iter 75: T = 573.7010711858289 K, F = -0.023625184127759102, relative_change = 9.568272616472388e-7 Iter 80: T = 573.6993945191626 K, F = -0.009880343962710758, relative_change = 4.001625530995354e-7 Iter 85: T = 573.6986933119508 K, F = -0.004132079557511881, relative_change = 1.673538019932107e-7 Iter 90: T = 573.6984000578133 K, F = -0.0017280853186475431, relative_change = 6.998954110659811e-8 Iter 95: T = 573.6982774152721 K, F = -0.0007227059695817939, relative_change = 2.9270493823742127e-8 Iter 100: T = 573.698226124669 K, F = -0.00030224427631136974, relative_change = 1.2241275651464394e-8 Iter 105: T = 573.6982046743213 K, F = -0.0001264021674244331, relative_change = 5.119448641691418e-9 Iter 110: T = 573.698195703529 K, F = -5.286289616462936e-5, relative_change = 2.141014728047911e-9 Iter 115: T = 573.6981919518363 K, F = -2.2107894630085667e-5, relative_change = 8.953979618408421e-10 Iter 120: T = 573.6981903828337 K, F = -9.245785654588001e-6, relative_change = 3.744661297264357e-10 Iter 125: T = 573.698189726658 K, F = -3.866698386201239e-6, relative_change = 1.566062248767687e-10 Iter 130: T = 573.6981894522374 K, F = -1.617099773698616e-6, relative_change = 6.549460704990217e-11 Iter 135: T = 573.6981893374715 K, F = -6.762899576462367e-7, relative_change = 2.7390607425980186e-11 Iter 140: T = 573.6981892894751 K, F = -2.8283329539524615e-7, relative_change = 1.1455109863254128e-11 Iter 145: T = 573.6981892694023 K, F = -1.1828378160272379e-7, relative_change = 4.790644296784712e-12 Iter 150: T = 573.6981892610077 K, F = -4.9467414497961215e-8, relative_change = 2.0034934962917626e-12 Iter 155: T = 573.6981892574969 K, F = -2.068752680273178e-8, relative_change = 8.378712699154798e-13 Iter 160: T = 573.6981892560287 K, F = -8.652148830723405e-9, relative_change = 3.5042308331544964e-13 Converged in 163 iterations to T = 573.6981892555989 K Iter 1: T = 980.1160967437247 K, F = -4530.566271417313, relative_change = 0.01988390325627534 Iter 2: T = 962.2770265668505 K, F = -3827.007988225371, relative_change = 0.01820097663546349 Iter 3: T = 946.3620721388214 K, F = -3231.199714040312, relative_change = 0.016538848989058257 Iter 5: T = 919.7818579286364 K, F = -2300.254724250583, relative_change = 0.013365862564776362 Iter 10: T = 877.5698762873017 K, F = -976.5653564453315, relative_change = 0.007025103784947561 Iter 15: T = 857.5813720430467 K, F = -411.52591717529236, relative_change = 0.00329519864218592 Iter 20: T = 848.7090149493195 K, F = -172.70619158452524, relative_change = 0.0014523282543727957 Iter 25: T = 844.8985648119036 K, F = -72.33772027066665, relative_change = 0.0006214160232122514 Iter 30: T = 843.2866562027018 K, F = -30.272099658286542, relative_change = 0.00026242243740722085 Iter 35: T = 842.6092638398286 K, F = -12.66361006481547, relative_change = 0.00011019863729645125 Iter 40: T = 842.32539283319 K, F = -5.2966795913631355, relative_change = 4.616564416251224e-5 Iter 45: T = 842.2065732256896 K, F = -2.215240913750752, relative_change = 1.932092106253617e-5 Iter 50: T = 842.1568636913095 K, F = -0.926458800556943, relative_change = 8.08267315840675e-6 Iter 55: T = 842.1360714629287 K, F = -0.3874593876690692, relative_change = 3.3806962047506256e-6 Iter 60: T = 842.1273753610682 K, F = -0.16204071215799587, relative_change = 1.4139220067822702e-6 Iter 65: T = 842.1237384523234 K, F = -0.06776746051143756, relative_change = 5.913320965826434e-7 Iter 70: T = 842.1222174370199 K, F = -0.028341178698416236, relative_change = 2.473044233349842e-7 Iter 75: T = 842.1215813273462 K, F = -0.011852622438609739, relative_change = 1.0342606179290464e-7 Iter 80: T = 842.1213152981752 K, F = -0.0049569087851493165, relative_change = 4.325408390328398e-8 Iter 85: T = 842.1212040415099 K, F = -0.002073038543994432, relative_change = 1.8089386633369467e-8 Iter 90: T = 842.1211575126282 K, F = -0.0008669694915171, relative_change = 7.565199645012864e-9 Iter 95: T = 842.1211380536915 K, F = -0.00036257699911490526, relative_change = 3.1638572217510763e-9 Iter 100: T = 842.1211299157313 K, F = -0.0001516340310698805, relative_change = 1.3231629350696686e-9 Iter 105: T = 842.1211265123392 K, F = -6.34151624818724e-5, relative_change = 5.533625502139575e-10 Iter 110: T = 842.1211250889999 K, F = -2.652098030875294e-5, relative_change = 2.3142284654909272e-10 Iter 115: T = 842.1211244937424 K, F = -1.1091390904161003e-5, relative_change = 9.678380037185913e-11 Iter 120: T = 842.1211242447985 K, F = -4.6385501204504465e-6, relative_change = 4.047612363351131e-11 Iter 125: T = 842.1211241406872 K, F = -1.939896674629793e-6, relative_change = 1.6927594969513358e-11 Iter 130: T = 842.1211240971467 K, F = -8.112868059573231e-7, relative_change = 7.079312335723923e-12 Iter 135: T = 842.1211240789374 K, F = -3.3929003495636323e-7, relative_change = 2.960654743137069e-12 Iter 140: T = 842.1211240713221 K, F = -1.418937207731119e-7, relative_change = 1.238168746984857e-12 Iter 145: T = 842.1211240681374 K, F = -5.9343438607584176e-8, relative_change = 5.178325765474737e-13 Converged in 150 iterations to T = 842.1211240668056 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 5%|█▋ | ETA: 0:00:19 Bin 1 ray tracing: 10%|███▏ | ETA: 0:00:18 Bin 1 ray tracing: 15%|████▋ | ETA: 0:00:17 Bin 1 ray tracing: 21%|██████▎ | ETA: 0:00:15 Bin 1 ray tracing: 26%|███████▉ | ETA: 0:00:14 Bin 1 ray tracing: 32%|█████████▋ | ETA: 0:00:13 Bin 1 ray tracing: 38%|███████████▎ | ETA: 0:00:12 Bin 1 ray tracing: 43%|████████████▉ | ETA: 0:00:11 Bin 1 ray tracing: 49%|██████████████▋ | ETA: 0:00:10 Bin 1 ray tracing: 54%|████████████████▏ | ETA: 0:00:09 Bin 1 ray tracing: 59%|█████████████████▊ | ETA: 0:00:08 Bin 1 ray tracing: 65%|███████████████████▍ | ETA: 0:00:07 Bin 1 ray tracing: 70%|█████████████████████ | ETA: 0:00:06 Bin 1 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:05 Bin 1 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:03 Bin 1 ray tracing: 87%|██████████████████████████▎ | ETA: 0:00:02 Bin 1 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 1 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:18 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 7%|██ | ETA: 0:00:15 Bin 2 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 2 ray tracing: 19%|█████▋ | ETA: 0:00:13 Bin 2 ray tracing: 25%|███████▋ | ETA: 0:00:12 Bin 2 ray tracing: 32%|█████████▌ | ETA: 0:00:11 Bin 2 ray tracing: 38%|███████████▎ | ETA: 0:00:10 Bin 2 ray tracing: 44%|█████████████▏ | ETA: 0:00:09 Bin 2 ray tracing: 49%|██████████████▊ | ETA: 0:00:08 Bin 2 ray tracing: 55%|████████████████▌ | ETA: 0:00:08 Bin 2 ray tracing: 60%|██████████████████▏ | ETA: 0:00:07 Bin 2 ray tracing: 66%|███████████████████▊ | ETA: 0:00:06 Bin 2 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:05 Bin 2 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:04 Bin 2 ray tracing: 83%|████████████████████████▊ | ETA: 0:00:03 Bin 2 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 2 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 2 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 6%|█▋ | ETA: 0:00:17 Bin 3 ray tracing: 11%|███▍ | ETA: 0:00:16 Bin 3 ray tracing: 17%|█████ | ETA: 0:00:15 Bin 3 ray tracing: 22%|██████▋ | ETA: 0:00:14 Bin 3 ray tracing: 27%|████████▎ | ETA: 0:00:13 Bin 3 ray tracing: 33%|█████████▉ | ETA: 0:00:13 Bin 3 ray tracing: 38%|███████████▌ | ETA: 0:00:11 Bin 3 ray tracing: 44%|█████████████▎ | ETA: 0:00:10 Bin 3 ray tracing: 50%|██████████████▉ | ETA: 0:00:09 Bin 3 ray tracing: 55%|████████████████▋ | ETA: 0:00:08 Bin 3 ray tracing: 62%|██████████████████▌ | ETA: 0:00:07 Bin 3 ray tracing: 68%|████████████████████▍ | ETA: 0:00:06 Bin 3 ray tracing: 74%|██████████████████████ | ETA: 0:00:05 Bin 3 ray tracing: 80%|████████████████████████ | ETA: 0:00:04 Bin 3 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 3 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██▎ | ETA: 0:00:13 Bin 4 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 4 ray tracing: 21%|██████▍ | ETA: 0:00:12 Bin 4 ray tracing: 28%|████████▌ | ETA: 0:00:11 Bin 4 ray tracing: 35%|██████████▋ | ETA: 0:00:09 Bin 4 ray tracing: 43%|████████████▉ | ETA: 0:00:08 Bin 4 ray tracing: 50%|███████████████ | ETA: 0:00:07 Bin 4 ray tracing: 57%|█████████████████▏ | ETA: 0:00:06 Bin 4 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 4 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 4 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:03 Bin 4 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 4 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 4 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██ | ETA: 0:00:15 Bin 5 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 5 ray tracing: 20%|█████▉ | ETA: 0:00:13 Bin 5 ray tracing: 26%|███████▉ | ETA: 0:00:11 Bin 5 ray tracing: 33%|█████████▉ | ETA: 0:00:10 Bin 5 ray tracing: 39%|███████████▊ | ETA: 0:00:09 Bin 5 ray tracing: 46%|█████████████▊ | ETA: 0:00:08 Bin 5 ray tracing: 53%|███████████████▊ | ETA: 0:00:07 Bin 5 ray tracing: 60%|█████████████████▉ | ETA: 0:00:06 Bin 5 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 5 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:04 Bin 5 ray tracing: 79%|███████████████████████▉ | ETA: 0:00:03 Bin 5 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 5 ray tracing: 93%|███████████████████████████▊ | ETA: 0:00:01 Bin 5 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██ | ETA: 0:00:14 Bin 6 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 6 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 6 ray tracing: 28%|████████▎ | ETA: 0:00:11 Bin 6 ray tracing: 35%|██████████▍ | ETA: 0:00:09 Bin 6 ray tracing: 42%|████████████▌ | ETA: 0:00:09 Bin 6 ray tracing: 48%|██████████████▌ | ETA: 0:00:08 Bin 6 ray tracing: 55%|████████████████▋ | ETA: 0:00:06 Bin 6 ray tracing: 62%|██████████████████▊ | ETA: 0:00:05 Bin 6 ray tracing: 69%|████████████████████▊ | ETA: 0:00:05 Bin 6 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 6 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:03 Bin 6 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 6 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██ | ETA: 0:00:14 Bin 7 ray tracing: 13%|████ | ETA: 0:00:13 Bin 7 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 7 ray tracing: 26%|███████▉ | ETA: 0:00:11 Bin 7 ray tracing: 33%|█████████▉ | ETA: 0:00:10 Bin 7 ray tracing: 39%|███████████▊ | ETA: 0:00:09 Bin 7 ray tracing: 46%|█████████████▊ | ETA: 0:00:08 Bin 7 ray tracing: 52%|███████████████▋ | ETA: 0:00:07 Bin 7 ray tracing: 59%|█████████████████▋ | ETA: 0:00:06 Bin 7 ray tracing: 65%|███████████████████▋ | ETA: 0:00:05 Bin 7 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 7 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 7 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:03 Bin 7 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 7 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 8 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 8 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 8 ray tracing: 24%|███████▏ | ETA: 0:00:13 Bin 8 ray tracing: 30%|████████▉ | ETA: 0:00:12 Bin 8 ray tracing: 35%|██████████▋ | ETA: 0:00:11 Bin 8 ray tracing: 41%|████████████▎ | ETA: 0:00:10 Bin 8 ray tracing: 46%|█████████████▉ | ETA: 0:00:09 Bin 8 ray tracing: 52%|███████████████▋ | ETA: 0:00:08 Bin 8 ray tracing: 58%|█████████████████▍ | ETA: 0:00:07 Bin 8 ray tracing: 64%|███████████████████▏ | ETA: 0:00:06 Bin 8 ray tracing: 69%|████████████████████▉ | ETA: 0:00:05 Bin 8 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:04 Bin 8 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 8 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 8 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 8 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 6%|█▋ | ETA: 0:00:17 Bin 9 ray tracing: 11%|███▍ | ETA: 0:00:16 Bin 9 ray tracing: 17%|█████▎ | ETA: 0:00:14 Bin 9 ray tracing: 23%|███████ | ETA: 0:00:13 Bin 9 ray tracing: 29%|████████▊ | ETA: 0:00:12 Bin 9 ray tracing: 35%|██████████▌ | ETA: 0:00:11 Bin 9 ray tracing: 41%|████████████▏ | ETA: 0:00:10 Bin 9 ray tracing: 46%|█████████████▉ | ETA: 0:00:09 Bin 9 ray tracing: 52%|███████████████▋ | ETA: 0:00:08 Bin 9 ray tracing: 58%|█████████████████▍ | ETA: 0:00:07 Bin 9 ray tracing: 63%|███████████████████ | ETA: 0:00:06 Bin 9 ray tracing: 69%|████████████████████▊ | ETA: 0:00:05 Bin 9 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:04 Bin 9 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:03 Bin 9 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:03 Bin 9 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 9 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 10 ray tracing: 12%|███▍ | ETA: 0:00:15 Bin 10 ray tracing: 18%|█████▏ | ETA: 0:00:14 Bin 10 ray tracing: 23%|██████▊ | ETA: 0:00:13 Bin 10 ray tracing: 29%|████████▍ | ETA: 0:00:13 Bin 10 ray tracing: 35%|██████████▏ | ETA: 0:00:11 Bin 10 ray tracing: 41%|███████████▊ | ETA: 0:00:10 Bin 10 ray tracing: 46%|█████████████▍ | ETA: 0:00:09 Bin 10 ray tracing: 52%|███████████████▏ | ETA: 0:00:08 Bin 10 ray tracing: 58%|████████████████▉ | ETA: 0:00:07 Bin 10 ray tracing: 64%|██████████████████▌ | ETA: 0:00:06 Bin 10 ray tracing: 70%|████████████████████▏ | ETA: 0:00:05 Bin 10 ray tracing: 75%|█████████████████████▊ | ETA: 0:00:04 Bin 10 ray tracing: 81%|███████████████████████▌ | ETA: 0:00:03 Bin 10 ray tracing: 86%|█████████████████████████▏ | ETA: 0:00:02 Bin 10 ray tracing: 92%|██████████████████████████▊ | ETA: 0:00:01 Bin 10 ray tracing: 98%|████████████████████████████▍| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2258573961002 K, F = -7467.619568556688, relative_change = 0.03277414260389983 Iter 2: T = 936.5228681403836 K, F = -6330.2583472221495, relative_change = 0.031743350346705036 Iter 3: T = 907.8599166522289 K, F = -5364.624318089126, relative_change = 0.030605714460629915 Iter 5: T = 856.5175329119124 K, F = -3849.1040200559555, relative_change = 0.028014237865042785 Iter 10: T = 760.8927577579717 K, F = -1667.0027522398454, relative_change = 0.02012008949328517 Iter 15: T = 704.7715239067362 K, F = -713.8654192739075, relative_change = 0.012093709314929169 Iter 20: T = 675.8491458577685 K, F = -302.6022165091363, relative_change = 0.006207483236167007 Iter 25: T = 662.3437358824316 K, F = -127.40006133247776, relative_change = 0.0028713956711796766 Iter 30: T = 656.3939587054407 K, F = -53.44195179703084, relative_change = 0.0012568641741925201 Iter 35: T = 653.8477275174113 K, F = -22.379462992979736, relative_change = 0.0005361166033765268 Iter 40: T = 652.7722967839792 K, F = -9.36458728849565, relative_change = 0.0002260976224547588 Iter 45: T = 652.3206576978525 K, F = -3.9173032088939466, relative_change = 9.489090263572725e-5 Iter 50: T = 652.1314453597478 K, F = -1.6384245416700378, relative_change = 3.974326031996152e-5 Iter 55: T = 652.0522563418953 K, F = -0.6852370018877466, relative_change = 1.6631404170917055e-5 Iter 60: T = 652.0191283635519 K, F = -0.28657924842155824, relative_change = 6.957254627782506e-6 Iter 65: T = 652.0052720649659 K, F = -0.11985173023351597, relative_change = 2.909922400876595e-6 Iter 70: T = 651.9994768836013 K, F = -0.05012357639712156, relative_change = 1.217019477253307e-6 Iter 75: T = 651.9970532150037 K, F = -0.020962304743518068, relative_change = 5.089817308330323e-7 Iter 80: T = 651.9960395983118 K, F = -0.008766690820112055, relative_change = 2.1286392640662475e-7 Iter 85: T = 651.9956156900374 K, F = -0.0036663356058327934, relative_change = 8.90225313526308e-8 Iter 90: T = 651.995438406243 K, F = -0.0015333054783013833, relative_change = 3.723033742609585e-8 Iter 95: T = 651.9953642639917 K, F = -0.0006412466868664368, relative_change = 1.5570180755674473e-8 Iter 100: T = 651.995333256808 K, F = -0.00026817702697129464, relative_change = 6.511637120976788e-9 Iter 105: T = 651.9953202892318 K, F = -0.00011215483629156697, relative_change = 2.7232446891374444e-9 Iter 110: T = 651.9953148660364 K, F = -4.690449216698811e-5, relative_change = 1.1388935018082791e-9 Iter 115: T = 651.9953125979912 K, F = -1.9616019082069336e-5, relative_change = 4.762988788873401e-10 Iter 120: T = 651.9953116494677 K, F = -8.203653641514208e-6, relative_change = 1.9919388551517672e-10 Iter 125: T = 651.9953112527836 K, F = -3.4308652393510997e-6, relative_change = 8.330524538805087e-11 Iter 130: T = 651.9953110868857 K, F = -1.4348290909849126e-6, relative_change = 3.483925520835082e-11 Iter 135: T = 651.9953110175054 K, F = -6.000634604208521e-7, relative_change = 1.4570212006957116e-11 Iter 140: T = 651.9953109884896 K, F = -2.509538047923421e-7, relative_change = 6.0934390805719934e-12 Iter 145: T = 651.9953109763547 K, F = -1.0495123559106645e-7, relative_change = 2.548333391839874e-12 Iter 150: T = 651.99531097128 K, F = -4.389252633574259e-8, relative_change = 1.0657596348227262e-12 Iter 155: T = 651.9953109691576 K, F = -1.835619622969631e-8, relative_change = 4.45708976538629e-13 Converged in 159 iterations to T = 651.9953109683914 K Iter 1: T = 970.2886799861689 K, F = -6769.752527913098, relative_change = 0.02971132001383112 Iter 2: T = 942.7405914347478 K, F = -5733.90967097017, relative_change = 0.02839164170380076 Iter 3: T = 917.3113081751194 K, F = -4854.815251053883, relative_change = 0.026973786310535153 Iter 5: T = 872.5948553589405 K, F = -3476.1698323759783, relative_change = 0.023887836559002527 Iter 10: T = 793.1579524198089 K, F = -1496.382019267209, relative_change = 0.015582121735030463 Iter 15: T = 749.8236369694354 K, F = -637.0316012596529, relative_change = 0.008544880861880851 Iter 20: T = 728.7694064436147 K, F = -268.9102391077312, relative_change = 0.004114947127448142 Iter 25: T = 719.2881813622755 K, F = -112.95451718020301, relative_change = 0.0018381130481352338 Iter 30: T = 715.1877705742342 K, F = -47.33013377464768, relative_change = 0.000791328280202569 Iter 35: T = 713.4478010725819 K, F = -19.81037489265789, relative_change = 0.00033506987949945293 Iter 40: T = 712.7156136969321 K, F = -8.287824627672403, relative_change = 0.00014086531637597777 Iter 45: T = 712.4086063604067 K, F = -3.4665748028039696, relative_change = 5.904111820816452e-5 Iter 50: T = 712.2800720320212 K, F = -1.449851920125815, relative_change = 2.4714434265636876e-5 Iter 55: T = 712.2262928728305 K, F = -0.606360955187833, relative_change = 1.0339853059337445e-5 Iter 60: T = 712.2037974857046 K, F = -0.2535901165180696, relative_change = 4.324946795120042e-6 Iter 65: T = 712.1943888937392 K, F = -0.10605489163692605, relative_change = 1.8088662934954196e-6 Iter 70: T = 712.1904539766 K, F = -0.044353505565558615, relative_change = 7.565108075712936e-7 Iter 75: T = 712.1888083242385 K, F = -0.018549180289609724, relative_change = 3.163855835685683e-7 Iter 80: T = 712.1881200887414 K, F = -0.007757491269308137, relative_change = 1.323168817418218e-7 Iter 85: T = 712.187832259733 K, F = -0.0032442759373869645, relative_change = 5.533661420281811e-8 Iter 90: T = 712.1877118860812 K, F = -0.0013567950195236822, relative_change = 2.3142452866456718e-8 Iter 95: T = 712.1876615443608 K, F = -0.000567427894610395, relative_change = 9.678453662182377e-9 Iter 100: T = 712.1876404908485 K, F = -0.00023730512504138712, relative_change = 4.0476455274542465e-9 Iter 105: T = 712.1876316860175 K, F = -9.924383802262238e-5, relative_change = 1.6927738104046118e-9 Iter 110: T = 712.1876280037319 K, F = -4.150495821642064e-5, relative_change = 7.079382397950537e-10 Iter 115: T = 712.1876264637561 K, F = -1.7357870443102108e-5, relative_change = 2.960682507018566e-10 Iter 120: T = 712.1876258197199 K, F = -7.259269336090668e-6, relative_change = 1.2381928935399372e-10 Iter 125: T = 712.1876255503762 K, F = -3.0359138465385627e-6, relative_change = 5.1782717831716715e-11 Iter 130: T = 712.1876254377335 K, F = -1.2696556938029957e-6, relative_change = 2.165615557902084e-11 Iter 135: T = 712.1876253906248 K, F = -5.309858865931716e-7, relative_change = 9.056875048938827e-12 Iter 140: T = 712.1876253709235 K, F = -2.2206408800684585e-7, relative_change = 3.787683908330293e-12 Iter 145: T = 712.1876253626842 K, F = -9.287052626927306e-8, relative_change = 1.5840661184118293e-12 Iter 150: T = 712.1876253592384 K, F = -3.8839577443106066e-8, relative_change = 6.624756115205711e-13 Iter 155: T = 712.1876253577973 K, F = -1.6243902889456763e-8, relative_change = 2.77067625569325e-13 Converged in 157 iterations to T = 712.1876253574923 K Iter 1: T = 974.3554083059811 K, F = -5843.144611786564, relative_change = 0.025644591694018892 Iter 2: T = 950.9004635247173 K, F = -4943.588470595286, relative_change = 0.024072268272254577 Iter 3: T = 929.5609197741994 K, F = -4180.715559173023, relative_change = 0.022441406402746254 Iter 5: T = 892.8766702849996 K, F = -2985.916149741693, relative_change = 0.01908810743105463 Iter 10: T = 831.0398931609747 K, F = -1276.9114416029836, relative_change = 0.01122973126103093 Iter 15: T = 799.6220147336643 K, F = -540.7153383736508, relative_change = 0.0056734890816872744 Iter 20: T = 785.0853322700826 K, F = -227.51417882055108, relative_change = 0.002600855872908531 Iter 25: T = 778.711995298024 K, F = -95.4103211791745, relative_change = 0.0011334821306156744 Iter 30: T = 775.9906057652861 K, F = -39.94903888964128, relative_change = 0.0004825451345879031 Iter 35: T = 774.8423237590358 K, F = -16.715563671142178, relative_change = 0.0002033339586825367 Iter 40: T = 774.3602921664085 K, F = -6.992126624602388, relative_change = 8.530688688506109e-5 Iter 45: T = 774.1583827332366 K, F = -2.92445010034232, relative_change = 3.572383738844167e-5 Iter 50: T = 774.0738860098047 K, F = -1.2230853496321166, relative_change = 1.4948455708225756e-5 Iter 55: T = 774.0385387021745 K, F = -0.5115168427535199, relative_change = 6.253079115490216e-6 Iter 60: T = 774.0237543265712 K, F = -0.21392384188359947, relative_change = 2.6153671792566358e-6 Iter 65: T = 774.0175710250912 K, F = -0.08946574848604927, relative_change = 1.0938223622019268e-6 Iter 70: T = 774.0149850422616 K, F = -0.03741568696347841, relative_change = 4.574573712678908e-7 Iter 75: T = 774.0139035442105 K, F = -0.015647694556031877, relative_change = 1.9131549945394224e-7 Iter 80: T = 774.0134512472097 K, F = -0.00654405403405478, relative_change = 8.001066513636875e-8 Iter 85: T = 774.0132620909225 K, F = -0.0027368017757074536, relative_change = 3.346145738881196e-8 Iter 90: T = 774.0131829834553 K, F = -0.001144563227379214, relative_change = 1.39939883986261e-8 Iter 95: T = 774.0131498997592 K, F = -0.0004786700168304403, relative_change = 5.852454338272433e-9 Iter 100: T = 774.013136063761 K, F = -0.00020018552086009667, relative_change = 2.4475665459215523e-9 Iter 105: T = 774.013130277381 K, F = -8.371997746536852e-5, relative_change = 1.023601619551328e-9 Iter 110: T = 774.0131278574477 K, F = -3.501269389205586e-5, relative_change = 4.280824217981063e-10 Iter 115: T = 774.0131268454027 K, F = -1.4642726694824582e-5, relative_change = 1.7902918191888683e-10 Iter 120: T = 774.0131264221533 K, F = -6.123761753351609e-6, relative_change = 7.487212475327839e-11 Iter 125: T = 774.0131262451454 K, F = -2.5610295669720173e-6, relative_change = 3.1312407824977934e-11 Iter 130: T = 774.0131261711185 K, F = -1.0710519220413772e-6, relative_change = 1.3095207893132527e-11 Iter 135: T = 774.0131261401598 K, F = -4.4792856057629393e-7, relative_change = 5.476595020674101e-12 Iter 140: T = 774.0131261272123 K, F = -1.8732761952744426e-7, relative_change = 2.2903596660604137e-12 Iter 145: T = 774.0131261217975 K, F = -7.834106430237853e-8, relative_change = 9.57836406254564e-13 Iter 150: T = 774.0131261195331 K, F = -3.2764228108383975e-8, relative_change = 4.005915771624716e-13 Converged in 154 iterations to T = 774.0131261187157 K Iter 1: T = 970.2861160248224 K, F = -6770.336728944846, relative_change = 0.02971388397517758 Iter 2: T = 942.7354125869111 K, F = -5734.408485521652, relative_change = 0.02839441169248512 Iter 3: T = 917.3034788610445 K, F = -4855.241258764589, relative_change = 0.02697674595258941 Iter 5: T = 872.5816973803737 K, F = -3476.4806556874746, relative_change = 0.023891094426629473 Iter 10: T = 793.1324291389238 K, F = -1496.5227531518763, relative_change = 0.015585386280167273 Iter 15: T = 749.7890769378369 K, F = -637.0941314260461, relative_change = 0.008547214617843489 Iter 20: T = 728.7296296032847 K, F = -268.9373554380349, relative_change = 0.004116239173708722 Iter 25: T = 719.2458405691069 K, F = -112.9660661126976, relative_change = 0.0018387292842321939 Iter 30: T = 715.1442753993979 K, F = -47.335003926174124, relative_change = 0.0007916013617801076 Iter 35: T = 713.4038073605983 K, F = -19.81241899925308, relative_change = 0.0003351869504992551 Iter 40: T = 712.6714086206489 K, F = -8.288680807170843, relative_change = 0.00014091479184849044 Iter 45: T = 712.3643123783843 K, F = -3.466933098158863, relative_change = 5.906190055715902e-5 Iter 50: T = 712.235740778594 K, F = -1.450001804032055, relative_change = 2.4723141705686973e-5 Iter 55: T = 712.1819460162747 K, F = -0.6064236455230105, relative_change = 1.0343497421230386e-5 Iter 60: T = 712.1594441009701 K, F = -0.2536163356072461, relative_change = 4.326471402068793e-6 Iter 65: T = 712.1500327783588 K, F = -0.1060658569910451, relative_change = 1.809503988295e-6 Iter 70: T = 712.1460967191462 K, F = -0.04435809144524405, relative_change = 7.567775141817816e-7 Iter 75: T = 712.1444505891412 K, F = -0.018551098167190805, relative_change = 3.164971261100388e-7 Iter 80: T = 712.1437621538853 K, F = -0.0077582933490685235, relative_change = 1.323635306126256e-7 Iter 85: T = 712.143474241335 K, F = -0.003244611377769213, relative_change = 5.535612341254618e-8 Iter 90: T = 712.1433538327448 K, F = -0.0013569353048041854, relative_change = 2.3150611866237145e-8 Iter 95: T = 712.1433034764128 K, F = -0.0005674865647448124, relative_change = 9.681865875386848e-9 Iter 100: T = 712.1432824167896 K, F = -0.00023732965974188058, relative_change = 4.04907252461186e-9 Iter 105: T = 712.143273609403 K, F = -9.925409766964322e-5, relative_change = 1.693370579685227e-9 Iter 110: T = 712.1432699260487 K, F = -4.1509249505633505e-5, relative_change = 7.0818782578179e-10 Iter 115: T = 712.1432683856259 K, F = -1.7359665218097398e-5, relative_change = 2.9617263236828675e-10 Iter 120: T = 712.1432677414027 K, F = -7.260019443178223e-6, relative_change = 1.2386293466941556e-10 Iter 125: T = 712.143267471981 K, F = -3.036228307440325e-6, relative_change = 5.1800983744843206e-11 Iter 130: T = 712.1432673593054 K, F = -1.2697872066036453e-6, relative_change = 2.166379462870079e-11 Iter 135: T = 712.1432673121832 K, F = -5.310404971314853e-7, relative_change = 9.060063145363712e-12 Iter 140: T = 712.143267292476 K, F = -2.2208650940491736e-7, relative_change = 3.789010085061122e-12 Iter 145: T = 712.1432672842343 K, F = -9.287890778697516e-8, relative_change = 1.584603762095556e-12 Iter 150: T = 712.1432672807875 K, F = -3.884295041167718e-8, relative_change = 6.62698203728066e-13 Iter 155: T = 712.1432672793461 K, F = -1.6245101486234148e-8, relative_change = 2.771571021333859e-13 Converged in 157 iterations to T = 712.1432672790411 K Iter 1: T = 969.3212219333917 K, F = -6990.188765528565, relative_change = 0.03067877806660828 Iter 2: T = 940.7833615000583 K, F = -5922.175098122539, relative_change = 0.029441076691184304 Iter 3: T = 914.3473409902299 K, F = -5015.651260246908, relative_change = 0.028100008558481233 Iter 5: T = 867.5949949984258 K, F = -3593.613029570799, relative_change = 0.02513965915494586 Iter 10: T = 783.3606772384368 K, F = -1549.7217149852181, relative_change = 0.01687136707056588 Iter 15: T = 736.4416986421261 K, F = -660.8201106839847, relative_change = 0.009489660361682313 Iter 20: T = 713.2821537683076 K, F = -279.25656395678186, relative_change = 0.004646670547259353 Iter 25: T = 702.7555204981564 K, F = -117.36855139812587, relative_change = 0.002093935144103407 Iter 30: T = 698.1820018752679 K, F = -49.19305909210115, relative_change = 0.0009051567096696594 Iter 35: T = 696.2372353497799 K, F = -20.5925733777884, relative_change = 0.0003839557894707327 Iter 40: T = 695.4181323060141 K, F = -8.615502629698936, relative_change = 0.00016154080114257183 Iter 45: T = 695.0745500608022 K, F = -3.603711238759776, relative_change = 6.772872572132722e-5 Iter 50: T = 694.9306798793928 K, F = -1.5072211430359514, relative_change = 2.835488147932827e-5 Iter 55: T = 694.8704801014162 K, F = -0.6303564494206506, relative_change = 1.1863591142023935e-5 Iter 60: T = 694.8452983120274 K, F = -0.2636258438138786, relative_change = 4.962412761875661e-6 Iter 65: T = 694.8347660205607 K, F = -0.11025204449636156, relative_change = 2.075500754694395e-6 Iter 70: T = 694.830361121434 K, F = -0.04610882108324843, relative_change = 8.680272724589233e-7 Iter 75: T = 694.8285189104442 K, F = -0.019283277012781097, relative_change = 3.6302428144878156e-7 Iter 80: T = 694.8277484706359 K, F = -0.00806449977565138, relative_change = 1.5182194861625423e-7 Iter 85: T = 694.8274262626026 K, F = -0.0033726706471847168, relative_change = 6.349390222017686e-8 Iter 90: T = 694.8272915111969 K, F = -0.001410491235074307, relative_change = 2.655393444052003e-8 Iter 95: T = 694.8272351565222 K, F = -0.0005898842962939188, relative_change = 1.110517711163139e-8 Iter 100: T = 694.8272115883194 K, F = -0.0002466966609905308, relative_change = 4.644318509225767e-9 Iter 105: T = 694.8272017318146 K, F = -0.00010317149032335049, relative_change = 1.9423096063450386e-9 Iter 110: T = 694.8271976097064 K, F = -4.314755072054588e-5, relative_change = 8.122971216104777e-10 Iter 115: T = 694.8271958857915 K, F = -1.8044820697449282e-5, relative_change = 3.3971235541493246e-10 Iter 120: T = 694.8271951648297 K, F = -7.546559517623841e-6, relative_change = 1.4207176478280578e-10 Iter 125: T = 694.827194863315 K, F = -3.156062256315373e-6, relative_change = 5.941612656712989e-11 Iter 130: T = 694.8271947372178 K, F = -1.3199028566779347e-6, relative_change = 2.484853240759941e-11 Iter 135: T = 694.8271946844826 K, F = -5.520003749648339e-7, relative_change = 1.0391976304831999e-11 Iter 140: T = 694.827194662428 K, F = -2.308536424244778e-7, relative_change = 4.3460578853315324e-12 Iter 145: T = 694.8271946532044 K, F = -9.654510280121542e-8, relative_change = 1.8175611220132718e-12 Iter 150: T = 694.827194649347 K, F = -4.037564405034999e-8, relative_change = 7.601131365016111e-13 Iter 155: T = 694.8271946477338 K, F = -1.688436546132266e-8, relative_change = 3.178655917607848e-13 Converged in 158 iterations to T = 694.8271946472615 K Iter 1: T = 963.538441240625 K, F = -8307.800847219989, relative_change = 0.03646155875937493 Iter 2: T = 928.9530370728579 K, F = -7049.491553150897, relative_change = 0.035894161236821966 Iter 3: T = 896.2101462343296 K, F = -5980.852900180575, relative_change = 0.035247089499488106 Iter 5: T = 836.1327522296883 K, F = -4302.650731153305, relative_change = 0.03368460827922297 Iter 10: T = 716.2434544368347 K, F = -1880.395979102, relative_change = 0.027988216869348603 Iter 15: T = 636.3779290954311 K, F = -814.3439923925515, relative_change = 0.020088187341043083 Iter 20: T = 589.5304744993069 K, F = -348.7134481971994, relative_change = 0.012066235180523693 Iter 25: T = 565.3985509076424 K, F = -147.81203486699346, relative_change = 0.0061901862676341105 Iter 30: T = 554.1334671210387 K, F = -62.22985581531986, relative_change = 0.002862544143615812 Iter 35: T = 549.1714543767006 K, F = -26.10401306050552, relative_change = 0.0012528080234188626 Iter 40: T = 547.048099782532 K, F = -10.931323437363938, relative_change = 0.0005343517173449352 Iter 45: T = 546.1513054307928 K, F = -4.574155374136907, relative_change = 0.00022534700180425586 Iter 50: T = 545.7746919650386 K, F = -1.91341473587712, relative_change = 9.457475278683645e-5 Iter 55: T = 545.6169122367594 K, F = -0.800291539558727, relative_change = 3.9610649372479293e-5 Iter 60: T = 545.5508785374028 K, F = -0.33470525164746945, relative_change = 1.657587567506039e-5 Iter 65: T = 545.5232539911854 K, F = -0.13998014348436927, relative_change = 6.934019860562223e-6 Iter 70: T = 545.5116995947817 K, F = -0.05854178931797743, relative_change = 2.900203228479701e-6 Iter 75: T = 545.5068671490826 K, F = -0.024482949169684243, relative_change = 1.2129544332215712e-6 Iter 80: T = 545.5048461172528 K, F = -0.010239074626913813, relative_change = 5.072816161260739e-7 Iter 85: T = 545.5040008896773 K, F = -0.004282105544120646, relative_change = 2.1215290676943675e-7 Iter 90: T = 545.5036474040246 K, F = -0.0017908280715377423, relative_change = 8.872517248350087e-8 Iter 95: T = 545.5034995718607 K, F = -0.0007489457557539325, relative_change = 3.710597803904655e-8 Iter 100: T = 545.5034377466418 K, F = -0.0003132180715864352, relative_change = 1.5518172134005326e-8 Iter 105: T = 545.5034118905895 K, F = -0.00013099153988266332, relative_change = 6.489886462830771e-9 Iter 110: T = 545.5034010772783 K, F = -5.478222657753773e-5, relative_change = 2.714148291867703e-9 Iter 115: T = 545.5033965550223 K, F = -2.2910581548601927e-5, relative_change = 1.135089281959642e-9 Iter 120: T = 545.5033946637607 K, F = -9.58147842258783e-6, relative_change = 4.747078819998838e-10 Iter 125: T = 545.5033938728126 K, F = -4.007089023982946e-6, relative_change = 1.9852852271799647e-10 Iter 130: T = 545.5033935420287 K, F = -1.6758128596194855e-6, relative_change = 8.302701795276016e-11 Iter 135: T = 545.5033934036909 K, F = -7.00845724455057e-7, relative_change = 3.472292880597158e-11 Iter 140: T = 545.5033933458362 K, F = -2.931018288632181e-7, relative_change = 1.4521532466463702e-11 Iter 145: T = 545.5033933216408 K, F = -1.2257847395447108e-7, relative_change = 6.073067836181913e-12 Iter 150: T = 545.5033933115219 K, F = -5.126366842134189e-8, relative_change = 2.539823884554765e-12 Iter 155: T = 545.5033933072901 K, F = -2.143938601650852e-8, relative_change = 1.062199923528288e-12 Iter 160: T = 545.5033933055204 K, F = -8.96594409827145e-9, relative_change = 4.4421165458547464e-13 Converged in 164 iterations to T = 545.5033933048816 K Iter 1: T = 966.9038557878844 K, F = -7540.987941291275, relative_change = 0.03309614421211568 Iter 2: T = 935.8655257971182 K, F = -6393.00971672198, relative_change = 0.032100740735462784 Iter 3: T = 906.8545983470799 K, F = -5418.328648828099, relative_change = 0.030999034209886495 Iter 5: T = 854.783940238079 K, F = -3888.506242610641, relative_change = 0.028476985615702728 Iter 10: T = 757.2731145178822 K, F = -1685.2577264392867, relative_change = 0.020684350464474064 Iter 15: T = 699.5242686438102 K, F = -722.2321009160385, relative_change = 0.012581771720866962 Iter 20: T = 669.523756615532 K, F = -306.3288643344265, relative_change = 0.006516632667675353 Iter 25: T = 655.4405481501631 K, F = -129.01360320877063, relative_change = 0.003030256607974363 Iter 30: T = 649.218693236211 K, F = -54.12803399087019, relative_change = 0.0013298178632800352 Iter 35: T = 646.5524978677938 K, F = -22.668510600358424, relative_change = 0.0005678911233323097 Iter 40: T = 645.4257424649575 K, F = -9.48585293438032, relative_change = 0.00023961740320350056 Iter 45: T = 644.9524311212463 K, F = -3.9680857371540004, relative_change = 0.00010058626779683029 Iter 50: T = 644.7541184276483 K, F = -1.6596743236045874, relative_change = 4.213239943850141e-5 Iter 55: T = 644.6711170709317 K, F = -0.6941260045335405, relative_change = 1.7631846383037652e-5 Iter 60: T = 644.6363935944365 K, F = -0.2902971013953993, relative_change = 7.375874943946057e-6 Iter 65: T = 644.6218698412173 K, F = -0.12140664477285151, relative_change = 3.085033518561118e-6 Iter 70: T = 644.6157954876667 K, F = -0.05077387142518869, relative_change = 1.2902598785652116e-6 Iter 75: T = 644.6132550598591 K, F = -0.021234267848476818, relative_change = 5.396129378742772e-7 Iter 80: T = 644.6121926120098 K, F = -0.008880429380073274, relative_change = 2.2567447226622987e-7 Iter 85: T = 644.611748281777 K, F = -0.0037139024914032426, relative_change = 9.438009126383253e-8 Iter 90: T = 644.6115624572428 K, F = -0.0015531985274503946, relative_change = 3.947093934310457e-8 Iter 95: T = 644.6114847431468 K, F = -0.0006495661997404922, relative_change = 1.6507228363015345e-8 Iter 100: T = 644.6114522421738 K, F = -0.0002716563471951705, relative_change = 6.903521823720094e-9 Iter 105: T = 644.611438649877 K, F = -0.0001136099293502224, relative_change = 2.887135579551181e-9 Iter 110: T = 644.6114329654158 K, F = -4.751303024380649e-5, relative_change = 1.2074346551667445e-9 Iter 115: T = 644.6114305881061 K, F = -1.987051601520795e-5, relative_change = 5.049635847464249e-10 Iter 120: T = 644.6114295938869 K, F = -8.31008696700053e-6, relative_change = 2.1118179980900386e-10 Iter 125: T = 644.6114291780925 K, F = -3.475377489625675e-6, relative_change = 8.831874785946791e-11 Iter 130: T = 644.6114290042025 K, F = -1.4534452292824795e-6, relative_change = 3.693597696382527e-11 Iter 135: T = 644.6114289314794 K, F = -6.078479055093844e-7, relative_change = 1.5447060401819773e-11 Iter 140: T = 644.6114289010659 K, F = -2.5420923122077e-7, relative_change = 6.460144576723981e-12 Iter 145: T = 644.6114288883465 K, F = -1.0631367763913602e-7, relative_change = 2.7017182845736565e-12 Iter 150: T = 644.6114288830271 K, F = -4.446038803784802e-8, relative_change = 1.1298587912040688e-12 Iter 155: T = 644.6114288808025 K, F = -1.8593671491373698e-8, relative_change = 4.725155160083273e-13 Converged in 160 iterations to T = 644.611428879872 K Iter 1: T = 965.2082977941362 K, F = -7927.322443058815, relative_change = 0.03479170220586377 Iter 2: T = 932.3925651875204 K, F = -6723.613161021243, relative_change = 0.03399860183714968 Iter 3: T = 901.5233675347844 K, F = -5701.456968852411, relative_change = 0.03310751158395143 Iter 5: T = 845.5114407663364 K, F = -4096.620179105865, relative_change = 0.031012892328408696 Iter 10: T = 737.3810157663994 K, F = -1782.5217456835808, relative_change = 0.024007251051011178 Iter 15: T = 669.8333771517212 K, F = -767.448957801963, relative_change = 0.015701783794497524 Iter 20: T = 632.9138909219013 K, F = -326.7631137257742, relative_change = 0.008630510815530424 Iter 25: T = 614.9506463770961 K, F = -137.95005429659017, relative_change = 0.004162397918140036 Iter 30: T = 606.8546708926619 K, F = -57.94826945675999, relative_change = 0.001860756501881534 Iter 35: T = 603.3519264039717 K, F = -24.282029465249668, relative_change = 0.00080136516939424 Iter 40: T = 601.8652992688887 K, F = -10.16352810832531, relative_change = 0.00033937321808842597 Iter 45: T = 601.2396702293423 K, F = -4.252010139291737, relative_change = 0.00014268404279409942 Iter 50: T = 600.9773342058916 K, F = -1.7785051742443965, relative_change = 5.9805096532541916e-5 Iter 55: T = 600.8675008092323 K, F = -0.7438383209934551, relative_change = 2.5034530576995284e-5 Iter 60: T = 600.821545906723 K, F = -0.3110901588954501, relative_change = 1.0473824816344583e-5 Iter 65: T = 600.8023232954364 K, F = -0.13010303500051393, relative_change = 4.380993529028469e-6 Iter 70: T = 600.7942835185811 K, F = -0.05441089056684306, relative_change = 1.8323088817096067e-6 Iter 75: T = 600.7909210739649 K, F = -0.022755327537517245, relative_change = 7.663153332887298e-7 Iter 80: T = 600.7895148395446 K, F = -0.00951655730436013, relative_change = 3.2048605048127104e-7 Iter 85: T = 600.7889267320309 K, F = -0.003979939239800556, relative_change = 1.3403176293738572e-7 Iter 90: T = 600.7886807778357 K, F = -0.0016644583516502998, relative_change = 5.605380097098472e-8 Iter 95: T = 600.7885779167474 K, F = -0.0006960964007802217, relative_change = 2.3442389455035318e-8 Iter 100: T = 600.7885348989932 K, F = -0.00029111583543561803, relative_change = 9.803890825428666e-9 Iter 105: T = 600.7885169084515 K, F = -0.0001217481206644555, relative_change = 4.10010486573766e-9 Iter 110: T = 600.7885093845914 K, F = -5.0916518297416946e-5, relative_change = 1.7147129312989947e-9 Iter 115: T = 600.7885062380232 K, F = -2.1293895958562903e-5, relative_change = 7.171134415564225e-10 Iter 120: T = 600.7885049220907 K, F = -8.905361447764104e-6, relative_change = 2.999054036486628e-10 Iter 125: T = 600.7885043717521 K, F = -3.724328280219069e-6, relative_change = 1.2542401424378343e-10 Iter 130: T = 600.7885041415939 K, F = -1.5575581883697787e-6, relative_change = 5.245380805916159e-11 Iter 135: T = 600.7885040453391 K, F = -6.513899593607597e-7, relative_change = 2.1936826618207122e-11 Iter 140: T = 600.7885040050841 K, F = -2.724185871882945e-7, relative_change = 9.174226944636108e-12 Iter 145: T = 600.788503988249 K, F = -1.1392909604612811e-7, relative_change = 3.8367843899778375e-12 Iter 150: T = 600.7885039812084 K, F = -4.7645871303902965e-8, relative_change = 1.6045675917756054e-12 Iter 155: T = 600.7885039782639 K, F = -1.9926114480650625e-8, relative_change = 6.710507469256741e-13 Iter 160: T = 600.7885039770324 K, F = -8.332749823480867e-9, relative_change = 2.806215932602432e-13 Converged in 162 iterations to T = 600.7885039767718 K Iter 1: T = 980.1717528731133 K, F = -4517.884969393458, relative_change = 0.019828247126886668 Iter 2: T = 962.385918753384 K, F = -3816.2372305544413, relative_change = 0.01814563015879092 Iter 3: T = 946.5213846797968 K, F = -3222.0563385453847, relative_change = 0.01648458665535868 Iter 5: T = 920.0323289990012 K, F = -2293.6774894717946, relative_change = 0.013315838945381743 Iter 10: T = 877.9865179591152 K, F = -973.713536688532, relative_change = 0.006992229609301393 Iter 15: T = 858.0878410710078 K, F = -410.30896127423244, relative_change = 0.0032779323740836797 Iter 20: T = 849.25805342777 K, F = -172.19226354372995, relative_change = 0.001444312476750581 Iter 25: T = 845.466436243729 K, F = -72.12185205040613, relative_change = 0.0006179076167058306 Iter 30: T = 843.8625975150121 K, F = -30.181651751765795, relative_change = 0.00026092646698227807 Iter 35: T = 843.1886150303168 K, F = -12.625753667210018, relative_change = 0.00010956787419347991 Iter 40: T = 842.9061762711575 K, F = -5.280842316265613, relative_change = 4.590094607561333e-5 Iter 45: T = 842.787956736346 K, F = -2.2086166509183185, relative_change = 1.9210062202935352e-5 Iter 50: T = 842.7384983505642 K, F = -0.9236882927452968, relative_change = 8.036282813432826e-6 Iter 55: T = 842.717811188971 K, F = -0.3863006998722762, relative_change = 3.3612903349546445e-6 Iter 60: T = 842.7091590331477 K, F = -0.1615561301220223, relative_change = 1.4058053876292956e-6 Iter 65: T = 842.7055405041842 K, F = -0.06756480164770018, relative_change = 5.879374803623158e-7 Iter 70: T = 842.7040271757038 K, F = -0.02825642419056984, relative_change = 2.4588472821327906e-7 Iter 75: T = 842.7033942807827 K, F = -0.01181717706509855, relative_change = 1.0283232377906015e-7 Iter 80: T = 842.7031295960651 K, F = -0.004942085100086313, relative_change = 4.3005774760536645e-8 Iter 85: T = 842.7030189016672 K, F = -0.002066839101160012, relative_change = 1.7985540645780962e-8 Iter 90: T = 842.7029726079327 K, F = -0.0008643768105915939, relative_change = 7.521769990584511e-9 Iter 95: T = 842.7029532473373 K, F = -0.0003614927097688181, relative_change = 3.1456944243176665e-9 Iter 100: T = 842.7029451505047 K, F = -0.00015118056833940408, relative_change = 1.3155670357794204e-9 Iter 105: T = 842.7029417643125 K, F = -6.322552085147315e-5, relative_change = 5.501858708243942e-10 Iter 110: T = 842.7029403481664 K, F = -2.6441668905974325e-5, relative_change = 2.3009431244797839e-10 Iter 115: T = 842.7029397559171 K, F = -1.105821971503218e-5, relative_change = 9.622817227578139e-11 Iter 120: T = 842.7029395082315 K, F = -4.624678961340223e-6, relative_change = 4.0243765805255166e-11 Iter 125: T = 842.7029394046465 K, F = -1.934097058953199e-6, relative_change = 1.683043294061275e-11 Iter 130: T = 842.702939361326 K, F = -8.088633023373148e-7, relative_change = 7.038695141189522e-12 Iter 135: T = 842.7029393432089 K, F = -3.382788698047534e-7, relative_change = 2.943688792191711e-12 Iter 140: T = 842.702939335632 K, F = -1.4147173721390516e-7, relative_change = 1.2310812304258205e-12 Iter 145: T = 842.7029393324633 K, F = -5.916612466627669e-8, relative_change = 5.148611799744845e-13 Converged in 150 iterations to T = 842.702939331138 K Iter 1: T = 976.3705316827532 K, F = -5383.99683351186, relative_change = 0.023629468317246848 Iter 2: T = 954.9040453881578 K, F = -4552.60803721976, relative_change = 0.02198600387662087 Iter 3: T = 935.5094591815349 K, F = -3847.8597070515743, relative_change = 0.02031050795134002 Iter 5: T = 902.5171402114893 K, F = -2744.9405227731627, relative_change = 0.01695645248537139 Iter 10: T = 848.1436030542591 K, F = -1170.6044441272938, relative_change = 0.009553769536717613 Iter 15: T = 821.2755339596371 K, F = -494.72385083331767, relative_change = 0.004683414896451795 Iter 20: T = 809.0554181796617 K, F = -207.93556338856177, relative_change = 0.002111784508083826 Iter 25: T = 803.7444202408639 K, F = -87.15436506987876, relative_change = 0.0009131345427658452 Iter 30: T = 801.4857300005071 K, F = -36.48375982667753, relative_change = 0.00038738878574887483 Iter 35: T = 800.5343472200974 K, F = -15.264098077333477, relative_change = 0.0001629939513490463 Iter 40: T = 800.1352679611476 K, F = -6.384709949541126, relative_change = 6.833953981918172e-5 Iter 45: T = 799.9681572995644 K, F = -2.6703515707475924, relative_change = 2.861087457974007e-5 Iter 50: T = 799.8982326462864 K, F = -1.116806111996018, relative_change = 1.1970745768755312e-5 Iter 55: T = 799.8689828474319 K, F = -0.467067461355018, relative_change = 5.0072427829806605e-6 Iter 60: T = 799.8567490995162 K, F = -0.19533420622762598, relative_change = 2.0942521228788346e-6 Iter 65: T = 799.8516326018902 K, F = -0.08169127551305788, relative_change = 8.758698290265845e-7 Iter 70: T = 799.8494927868211 K, F = -0.034164298089067735, relative_change = 3.663042215202388e-7 Iter 75: T = 799.8485978845428 K, F = -0.014287922903326145, relative_change = 1.531936743763488e-7 Iter 80: T = 799.8482236246623 K, F = -0.005975380940486552, relative_change = 6.406757704562535e-8 Iter 85: T = 799.8480671045254 K, F = -0.0024989758371032345, relative_change = 2.6793852600266025e-8 Iter 90: T = 799.8480016459024 K, F = -0.0010451015682847453, relative_change = 1.120551382227012e-8 Iter 95: T = 799.8479742703188 K, F = -0.0004370739600852991, relative_change = 4.686280499263645e-9 Iter 100: T = 799.8479628215218 K, F = -0.000182789549427409, relative_change = 1.9598585995886343e-9 Iter 105: T = 799.8479580334981 K, F = -7.644477186818932e-5, relative_change = 8.196362881736162e-10 Iter 110: T = 799.8479560310893 K, F = -3.1970116488921896e-5, relative_change = 3.4278168779133286e-10 Iter 115: T = 799.8479551936581 K, F = -1.3370284694502743e-5, relative_change = 1.4335539810331856e-10 Iter 120: T = 799.8479548434343 K, F = -5.591612404542978e-6, relative_change = 5.995293610265618e-11 Iter 125: T = 799.8479546969666 K, F = -2.3384780681867667e-6, relative_change = 2.5073022981312886e-11 Iter 130: T = 799.847954635712 K, F = -9.779802763176804e-7, relative_change = 1.0485846451122921e-11 Iter 135: T = 799.8479546100946 K, F = -4.090022538427718e-7, relative_change = 4.385297880199153e-12 Iter 140: T = 799.8479545993811 K, F = -1.7104815919211092e-7, relative_change = 1.8339682065745283e-12 Iter 145: T = 799.8479545949006 K, F = -7.15342916013384e-8, relative_change = 7.669864270964676e-13 Iter 150: T = 799.8479545930268 K, F = -2.991664038720643e-8, relative_change = 3.207644418909707e-13 Converged in 153 iterations to T = 799.8479545924782 K Iter 1: T = 980.8541311090665 K, F = -4362.404439222247, relative_change = 0.01914586889093348 Iter 2: T = 963.7194364258135 K, F = -3684.2076107499033, relative_change = 0.01746915687032754 Iter 3: T = 948.4701085320506 K, F = -3109.9995250621478, relative_change = 0.01582341013098025 Iter 5: T = 923.0894032192438 K, F = -2213.1070317279246, relative_change = 0.012709921834068893 Iter 10: T = 883.0498049094612 K, F = -938.8178894758063, relative_change = 0.00659881022182254 Iter 15: T = 864.2273402051651 K, F = -395.42959662175855, relative_change = 0.003072784687692554 Iter 20: T = 855.9054056742577 K, F = -165.91127040161348, relative_change = 0.0013494157657613721 Iter 25: T = 852.3380073344057 K, F = -69.48413331814935, relative_change = 0.0005764401442105018 Iter 30: T = 850.8301587576328 K, F = -29.07655485385983, relative_change = 0.0002432573760372572 Iter 35: T = 850.19672051705 K, F = -12.163239631146796, relative_change = 0.00010212008432358915 Iter 40: T = 849.9313087070326 K, F = -5.087351991619725, relative_change = 4.2775894393040555e-5 Iter 45: T = 849.8202225062291 K, F = -2.127685917305953, relative_change = 1.7901320747620226e-5 Iter 50: T = 849.7737495501872 K, F = -0.889840208095244, relative_change = 7.488634887958369e-6 Iter 55: T = 849.7543113133554 K, F = -0.3721446967627685, relative_change = 3.1322020198965573e-6 Iter 60: T = 849.7461815396895 K, F = -0.15563586285935904, relative_change = 1.3099882241360818e-6 Iter 65: T = 849.7427814888867 K, F = -0.06508886508483047, relative_change = 5.478639025908598e-7 Iter 70: T = 849.7413595326296 K, F = -0.027220956187328005, relative_change = 2.2912518282761028e-7 Iter 75: T = 849.7407648510215 K, F = -0.01138413166965524, relative_change = 9.582322985818113e-8 Iter 80: T = 849.7405161476304 K, F = -0.0047609802930252965, relative_change = 4.0074478929198484e-8 Iter 85: T = 849.740412136825 K, F = -0.0019910988993723233, relative_change = 1.675963614228102e-8 Iter 90: T = 849.7403686382504 K, F = -0.0008327013507276604, relative_change = 7.009081798633869e-9 Iter 95: T = 849.7403504466248 K, F = -0.00034824564886148934, relative_change = 2.931282008321706e-9 Iter 100: T = 849.7403428386693 K, F = -0.0001456404904909281, relative_change = 1.2258972051881132e-9 Iter 105: T = 849.7403396569314 K, F = -6.090859055540854e-5, relative_change = 5.126848448073219e-10 Iter 110: T = 849.7403383262905 K, F = -2.5472698105710734e-5, relative_change = 2.144109107341791e-10 Iter 115: T = 849.7403377698007 K, F = -1.0652986260462072e-5, relative_change = 8.966920126747456e-11 Iter 120: T = 849.7403375370701 K, F = -4.455206832565395e-6, relative_change = 3.750073724972277e-11 Iter 125: T = 849.7403374397394 K, F = -1.8632226830295195e-6, relative_change = 1.5683272839632866e-11 Iter 130: T = 849.7403373990344 K, F = -7.792212870505466e-7, relative_change = 6.5589261881357695e-12 Iter 135: T = 849.7403373820111 K, F = -3.258796621441462e-7, relative_change = 2.7430213803736926e-12 Iter 140: T = 849.7403373748917 K, F = -1.3628515160846177e-7, relative_change = 1.147150706628131e-12 Iter 145: T = 849.7403373719144 K, F = -5.6997675024206274e-8, relative_change = 4.797655680724202e-13 Converged in 150 iterations to T = 849.7403373706693 K Iter 1: T = 967.2859505343062 K, F = -7453.92728985313, relative_change = 0.032714049465693874 Iter 2: T = 936.6454662555867 K, F = -6318.5486274643445, relative_change = 0.031676759351042284 Iter 3: T = 908.0472834319892 K, F = -5354.604079751148, relative_change = 0.03053255885380418 Iter 5: T = 856.8401187157058 K, F = -3841.754823858756, relative_change = 0.027928519880127917 Iter 10: T = 761.5630415904392 K, F = -1663.6031555007917, relative_change = 0.02001689965071553 Iter 15: T = 705.7384319270476 K, F = -712.310970540012, relative_change = 0.012005667318055422 Iter 20: T = 677.0105212831608 K, F = -301.9113915639864, relative_change = 0.0061522973706827355 Iter 25: T = 663.6086113665925 K, F = -127.10139149477116, relative_change = 0.0028432109057374834 Iter 30: T = 657.7073890414092 K, F = -53.315053707446936, relative_change = 0.0012439598824253429 Iter 35: T = 655.1825287768969 K, F = -22.326019471690877, relative_change = 0.0005305038473696321 Iter 40: T = 654.1162340969777 K, F = -9.342169301944745, relative_change = 0.00022371084337613316 Iter 45: T = 653.6684514934395 K, F = -3.9079158230853537, relative_change = 9.388569395167993e-5 Iter 50: T = 653.4808582946657 K, F = -1.6344965294680522, relative_change = 3.932163109257401e-5 Iter 55: T = 653.4023475296098 K, F = -0.6835938929711785, relative_change = 1.6454856395293275e-5 Iter 60: T = 653.3695033991146 K, F = -0.28589201634608274, relative_change = 6.883382164870752e-6 Iter 65: T = 653.3557658431234 K, F = -0.11956431032079734, relative_change = 2.8790213915651845e-6 Iter 70: T = 653.350020327285 K, F = -0.050003371987891565, relative_change = 1.2040951404402136e-6 Iter 75: T = 653.3476174304451 K, F = -0.020912033479163594, relative_change = 5.035764149192304e-7 Iter 80: T = 653.3466125009326 K, F = -0.00874566671476762, relative_change = 2.1060332302700024e-7 Iter 85: T = 653.3461922257725 K, F = -0.0036575430648881357, relative_change = 8.807711382143262e-8 Iter 90: T = 653.3460164613952 K, F = -0.0015296283299922053, relative_change = 3.683495141252281e-8 Iter 95: T = 653.3459429545834 K, F = -0.0006397088598190104, relative_change = 1.540482542691544e-8 Iter 100: T = 653.3459122131482 K, F = -0.0002675338888036838, relative_change = 6.44248350291332e-9 Iter 105: T = 653.3458993567112 K, F = -0.00011188586764504516, relative_change = 2.694323800499636e-9 Iter 110: T = 653.3458939799956 K, F = -4.6792006943852105e-5, relative_change = 1.126798456097986e-9 Iter 115: T = 653.3458917313889 K, F = -1.956897630855936e-5, relative_change = 4.712405834542836e-10 Iter 120: T = 653.3458907909946 K, F = -8.183979691600562e-6, relative_change = 1.9707844347431e-10 Iter 125: T = 653.3458903977106 K, F = -3.422639133832117e-6, relative_change = 8.242058514579731e-11 Iter 130: T = 653.3458902332344 K, F = -1.4313885514649627e-6, relative_change = 3.446927283626561e-11 Iter 135: T = 653.3458901644485 K, F = -5.986234977162219e-7, relative_change = 1.441545460050306e-11 Iter 140: T = 653.3458901356814 K, F = -2.503508342854843e-7, relative_change = 6.028699341681734e-12 Iter 145: T = 653.3458901236506 K, F = -1.0469990641137628e-7, relative_change = 2.521278823428865e-12 Iter 150: T = 653.3458901186192 K, F = -4.3786193837380694e-8, relative_change = 1.0544154915576106e-12 Iter 155: T = 653.3458901165151 K, F = -1.8311286931194104e-8, relative_change = 4.4095416657157264e-13 Converged in 159 iterations to T = 653.3458901157555 K Iter 1: T = 973.568614060924 K, F = -6022.416428957373, relative_change = 0.026431385939076013 Iter 2: T = 949.3301837003015 K, F = -5096.359239505056, relative_change = 0.024896478800317742 Iter 3: T = 927.2168551389574 K, F = -4310.886779741349, relative_change = 0.023293611581115786 Iter 5: T = 889.0413860989913 K, F = -3080.34724662298, relative_change = 0.019962418955677373 Iter 10: T = 824.0847745355686 K, F = -1318.8284724965238, relative_change = 0.01195948672082611 Iter 15: T = 790.6825258733529 K, F = -558.9518627288306, relative_change = 0.006123468083471768 Iter 20: T = 775.1076124406229 K, F = -235.3051306044647, relative_change = 0.002828518445938317 Iter 25: T = 768.251333457368 K, F = -98.70159330817708, relative_change = 0.00123723971490573 Iter 30: T = 765.318203407496 K, F = -41.33163309004323, relative_change = 0.0005275821800496001 Iter 35: T = 764.0795547427216 K, F = -17.294885280766277, relative_change = 0.00022246866214555318 Iter 40: T = 763.5594051560281 K, F = -7.234601194468331, relative_change = 9.336258228723216e-5 Iter 45: T = 763.3414967565782 K, F = -3.0258901941478054, relative_change = 3.9102222129517904e-5 Iter 50: T = 763.2502989599923 K, F = -1.265514825338736, relative_change = 1.6362985102984293e-5 Iter 55: T = 763.2121474111384 K, F = -0.5292624094814093, relative_change = 6.844940905367e-6 Iter 60: T = 763.1961899581223 K, F = -0.22134543410154572, relative_change = 2.8629413699250453e-6 Iter 65: T = 763.1895160073789 K, F = -0.09256957922018516, relative_change = 1.1973696836982118e-6 Iter 70: T = 763.1867248196727 K, F = -0.0387137516827154, relative_change = 5.007636437064846e-7 Iter 75: T = 763.1855575008307 K, F = -0.01619056170912092, relative_change = 2.0942697016320862e-7 Iter 80: T = 763.1850693122597 K, F = -0.006771087732615366, relative_change = 8.758514576935412e-8 Iter 85: T = 763.1848651456386 K, F = -0.00283175001138658, relative_change = 3.662920393731737e-8 Iter 90: T = 763.1847797606615 K, F = -0.0011842717178190965, relative_change = 1.5318779271470644e-8 Iter 95: T = 763.1847440516343 K, F = -0.0004952765837402673, relative_change = 6.406497968907426e-9 Iter 100: T = 763.184729117691 K, F = -0.00020713058523125216, relative_change = 2.6792742495360357e-9 Iter 105: T = 763.1847228721372 K, F = -8.662448463225836e-5, relative_change = 1.12050453504246e-9 Iter 110: T = 763.1847202601718 K, F = -3.6227394060062146e-5, relative_change = 4.686083867726282e-10 Iter 115: T = 763.1847191678169 K, F = -1.5150729487101167e-5, relative_change = 1.9597763338956596e-10 Iter 120: T = 763.184718710981 K, F = -6.33621707835097e-6, relative_change = 8.196020081105624e-11 Iter 125: T = 763.1847185199267 K, F = -2.649882525407321e-6, relative_change = 3.4276746121754006e-11 Iter 130: T = 763.1847184400256 K, F = -1.1082141190277284e-6, relative_change = 1.4334965290415175e-11 Iter 135: T = 763.1847184066098 K, F = -4.634672097214576e-7, relative_change = 5.995038550687736e-12 Iter 140: T = 763.184718392635 K, F = -1.9382674898427155e-7, relative_change = 2.507186717944615e-12 Iter 145: T = 763.1847183867905 K, F = -8.105906856847866e-8, relative_change = 1.0485148265462224e-12 Iter 150: T = 763.1847183843463 K, F = -3.390025593574819e-8, relative_change = 4.385064077421173e-13 Converged in 154 iterations to T = 763.1847183834641 K Iter 1: T = 969.9731733871813 K, F = -6841.641006616671, relative_change = 0.030026826612818688 Iter 2: T = 942.1029844146663 K, F = -5795.296053197173, relative_change = 0.02873294822700229 Iter 3: T = 916.3468503762444 K, F = -4907.246943443568, relative_change = 0.02733897935205489 Iter 5: T = 870.9720360808243 K, F = -3514.4348825672337, relative_change = 0.02429108833711617 Iter 10: T = 789.9998906155377 K, F = -1513.7245797713467, relative_change = 0.015989735743450858 Iter 15: T = 745.5357276728917 K, F = -644.7461962486426, relative_change = 0.0088385387603254 Iter 20: T = 723.8257548216287 K, F = -272.25872891245973, relative_change = 0.004278349626935203 Iter 25: T = 714.0212274544095 K, F = -114.38139255067345, relative_change = 0.0019162544284084602 Iter 30: T = 709.7750259780518 K, F = -47.93199465752704, relative_change = 0.000825998980587843 Iter 35: T = 707.9720498014523 K, F = -20.063017144301146, relative_change = 0.00034994136975987245 Iter 40: T = 707.213141326303 K, F = -8.393649619490894, relative_change = 0.00014715161989024768 Iter 45: T = 706.8948928793293 K, F = -3.510861518341932, relative_change = 6.168195948809787e-5 Iter 50: T = 706.7616457504878 K, F = -1.4683783198752196, relative_change = 2.5820945686895875e-5 Iter 55: T = 706.705893600788 K, F = -0.6141098216965244, relative_change = 1.0802973909834254e-5 Iter 60: T = 706.6825727280192 K, F = -0.2568309433898382, relative_change = 4.518693282823553e-6 Iter 65: T = 706.6728188455475 K, F = -0.10741027184148494, relative_change = 1.8899045542120417e-6 Iter 70: T = 706.668739512852 K, F = -0.044920346599933714, relative_change = 7.9040392920363e-7 Iter 75: T = 706.6670334622662 K, F = -0.018786240829606116, relative_change = 3.3056043348116416e-7 Iter 80: T = 706.6663199671752 K, F = -0.007856632964200583, relative_change = 1.3824503297266454e-7 Iter 85: T = 706.6660215742446 K, F = -0.003285738203648525, relative_change = 5.78158482868765e-8 Iter 90: T = 706.6658967826241 K, F = -0.0013741350385225726, relative_change = 2.417929998856877e-8 Iter 95: T = 706.6658445932549 K, F = -0.0005746796989092307, relative_change = 1.0112075839455509e-8 Iter 100: T = 706.6658227670332 K, F = -0.00024033791605215793, relative_change = 4.228991551666266e-9 Iter 105: T = 706.6658136390458 K, F = -0.0001005121850500279, relative_change = 1.7686148508712994e-9 Iter 110: T = 706.6658098216125 K, F = -4.203539623981456e-5, relative_change = 7.396558728388242e-10 Iter 115: T = 706.6658082251162 K, F = -1.7579703186942908e-5, relative_change = 3.093328957973113e-10 Iter 120: T = 706.6658075574425 K, F = -7.352041855535063e-6, relative_change = 1.2936671246618535e-10 Iter 125: T = 706.6658072782134 K, F = -3.0747130108643717e-6, relative_change = 5.410272718202503e-11 Iter 130: T = 706.6658071614363 K, F = -1.285879572598958e-6, relative_change = 2.262636919744217e-11 Iter 135: T = 706.6658071125988 K, F = -5.377708840459405e-7, relative_change = 9.462629961116052e-12 Iter 140: T = 706.6658070921744 K, F = -2.2490279538711633e-7, relative_change = 3.9573952279646466e-12 Iter 145: T = 706.6658070836327 K, F = -9.405626677505552e-8, relative_change = 1.655016429104457e-12 Iter 150: T = 706.6658070800605 K, F = -3.933691017365959e-8, relative_change = 6.921732580018331e-13 Iter 155: T = 706.6658070785666 K, F = -1.6451737527845012e-8, relative_change = 2.8948518615931563e-13 Converged in 157 iterations to T = 706.6658070782503 K Iter 1: T = 973.4581261278432 K, F = -6047.591209610978, relative_change = 0.026541873872156757 Iter 2: T = 949.1093511381154 K, F = -5117.817671491552, relative_change = 0.025012657798215574 Iter 3: T = 926.8867033493764 K, F = -4329.1759241913005, relative_change = 0.02341421224234166 Iter 5: T = 888.4995084229154 K, F = -3093.623760633609, relative_change = 0.020087175777644465 Iter 10: T = 823.094787164225 K, F = -1324.7343226295077, relative_change = 0.01206574369763216 Iter 15: T = 789.4033062006831 K, F = -561.5264880864722, relative_change = 0.006189983090800345 Iter 20: T = 773.675588756268 K, F = -236.40651632955377, relative_change = 0.0028624631750973684 Iter 25: T = 766.7478625050675 K, F = -99.16719289396764, relative_change = 0.0012527753309426641 Iter 30: T = 763.7833308992475 K, F = -41.52728395623554, relative_change = 0.0005343382943397705 Iter 35: T = 762.5312663078658 K, F = -17.376876449296024, relative_change = 0.00022534143544543974 Iter 40: T = 762.0054550919489 K, F = -7.268920557465351, relative_change = 9.457243342573156e-5 Iter 45: T = 761.7851699217662 K, F = -3.0402481786651214, relative_change = 3.960968090570059e-5 Iter 50: T = 761.692976547875 K, F = -1.2715204203507242, relative_change = 1.657547091770564e-5 Iter 55: T = 761.6544083592065 K, F = -0.5317741811137036, relative_change = 6.933850633035159e-6 Iter 60: T = 761.6382766138689 K, F = -0.22239591500046496, relative_change = 2.900132463717532e-6 Iter 65: T = 761.6315297634964 K, F = -0.09300890777543991, relative_change = 1.212924839982578e-6 Iter 70: T = 761.6287080868079 K, F = -0.03889748498684986, relative_change = 5.072692401273164e-7 Iter 75: T = 761.6275280168495 K, F = -0.016267401321717445, relative_change = 2.1214773102034693e-7 Iter 80: T = 761.627034495564 K, F = -0.0068032230052446074, relative_change = 8.872300796238693e-8 Iter 85: T = 761.6268280987299 K, F = -0.0028451893701314512, relative_change = 3.710507279442098e-8 Iter 90: T = 761.6267417810498 K, F = -0.0011898922186625027, relative_change = 1.5517793535475258e-8 Iter 95: T = 761.6267056819547 K, F = -0.0004976271454236736, relative_change = 6.489728163482042e-9 Iter 100: T = 761.6266905848802 K, F = -0.00020811361599126776, relative_change = 2.7140820889479253e-9 Iter 105: T = 761.626684271103 K, F = -8.70356000557404e-5, relative_change = 1.1350615932099207e-9 Iter 110: T = 761.626681630606 K, F = -3.63993253262862e-5, relative_change = 4.746962949889859e-10 Iter 115: T = 761.6266805263186 K, F = -1.5222633771849736e-5, relative_change = 1.9852367692477495e-10 Iter 120: T = 761.6266800644925 K, F = -6.366287118475533e-6, relative_change = 8.302497121783112e-11 Iter 125: T = 761.6266798713511 K, F = -2.662457651236849e-6, relative_change = 3.472203908114998e-11 Iter 130: T = 761.6266797905772 K, F = -1.1134705654169963e-6, relative_change = 1.4521158107315207e-11 Iter 135: T = 761.6266797567965 K, F = -4.656680245851419e-7, relative_change = 6.0729391705272164e-12 Iter 140: T = 761.626679742669 K, F = -1.9474591628210192e-7, relative_change = 2.539749437268913e-12 Iter 145: T = 761.6266797367607 K, F = -8.144359753270436e-8, relative_change = 1.062134369538468e-12 Iter 150: T = 761.6266797342898 K, F = -3.4060970710569904e-8, relative_change = 4.4420100226504457e-13 Converged in 154 iterations to T = 761.626679733398 K Iter 1: T = 964.2960586048318 K, F = -8135.177010105299, relative_change = 0.03570394139516811 Iter 2: T = 930.5159334875824 K, F = -6901.604711742937, relative_change = 0.035030865070757845 Iter 3: T = 898.6285884754711 K, F = -5854.021311046866, relative_change = 0.034268456739474845 Iter 5: T = 840.4191542012945 K, F = -4209.039905411408, relative_change = 0.03244998785236983 Iter 10: T = 726.0413612545555 K, F = -1835.71337971581, relative_change = 0.026081655928392206 Iter 15: T = 652.1631494543003 K, F = -792.7286372605298, relative_change = 0.01788931112830663 Iter 20: T = 610.3325394297793 K, F = -338.4730684518231, relative_change = 0.010269607845698669 Iter 25: T = 589.4149296337845 K, F = -143.165825229367, relative_change = 0.005099040782573878 Iter 30: T = 579.8323216930387 K, F = -60.20094344902743, relative_change = 0.0023151254695947705 Iter 35: T = 575.6524213942893 K, F = -25.23815434002775, relative_change = 0.0010043265248943997 Iter 40: T = 573.8718154200526 K, F = -10.565974754446648, relative_change = 0.00042668905401690955 Iter 45: T = 573.1212651070686 K, F = -4.420780153109383, relative_change = 0.0001796400098628527 Iter 50: T = 572.8063330421776 K, F = -1.8491683765616331, relative_change = 7.533840666147065e-5 Iter 55: T = 572.6744411890093 K, F = -0.7734048384066534, relative_change = 3.1544444233518855e-5 Iter 60: T = 572.6192502659395 K, F = -0.3234577386889941, relative_change = 1.3198749811266748e-5 Iter 65: T = 572.5961631294774 K, F = -0.13527574371884696, relative_change = 5.521010114547719e-6 Iter 70: T = 572.5865068275875 K, F = -0.056574255957317326, relative_change = 2.3091509926162545e-6 Iter 75: T = 572.5824682743851 K, F = -0.023660086218768694, relative_change = 9.657492666896368e-7 Iter 80: T = 572.5807792730449 K, F = -0.009894940540926822, relative_change = 4.038939539567887e-7 Iter 85: T = 572.5800729072383 K, F = -0.004138184039583603, relative_change = 1.6891433794947206e-7 Iter 90: T = 572.5797774956995 K, F = -0.00173063828906439, relative_change = 7.064217929379285e-8 Iter 95: T = 572.5796539509047 K, F = -0.000723773652939963, relative_change = 2.9543435508477288e-8 Iter 100: T = 572.5796022829679 K, F = -0.00030269079429223744, relative_change = 1.23554232261067e-8 Iter 105: T = 572.5795806748148 K, F = -0.00012658890675393275, relative_change = 5.167186545410176e-9 Iter 110: T = 572.5795716380262 K, F = -5.29409930619118e-5, relative_change = 2.1609793039504884e-9 Iter 115: T = 572.5795678587332 K, F = -2.2140555324512423e-5, relative_change = 9.037473717538098e-10 Iter 120: T = 572.5795662781877 K, F = -9.259444913811699e-6, relative_change = 3.779579595940095e-10 Iter 125: T = 572.5795656171847 K, F = -3.872410610117338e-6, relative_change = 1.5806654011960765e-10 Iter 130: T = 572.5795653407453 K, F = -1.6194882023201629e-6, relative_change = 6.610530836395777e-11 Iter 135: T = 572.5795652251351 K, F = -6.772893899054111e-7, relative_change = 2.764603283323059e-11 Iter 140: T = 572.5795651767854 K, F = -2.832502972727191e-7, relative_change = 1.156189235839889e-11 Iter 145: T = 572.5795651565651 K, F = -1.1845856656700349e-7, relative_change = 4.8353177701681646e-12 Iter 150: T = 572.5795651481087 K, F = -4.954128135503666e-8, relative_change = 2.0222078069318677e-12 Iter 155: T = 572.5795651445721 K, F = -2.07185234524232e-8, relative_change = 8.457019828487688e-13 Iter 160: T = 572.5795651430931 K, F = -8.664432560312463e-9, relative_change = 3.536703671684087e-13 Converged in 163 iterations to T = 572.57956514266 K Iter 1: T = 963.5586346406716 K, F = -8303.199761810514, relative_change = 0.036441365359328445 Iter 2: T = 928.9947455955236 K, F = -7045.549046958665, relative_change = 0.035871080183965676 Iter 3: T = 896.274776895615 K, F = -5977.470860886484, relative_change = 0.0352208329003344 Iter 5: T = 836.2476882081969 K, F = -4300.152713697877, relative_change = 0.033651202219342556 Iter 10: T = 716.5093545741474 K, F = -1879.1987376463887, relative_change = 0.027935020154394474 Iter 15: T = 636.8132601298005 K, F = -813.7597243442295, relative_change = 0.020024180587381896 Iter 20: T = 590.1132030378604 K, F = -348.43333925045897, relative_change = 0.012011653844703202 Iter 25: T = 566.0787771324478 K, F = -147.68362934830503, relative_change = 0.006155987929285138 Iter 30: T = 554.865786386358 K, F = -62.17342540621687, relative_change = 0.002845082343550468 Iter 35: T = 549.9282527190231 K, F = -26.079853395353165, relative_change = 0.0012448141269198745 Iter 40: T = 547.8156799222661 K, F = -10.921114392834447, relative_change = 0.0005308749314176912 Iter 45: T = 546.9234961424212 K, F = -4.569866853999427, relative_change = 0.0002238685598395893 Iter 50: T = 546.5488291178464 K, F = -1.911617862733555, relative_change = 9.395210253427405e-5 Iter 55: T = 546.3918666427583 K, F = -0.7995394743296071, relative_change = 3.9349483207389986e-5 Iter 60: T = 546.3261752958247 K, F = -0.33439062530708896, relative_change = 1.6466518388197847e-5 Iter 65: T = 546.2986940249167 K, F = -0.13984854484034281, relative_change = 6.8882617850242314e-6 Iter 70: T = 546.287199565365 K, F = -0.058486750017669065, relative_change = 2.881062533195054e-6 Iter 75: T = 546.2823921890188 K, F = -0.024459930521554235, relative_change = 1.2049488448229976e-6 Iter 80: T = 546.2803816420244 K, F = -0.010229447856365176, relative_change = 5.039334573351997e-7 Iter 85: T = 546.2795407994256 K, F = -0.004278079496688431, relative_change = 2.1075264471644692e-7 Iter 90: T = 546.2791891476388 K, F = -0.0017891443279186292, relative_change = 8.813956233524022e-8 Iter 95: T = 546.2790420824224 K, F = -0.0007482415937318798, relative_change = 3.6861068215707306e-8 Iter 100: T = 546.2789805779506 K, F = -0.00031292358248527496, relative_change = 1.5415747800841924e-8 Iter 105: T = 546.2789548560386 K, F = -0.00013086838150214164, relative_change = 6.447051387316916e-9 Iter 110: T = 546.2789440988264 K, F = -5.4730719783319115e-5, relative_change = 2.6962341242213314e-9 Iter 115: T = 546.2789396000317 K, F = -2.2889040411450123e-5, relative_change = 1.1275973437223012e-9 Iter 120: T = 546.278937718582 K, F = -9.572470316465687e-6, relative_change = 4.715746962155173e-10 Iter 125: T = 546.2789369317373 K, F = -4.003321801171467e-6, relative_change = 1.9721819057917723e-10 Iter 130: T = 546.2789366026694 K, F = -1.6742373758760198e-6, relative_change = 8.247902197635273e-11 Iter 135: T = 546.2789364650494 K, F = -7.001861186961555e-7, relative_change = 3.449371467443468e-11 Iter 140: T = 546.2789364074949 K, F = -2.9282635743976826e-7, relative_change = 1.4425691338406773e-11 Iter 145: T = 546.278936383425 K, F = -1.2246362318668602e-7, relative_change = 6.033003463522069e-12 Iter 150: T = 546.2789363733586 K, F = -5.121605259339468e-8, relative_change = 2.5230890175440934e-12 Iter 155: T = 546.2789363691488 K, F = -2.1419190449067926e-8, relative_change = 1.0551872206504498e-12 Iter 160: T = 546.2789363673882 K, F = -8.958099012579268e-9, relative_change = 4.413085369410599e-13 Converged in 164 iterations to T = 546.2789363667526 K Iter 1: T = 969.3428261047437 K, F = -6985.266234535142, relative_change = 0.03065717389525629 Iter 2: T = 940.8271360841417 K, F = -5917.969918524066, relative_change = 0.02941754893383891 Iter 3: T = 914.4137430285568 K, F = -5012.05766373501, relative_change = 0.02807465053093729 Iter 5: T = 867.7074194188386 K, F = -3590.9868868561193, relative_change = 0.025111203649840774 Iter 10: T = 783.5831999661664 K, F = -1548.5252948430702, relative_change = 0.016841265155959226 Iter 15: T = 736.7483006334263 K, F = -660.2844793252284, relative_change = 0.009467060645312926 Iter 20: T = 713.6389800194808 K, F = -279.0228876270369, relative_change = 0.004633745652772128 Iter 25: T = 703.137539901046 K, F = -117.26868008728242, relative_change = 0.0020876635718282814 Iter 30: T = 698.5754807044433 K, F = -49.15087197209794, relative_change = 0.0009023550414754173 Iter 35: T = 696.6356861613158 K, F = -20.574853068141117, relative_change = 0.0003827504530421921 Iter 40: T = 695.8186953379103 K, F = -8.608078000152606, relative_change = 0.00016103064369122792 Iter 45: T = 695.4760023128217 K, F = -3.600603737306365, relative_change = 6.751429579020765e-5 Iter 50: T = 695.3325050480846 K, F = -1.5059211217231891, relative_change = 2.8265015083314617e-5 Iter 55: T = 695.2724614098249 K, F = -0.6298126901642215, relative_change = 1.1825974767104418e-5 Iter 60: T = 695.2473449517231 K, F = -0.26339842410442815, relative_change = 4.946675336683332e-6 Iter 65: T = 695.2368399881448 K, F = -0.11015693256769304, relative_change = 2.0689181593146e-6 Iter 70: T = 695.2324465188407 K, F = -0.04606904373740417, relative_change = 8.652741746754628e-7 Iter 75: T = 695.2306090881095 K, F = -0.019266641581900168, relative_change = 3.6187287198784427e-7 Iter 80: T = 695.2298406474923 K, F = -0.00805754262815428, relative_change = 1.513404100021971e-7 Iter 85: T = 695.2295192755497 K, F = -0.003369761083271028, relative_change = 6.32925160773203e-8 Iter 90: T = 695.229384873808 K, F = -0.0014092744198968, relative_change = 2.6469712176174233e-8 Iter 95: T = 695.2293286653671 K, F = -0.0005893754091319536, relative_change = 1.1069954317137407e-8 Iter 100: T = 695.229305158321 K, F = -0.00024648383622172254, relative_change = 4.629587871940846e-9 Iter 105: T = 695.2292953273928 K, F = -0.00010308248446921908, relative_change = 1.93614907716808e-9 Iter 110: T = 695.2292912159811 K, F = -4.311032668657955e-5, relative_change = 8.097207009565539e-10 Iter 115: T = 695.2292894965396 K, F = -1.802925385041565e-5, relative_change = 3.386348784484738e-10 Iter 120: T = 695.2292887774486 K, F = -7.540048759357987e-6, relative_change = 1.4162114133390906e-10 Iter 125: T = 695.2292884767161 K, F = -3.1533377172765498e-6, relative_change = 5.922763919761699e-11 Iter 130: T = 695.2292883509463 K, F = -1.3187640065526196e-6, relative_change = 2.4769715722563186e-11 Iter 135: T = 695.2292882983479 K, F = -5.515236679576319e-7, relative_change = 1.035900616533213e-11 Iter 140: T = 695.2292882763505 K, F = -2.3065379139985964e-7, relative_change = 4.332260220810444e-12 Iter 145: T = 695.2292882671509 K, F = -9.646171506005885e-8, relative_change = 1.811794414806342e-12 Iter 150: T = 695.2292882633035 K, F = -4.0341135321142474e-8, relative_change = 7.577083158661592e-13 Iter 155: T = 695.2292882616946 K, F = -1.6871702146481482e-8, relative_change = 3.1689313941164425e-13 Converged in 158 iterations to T = 695.2292882612235 K Iter 1: T = 966.4676183438478 K, F = -7640.385057883926, relative_change = 0.03353238165615217 Iter 2: T = 934.973860306664 K, F = -6478.040165102593, relative_change = 0.03258645963860832 Iter 3: T = 905.4890173828413 K, F = -5491.1182060159845, relative_change = 0.03153547299616693 Iter 5: T = 852.4216040825394 K, F = -3941.9478780530644, relative_change = 0.02911328068407632 Iter 10: T = 752.2920933346884 K, F = -1710.0952555175227, relative_change = 0.021480561458912473 Iter 15: T = 692.2297698424434 K, F = -733.671733591563, relative_change = 0.013290076576114123 Iter 20: T = 660.6636692949398 K, F = -311.4486600759174, relative_change = 0.0069752220394063424 Iter 25: T = 645.7291067749061 K, F = -131.23741553599254, relative_change = 0.00326898289143571 Iter 30: T = 639.103163449839 K, F = -55.07518775880027, relative_change = 0.0014401546050624295 Iter 35: T = 636.2581240449209 K, F = -23.067857537973232, relative_change = 0.0006160872120090316 Iter 40: T = 635.054725173379 K, F = -9.65344981866069, relative_change = 0.0002601501559850415 Iter 45: T = 634.5490272992723 K, F = -4.038280578562356, relative_change = 0.00010924053218752955 Iter 50: T = 634.3371111207 K, F = -1.6890489124067454, relative_change = 4.576357486045017e-5 Iter 55: T = 634.2484102400683 K, F = -0.7064140114760786, relative_change = 1.9152528900436985e-5 Iter 60: T = 634.2113013343101 K, F = -0.295436653464395, relative_change = 8.012207156030967e-6 Iter 65: T = 634.1957796474115 K, F = -0.12355616495628119, relative_change = 3.3512190621984498e-6 Iter 70: T = 634.1892878903202 K, F = -0.05167284360414193, relative_change = 1.401593015808688e-6 Iter 75: T = 634.1865728896131 K, F = -0.02161023175309368, relative_change = 5.861757382833727e-7 Iter 80: T = 634.1854374315864 K, F = -0.009037662499537913, relative_change = 2.4514793301911914e-7 Iter 85: T = 634.1849625673269 K, F = -0.0037796593507499754, relative_change = 1.0252418483051995e-7 Iter 90: T = 634.1847639730461 K, F = -0.0015806988470025152, relative_change = 4.287690697174103e-8 Iter 95: T = 634.1846809184804 K, F = -0.0006610671650326139, relative_change = 1.7931646539834904e-8 Iter 100: T = 634.1846461840576 K, F = -0.0002764661886949238, relative_change = 7.499230835900433e-9 Iter 105: T = 634.184631657705 K, F = -0.0001156214627243135, relative_change = 3.1362682619682954e-9 Iter 110: T = 634.1846255826106 K, F = -4.835427643734569e-5, relative_change = 1.3116248995996826e-9 Iter 115: T = 634.1846230419334 K, F = -2.022233539400453e-5, relative_change = 5.485371944529094e-10 Iter 120: T = 634.184621979392 K, F = -8.457221325919306e-6, relative_change = 2.2940478464063251e-10 Iter 125: T = 634.1846215350243 K, F = -3.5369107785898635e-6, relative_change = 9.593981603338398e-11 Iter 130: T = 634.1846213491846 K, F = -1.4791781797751646e-6, relative_change = 4.012317288444384e-11 Iter 135: T = 634.1846212714642 K, F = -6.186092177395963e-7, relative_change = 1.6779969408101434e-11 Iter 140: T = 634.1846212389605 K, F = -2.5871024444956703e-7, relative_change = 7.017596673305447e-12 Iter 145: T = 634.1846212253671 K, F = -1.0819546159002158e-7, relative_change = 2.9348358933902927e-12 Iter 150: T = 634.1846212196822 K, F = -4.5248063629266255e-8, relative_change = 1.2273679440866042e-12 Iter 155: T = 634.1846212173048 K, F = -1.8923308420237817e-8, relative_change = 5.133006871139601e-13 Converged in 160 iterations to T = 634.1846212163105 K Iter 1: T = 966.5002034079694 K, F = -7632.960520027428, relative_change = 0.033499796592030597 Iter 2: T = 935.0405084613514 K, F = -6471.68808371455, relative_change = 0.03255011725366247 Iter 3: T = 905.5911643950433 K, F = -5485.679838609379, relative_change = 0.03149526015163582 Iter 5: T = 852.5986105143146 K, F = -3937.9535879733294, relative_change = 0.029065374393671017 Iter 10: T = 752.6672961951454 K, F = -1708.2356878268063, relative_change = 0.021419776781025163 Iter 15: T = 692.7823065939402 K, F = -732.8129198838958, relative_change = 0.013235173133415967 Iter 20: T = 661.3376235874216 K, F = -311.06325816266866, relative_change = 0.006939246323377576 Iter 25: T = 646.4696193415211 K, F = -131.0697079008203, relative_change = 0.0032501209038409053 Iter 30: T = 639.8754068005475 K, F = -55.003689584325976, relative_change = 0.0014314057532912087 Iter 35: T = 637.0444405336253 K, F = -23.037698321821757, relative_change = 0.0006122594830172456 Iter 40: T = 635.8470783156738 K, F = -9.640790185367315, relative_change = 0.00025851831129630883 Iter 45: T = 635.3439323148889 K, F = -4.03297788118462, relative_change = 0.00010855252962364881 Iter 50: T = 635.1330881942444 K, F = -1.6868298024825594, relative_change = 4.54748653478991e-5 Iter 55: T = 635.0448365112688 K, F = -0.7054856974338967, relative_change = 1.9031615330628134e-5 Iter 60: T = 635.0079156143905 K, F = -0.2950483766612096, relative_change = 7.961609561338392e-6 Iter 65: T = 634.9924725811466 K, F = -0.12339377512415683, relative_change = 3.3300532766092844e-6 Iter 70: T = 634.9860137225188 K, F = -0.05160492886632595, relative_change = 1.3927403100099536e-6 Iter 75: T = 634.9833124811408 K, F = -0.021581828758050092, relative_change = 5.824732697831895e-7 Iter 80: T = 634.9821827775696 K, F = -0.009025783986219338, relative_change = 2.4359948829173983e-7 Iter 85: T = 634.9817103199165 K, F = -0.0037746916075726555, relative_change = 1.0187660182994037e-7 Iter 90: T = 634.9815127321115 K, F = -0.0015786212754621554, relative_change = 4.260607914491771e-8 Iter 95: T = 634.9814300984666 K, F = -0.0006601982984759669, relative_change = 1.7818382927647955e-8 Iter 100: T = 634.9813955400782 K, F = -0.0002761028176099245, relative_change = 7.451862595977297e-9 Iter 105: T = 634.9813810873454 K, F = -0.00011546949693552744, relative_change = 3.116458303042491e-9 Iter 110: T = 634.9813750430396 K, F = -4.8290723263400004e-5, relative_change = 1.303340157258715e-9 Iter 115: T = 634.9813725152387 K, F = -2.0195757203467224e-5, relative_change = 5.450724298502666e-10 Iter 120: T = 634.9813714580822 K, F = -8.446107225557054e-6, relative_change = 2.27955811625179e-10 Iter 125: T = 634.9813710159667 K, F = -3.5322627276457297e-6, relative_change = 9.533383819549112e-11 Iter 130: T = 634.9813708310687 K, F = -1.4772351568104192e-6, relative_change = 3.986976860726284e-11 Iter 135: T = 634.9813707537422 K, F = -6.177975759857901e-7, relative_change = 1.667401855514012e-11 Iter 140: T = 634.9813707214032 K, F = -2.5836972816772885e-7, relative_change = 6.973257600963616e-12 Iter 145: T = 634.9813707078787 K, F = -1.0805307693040334e-7, relative_change = 2.916293427377457e-12 Iter 150: T = 634.9813707022226 K, F = -4.5189232300568705e-8, relative_change = 1.2196326555036723e-12 Iter 155: T = 634.9813706998572 K, F = -1.8898960563173972e-8, relative_change = 5.100726054609647e-13 Converged in 160 iterations to T = 634.981370698868 K Iter 1: T = 976.5245387561772 K, F = -5348.906175333652, relative_change = 0.023475461243822836 Iter 2: T = 955.208951925398 K, F = -4522.744501642992, relative_change = 0.021828009419947003 Iter 3: T = 935.9608680177075 K, F = -3822.452572195097, relative_change = 0.020150652764395073 Iter 5: T = 903.2434382561069 K, F = -2726.574849857661, relative_change = 0.01679961452056321 Iter 10: T = 849.4114173024685 K, F = -1162.5385448596403, relative_change = 0.009435917338096443 Iter 15: T = 822.8632233542771 K, F = -491.2477605945877, relative_change = 0.004615974732808217 Iter 20: T = 810.8027706211957 K, F = -206.4592914066554, relative_change = 0.0020790499468147914 Iter 25: T = 805.5642437668602 K, F = -86.53258660824788, relative_change = 0.0008985089986533502 Iter 30: T = 803.3369689155949 K, F = -36.2229208015009, relative_change = 0.0003810961532270086 Iter 35: T = 802.3989271428401 K, F = -15.154868609303398, relative_change = 0.00016033052542663984 Iter 40: T = 802.0054634067274 K, F = -6.339003572045195, relative_change = 6.722003237155112e-5 Iter 45: T = 801.8407075994754 K, F = -2.6512321752052586, relative_change = 2.8141692855630257e-5 Iter 50: T = 801.7717688933593 K, F = -1.1088093742546208, relative_change = 1.1774354753409853e-5 Iter 55: T = 801.7429316253725 K, F = -0.4637229939387221, relative_change = 4.925079319897185e-6 Iter 60: T = 801.7308704370919 K, F = -0.193935486185438, relative_change = 2.0598850630716726e-6 Iter 65: T = 801.7258261119666 K, F = -0.08110630991655376, relative_change = 8.614961838212584e-7 Iter 70: T = 801.7237164813489 K, F = -0.033919657762805366, relative_change = 3.6029282872256764e-7 Iter 75: T = 801.7228342027522 K, F = -0.014185611269156406, relative_change = 1.506796096486722e-7 Iter 80: T = 801.7224652222783 K, F = -0.005932592970132822, relative_change = 6.301616016598918e-8 Iter 85: T = 801.7223109100578 K, F = -0.0024810813900142392, relative_change = 2.6354136602142702e-8 Iter 90: T = 801.7222463748129 K, F = -0.0010376178980662232, relative_change = 1.1021619208865782e-8 Iter 95: T = 801.7222193853972 K, F = -0.000433944201142511, relative_change = 4.6093735645893675e-9 Iter 100: T = 801.7222080981004 K, F = -0.00018148064854672796, relative_change = 1.92769521465479e-9 Iter 105: T = 801.7222033776178 K, F = -7.58973749857006e-5, relative_change = 8.061851874454025e-10 Iter 110: T = 801.7222014034556 K, F = -3.1741189630896116e-5, relative_change = 3.371562879105788e-10 Iter 115: T = 801.7222005778375 K, F = -1.3274545872521415e-5, relative_change = 1.4100280059025227e-10 Iter 120: T = 801.7222002325541 K, F = -5.551573906137364e-6, relative_change = 5.896905834456284e-11 Iter 125: T = 801.7222000881524 K, F = -2.3217342588477408e-6, relative_change = 2.466156182062464e-11 Iter 130: T = 801.7222000277618 K, F = -9.709754118514269e-7, relative_change = 1.0313742868295621e-11 Iter 135: T = 801.7222000025057 K, F = -4.060717493370447e-7, relative_change = 4.313311705168382e-12 Iter 140: T = 801.7221999919434 K, F = -1.6982379458241326e-7, relative_change = 1.8038756998739038e-12 Iter 145: T = 801.7221999875261 K, F = -7.102042642870288e-8, relative_change = 7.543820449177942e-13 Iter 150: T = 801.7221999856787 K, F = -2.9700181425340588e-8, relative_change = 3.1547661320812123e-13 Converged in 153 iterations to T = 801.7221999851378 K Iter 1: T = 965.2247707243775 K, F = -7923.569070233535, relative_change = 0.03477522927562249 Iter 2: T = 932.4264004188525 K, F = -6720.399824022906, relative_change = 0.033980033770694335 Iter 3: T = 901.5754688215311 K, F = -5698.7035345003615, relative_change = 0.033086720392583195 Iter 5: T = 845.6027170216333 K, F = -4094.593074764616, relative_change = 0.030987423679467007 Iter 10: T = 737.5814519877725 K, F = -1781.5670456466062, relative_change = 0.023971807193921196 Iter 15: T = 670.1404488262264 K, F = -766.9991969440899, relative_change = 0.01566611421304335 Iter 20: T = 633.3005234444643 K, F = -326.5569352700932, relative_change = 0.008604914355847825 Iter 25: T = 615.3836964199506 K, F = -137.8589576397179, relative_change = 0.004148191823199919 Iter 30: T = 607.3106498982455 K, F = -57.90910710369009, relative_change = 0.001853972191555172 Iter 35: T = 603.8182523989551 K, F = -24.265444728949106, relative_change = 0.0007983569335817027 Iter 40: T = 602.3360981860882 K, F = -10.156554358055484, relative_change = 0.00033808323792228445 Iter 45: T = 601.7123663235799 K, F = -4.249086889521219, relative_change = 0.00014213882204672376 Iter 50: T = 601.4508284470285 K, F = -1.7772814469827396, relative_change = 5.957606377586981e-5 Iter 55: T = 601.3413296773928 K, F = -0.7433263349096191, relative_change = 2.4938567960224943e-5 Iter 60: T = 601.2955148659477 K, F = -0.3108760036410897, relative_change = 1.0433660840641491e-5 Iter 65: T = 601.2763508679936 K, F = -0.13001346631766855, relative_change = 4.364191002056607e-6 Iter 70: T = 601.2683356084099 K, F = -0.05437343075446066, relative_change = 1.825280906737164e-6 Iter 75: T = 601.2649834179923 K, F = -0.022739661200665007, relative_change = 7.633759827219037e-7 Iter 80: T = 601.2635814721373 K, F = -0.009510005420759582, relative_change = 3.1925674966763325e-7 Iter 85: T = 601.2629951581769 K, F = -0.0039771991582995825, relative_change = 1.3351764954737761e-7 Iter 90: T = 601.2627499540713 K, F = -0.0016633124157008905, relative_change = 5.583879171211674e-8 Iter 95: T = 601.2626474066801 K, F = -0.0006956171564367342, relative_change = 2.3352469856450362e-8 Iter 100: T = 601.262604520118 K, F = -0.00029091540911613256, relative_change = 9.766285328517074e-9 Iter 105: T = 601.2625865844421 K, F = -0.00012166429940885237, relative_change = 4.084377773866573e-9 Iter 110: T = 601.2625790835278 K, F = -5.0881462568874714e-5, relative_change = 1.7081356500725497e-9 Iter 115: T = 601.2625759465558 K, F = -2.12792352558e-5, relative_change = 7.143627445922192e-10 Iter 120: T = 601.2625746346366 K, F = -8.899230144965298e-6, relative_change = 2.9875502858696365e-10 Iter 125: T = 601.2625740859763 K, F = -3.721763834285685e-6, relative_change = 1.24942904883244e-10 Iter 130: T = 601.26257385652 K, F = -1.5564864936368217e-6, relative_change = 5.22526288445109e-11 Iter 135: T = 601.2625737605587 K, F = -6.509410425126205e-7, relative_change = 2.1852666797282394e-11 Iter 140: T = 601.2625737204264 K, F = -2.7223032761369836e-7, relative_change = 9.139012990154603e-12 Iter 145: T = 601.2625737036427 K, F = -1.13849859206816e-7, relative_change = 3.822040517958385e-12 Iter 150: T = 601.2625736966235 K, F = -4.761269994935091e-8, relative_change = 1.5984004693001323e-12 Iter 155: T = 601.2625736936881 K, F = -1.991209780394243e-8, relative_change = 6.684667433094264e-13 Iter 160: T = 601.2625736924604 K, F = -8.327429801280317e-9, relative_change = 2.795591872972664e-13 Converged in 162 iterations to T = 601.2625736922006 K Iter 1: T = 964.5725007022751 K, F = -8072.189415238537, relative_change = 0.035427499297724874 Iter 2: T = 931.0852248560261 K, F = -6847.657768035407, relative_change = 0.03471722013831825 Iter 3: T = 899.5077925041828 K, F = -5807.771154649142, relative_change = 0.03391465304019421 Iter 5: T = 841.9701611090692 K, F = -4174.938688417518, relative_change = 0.0320088916351286 Iter 10: T = 729.5285970940491 K, F = -1819.5261854281953, relative_change = 0.025429016882053675 Iter 15: T = 657.6616623080203 K, F = -784.9874540582211, relative_change = 0.017179264590229695 Iter 20: T = 617.4326755372781 K, F = -334.8601484562504, relative_change = 0.009722212747340975 Iter 25: T = 597.4983450945178 K, F = -141.54705099335325, relative_change = 0.004780231484224392 Iter 30: T = 588.4166078008237 K, F = -59.49940583204126, relative_change = 0.0021588929296435383 Iter 35: T = 584.4662604782067 K, F = -24.939897736356937, relative_change = 0.00093420671727532 Iter 40: T = 582.7855919514864 K, F = -10.440340816174778, relative_change = 0.00039645974936356224 Iter 45: T = 582.0775600935194 K, F = -4.3680774315632735, relative_change = 0.00016683418416007522 Iter 50: T = 581.7805389905076 K, F = -1.827099005828393, relative_change = 6.9953840502271e-5 Iter 55: T = 581.6561605218783 K, F = -0.7641701646516108, relative_change = 2.9287448956497314e-5 Iter 60: T = 581.6041157897951 K, F = -0.31959481189596267, relative_change = 1.2253952260353913e-5 Iter 65: T = 581.5823451293543 K, F = -0.13366006828471302, relative_change = 5.125727765358867e-6 Iter 70: T = 581.5732395162107 K, F = -0.055898534372219116, relative_change = 2.1438117692788796e-6 Iter 75: T = 581.5694312890939 K, F = -0.023377486689851124, relative_change = 8.965976315165086e-7 Iter 80: T = 581.5678386166298 K, F = -0.00977675322109206, relative_change = 3.749730751029399e-7 Iter 85: T = 581.5671725373668 K, F = -0.00408875654716917, relative_change = 1.568191342462393e-7 Iter 90: T = 581.5668939742567 K, F = -0.001709967096892251, relative_change = 6.55837950088529e-8 Iter 95: T = 581.5667774756959 K, F = -0.0007151287092252434, relative_change = 2.7427954307013482e-8 Iter 100: T = 581.5667287545818 K, F = -0.00029907537499967995, relative_change = 1.147070294589994e-8 Iter 105: T = 581.5667083788258 K, F = -0.00012507689528445942, relative_change = 4.797185828224263e-9 Iter 110: T = 581.5666998574405 K, F = -5.230865167754617e-5, relative_change = 2.006240556701542e-9 Iter 115: T = 581.5666962936953 K, F = -2.1876102767992567e-5, relative_change = 8.39033782531437e-10 Iter 120: T = 581.5666948032945 K, F = -9.148847165130203e-6, relative_change = 3.508939420256001e-10 Iter 125: T = 581.5666941799909 K, F = -3.826156483810461e-6, relative_change = 1.467480125123018e-10 Iter 130: T = 581.566693919318 K, F = -1.6001441478508127e-6, relative_change = 6.137176430837858e-11 Iter 135: T = 581.5666938103016 K, F = -6.691998289398704e-7, relative_change = 2.5666421533784773e-11 Iter 140: T = 581.5666937647096 K, F = -2.798678970794555e-7, relative_change = 1.0734024595128268e-11 Iter 145: T = 581.5666937456425 K, F = -1.1704447577809418e-7, relative_change = 4.489111809652747e-12 Iter 150: T = 581.5666937376684 K, F = -4.894987509773685e-8, relative_change = 1.877418485031553e-12 Iter 155: T = 581.5666937343335 K, F = -2.047143926597883e-8, relative_change = 7.851594803349278e-13 Iter 160: T = 581.5666937329387 K, F = -8.561318654010108e-9, relative_change = 3.283599368908194e-13 Converged in 163 iterations to T = 581.5666937325303 K Iter 1: T = 964.2561100791327 K, F = -8144.279319686739, relative_change = 0.03574388992086739 Iter 2: T = 930.4336220087791 K, F = -6909.401203528925, relative_change = 0.03507624967766898 Iter 3: T = 898.5013920861584 K, F = -5860.706163904272, relative_change = 0.034319729174962496 Iter 5: T = 840.194447590208 K, F = -4213.970312407344, relative_change = 0.03251414046957782 Iter 10: T = 725.5336377560317 K, F = -1838.0576305799214, relative_change = 0.026177791724310732 Iter 15: T = 651.3575697094456 K, F = -793.8534586674343, relative_change = 0.01799567241175402 Iter 20: T = 609.2863417262706 K, F = -339.00023678543675, relative_change = 0.010352929620722004 Iter 25: T = 588.2192853218818 K, F = -143.40282649024533, relative_change = 0.0051481114365551734 Iter 30: T = 578.5600022594564 K, F = -60.30386042497992, relative_change = 0.002339319242091085 Iter 35: T = 574.3448316030253 K, F = -25.281952443252734, relative_change = 0.0010152164828301333 Iter 40: T = 572.5488444381737 K, F = -10.58443192527856, relative_change = 0.00043138981319356615 Iter 45: T = 571.791745357764 K, F = -4.428524314922718, relative_change = 0.0001816324482713216 Iter 50: T = 571.4740537483327 K, F = -1.852411523215564, relative_change = 7.61763764548471e-5 Iter 55: T = 571.341004153682 K, F = -0.7747619420692516, relative_change = 3.189572181509998e-5 Iter 60: T = 571.2853284054237 K, F = -0.32402543249857163, relative_change = 1.3345803592671835e-5 Iter 65: T = 571.2620383964789 K, F = -0.13551318400420456, relative_change = 5.582535203254646e-6 Iter 70: T = 571.2522972311517 K, F = -0.05667356051060099, relative_change = 2.3348859711567057e-6 Iter 75: T = 571.2482231835925 K, F = -0.02370161730179776, relative_change = 9.765127208028632e-7 Iter 80: T = 571.2465193374842 K, F = -0.00991230946377955, relative_change = 4.0839549521389455e-7 Iter 85: T = 571.2458067633125 K, F = -0.004145447952531411, relative_change = 1.7079696006940734e-7 Iter 90: T = 571.245508755343 K, F = -0.0017336761487276031, relative_change = 7.142951853919755e-8 Iter 95: T = 571.2453841246867 K, F = -0.0007250441238502159, relative_change = 2.987271095481459e-8 Iter 100: T = 571.245332002629 K, F = -0.00030322212105943214, relative_change = 1.2493130299734806e-8 Iter 105: T = 571.2453102045569 K, F = -0.00012681111350792973, relative_change = 5.224777291274862e-9 Iter 110: T = 571.2453010883419 K, F = -5.303392209249358e-5, relative_change = 2.1850644253762175e-9 Iter 115: T = 571.2452972758318 K, F = -2.2179419413737023e-5, relative_change = 9.138200601462022e-10 Iter 120: T = 571.2452956813945 K, F = -9.275697487043377e-6, relative_change = 3.821704432395996e-10 Iter 125: T = 571.2452950145819 K, F = -3.879207685852926e-6, relative_change = 1.598282534580953e-10 Iter 130: T = 571.2452947357128 K, F = -1.6223309176055523e-6, relative_change = 6.684208186125904e-11 Iter 135: T = 571.2452946190864 K, F = -6.784777774049289e-7, relative_change = 2.7954140977206286e-11 Iter 140: T = 571.2452945703119 K, F = -2.837476995587451e-7, relative_change = 1.1690763445467307e-11 Iter 145: T = 571.2452945499139 K, F = -1.1866701649099198e-7, relative_change = 4.889230894096404e-12 Iter 150: T = 571.2452945413831 K, F = -4.962800309593618e-8, relative_change = 2.0447363820310877e-12 Iter 155: T = 571.2452945378154 K, F = -2.0754993335092564e-8, relative_change = 8.551319282442267e-13 Iter 160: T = 571.2452945363234 K, F = -8.679752805385021e-9, relative_change = 3.5761677363175724e-13 Converged in 163 iterations to T = 571.2452945358866 K Iter 1: T = 980.118686710122 K, F = -4529.976145109974, relative_change = 0.01988131328987795 Iter 2: T = 962.2820943095678 K, F = -3826.506762169231, relative_change = 0.01819840050231541 Iter 3: T = 946.3694870165905 K, F = -3230.7742129549165, relative_change = 0.016536322755121544 Iter 5: T = 919.7935174442146 K, F = -2299.948632317231, relative_change = 0.013363532665567127 Iter 10: T = 877.589277217012 K, F = -976.4326274142992, relative_change = 0.0070235712886076735 Iter 15: T = 857.6049601301669 K, F = -411.46927450127134, relative_change = 0.0032943933119467137 Iter 20: T = 848.7345879669829 K, F = -172.68227028124446, relative_change = 0.0014519542841742621 Iter 25: T = 844.9250161063976 K, F = -72.32767231642029, relative_change = 0.0006212523212687335 Iter 30: T = 843.3134838623195 K, F = -30.26788957892705, relative_change = 0.0002623526318928306 Iter 35: T = 842.6362505348123 K, F = -12.661847957897193, relative_change = 0.00011016920374377391 Iter 40: T = 842.3524463284471 K, F = -5.295942410687344, relative_change = 4.6153292333218664e-5 Iter 45: T = 842.2336547085862 K, F = -2.214932572768914, relative_change = 1.9315747942052047e-5 Iter 50: T = 842.1839568879063 K, F = -0.9263298411104723, relative_change = 8.080508394679722e-6 Iter 55: T = 842.1631695598992 K, F = -0.3874054539667505, relative_change = 3.3797906466848447e-6 Iter 60: T = 842.1544755077072 K, F = -0.16201815620685722, relative_change = 1.4135432516788543e-6 Iter 65: T = 842.150839456206 K, F = -0.06775802730274072, relative_change = 5.911736896960747e-7 Iter 70: T = 842.1493187994205 K, F = -0.02833723361092133, relative_change = 2.472381744637018e-7 Iter 75: T = 842.1486828396847 K, F = -0.011850972551959105, relative_change = 1.0339835548664884e-7 Iter 80: T = 842.1484168732198 K, F = -0.0049562187838168015, relative_change = 4.3242496768127365e-8 Iter 85: T = 842.1483056427791 K, F = -0.0020727499789918724, relative_change = 1.808454076453003e-8 Iter 90: T = 842.1482591248648 K, F = -0.0008668488118044326, relative_change = 7.563173057822592e-9 Iter 95: T = 842.1482396705148 K, F = -0.0003625265313078607, relative_change = 3.1630096950848135e-9 Iter 100: T = 842.1482315344729 K, F = -0.00015161292651644231, relative_change = 1.3228085039754363e-9 Iter 105: T = 842.1482281318829 K, F = -6.340633870594026e-5, relative_change = 5.532143438349655e-10 Iter 110: T = 842.148226708879 K, F = -2.6517286416005703e-5, relative_change = 2.3136083272322519e-10 Iter 115: T = 842.1482261137617 K, F = -1.1089842933742489e-5, relative_change = 9.675783804954592e-11 Iter 120: T = 842.1482258648766 K, F = -4.637905006710241e-6, relative_change = 4.0465285652919903e-11 Iter 125: T = 842.14822576079 K, F = -1.9396257515680304e-6, relative_change = 1.6923052548422286e-11 Iter 130: T = 842.1482257172596 K, F = -8.111747489270016e-7, relative_change = 7.077423515503323e-12 Iter 135: T = 842.1482256990547 K, F = -3.39241432278925e-7, relative_change = 2.959849642345163e-12 Iter 140: T = 842.1482256914412 K, F = -1.4187714980629096e-7, relative_change = 1.2378648100504006e-12 Iter 145: T = 842.1482256882572 K, F = -5.9334926971743585e-8, relative_change = 5.176916663947334e-13 Converged in 150 iterations to T = 842.1482256869256 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013723645051500514 Iteration 10: d = 1.1657313203809666e-5 Iteration 20: d = 1.1407555384676895e-7 Iteration 30: d = 1.4238394454701802e-9 Iteration 40: d = 1.9087295451062804e-11 Iteration 50: d = 2.6154971056382905e-13 Iteration 60: d = 3.593488247714127e-15 Converged after 62 iterations. d = 1.5237805102455736e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.864064445856 Iteration 2: convergence error = 4818.792014126751 Iteration 3: convergence error = 1097.470564767049 Iteration 4: convergence error = 320.9705115617912 Iteration 5: convergence error = 95.25009793754703 Iteration 6: convergence error = 28.407969446455127 Iteration 7: convergence error = 8.506363372237502 Iteration 8: convergence error = 2.549582487908083 Iteration 9: convergence error = 0.7624120966668215 Iteration 10: convergence error = 0.2276830085295387 Iteration 11: convergence error = 0.06794242784917515 Iteration 12: convergence error = 0.0202658017617523 Iteration 13: convergence error = 0.006043376801017075 Iteration 14: convergence error = 0.0018019158455899742 Iteration 15: convergence error = 0.0005372226353301812 Iteration 16: convergence error = 0.00016015994378903997 Iteration 17: convergence error = 4.774653757522174e-5 Iteration 18: convergence error = 1.4233866522772587e-5 Iteration 19: convergence error = 4.243266857884009e-6 Iteration 20: convergence error = 1.2649554719246225e-6 Iteration 21: convergence error = 3.7709014577558264e-7 Iteration 22: convergence error = 1.1227393770241179e-7 Iteration 23: convergence error = 3.256218406022526e-8 Iteration 24: convergence error = 9.387804311700165e-9 Iteration 25: convergence error = 2.6959696697304025e-9 Iteration 26: convergence error = 7.785274647176266e-10 Iteration 27: convergence error = 2.219167072325945e-10 Iteration 28: convergence error = 6.298250809777528e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016144206910628938 Iteration 10: d = 1.4583752219841302e-5 Iteration 20: d = 1.501330169789038e-7 Iteration 30: d = 1.8151893330809578e-9 Iteration 40: d = 2.2721205406075927e-11 Iteration 50: d = 2.8824025629746877e-13 Iteration 60: d = 3.708065300965214e-15 Converged after 62 iterations. d = 1.5845793867628976e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12272.266379872493 Iteration 2: convergence error = 8337.313435408529 Iteration 3: convergence error = 1940.757473358776 Iteration 4: convergence error = 475.096975372197 Iteration 5: convergence error = 120.7529401825102 Iteration 6: convergence error = 32.15917688905688 Iteration 7: convergence error = 8.738970288988185 Iteration 8: convergence error = 2.388387862245281 Iteration 9: convergence error = 0.6535735632273827 Iteration 10: convergence error = 0.17887752406227264 Iteration 11: convergence error = 0.048955459998751394 Iteration 12: convergence error = 0.013397587689496504 Iteration 13: convergence error = 0.0036664017279690597 Iteration 14: convergence error = 0.00100333853470147 Iteration 15: convergence error = 0.0002745694691839162 Iteration 16: convergence error = 7.513734976782871e-5 Iteration 17: convergence error = 2.0561702740451437e-5 Iteration 18: convergence error = 5.626809752357076e-6 Iteration 19: convergence error = 1.539802951810998e-6 Iteration 20: convergence error = 4.2137367017858196e-7 Iteration 21: convergence error = 1.1618499229371082e-7 Iteration 22: convergence error = 3.1107447284739465e-8 Iteration 23: convergence error = 8.299593901028857e-9 Iteration 24: convergence error = 2.2112089936854318e-9 Iteration 25: convergence error = 5.891251930734143e-10 Iteration 26: convergence error = 1.552962203277275e-10 Iteration 27: convergence error = 4.206412995699793e-11 Iteration 28: convergence error = 1.1368683772161603e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016144206910628938 Iteration 10: d = 1.4583752219841302e-5 Iteration 20: d = 1.501330169789038e-7 Iteration 30: d = 1.8151893330809578e-9 Iteration 40: d = 2.2721205406075927e-11 Iteration 50: d = 2.8824025629746877e-13 Iteration 60: d = 3.708065300965214e-15 Converged after 62 iterations. d = 1.5845793867628976e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.32929360334 Iteration 2: convergence error = 5722.922903077086 Iteration 3: convergence error = 2017.3785437350084 Iteration 4: convergence error = 894.9766669289652 Iteration 5: convergence error = 406.9397763902971 Iteration 6: convergence error = 191.70991978260827 Iteration 7: convergence error = 90.43538384591466 Iteration 8: convergence error = 42.67873193560126 Iteration 9: convergence error = 20.14041931846714 Iteration 10: convergence error = 9.502156959925287 Iteration 11: convergence error = 4.481860701393998 Iteration 12: convergence error = 2.1134573935310073 Iteration 13: convergence error = 0.9964410861789474 Iteration 14: convergence error = 0.469736891683624 Iteration 15: convergence error = 0.2214214920577433 Iteration 16: convergence error = 0.10427035614520719 Iteration 17: convergence error = 0.048653065875441825 Iteration 18: convergence error = 0.022188243222444726 Iteration 19: convergence error = 0.010081937851282419 Iteration 20: convergence error = 0.00457129525284472 Iteration 21: convergence error = 0.002070117268431204 Iteration 22: convergence error = 0.0009367729508085176 Iteration 23: convergence error = 0.0004237277794345573 Iteration 24: convergence error = 0.00019161447562510148 Iteration 25: convergence error = 8.663689777677064e-5 Iteration 26: convergence error = 3.916851937901811e-5 Iteration 27: convergence error = 1.7707061942928704e-5 Iteration 28: convergence error = 8.00463158157072e-6 Iteration 29: convergence error = 3.6184824239171576e-6 Iteration 30: convergence error = 1.6357062122551724e-6 Iteration 31: convergence error = 7.393991836579517e-7 Iteration 32: convergence error = 3.342402123962529e-7 Iteration 33: convergence error = 1.510902620793786e-7 Iteration 34: convergence error = 6.829486665083095e-8 Iteration 35: convergence error = 3.087052391492762e-8 Iteration 36: convergence error = 1.3955741451354697e-8 Iteration 37: convergence error = 6.3105289882514626e-9 Iteration 38: convergence error = 2.8508111427072436e-9 Iteration 39: convergence error = 1.2964846973773092e-9 Iteration 40: convergence error = 5.816218617837876e-10 Iteration 41: convergence error = 2.637534635141492e-10 Iteration 42: convergence error = 1.1959855328314006e-10 Iteration 43: convergence error = 5.275069270282984e-11 Iteration 44: convergence error = 2.7284841053187847e-11 Iteration 45: convergence error = 1.1368683772161603e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▍ | ETA: 0:00:02 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016144206910628938 Iteration 10: d = 1.4583752219841302e-5 Iteration 20: d = 1.501330169789038e-7 Iteration 30: d = 1.8151893330809578e-9 Iteration 40: d = 2.2721205406075927e-11 Iteration 50: d = 2.8824025629746877e-13 Iteration 60: d = 3.708065300965214e-15 Converged after 62 iterations. d = 1.5845793867628976e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.871540110973 Iteration 2: convergence error = 7339.972555128557 Iteration 3: convergence error = 1732.9458398412198 Iteration 4: convergence error = 501.462105607211 Iteration 5: convergence error = 155.4731075648083 Iteration 6: convergence error = 48.23944082253547 Iteration 7: convergence error = 14.940713617341316 Iteration 8: convergence error = 4.6195355976060455 Iteration 9: convergence error = 1.4266338016095688 Iteration 10: convergence error = 0.44026274258294507 Iteration 11: convergence error = 0.13580868104099864 Iteration 12: convergence error = 0.041883021091507544 Iteration 13: convergence error = 0.012914833543618442 Iteration 14: convergence error = 0.0039820419078751 Iteration 15: convergence error = 0.0012277322612135322 Iteration 16: convergence error = 0.00037852154855499975 Iteration 17: convergence error = 0.00011670013145703706 Iteration 18: convergence error = 3.5978956475446466e-5 Iteration 19: convergence error = 1.1092357908637496e-5 Iteration 20: convergence error = 3.419772838242352e-6 Iteration 21: convergence error = 1.0543180906097405e-6 Iteration 22: convergence error = 3.248769644415006e-7 Iteration 23: convergence error = 9.890072760754265e-8 Iteration 24: convergence error = 2.9387592803686857e-8 Iteration 25: convergence error = 8.69022187544033e-9 Iteration 26: convergence error = 2.567958290455863e-9 Iteration 27: convergence error = 7.594280759803951e-10 Iteration 28: convergence error = 2.269189280923456e-10 Iteration 29: convergence error = 6.684786058031023e-11 Iteration 30: convergence error = 2.1373125491663814e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016144206910628938 Iteration 10: d = 1.4583752219841302e-5 Iteration 20: d = 1.501330169789038e-7 Iteration 30: d = 1.8151893330809578e-9 Iteration 40: d = 2.2721205406075927e-11 Iteration 50: d = 2.8824025629746877e-13 Iteration 60: d = 3.708065300965214e-15 Converged after 62 iterations. d = 1.5845793867628976e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.760899842379 Iteration 2: convergence error = 5511.274992127784 Iteration 3: convergence error = 937.1215642628993 Iteration 4: convergence error = 170.28047609055875 Iteration 5: convergence error = 30.843105995507358 Iteration 6: convergence error = 5.601644734428419 Iteration 7: convergence error = 1.0186938975023168 Iteration 8: convergence error = 0.18540602206462609 Iteration 9: convergence error = 0.033765927567856124 Iteration 10: convergence error = 0.0061571737487611244 Iteration 11: convergence error = 0.0011224358800063783 Iteration 12: convergence error = 0.00020458738572415314 Iteration 13: convergence error = 3.728754518306232e-5 Iteration 14: convergence error = 6.795640274503967e-6 Iteration 15: convergence error = 1.238492586708162e-6 Iteration 16: convergence error = 2.2571384761249647e-7 Iteration 17: convergence error = 4.1138719097943977e-8 Iteration 18: convergence error = 7.488324627047405e-9 Iteration 19: convergence error = 1.3728822523262352e-9 Iteration 20: convergence error = 2.4783730623312294e-10 Iteration 21: convergence error = 4.320099833421409e-11 Iteration 22: convergence error = 8.185452315956354e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016144206910628938 Iteration 10: d = 1.4583752219841302e-5 Iteration 20: d = 1.501330169789038e-7 Iteration 30: d = 1.8151893330809578e-9 Iteration 40: d = 2.2721205406075927e-11 Iteration 50: d = 2.8824025629746877e-13 Iteration 60: d = 3.708065300965214e-15 Converged after 62 iterations. d = 1.5845793867628976e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4914462335114 Iteration 2: convergence error = 2710.897530499351 Iteration 3: convergence error = 204.61734810418216 Iteration 4: convergence error = 19.31427270239807 Iteration 5: convergence error = 1.594436686551444 Iteration 6: convergence error = 0.12964950575136736 Iteration 7: convergence error = 0.010553653694720413 Iteration 8: convergence error = 0.0008609905617305005 Iteration 9: convergence error = 7.034536390291933e-5 Iteration 10: convergence error = 5.752201937829121e-6 Iteration 11: convergence error = 4.705718744698693e-7 Iteration 12: convergence error = 3.850526192948914e-8 Iteration 13: convergence error = 3.1520248554871505e-9 Iteration 14: convergence error = 2.570466464138979e-10 Iteration 15: convergence error = 2.148681232938543e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013723645051500514 Iteration 10: d = 1.1657313203809666e-5 Iteration 20: d = 1.1407555384676895e-7 Iteration 30: d = 1.4238394454701802e-9 Iteration 40: d = 1.9087295451062804e-11 Iteration 50: d = 2.6154971056382905e-13 Iteration 60: d = 3.593488247714127e-15 Converged after 62 iterations. d = 1.5237805102455736e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.389965883898 Iteration 2: convergence error = 3607.3094590470355 Iteration 3: convergence error = 593.5358267280203 Iteration 4: convergence error = 104.9476865959848 Iteration 5: convergence error = 18.675899631382208 Iteration 6: convergence error = 3.2926381735042014 Iteration 7: convergence error = 0.578297397049937 Iteration 8: convergence error = 0.10140758675788675 Iteration 9: convergence error = 0.017770770521110535 Iteration 10: convergence error = 0.0031133359000250493 Iteration 11: convergence error = 0.0005453787930491671 Iteration 12: convergence error = 9.553249947202858e-5 Iteration 13: convergence error = 1.673385872891231e-5 Iteration 14: convergence error = 2.9311406706256093e-6 Iteration 15: convergence error = 5.134261300554499e-7 Iteration 16: convergence error = 8.993151823233347e-8 Iteration 17: convergence error = 1.576609065523371e-8 Iteration 18: convergence error = 2.7391706680646166e-9 Iteration 19: convergence error = 4.861249180976301e-10 Iteration 20: convergence error = 8.321876521222293e-11 Iteration 21: convergence error = 1.4097167877480388e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 10m53.8s Testing RayTraceHeatTransfer tests passed Testing completed after 664.86s PkgEval succeeded after 792.55s