Package evaluation to test QuasiNewtonMethods on Julia 1.13.0-DEV.1319 (9cddfda8ef*) started at 2025-10-16T16:54:43.744 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 10.12s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.21.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.1 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.173 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 4.69s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 200.83s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_o7ECt0/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_o7ECt0/Manifest.toml` [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.21.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.173 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:753 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1961 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [4.3298697960381105e-14, 9.903189379656396e-14] QuasiNewtonMethods.optimum(state) .- 1 = [-6.827871601444713e-13, -1.474820265912058e-12] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [-1.9783064075795664e-12, -3.809841331303687e-12, 3.729905273530676e-12] QuasiNewtonMethods.optimum(state) .- 1 = [3.9967584797295785e-11, 7.901101994889359e-11, 2.0386359267376974e-11] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [-4.966804745265563e-12, -1.7702284083043196e-11, -9.066747352903803e-12, -3.4173330831777093e-11] QuasiNewtonMethods.optimum(state) .- 1 = [5.803135749715693e-12, -1.3378187446733136e-13, 1.2186252007495568e-11, 1.4654943925052066e-13] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [-1.134280447345759e-10, 1.3299117362919333e-10, -2.174425084433551e-10, 2.887006189666863e-10, -5.184108697875445e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-7.087330722299612e-12, 2.5606405884559535e-11, -1.460298548749961e-11, 5.151012949511369e-11, -2.901474616123778e-10] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [-1.908917468540494e-12, -7.944533919612695e-12, -5.696554339351678e-13, -3.445688179226636e-12, -1.5646151041437406e-11, -4.4353409833775004e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-3.0509483828211614e-11, -1.7179258016142285e-11, -1.3289924716275436e-11, -5.792655244363232e-11, -3.4121705461132024e-11, -1.9472534695808008e-11] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [-4.2355119411752185e-11, 9.96958071652898e-12, -3.5256797481508784e-11, -7.88611398405692e-11, 1.5539347586468466e-11, -7.347933372869875e-11, 1.4077627952246985e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-4.106492923483529e-12, 1.4719092611414908e-10, -1.9917556492998756e-10, -7.123079903692542e-12, 3.0865221489762007e-10, -4.203933867685805e-10, 8.404033025044555e-11] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-1.5261236718799864e-11, -1.0864897870277446e-10, 1.0708078868049142e-10, -6.021716458803894e-11, -2.8474556046376165e-11, -2.3013035921337632e-10, 2.096938178652863e-10, -1.2283585260064456e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-6.24167384444263e-12, 1.800781745942004e-13, -5.752065490582936e-13, -9.841460979487238e-12, -1.2407963545513212e-11, 1.070254995738651e-12, -2.8655966488599915e-12, -2.079258987208732e-11] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [-3.033195916657405e-11, -3.154598804400166e-11, 1.2899481482975261e-10, 2.3531621096140043e-11, -7.050138250974669e-11, -6.72353284159044e-11, 2.4749935434442705e-10, 4.877254156099298e-11, -2.9186875138975665e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-7.404610258276989e-11, -6.441913669164023e-11, -1.200672894441368e-11, 5.832334615263335e-11, -1.5488210713954231e-10, -1.3192358316871378e-10, -1.1074474670635936e-11, 1.148734440903354e-10, -4.816147480823929e-13] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [1.3525625064403357e-10, -5.927502932934203e-11, -2.8257285400457022e-11, 1.9279222662760276e-10, -2.5117019575304766e-11, 2.6834801047925794e-10, -1.167788088451971e-10, -5.407996273021354e-11, 3.9381942151806015e-10, -4.913891515911928e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.5975888107154788e-12, 1.5585532864292873e-11, 1.400990434774485e-10, 6.905631622089459e-11, 1.0213319079355188e-10, -6.434741628424945e-12, 2.4457103009467573e-11, 2.895204076480695e-10, 1.5701195898998321e-10, 1.9151102925718533e-10] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-1.2575318564245208e-10, -3.477873544710519e-11, 3.552713678800501e-13, -2.775624174944369e-11, -5.339151343264348e-11, -2.5354884858330706e-10, -7.549305625076386e-11, 7.65609797781508e-13, -5.514499967773645e-11, -1.1171275016153004e-10, 1.0200285061046088e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.4371238360743064e-10, 5.4536597460241865e-11, 6.373053196284673e-10, 1.3013745636669682e-10, 9.273293244405068e-11, -5.068441222277897e-10, 1.1284528866895016e-10, 1.2922340975052293e-9, 2.7698110471874315e-10, 1.869397969755937e-10, -8.954614827416663e-12] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [6.610134661855227e-11, 1.0941025863075993e-11, -5.915823386715147e-11, 1.335542787472832e-10, 3.469935450084449e-11, 3.590572283940219e-11, 1.2989431752430391e-10, 2.705102808420179e-11, -1.179552011620899e-10, 2.645581531623975e-10, 7.292966230920683e-11, 6.960410026124464e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.3270386445849454e-11, -1.5980727852138443e-10, 5.90378856912821e-11, 3.405653536958653e-11, -7.346356856174907e-11, -4.1315839638400575e-12, -5.909495115474783e-11, -3.0892743918542465e-10, 1.0302381170390618e-10, 7.603961904578682e-11, -1.3825818268031753e-10, -1.265543225770216e-12] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [6.389511142401716e-11, -2.908639995524709e-11, 6.945310992989562e-11, 1.586688558319338e-10, 2.3316237829362763e-11, 1.1079159811799855e-10, 1.227045132168314e-10, -7.11304348754993e-11, 1.3588308256373693e-10, 3.228295408774784e-10, 4.957367849556249e-11, 2.1720758525134443e-10, -1.0029754804463664e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.0482382456776804e-10, 5.653566503838192e-11, -1.1477885308863733e-10, 1.1693912504995296e-10, 1.6713008754720704e-10, -9.326206473758702e-12, -4.1570025199888505e-10, 1.0152767515592132e-10, -2.388867992308974e-10, 2.419937583653109e-10, 3.23787441303125e-10, -1.6404655411861313e-11, -5.92055293680005e-11] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [-1.4056533714779107e-11, -1.3695822254078394e-11, 2.473798943469774e-12, 3.340794307860051e-11, -4.737987779890318e-12, -5.718203688331869e-12, -1.528488446922438e-11, -2.718880676155777e-11, -2.763134165917336e-11, 6.52722320637622e-12, 6.197176105615654e-11, -1.042366193360067e-11, -9.676814904935327e-12, -3.171729545670132e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.253230935167494e-11, -1.9582668819850824e-11, -1.2653045278199215e-10, 8.578759924660062e-11, 1.132562932326664e-10, 1.93502325274153e-10, 1.4948109416934585e-10, -3.479860843924598e-11, -4.92765828141728e-11, -2.4452628810678334e-10, 1.6449086537306812e-10, 2.2305290947599588e-10, 3.657176783633531e-10, 2.8805446916635447e-10] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [-5.592259988418391e-11, -1.2246081926292618e-10, 9.559553149074418e-11, -3.213596055928747e-11, -4.0464520623118005e-11, -7.46520623096103e-11, 4.0137448920063434e-11, -1.1918122044818347e-10, -2.540163634989767e-10, 1.7659762541200053e-10, -6.278544351090432e-11, -8.611544810577243e-11, -1.5129841823835477e-10, 8.140310647775095e-11, -2.4347190930029683e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.9102941450910293e-11, 3.310507423748277e-11, 2.240296836930611e-11, -6.474376590404063e-11, -7.463296647358675e-11, -5.739975161844768e-11, -4.302758149776764e-11, 3.889311095406356e-11, 6.256373197288667e-11, 5.001243863489435e-11, -1.2784617808847543e-10, -1.4468493070296518e-10, -1.0772405190095924e-10, -8.263456585666518e-11, -4.8618886694384855e-12] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [1.2517120673294357e-10, -3.7426839405441115e-11, -8.819689423233967e-11, 4.129896424842627e-11, -3.9612757518625585e-13, -1.1906253760685104e-11, 1.296360796487761e-10, 8.425393716038343e-11, 2.4754354122080713e-10, -8.052924993506849e-11, -1.8653745215146955e-10, 8.597877965144107e-11, -1.4728218644677327e-12, -2.5697777239486186e-11, 2.7501889654502065e-10, 1.907274338464049e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-8.18789480661053e-12, -5.843991957021899e-12, -2.198730086888645e-11, 1.832645146748746e-11, -3.6895930755065365e-11, 1.4826562200198623e-10, -1.2260714665757177e-10, -2.0435431125065406e-11, -1.5333068148493112e-11, -1.1710299396838764e-11, -4.330547032083132e-11, 4.152389543321533e-11, -7.656775213860101e-11, 2.984084090940087e-10, -2.434933366046721e-10, -4.6394665886850817e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [-1.0876854972252659e-12, 3.060018904932349e-11, -3.0722646648939644e-11, 7.245537503308697e-12, 2.8699265186560297e-11, 3.914424340223377e-11, 3.068678644524425e-11, 4.419131727217973e-12, -1.7420509479393331e-12, 5.862821339519542e-11, -6.502098859328953e-11, 1.6653345369377348e-11, 5.587752482938413e-11, 7.756462139241194e-11, 5.329670038634049e-11, 9.999334693588935e-12, -1.3853362901272703e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.0097733760261463e-10, -7.422606973506163e-11, 2.1115553749950777e-11, 2.8956614883668408e-11, 1.533322357971656e-10, 2.3310908758844562e-11, -1.2784129310716708e-10, -1.3018719435820003e-10, -1.8852830407922738e-10, -1.4007262016946243e-10, 4.168931866388448e-11, 6.159450727238891e-11, 3.025788508637106e-10, 4.2261083521566434e-11, -2.664628517834444e-10, -2.705932145019574e-10, 3.312239371666692e-12] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [-1.0411671524934718e-11, 2.153233147339506e-11, 1.500910506990749e-11, 1.9966250874858815e-12, 1.0770495606493569e-11, 7.404299395830094e-12, -3.432809592140984e-11, 5.072986475340713e-11, -2.0866530725527355e-11, -2.2729262916243442e-11, 4.797073849260869e-11, 3.395195236066684e-11, 5.5846438584694624e-12, 1.964828300060617e-11, 1.291100559797087e-11, -7.192757500718017e-11, 9.171507997507433e-11, -4.462341607336384e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.344857641389808e-11, -1.7811641050968774e-11, 1.854982834004204e-11, -3.119327018907825e-11, 1.4330092668046746e-11, -1.1148970635588284e-11, -5.589972928987663e-13, 7.654987754790454e-12, -1.4104273304837989e-11, -4.1677328255218526e-11, -3.914835122742488e-11, 3.8111735989332374e-11, -6.40330011236756e-11, 2.953437494568334e-11, -1.8754775510387844e-11, -1.812217043095643e-12, 1.5136336628529534e-11, -3.0891733615590056e-11] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [5.396172397809096e-11, 5.447908790756628e-11, -8.123612893484733e-12, -7.202438645492748e-11, -3.402123027740345e-11, -1.0612177803182021e-11, -9.830725122839112e-11, 8.78994654840426e-11, -5.394851232409792e-11, 1.0911849201988844e-10, 1.1333245453215568e-10, -1.2473355681663634e-11, -1.4164469597233165e-10, -6.762079785005426e-11, -1.8383516930953192e-11, -1.8166257387264295e-10, 1.794511206298921e-10, -1.0155865037830836e-10, 3.3215652450735433e-12] QuasiNewtonMethods.optimum(state) .- 1 = [2.8558266862432902e-11, 5.771827460421264e-11, 5.0065063206261584e-11, 4.123035246550444e-11, 3.963718242516734e-11, 2.2560286971895493e-10, -1.2801737447887263e-10, -3.685207694559267e-11, -4.43294290164431e-11, 6.991696110958401e-11, 1.1013323586439583e-10, 9.743139628426434e-11, 8.167133636050039e-11, 7.970735182993849e-11, 4.4027759216191953e-10, -2.546549637827411e-10, -7.414080460677042e-11, -9.693423841383719e-11, -2.5056068331252845e-11] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [1.6831780413895103e-10, 5.657918578094723e-12, 5.8901772348463055e-12, 2.7887470110954382e-11, -6.634803817462398e-12, 5.239053635364144e-11, -3.2553204576402095e-10, 1.4910050971650435e-10, -2.3083213118724188e-10, 1.615847455838093e-10, 3.3478753103111103e-10, 1.3804068998979346e-11, 1.660493964550369e-11, 4.9782622468796944e-11, -1.8882007069009887e-11, 9.825940061602978e-11, -6.570779476078314e-10, 3.0317304222649e-10, -4.5614789723202875e-10, 3.24595905709657e-10] QuasiNewtonMethods.optimum(state) .- 1 = [4.295919175945073e-11, -1.0671796779604392e-11, -1.7393486650973955e-10, 2.8007596242218824e-11, -1.2266965221385817e-11, -1.0721779020173017e-10, -9.07762753854513e-11, 7.096145893115136e-11, 2.4235946582962242e-11, 3.786304603181634e-12, 8.559797315399464e-11, -2.8954727504526545e-11, -3.579050389390659e-10, 5.693601146106175e-11, -2.4521606967198295e-11, -2.220037487177251e-10, -1.9091006553395573e-10, 1.4316103857936469e-10, 5.5012883137806057e-11, -8.240075288767912e-12] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [-1.0075162926170833e-11, 2.146216537823875e-11, -2.6051716339736686e-11, 1.1168399538519225e-11, -6.6133765130871325e-12, -1.592348475298877e-11, 7.848166561075232e-12, -3.0855540344987276e-11, 9.341194484591142e-12, -1.7547741038015374e-11, -1.995370535468055e-11, 4.3974379693167975e-11, -5.0168313947551724e-11, 2.5152768756697697e-11, -1.3049672453746552e-11, -3.409494908623856e-11, 1.499889101808094e-11, -5.772593514308255e-11, 1.9329426947933825e-11, -3.545397309068221e-11, -4.916944629229647e-11] QuasiNewtonMethods.optimum(state) .- 1 = [8.169243059796827e-11, 2.241096197508341e-12, 8.736833478906192e-11, 2.965405698773793e-11, 1.2651746317260404e-10, 2.4597812675608566e-10, -7.322142892007832e-12, 1.046420727845998e-10, -2.0114643284330214e-10, -1.184231601669694e-10, 1.7220957992947206e-10, 2.611244553918368e-12, 1.7492718384914951e-10, 6.603473323707476e-11, 2.3126967008124666e-10, 4.924838314934732e-10, -1.2306600183364935e-11, 2.132216625483352e-10, -3.9244574256969145e-10, -2.377049668211839e-10, -1.5603629499594263e-11] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-2.1399693128643094e-10, 1.1365974827981518e-10, -1.12687303932546e-10, -2.779820817977452e-11, -2.608793181479996e-10, -1.9337276224717925e-10, 1.675688476865389e-10, 1.310465069792599e-10, -5.212597020687326e-11, -2.2627455464885315e-12, 7.63924479230127e-11, -4.254380181478723e-10, 2.1121038251692426e-10, -2.1447021936182864e-10, -5.710976136441559e-11, -4.983404799929758e-10, -3.748925614388554e-10, 3.5005687237799066e-10, 2.570315071892537e-10, -9.945488876894615e-11, 1.9946266860415562e-12, 1.5437429112807877e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-2.115461139595709e-10, -1.749758116176281e-10, -6.430380672384217e-10, 9.970246850343756e-11, 1.1046941139625233e-11, 3.427458317162291e-10, 2.447260172289134e-10, -2.411931765422537e-10, -1.0026779406757669e-10, 1.2030865192969031e-10, -5.7791882390745286e-11, -4.0205394569170494e-10, -3.658140457218906e-10, -1.2923707659595607e-9, 1.8859180883623594e-10, 2.6398216945722197e-11, 6.89043488932839e-10, 4.827214183933393e-10, -4.841481660022851e-10, -1.9904466963538425e-10, 2.3314306041299915e-10, -1.2096557089336102e-10] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [1.5297096922495257e-11, -5.1058934857906024e-11, 8.417866403931384e-11, -3.944733428795644e-11, -4.4317660652382074e-11, 2.9258817590971375e-11, -9.460510153047608e-11, 3.879785381855072e-11, -1.9356627412037142e-11, 7.228262433045529e-11, 3.2698510565865035e-11, 3.114086766231594e-11, -1.0493783619835995e-10, 1.711923935943105e-10, -8.600364864719268e-11, -8.566158893330567e-11, 6.374567540490261e-11, -1.921502956747645e-10, 7.754752395783271e-11, -3.599687214972391e-11, 1.4878742682356005e-10, 6.883071890229076e-11, -1.652677994457008e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.1427593860655634e-10, -2.5848323481625357e-11, 7.21815940352144e-11, 1.4491519095827243e-11, 2.0997825700419526e-10, -3.1541824707659316e-10, 2.893818518145963e-11, 1.6980106209985024e-10, 1.9171197962464248e-10, 7.470912777307603e-12, 1.0815992546042708e-10, -6.303193522683159e-10, -4.93852736482836e-11, 1.4408962911716117e-10, 1.919064906985568e-11, 4.0883851859518927e-10, -6.258018547811162e-10, 6.437117505697643e-11, 3.3792257880804755e-10, 3.8357894638352263e-10, 1.3906431561849786e-11, 2.233235818493995e-10, -3.951283744640932e-12] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [-1.8618384611812644e-10, -1.0238099257264821e-10, -5.509408484982714e-10, -2.4715929303198436e-10, 9.887513030548689e-11, 6.787415074427372e-11, -1.4166923190117586e-10, -6.308527034093458e-10, -9.100931119832012e-11, 8.115086380655612e-11, 2.2575274982727933e-10, -2.3059376630385486e-10, -3.778087842576383e-10, -2.1753709944505317e-10, -1.1119224430089503e-9, -4.846467671626442e-10, 1.9244983384680836e-10, 1.4238166201607783e-10, -2.858563385998991e-10, -1.268555038791419e-9, -1.91089921663945e-10, 1.537669991336088e-10, 4.498070804714871e-10, -4.81688466891228e-10] QuasiNewtonMethods.optimum(state) .- 1 = [3.278488591718087e-11, 8.805622897511967e-12, -7.493006215497644e-12, 7.068434726420492e-11, -1.7412293829011105e-11, 9.019340829752309e-11, -1.7518764217072658e-11, -6.919809170113922e-11, -1.540045868608786e-10, 5.046563167354634e-11, 8.103917537027883e-11, 2.4389157360360514e-11, 6.529776719332858e-11, 2.2919666164966657e-11, -1.4303003226245892e-11, 1.3236944873540324e-10, -3.5564440281632415e-11, 1.7712564748251225e-10, -3.13729042744626e-11, -1.427048479385462e-10, -3.1345903650503715e-10, 1.0640044401100113e-10, 1.6532841762284534e-10, 5.140621262000877e-11] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 4m10.8s Method ambiguity | 1 1 7.7s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 6.8s Compat bounds | 3 1 4 10.7s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.5s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.0s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 52.6s RNG of the outermost testset: Random.Xoshiro(0xb008a361dce36a0a, 0xedeeb06c0a3f8533, 0x2cf551993ed91af1, 0x030147d8784cd863, 0x6fa8438f7ff96b0d) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 279.62s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2674 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2523 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:548 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:525 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:172 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:161 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:160 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:160 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:159 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:309 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [14] _start() @ Base ./client.jl:577 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 515.7s: package has test failures