Package evaluation to test RayTraceHeatTransfer on Julia 1.13.0-DEV.1307 (5a5fc987d0*) started at 2025-10-14T15:43:06.840 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 10.15s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Installed RayTraceHeatTransfer ─ v0.6.1 Updating `~/.julia/environments/v1.13/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.13/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.1 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.9.9 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.46.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.67.1+0 [3f19e933] + p7zip_jll v17.6.0+0 Installation completed after 5.78s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 54.67s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_BJzXkr/Project.toml` [5c1252a2] GeometryBasics v0.5.10 [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_BJzXkr/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.1 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.46.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:19 Bin 1 progress: 42%|██████████████ | ETA: 0:00:06 Bin 1 progress: 75%|████████████████████████▋ | ETA: 0:00:02 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:06 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001247091313192149 Iteration 10: d = 1.2477143319991306e-5 Iteration 20: d = 2.0953411075655427e-7 Iteration 30: d = 3.798358455377715e-9 Iteration 40: d = 6.896923748604169e-11 Iteration 50: d = 1.251578088958736e-12 Iteration 60: d = 2.2680865628607144e-14 Converged after 66 iterations. d = 2.0411602056202866e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001250624865618794 Iteration 10: d = 9.35221677549995e-6 Iteration 20: d = 1.30591212190171e-7 Iteration 30: d = 2.2604155412572015e-9 Iteration 40: d = 4.019963474965478e-11 Iteration 50: d = 7.1766511653249e-13 Iteration 60: d = 1.2783627093063979e-14 Converged after 65 iterations. d = 1.7218634352970214e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 82%|███████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012478558560053206 Iteration 10: d = 1.1794884428094996e-5 Iteration 20: d = 1.9262427606563083e-7 Iteration 30: d = 3.4590407755635692e-9 Iteration 40: d = 6.226046659320562e-11 Iteration 50: d = 1.1171320241190285e-12 Iteration 60: d = 2.0047764720609296e-14 Converged after 66 iterations. d = 1.7743816041569062e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 64%|█████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013515333874241794 Iteration 10: d = 1.289743511174143e-5 Iteration 20: d = 2.002231556980809e-7 Iteration 30: d = 3.5395877627350976e-9 Iteration 40: d = 6.379749755192415e-11 Iteration 50: d = 1.1567824904077033e-12 Iteration 60: d = 2.1041939846056873e-14 Converged after 66 iterations. d = 1.9232900459202016e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 87%|████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001234347951930998 Iteration 10: d = 8.156389283511963e-6 Iteration 20: d = 1.0152448573999031e-7 Iteration 30: d = 1.5590861239924035e-9 Iteration 40: d = 2.4378706448254047e-11 Iteration 50: d = 3.8119058439988645e-13 Iteration 60: d = 5.946950973357726e-15 Converged after 63 iterations. d = 1.7048580465672562e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 74%|████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001292734848435661 Iteration 10: d = 1.2497556446197441e-5 Iteration 20: d = 1.5761796286530805e-7 Iteration 30: d = 2.2594488145605945e-9 Iteration 40: d = 3.37684820510962e-11 Iteration 50: d = 5.139898583760653e-13 Iteration 60: d = 7.87267089464929e-15 Converged after 64 iterations. d = 1.4605714372784308e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▏ | ETA: 0:00:02 Bin 1 progress: 71%|███████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00141848389800966 Iteration 10: d = 1.1026585252876231e-5 Iteration 20: d = 1.3281940452378847e-7 Iteration 30: d = 1.935918745416801e-9 Iteration 40: d = 2.930991628573059e-11 Iteration 50: d = 4.4950225462380305e-13 Iteration 60: d = 6.950984562402934e-15 Converged after 63 iterations. d = 2.036317516993134e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014828504046231815 Iteration 10: d = 1.2398206426675333e-5 Iteration 20: d = 1.5262756001991645e-7 Iteration 30: d = 2.2139539516754657e-9 Iteration 40: d = 3.3253115866358436e-11 Iteration 50: d = 5.061531202597174e-13 Iteration 60: d = 7.768128885678376e-15 Converged after 64 iterations. d = 1.4485359865365121e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013035769900101592 Iteration 10: d = 1.3564096534147188e-5 Iteration 20: d = 1.7165520347388024e-7 Iteration 30: d = 2.475959607328304e-9 Iteration 40: d = 3.719660752507086e-11 Iteration 50: d = 5.681756857023842e-13 Iteration 60: d = 8.721677758516434e-15 Converged after 64 iterations. d = 1.6062869358847411e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013690615982004445 Iteration 10: d = 8.732587043357952e-6 Iteration 20: d = 9.913336755314817e-8 Iteration 30: d = 1.402227157402828e-9 Iteration 40: d = 2.0912640500910607e-11 Iteration 50: d = 3.18725334916414e-13 Iteration 60: d = 4.9150056273103844e-15 Converged after 62 iterations. d = 2.1278352100965388e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003997770704517995 Iteration 10: d = 5.000560037140255e-5 Iteration 20: d = 6.699223786925638e-7 Iteration 30: d = 9.315226383600402e-9 Iteration 40: d = 1.306525317080535e-10 Iteration 50: d = 1.838398529118547e-12 Iteration 60: d = 2.5953947245722913e-14 Converged after 66 iterations. d = 2.0321110045388643e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003861631603342765 Iteration 10: d = 5.353646990922215e-5 Iteration 20: d = 7.728170452872037e-7 Iteration 30: d = 1.1717099292628471e-8 Iteration 40: d = 1.7988515102206353e-10 Iteration 50: d = 2.775738068136296e-12 Iteration 60: d = 4.2937347130449405e-14 Converged after 68 iterations. d = 1.5220734569084445e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0029478812781225266 Iteration 10: d = 2.8650205891295344e-5 Iteration 20: d = 3.87156915963245e-7 Iteration 30: d = 6.11916206566461e-9 Iteration 40: d = 1.0064236621452077e-10 Iteration 50: d = 1.680729990381764e-12 Iteration 60: d = 2.8280639301453728e-14 Converged after 67 iterations. d = 1.6464284150321547e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018704051048216172 Iteration 10: d = 1.4903293387788227e-5 Iteration 20: d = 2.0706862243407148e-7 Iteration 30: d = 3.3555607799693204e-9 Iteration 40: d = 5.6960663971198804e-11 Iteration 50: d = 9.907566827048286e-13 Iteration 60: d = 1.7454488204610353e-14 Converged after 66 iterations. d = 1.567840701573849e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 94%|██████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001234347951930998 Iteration 10: d = 8.156389283511963e-6 Iteration 20: d = 1.0152448573999031e-7 Iteration 30: d = 1.5590861239924035e-9 Iteration 40: d = 2.4378706448254047e-11 Iteration 50: d = 3.8119058439988645e-13 Iteration 60: d = 5.946950973357726e-15 Converged after 63 iterations. d = 1.7048580465672562e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014872825417515396 Iteration 10: d = 1.5072112186358065e-5 Iteration 20: d = 1.783505007302486e-7 Iteration 30: d = 2.481933423028247e-9 Iteration 40: d = 3.51749699152532e-11 Iteration 50: d = 4.978995008625179e-13 Iteration 60: d = 7.032544385986491e-15 Converged after 63 iterations. d = 1.9676475699892036e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014106857207406287 Iteration 10: d = 1.2992335119816651e-5 Iteration 20: d = 1.4854112186521628e-7 Iteration 30: d = 1.987670303535376e-9 Iteration 40: d = 2.7689736446670538e-11 Iteration 50: d = 3.912994073002484e-13 Iteration 60: d = 5.567216351891095e-15 Converged after 63 iterations. d = 1.5841894968540043e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.736000481853 Iteration 2: convergence error = 4820.15498315635 Iteration 3: convergence error = 1100.3006555564054 Iteration 4: convergence error = 320.47635326542513 Iteration 5: convergence error = 95.14711324550217 Iteration 6: convergence error = 28.573095094182918 Iteration 7: convergence error = 8.607905093344698 Iteration 8: convergence error = 2.582799425179928 Iteration 9: convergence error = 0.7731209231558296 Iteration 10: convergence error = 0.23110409158744005 Iteration 11: convergence error = 0.06902851707059199 Iteration 12: convergence error = 0.020608999748219503 Iteration 13: convergence error = 0.006151425790221765 Iteration 14: convergence error = 0.0018358286795319145 Iteration 15: convergence error = 0.0005478386415234127 Iteration 16: convergence error = 0.0001634754398764926 Iteration 17: convergence error = 4.8779852249936084e-5 Iteration 18: convergence error = 1.4555311963704298e-5 Iteration 19: convergence error = 4.34308481089829e-6 Iteration 20: convergence error = 1.2959051218786044e-6 Iteration 21: convergence error = 3.8667212720611133e-7 Iteration 22: convergence error = 1.1524525689310394e-7 Iteration 23: convergence error = 3.3485321182524785e-8 Iteration 24: convergence error = 9.662016964284703e-9 Iteration 25: convergence error = 2.7782789402408525e-9 Iteration 26: convergence error = 8.024017006391659e-10 Iteration 27: convergence error = 2.31239027925767e-10 Iteration 28: convergence error = 6.59383658785373e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 33%|███████████ | ETA: 0:00:02 Bin 1 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014872825417515396 Iteration 10: d = 1.5072112186358065e-5 Iteration 20: d = 1.783505007302486e-7 Iteration 30: d = 2.481933423028247e-9 Iteration 40: d = 3.51749699152532e-11 Iteration 50: d = 4.978995008625179e-13 Iteration 60: d = 7.032544385986491e-15 Converged after 63 iterations. d = 1.9676475699892036e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.657388121956 Iteration 2: convergence error = 4832.2725490997145 Iteration 3: convergence error = 1093.7514729812567 Iteration 4: convergence error = 315.96040643419633 Iteration 5: convergence error = 93.62110855088963 Iteration 6: convergence error = 28.29674065786412 Iteration 7: convergence error = 8.509203536596942 Iteration 8: convergence error = 2.548447686382815 Iteration 9: convergence error = 0.7614006846856682 Iteration 10: convergence error = 0.2271669147266948 Iteration 11: convergence error = 0.06772219925596801 Iteration 12: convergence error = 0.020179942908271187 Iteration 13: convergence error = 0.006011685099792885 Iteration 14: convergence error = 0.0017906385942296765 Iteration 15: convergence error = 0.0005333133558451664 Iteration 16: convergence error = 0.00015883108017078484 Iteration 17: convergence error = 4.730160821964091e-5 Iteration 18: convergence error = 1.408669913871563e-5 Iteration 19: convergence error = 4.195062047074316e-6 Iteration 20: convergence error = 1.2492962468968472e-6 Iteration 21: convergence error = 3.720340373547515e-7 Iteration 22: convergence error = 1.1064776117564179e-7 Iteration 23: convergence error = 3.205332177458331e-8 Iteration 24: convergence error = 9.22568688110914e-9 Iteration 25: convergence error = 2.6554971555015072e-9 Iteration 26: convergence error = 7.601101970067248e-10 Iteration 27: convergence error = 2.1827872842550278e-10 Iteration 28: convergence error = 6.093614501878619e-11 Iteration 29: convergence error = 2.000888343900442e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 12:28:33 Bin 1 ray tracing: 7%|██▎ | ETA: 0:01:09 Bin 1 ray tracing: 15%|████▌ | ETA: 0:00:37 Bin 1 ray tracing: 22%|██████▊ | ETA: 0:00:26 Bin 1 ray tracing: 31%|█████████▎ | ETA: 0:00:19 Bin 1 ray tracing: 40%|███████████▉ | ETA: 0:00:15 Bin 1 ray tracing: 48%|██████████████▌ | ETA: 0:00:11 Bin 1 ray tracing: 57%|█████████████████ | ETA: 0:00:09 Bin 1 ray tracing: 65%|███████████████████▌ | ETA: 0:00:07 Bin 1 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:05 Bin 1 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 1 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 1 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 2 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 2 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 2 ray tracing: 30%|████████▉ | ETA: 0:00:10 Bin 2 ray tracing: 37%|███████████▏ | ETA: 0:00:09 Bin 2 ray tracing: 45%|█████████████▌ | ETA: 0:00:08 Bin 2 ray tracing: 53%|███████████████▊ | ETA: 0:00:06 Bin 2 ray tracing: 61%|██████████████████▏ | ETA: 0:00:05 Bin 2 ray tracing: 68%|████████████████████▌ | ETA: 0:00:04 Bin 2 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 2 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 2 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 2 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 3 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 3 ray tracing: 23%|███████ | ETA: 0:00:10 Bin 3 ray tracing: 31%|█████████▍ | ETA: 0:00:09 Bin 3 ray tracing: 39%|███████████▋ | ETA: 0:00:08 Bin 3 ray tracing: 46%|█████████████▊ | ETA: 0:00:07 Bin 3 ray tracing: 54%|████████████████▎ | ETA: 0:00:06 Bin 3 ray tracing: 62%|██████████████████▋ | ETA: 0:00:05 Bin 3 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:04 Bin 3 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 3 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 3 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 4 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 4 ray tracing: 28%|████████▌ | ETA: 0:00:08 Bin 4 ray tracing: 37%|███████████▏ | ETA: 0:00:07 Bin 4 ray tracing: 45%|█████████████▋ | ETA: 0:00:06 Bin 4 ray tracing: 54%|████████████████▏ | ETA: 0:00:05 Bin 4 ray tracing: 62%|██████████████████▌ | ETA: 0:00:04 Bin 4 ray tracing: 70%|█████████████████████ | ETA: 0:00:04 Bin 4 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 4 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 4 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██▎ | ETA: 0:00:12 Bin 5 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 5 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 5 ray tracing: 33%|█████████▉ | ETA: 0:00:08 Bin 5 ray tracing: 42%|████████████▋ | ETA: 0:00:07 Bin 5 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 5 ray tracing: 59%|█████████████████▋ | ETA: 0:00:05 Bin 5 ray tracing: 67%|████████████████████ | ETA: 0:00:04 Bin 5 ray tracing: 74%|██████████████████████▍ | ETA: 0:00:03 Bin 5 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 5 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 10%|███ | ETA: 0:00:09 Bin 6 ray tracing: 20%|██████▏ | ETA: 0:00:09 Bin 6 ray tracing: 29%|████████▊ | ETA: 0:00:08 Bin 6 ray tracing: 38%|███████████▍ | ETA: 0:00:07 Bin 6 ray tracing: 46%|█████████████▉ | ETA: 0:00:06 Bin 6 ray tracing: 54%|████████████████▎ | ETA: 0:00:05 Bin 6 ray tracing: 64%|███████████████████▏ | ETA: 0:00:04 Bin 6 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 6 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 7 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 7 ray tracing: 24%|███████▎ | ETA: 0:00:10 Bin 7 ray tracing: 32%|█████████▊ | ETA: 0:00:08 Bin 7 ray tracing: 41%|████████████▎ | ETA: 0:00:07 Bin 7 ray tracing: 49%|██████████████▊ | ETA: 0:00:06 Bin 7 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 7 ray tracing: 65%|███████████████████▌ | ETA: 0:00:04 Bin 7 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:03 Bin 7 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 7 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:02 Bin 7 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 8 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 8 ray tracing: 23%|██████▉ | ETA: 0:00:10 Bin 8 ray tracing: 31%|█████████▎ | ETA: 0:00:09 Bin 8 ray tracing: 38%|███████████▌ | ETA: 0:00:08 Bin 8 ray tracing: 46%|█████████████▊ | ETA: 0:00:07 Bin 8 ray tracing: 53%|███████████████▉ | ETA: 0:00:06 Bin 8 ray tracing: 61%|██████████████████▏ | ETA: 0:00:05 Bin 8 ray tracing: 68%|████████████████████▌ | ETA: 0:00:04 Bin 8 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 8 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 8 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 8 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 9 ray tracing: 16%|█████ | ETA: 0:00:10 Bin 9 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 9 ray tracing: 34%|██████████ | ETA: 0:00:08 Bin 9 ray tracing: 42%|████████████▋ | ETA: 0:00:07 Bin 9 ray tracing: 51%|███████████████▍ | ETA: 0:00:06 Bin 9 ray tracing: 60%|██████████████████ | ETA: 0:00:05 Bin 9 ray tracing: 68%|████████████████████▎ | ETA: 0:00:04 Bin 9 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 9 ray tracing: 86%|█████████████████████████▋ | ETA: 0:00:02 Bin 9 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 8%|██▍ | ETA: 0:00:11 Bin 10 ray tracing: 17%|████▊ | ETA: 0:00:10 Bin 10 ray tracing: 25%|███████▎ | ETA: 0:00:09 Bin 10 ray tracing: 34%|█████████▊ | ETA: 0:00:08 Bin 10 ray tracing: 43%|████████████▍ | ETA: 0:00:07 Bin 10 ray tracing: 52%|███████████████ | ETA: 0:00:06 Bin 10 ray tracing: 60%|█████████████████▎ | ETA: 0:00:05 Bin 10 ray tracing: 68%|███████████████████▋ | ETA: 0:00:04 Bin 10 ray tracing: 76%|█████████████████████▉ | ETA: 0:00:03 Bin 10 ray tracing: 84%|████████████████████████▎ | ETA: 0:00:02 Bin 10 ray tracing: 91%|██████████████████████████▍ | ETA: 0:00:01 Bin 10 ray tracing: 98%|████████████████████████████▌| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 20%|██████▋ | ETA: 0:00:04 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:04 Bin 1 progress: 60%|███████████████████▊ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 24%|████████▏ | ETA: 0:00:03 Bin 2 progress: 47%|███████████████▍ | ETA: 0:00:03 Bin 2 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 20%|██████▋ | ETA: 0:00:04 Bin 3 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 3 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 22%|███████▍ | ETA: 0:00:04 Bin 4 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 4 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 4 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 22%|███████▍ | ETA: 0:00:04 Bin 5 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 5 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 5 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 20%|██████▋ | ETA: 0:00:04 Bin 6 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 6 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 6 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 18%|█████▉ | ETA: 0:00:05 Bin 7 progress: 38%|████████████▌ | ETA: 0:00:03 Bin 7 progress: 58%|███████████████████▏ | ETA: 0:00:02 Bin 7 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 7 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 18%|█████▉ | ETA: 0:00:05 Bin 8 progress: 36%|███████████▊ | ETA: 0:00:04 Bin 8 progress: 56%|██████████████████▍ | ETA: 0:00:03 Bin 8 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 8 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 18%|█████▉ | ETA: 0:00:05 Bin 9 progress: 36%|███████████▊ | ETA: 0:00:04 Bin 9 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 9 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 9 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:05 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 22%|███████▏ | ETA: 0:00:04 Bin 10 progress: 42%|█████████████▌ | ETA: 0:00:03 Bin 10 progress: 64%|████████████████████▋ | ETA: 0:00:02 Bin 10 progress: 84%|███████████████████████████ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014872825417515396 Iteration 10: d = 1.5072112186358065e-5 Iteration 20: d = 1.783505007302486e-7 Iteration 30: d = 2.481933423028247e-9 Iteration 40: d = 3.51749699152532e-11 Iteration 50: d = 4.978995008625179e-13 Iteration 60: d = 7.032544385986491e-15 Converged after 63 iterations. d = 1.9676475699892036e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001433413420876485 Iteration 10: d = 1.3302002293811228e-5 Iteration 20: d = 1.5429851397633534e-7 Iteration 30: d = 2.076549035633002e-9 Iteration 40: d = 2.8978687953311107e-11 Iteration 50: d = 4.095836969770038e-13 Iteration 60: d = 5.837274087158481e-15 Converged after 63 iterations. d = 1.6375024268766412e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015928764680829917 Iteration 10: d = 1.541862788882468e-5 Iteration 20: d = 1.7087390898276406e-7 Iteration 30: d = 2.1991556150771798e-9 Iteration 40: d = 2.934819720497478e-11 Iteration 50: d = 3.962866991236393e-13 Iteration 60: d = 5.367647036239425e-15 Converged after 63 iterations. d = 1.480896328949157e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013878882001156047 Iteration 10: d = 1.1006724801413387e-5 Iteration 20: d = 1.1790657250721431e-7 Iteration 30: d = 1.5574061994286652e-9 Iteration 40: d = 2.1486605621621177e-11 Iteration 50: d = 3.0038365004876974e-13 Iteration 60: d = 4.24369711539262e-15 Converged after 62 iterations. d = 1.7602711661795964e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011392554017507638 Iteration 10: d = 1.1921590682029374e-5 Iteration 20: d = 1.363853109809845e-7 Iteration 30: d = 1.7788483887064607e-9 Iteration 40: d = 2.4025748024194814e-11 Iteration 50: d = 3.2912869314231445e-13 Iteration 60: d = 4.596548558480679e-15 Converged after 62 iterations. d = 1.9683273944132676e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012475023296940513 Iteration 10: d = 1.0909501727675702e-5 Iteration 20: d = 1.0092410555582745e-7 Iteration 30: d = 1.1156396038909713e-9 Iteration 40: d = 1.3519677497835328e-11 Iteration 50: d = 1.7369483166054672e-13 Iteration 60: d = 2.312115167215977e-15 Converged after 61 iterations. d = 1.494049652665329e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001592912720076173 Iteration 10: d = 1.968826621393831e-5 Iteration 20: d = 2.3765448971004905e-7 Iteration 30: d = 3.1495728155005735e-9 Iteration 40: d = 4.2543585774639817e-11 Iteration 50: d = 5.776197872480777e-13 Iteration 60: d = 7.874595172834891e-15 Converged after 63 iterations. d = 2.178033659974096e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001344562950242757 Iteration 10: d = 1.056754357647215e-5 Iteration 20: d = 1.2160800347928613e-7 Iteration 30: d = 1.6430597450731099e-9 Iteration 40: d = 2.2865453532478494e-11 Iteration 50: d = 3.2145012506873635e-13 Iteration 60: d = 4.520467132581749e-15 Converged after 62 iterations. d = 1.927649151298841e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015221932281578112 Iteration 10: d = 1.2552228701022436e-5 Iteration 20: d = 1.430364374537429e-7 Iteration 30: d = 1.9346460765346216e-9 Iteration 40: d = 2.6977115672646432e-11 Iteration 50: d = 3.797809186715072e-13 Iteration 60: d = 5.407048542407823e-15 Converged after 63 iterations. d = 1.464951554243468e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015953831582131075 Iteration 10: d = 1.155186942529753e-5 Iteration 20: d = 1.20370046594779e-7 Iteration 30: d = 1.5978096050184582e-9 Iteration 40: d = 2.222444365903791e-11 Iteration 50: d = 3.1186699580325443e-13 Iteration 60: d = 4.352578350345925e-15 Converged after 62 iterations. d = 1.9210461629253615e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8654.486131326366 Iteration 2: convergence error = 4813.663589015794 Iteration 3: convergence error = 1101.0512046571828 Iteration 4: convergence error = 320.43857689027254 Iteration 5: convergence error = 95.50085699194074 Iteration 6: convergence error = 28.618160811539155 Iteration 7: convergence error = 8.583645730393755 Iteration 8: convergence error = 2.5735270415127616 Iteration 9: convergence error = 0.7723827909956071 Iteration 10: convergence error = 0.23174400043308196 Iteration 11: convergence error = 0.06947904278422357 Iteration 12: convergence error = 0.020821406859113267 Iteration 13: convergence error = 0.006238181836124568 Iteration 14: convergence error = 0.0018687180124743463 Iteration 15: convergence error = 0.0005597493800451048 Iteration 16: convergence error = 0.0001676573856457253 Iteration 17: convergence error = 5.02157188293495e-5 Iteration 18: convergence error = 1.5040063317428576e-5 Iteration 19: convergence error = 4.504590151555021e-6 Iteration 20: convergence error = 1.3491514891939005e-6 Iteration 21: convergence error = 4.0407280721410643e-7 Iteration 22: convergence error = 1.2089162737538572e-7 Iteration 23: convergence error = 3.530999492795672e-8 Iteration 24: convergence error = 1.0226585800410248e-8 Iteration 25: convergence error = 2.9517650546040386e-9 Iteration 26: convergence error = 8.503775461576879e-10 Iteration 27: convergence error = 2.446540747769177e-10 Iteration 28: convergence error = 6.934897101018578e-11 Iteration 29: convergence error = 2.0236257114447653e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.3367611703208 K, F = -7442.350038103793, relative_change = 0.032663238829679205 Iter 2: T = 936.7491077959129 K, F = -6308.647979859492, relative_change = 0.03162048068699653 Iter 3: T = 908.2056468358368 K, F = -5346.132208631627, relative_change = 0.03047076396713772 Iter 5: T = 857.1126446631097 K, F = -3835.541873447672, relative_change = 0.027856198923278674 Iter 10: T = 762.1285216632735 K, F = -1660.7304396595428, relative_change = 0.01993015710013991 Iter 15: T = 706.5530170493007 K, F = -710.9983098827325, relative_change = 0.011931944262271397 Iter 20: T = 677.9879465359106 K, F = -301.32838660703925, relative_change = 0.006106222134309508 Iter 25: T = 664.6725366291485 K, F = -126.84943889197916, relative_change = 0.002819719119720455 Iter 30: T = 658.8118519178992 K, F = -53.20802727178392, relative_change = 0.0012332132057669449 Iter 35: T = 656.3048251642418 K, F = -22.280949329406273, relative_change = 0.0005258312990462853 Iter 40: T = 655.2461526555991 K, F = -9.323264500856197, relative_change = 0.00022172420034576753 Iter 45: T = 654.8015872030232 K, F = -3.8999997032013756, relative_change = 9.304906251488735e-5 Iter 50: T = 654.6153446684694 K, F = -1.6311841717489377, relative_change = 3.897072074044017e-5 Iter 55: T = 654.5373996835192 K, F = -0.68220832008498, relative_change = 1.6307922330684106e-5 Iter 60: T = 654.5047923295883 K, F = -0.28531249976711615, relative_change = 6.821901206102171e-6 Iter 65: T = 654.491153824491 K, F = -0.11932194021424086, relative_change = 2.8533038292026786e-6 Iter 70: T = 654.485449737837 K, F = -0.04990200827922636, relative_change = 1.1933387881011495e-6 Iter 75: T = 654.483064168037 K, F = -0.020869641679350348, relative_change = 4.990778118769838e-7 Iter 80: T = 654.4820664850499 K, F = -0.008727937908145522, relative_change = 2.087219241290873e-7 Iter 85: T = 654.4816492404997 K, F = -0.003650128657520957, relative_change = 8.729028519428917e-8 Iter 90: T = 654.481474743564 K, F = -0.0015265275336990847, relative_change = 3.650588935962459e-8 Iter 95: T = 654.4814017668125 K, F = -0.0006384120694927775, relative_change = 1.5267207588875596e-8 Iter 100: T = 654.4813712470548 K, F = -0.00026699155441861633, relative_change = 6.384930024915313e-9 Iter 105: T = 654.4813584833263 K, F = -0.00011165905756477246, relative_change = 2.6702542593436056e-9 Iter 110: T = 654.4813531453823 K, F = -4.6697151677044246e-5, relative_change = 1.1167322716696638e-9 Iter 115: T = 654.4813509129903 K, F = -1.9529306941545865e-5, relative_change = 4.670307904423363e-10 Iter 120: T = 654.4813499793772 K, F = -8.167388681090682e-6, relative_change = 1.9531783841089073e-10 Iter 125: T = 654.4813495889291 K, F = -3.415699007802697e-6, relative_change = 8.168424141558883e-11 Iter 130: T = 654.481349425639 K, F = -1.4284858723123683e-6, relative_change = 3.416131946192444e-11 Iter 135: T = 654.4813493573491 K, F = -5.974094692273724e-7, relative_change = 1.4286662635982046e-11 Iter 140: T = 654.4813493287896 K, F = -2.4984373220293676e-7, relative_change = 5.9748519203351634e-12 Iter 145: T = 654.4813493168457 K, F = -1.0448818149599859e-7, relative_change = 2.498767555276702e-12 Iter 150: T = 654.4813493118505 K, F = -4.369799100345517e-8, relative_change = 1.0450093071851984e-12 Iter 155: T = 654.4813493097615 K, F = -1.8275161717262733e-8, relative_change = 4.370387206962068e-13 Converged in 159 iterations to T = 654.4813493090076 K Iter 1: T = 970.3891991618923 K, F = -6746.849138106091, relative_change = 0.029610800838107684 Iter 2: T = 942.9435919729495 K, F = -5714.354360612433, relative_change = 0.028283092199137203 Iter 3: T = 917.6181460694285 K, F = -4838.114778845566, relative_change = 0.026857858857211106 Iter 5: T = 873.1103254060854 K, F = -3463.9858843491165, relative_change = 0.023760358660043272 Iter 10: T = 794.1567867108793 K, F = -1490.8671593572833, relative_change = 0.015454744002347793 Iter 15: T = 751.1749233563452 K, F = -634.5821919865713, relative_change = 0.008454047497601232 Iter 20: T = 730.3238109039387 K, F = -267.8483563124051, relative_change = 0.004064739673562264 Iter 25: T = 720.9423138272184 K, F = -112.50233275856894, relative_change = 0.0018141869755627586 Iter 30: T = 716.8867817335733 K, F = -47.139464150115344, relative_change = 0.000780729716087979 Iter 35: T = 715.1661894108604 K, F = -19.7303496284815, relative_change = 0.00033052701567136937 Iter 40: T = 714.4422165584774 K, F = -8.254306344900996, relative_change = 0.00013894559283635715 Iter 45: T = 714.138664337537 K, F = -3.4525481093233026, relative_change = 5.823475625525069e-5 Iter 50: T = 714.0115784507644 K, F = -1.4439842193974999, relative_change = 2.437658709349931e-5 Iter 55: T = 713.958405656066 K, F = -0.603906737700097, relative_change = 1.0198453210417625e-5 Iter 60: T = 713.9361639644457 K, F = -0.2525636853360592, relative_change = 4.265792762204773e-6 Iter 65: T = 713.9268614896306 K, F = -0.10562561744086474, relative_change = 1.7841240588971602e-6 Iter 70: T = 713.9229709552153 K, F = -0.04417397649741994, relative_change = 7.461627302876257e-7 Iter 75: T = 713.9213438648101 K, F = -0.018474098833008434, relative_change = 3.1205779276448804e-7 Iter 80: T = 713.9206633922445 K, F = -0.0077260912604256715, relative_change = 1.305069301865974e-7 Iter 85: T = 713.9203788098042 K, F = -0.00323114407132552, relative_change = 5.4579667756489347e-8 Iter 90: T = 713.920259793909 K, F = -0.0013513031157414979, relative_change = 2.2825888294352806e-8 Iter 95: T = 713.9202100200193 K, F = -0.0005651311138470394, relative_change = 9.546062469621795e-9 Iter 100: T = 713.9201892039806 K, F = -0.000236344583470105, relative_change = 3.9922779264602856e-9 Iter 105: T = 713.9201804984639 K, F = -9.884212764443845e-5, relative_change = 1.6696184084913082e-9 Iter 110: T = 713.9201768577127 K, F = -4.133695766628254e-5, relative_change = 6.982543657363091e-10 Iter 115: T = 713.9201753351072 K, F = -1.7287609959670824e-5, relative_change = 2.9201832770354866e-10 Iter 120: T = 713.9201746983352 K, F = -7.2298841741202935e-6, relative_change = 1.2212553961524597e-10 Iter 125: T = 713.9201744320296 K, F = -3.0236237493763696e-6, relative_change = 5.107435662159813e-11 Iter 130: T = 713.9201743206576 K, F = -1.2645166883595849e-6, relative_change = 2.1359924943217502e-11 Iter 135: T = 713.9201742740803 K, F = -5.288363618127789e-7, relative_change = 8.932982144923484e-12 Iter 140: T = 713.9201742546012 K, F = -2.2116531162019726e-7, relative_change = 3.73587355692411e-12 Iter 145: T = 713.9201742464548 K, F = -9.249411636602645e-8, relative_change = 1.5623893321710072e-12 Iter 150: T = 713.9201742430479 K, F = -3.868232334447441e-8, relative_change = 6.534129057377351e-13 Iter 155: T = 713.920174241623 K, F = -1.617728617731018e-8, relative_change = 2.7326299596938556e-13 Converged in 157 iterations to T = 713.9201742413215 K Iter 1: T = 974.389192596794 K, F = -5835.446828987694, relative_change = 0.025610807403206017 Iter 2: T = 950.9678003537439 K, F = -4937.030059080888, relative_change = 0.02403699920011532 Iter 3: T = 929.661299242681 K, F = -4175.128757054528, relative_change = 0.02240507102673426 Iter 5: T = 893.0404409859154 K, F = -2981.8657325093577, relative_change = 0.01905111038586254 Iter 10: T = 831.3349011419854 K, F = -1275.1169173893338, relative_change = 0.011199415561925795 Iter 15: T = 799.9993925248602 K, F = -539.9360004869243, relative_change = 0.0056550504039109125 Iter 20: T = 785.5054297856216 K, F = -227.1816175954376, relative_change = 0.0025915998352121342 Iter 25: T = 779.1518717018878 K, F = -95.26991532538646, relative_change = 0.001129279725868358 Iter 30: T = 776.439135040678 K, F = -39.890073553811746, relative_change = 0.0004807241461083611 Iter 35: T = 775.2945423537795 K, F = -16.69085952943262, relative_change = 0.00020256085079016893 Iter 40: T = 774.8140663301729 K, F = -6.9817872538059405, relative_change = 8.498151024692928e-5 Iter 45: T = 774.612809690333 K, F = -2.9201246808470507, relative_change = 3.558739928657231e-5 Iter 50: T = 774.5285863656134 K, F = -1.2212761672662928, relative_change = 1.4891332216597202e-5 Iter 55: T = 774.4933534654062 K, F = -0.5107601790227732, relative_change = 6.229178278364044e-6 Iter 60: T = 774.478616948399 K, F = -0.21360738871725105, relative_change = 2.6053696194722544e-6 Iter 65: T = 774.4724536640628 K, F = -0.08933340270485646, relative_change = 1.0896409231689314e-6 Iter 70: T = 774.4698760530104 K, F = -0.037360338151881445, relative_change = 4.5570858403079007e-7 Iter 75: T = 774.468798056201 K, F = -0.015624546982301535, relative_change = 1.9058412533648112e-7 Iter 80: T = 774.4683472234725 K, F = -0.006534373436667851, relative_change = 7.970479394157158e-8 Iter 85: T = 774.4681586795635 K, F = -0.0027327532351959505, relative_change = 3.333353810997463e-8 Iter 90: T = 774.4680798282005 K, F = -0.0011428700787052826, relative_change = 1.3940490967089483e-8 Iter 95: T = 774.4680468516102 K, F = -0.00047796192286653216, relative_change = 5.8300810768318276e-9 Iter 100: T = 774.4680330604049 K, F = -0.00019988938421777735, relative_change = 2.4382097389767466e-9 Iter 105: T = 774.4680272927579 K, F = -8.35961296209442e-5, relative_change = 1.0196884912492277e-9 Iter 110: T = 774.4680248806591 K, F = -3.496089937371494e-5, relative_change = 4.2644590635220225e-10 Iter 115: T = 774.4680238718905 K, F = -1.4621067864761805e-5, relative_change = 1.7834479912667864e-10 Iter 120: T = 774.4680234500114 K, F = -6.114704549364802e-6, relative_change = 7.458591721827068e-11 Iter 125: T = 774.4680232735765 K, F = -2.5572424847686293e-6, relative_change = 3.1192721568648154e-11 Iter 130: T = 774.4680231997893 K, F = -1.069467334247065e-6, relative_change = 1.304514413387124e-11 Iter 135: T = 774.4680231689306 K, F = -4.4726308157105876e-7, relative_change = 5.455623728861705e-12 Iter 140: T = 774.4680231560251 K, F = -1.8705010051967008e-7, relative_change = 2.281598926916831e-12 Iter 145: T = 774.468023150628 K, F = -7.822764436227203e-8, relative_change = 9.542048303756144e-13 Iter 150: T = 774.4680231483708 K, F = -3.271593462805811e-8, relative_change = 3.9906228938979657e-13 Converged in 154 iterations to T = 774.4680231475561 K Iter 1: T = 970.3083814349701 K, F = -6765.263534062836, relative_change = 0.029691618565029953 Iter 2: T = 942.780384187608 K, F = -5730.076808409905, relative_change = 0.02837035912917865 Iter 3: T = 917.3714639784403 K, F = -4851.541855403735, relative_change = 0.02695104887132602 Iter 5: T = 872.6959448522001 K, F = -3473.7815445693022, relative_change = 0.02386281355489413 Iter 10: T = 793.353996785081 K, F = -1495.3007303798465, relative_change = 0.01555706282188501 Iter 15: T = 750.089041796394 K, F = -636.5512078200862, relative_change = 0.008526976433279352 Iter 20: T = 729.074837347231 K, F = -268.70192868349255, relative_change = 0.00410503810096391 Iter 25: T = 719.6132799507212 K, F = -112.865800293569, relative_change = 0.0018333878451951653 Iter 30: T = 715.5217232861459 K, F = -47.29272277003562, relative_change = 0.0007892345110070875 Iter 35: T = 713.7855773840338 K, F = -19.794672816769793, relative_change = 0.00033417230693889047 Iter 40: T = 713.0550110617233 K, F = -8.281247793189042, relative_change = 0.00014048599850970876 Iter 45: T = 712.7486855794627 K, F = -3.463822522538202, relative_change = 5.888178544919765e-5 Iter 50: T = 712.6204370995533 K, F = -1.44870057313932, relative_change = 2.4647676818968488e-5 Iter 55: T = 712.5667776064597 K, F = -0.6058793937438871, relative_change = 1.0311912814339608e-5 Iter 60: T = 712.5443322862883 K, F = -0.25338871225565107, relative_change = 4.313258090334561e-6 Iter 65: T = 712.5349446366248 K, F = -0.10597066030460323, relative_change = 1.8039772795895297e-6 Iter 70: T = 712.5310184784543 K, F = -0.04431827872669303, relative_change = 7.544660484956209e-7 Iter 75: T = 712.5293764893114 K, F = -0.018534447954870914, relative_change = 3.155304207871027e-7 Iter 80: T = 712.5286897858358 K, F = -0.0077513300212773695, relative_change = 1.3195923891913124e-7 Iter 85: T = 712.5284025975405 K, F = -0.0032416992277415346, relative_change = 5.5187043077509676e-8 Iter 90: T = 712.5282824918432 K, F = -0.0013557174087526214, relative_change = 2.3079900332104317e-8 Iter 95: T = 712.5282322621848 K, F = -0.0005669772249284888, relative_change = 9.652293427447833e-9 Iter 100: T = 712.5282112555382 K, F = -0.00023711665013737004, relative_change = 4.036705010873533e-9 Iter 105: T = 712.5282024703068 K, F = -9.916501471174399e-5, relative_change = 1.6881983405939714e-9 Iter 110: T = 712.5281987962181 K, F = -4.147199448467642e-5, relative_change = 7.060247426223046e-10 Iter 115: T = 712.5281972596704 K, F = -1.7344084635828594e-5, relative_change = 2.952680035989357e-10 Iter 120: T = 712.5281966170677 K, F = -7.253502356863173e-6, relative_change = 1.2348458936732946e-10 Iter 125: T = 712.5281963483236 K, F = -3.0335015188676095e-6, relative_change = 5.1642733626573794e-11 Iter 130: T = 712.5281962359315 K, F = -1.2686454089472221e-6, relative_change = 2.1597588319157088e-11 Iter 135: T = 712.5281961889278 K, F = -5.305620509599152e-7, relative_change = 9.032358984775707e-12 Iter 140: T = 712.5281961692704 K, F = -2.2188686044088968e-7, relative_change = 3.777431450561115e-12 Iter 145: T = 712.5281961610494 K, F = -9.279639601178502e-8, relative_change = 1.5797781991975039e-12 Iter 150: T = 712.5281961576113 K, F = -3.8808650071331385e-8, relative_change = 6.60683625219629e-13 Iter 155: T = 712.5281961561734 K, F = -1.623033540898433e-8, relative_change = 2.7630739067017057e-13 Converged in 157 iterations to T = 712.5281961558691 K Iter 1: T = 969.3480467764837 K, F = -6984.076699513053, relative_change = 0.03065195322351634 Iter 2: T = 940.8377137938521 K, F = -5916.953739449393, relative_change = 0.029411864064142087 Iter 3: T = 914.4297876801651 K, F = -5011.189280848859, relative_change = 0.0280685241742693 Iter 5: T = 867.7345815505413 K, F = -3590.3523009722376, relative_change = 0.025104330836158432 Iter 10: T = 783.6369465237927 K, F = -1548.2362157462805, relative_change = 0.016834000375813705 Iter 15: T = 736.8223359473996 K, F = -660.1550748525754, relative_change = 0.009461610399967428 Iter 20: T = 713.725128500889 K, F = -278.9664384552303, relative_change = 0.00463063016077897 Iter 25: T = 703.2297626169768 K, F = -117.24455551055698, relative_change = 0.002086152234745482 Iter 30: T = 698.6704659283655 K, F = -49.14068166953655, relative_change = 0.0009016799732971886 Iter 35: T = 696.7318698879006 K, F = -20.570572777803523, relative_change = 0.0003824600404485482 Iter 40: T = 695.9153882019712 K, F = -8.606284611424972, relative_change = 0.00016090772972530667 Iter 45: T = 695.5729095149682 K, F = -3.5998531347791882, relative_change = 6.746263296978059e-5 Iter 50: T = 695.4295021377583 K, F = -1.5056071079118079, relative_change = 2.8243363571338143e-5 Iter 55: T = 695.3694961351988 K, F = -0.6296813478172042, relative_change = 1.181691186914146e-5 Iter 60: T = 695.344395424444 K, F = -0.2633434920135114, relative_change = 4.942883727988657e-6 Iter 65: T = 695.3338970479327 K, F = -0.11013395876012516, relative_change = 2.067332218931738e-6 Iter 70: T = 695.3295063336528 K, F = -0.04605943572076354, relative_change = 8.646108727322382e-7 Iter 75: T = 695.3276700551467 K, F = -0.01926262337745177, relative_change = 3.615954637119808e-7 Iter 80: T = 695.3269020964107 K, F = -0.00805586216258447, relative_change = 1.512243932118491e-7 Iter 85: T = 695.326580925998 K, F = -0.003369058291546434, relative_change = 6.324399623312478e-8 Iter 90: T = 695.3264466085388 K, F = -0.001408980504453483, relative_change = 2.6449420568014457e-8 Iter 95: T = 695.3263904353458 K, F = -0.0005892524902018081, relative_change = 1.1061468117913437e-8 Iter 100: T = 695.3263669430409 K, F = -0.0002464324316298061, relative_change = 4.626038870442412e-9 Iter 105: T = 695.3263571182775 K, F = -0.00010306098676071684, relative_change = 1.934664847891476e-9 Iter 110: T = 695.326353009444 K, F = -4.3101335482020886e-5, relative_change = 8.090999671280081e-10 Iter 115: T = 695.3263512910806 K, F = -1.802549187868152e-5, relative_change = 3.383752474257666e-10 Iter 120: T = 695.3263505724407 K, F = -7.538476452739751e-6, relative_change = 1.4151257921998518e-10 Iter 125: T = 695.3263502718968 K, F = -3.152679963536187e-6, relative_change = 5.918223354682696e-11 Iter 130: T = 695.3263501462059 K, F = -1.3184885427897086e-6, relative_change = 2.4750719336519614e-11 Iter 135: T = 695.3263500936404 K, F = -5.514082888069538e-7, relative_change = 1.0351058320254553e-11 Iter 140: T = 695.3263500716569 K, F = -2.3060479203973472e-7, relative_change = 4.328922325156523e-12 Iter 145: T = 695.326350062463 K, F = -9.644156062638132e-8, relative_change = 1.8104048107674375e-12 Iter 150: T = 695.326350058618 K, F = -4.0332219786165524e-8, relative_change = 7.57118033527055e-13 Iter 155: T = 695.32635005701 K, F = -1.6867332308656557e-8, relative_change = 3.166342327852357e-13 Converged in 158 iterations to T = 695.3263500565392 K Iter 1: T = 963.614930141711 K, F = -8290.372778347812, relative_change = 0.03638506985828892 Iter 2: T = 929.1110064465961 K, F = -7034.558280336609, relative_change = 0.03580675497632723 Iter 3: T = 896.4549060399501 K, F = -5968.042786770083, relative_change = 0.035147684377930186 Iter 5: T = 836.5679084092908 K, F = -4293.189550477472, relative_change = 0.03355821827093785 Iter 10: T = 717.2492276705069 K, F = -1875.862903224614, relative_change = 0.027787433828856088 Iter 15: T = 638.0224564837058 K, F = -812.1333567590289, relative_change = 0.019847430231949834 Iter 20: T = 591.7289723969404 K, F = -347.65467597209613, relative_change = 0.01186166841708735 Iter 25: T = 567.9624834307986 K, F = -147.32710870752285, relative_change = 0.006062361076887039 Iter 30: T = 556.8923002546622 K, F = -62.016863891935444, relative_change = 0.002797378527695488 Iter 35: T = 552.0217852143367 K, F = -26.012850297611028, relative_change = 0.0012229985481362572 Iter 40: T = 549.9387124772684 K, F = -10.892806186286856, relative_change = 0.0005213911498794716 Iter 45: T = 549.0591402351657 K, F = -4.557976319540659, relative_change = 0.00021983656804213457 Iter 50: T = 548.6897967912888 K, F = -1.9066359379061915, relative_change = 9.22541632873234e-5 Iter 55: T = 548.5350694204279 K, F = -0.7974543627704249, relative_change = 3.8637320591725594e-5 Iter 60: T = 548.4703143531211 K, F = -0.33351832432144973, relative_change = 1.616832129993398e-5 Iter 65: T = 548.4432249140842 K, F = -0.1394836887058501, relative_change = 6.763488771407656e-6 Iter 70: T = 548.4318943703098 K, F = -0.05833415417436422, relative_change = 2.828869868634245e-6 Iter 75: T = 548.4271555537239 K, F = -0.024396111604035375, relative_change = 1.1831193072973011e-6 Iter 80: T = 548.4251736806789 K, F = -0.010202757758518949, relative_change = 4.948037443872281e-7 Iter 85: T = 548.4243448301198 K, F = -0.004266917332571368, relative_change = 2.0693443031182053e-7 Iter 90: T = 548.4239981935913 K, F = -0.0017844761698330713, relative_change = 8.654272909797388e-8 Iter 95: T = 548.4238532258233 K, F = -0.0007462893126210235, relative_change = 3.619325165655577e-8 Iter 100: T = 548.4237925985309 K, F = -0.000312107114960658, relative_change = 1.513645862236642e-8 Iter 105: T = 548.423767243466 K, F = -0.0001305269247705021, relative_change = 6.330249251162811e-9 Iter 110: T = 548.4237566396739 K, F = -5.458791877185898e-5, relative_change = 2.6473860802627517e-9 Iter 115: T = 548.4237522050411 K, F = -2.2829319207773313e-5, relative_change = 1.107168501363956e-9 Iter 120: T = 548.4237503504247 K, F = -9.547494013467661e-6, relative_change = 4.630311010439615e-10 Iter 125: T = 548.4237495748021 K, F = -3.992875900749038e-6, relative_change = 1.9364513185305393e-10 Iter 130: T = 548.4237492504275 K, F = -1.6698691639172036e-6, relative_change = 8.098474467337886e-11 Iter 135: T = 548.4237491147701 K, F = -6.983601189558541e-7, relative_change = 3.3868830691886317e-11 Iter 140: T = 548.4237490580364 K, F = -2.9206205665044394e-7, relative_change = 1.4164325946732715e-11 Iter 145: T = 548.4237490343097 K, F = -1.221434504927732e-7, relative_change = 5.923671377365023e-12 Iter 150: T = 548.4237490243869 K, F = -5.108143191767667e-8, relative_change = 2.4773298524879115e-12 Iter 155: T = 548.4237490202372 K, F = -2.1363160851439744e-8, relative_change = 1.0360632843646874e-12 Iter 160: T = 548.4237490185018 K, F = -8.934538858751395e-9, relative_change = 4.333042164871172e-13 Converged in 164 iterations to T = 548.4237490178753 K Iter 1: T = 966.8947005116 K, F = -7543.073979701556, relative_change = 0.03310529948839993 Iter 2: T = 935.8468257320053 K, F = -6394.794043337374, relative_change = 0.0321109162798873 Iter 3: T = 906.8259817399461 K, F = -5419.855890558417, relative_change = 0.031010249961963096 Iter 5: T = 854.7345248933879 K, F = -3889.6270973479864, relative_change = 0.02849022796202246 Iter 10: T = 757.169500789076 K, F = -1685.7777217893738, relative_change = 0.020700678572893507 Iter 15: T = 699.3734124135857 K, F = -722.4709246227133, relative_change = 0.012596063981722133 Iter 20: T = 669.3413235763592 K, F = -306.4354534595188, relative_change = 0.006525768882259632 Iter 25: T = 655.2410893305849 K, F = -129.05981463991964, relative_change = 0.003034976593150649 Iter 30: T = 649.0111908488019 K, F = -54.14769679080392, relative_change = 0.0013319911487698248 Iter 35: T = 646.341443408585 K, F = -22.676797217027374, relative_change = 0.0005688388095416734 Iter 40: T = 645.2131672677542 K, F = -9.489329946479025, relative_change = 0.0002400208423495192 Iter 45: T = 644.7392135912968 K, F = -3.9695418952392734, relative_change = 0.00010075625820700558 Iter 50: T = 644.5406311435061 K, F = -1.6602836634163822, relative_change = 4.220371495261989e-5 Iter 55: T = 644.4575167749367 K, F = -0.6943809003290707, relative_change = 1.7661710607527993e-5 Iter 60: T = 644.4227460009297 K, F = -0.2904037128235961, relative_change = 7.388371389705599e-6 Iter 65: T = 644.408202461268 K, F = -0.12145123286210369, relative_change = 3.0902608837545026e-6 Iter 70: T = 644.402119831731 K, F = -0.0507925190337194, relative_change = 1.2924462355062437e-6 Iter 75: T = 644.3995759426216 K, F = -0.021242066558919914, relative_change = 5.405273352305142e-7 Iter 80: T = 644.3985120471822 K, F = -0.008883690903748631, relative_change = 2.2605689058537422e-7 Iter 85: T = 644.398067111544 K, F = -0.0037152665001878304, relative_change = 9.454002426795662e-8 Iter 90: T = 644.3978810338212 K, F = -0.0015537689721463188, relative_change = 3.9537825422596576e-8 Iter 95: T = 644.3978032138386 K, F = -0.000649804767681339, relative_change = 1.6535200982705364e-8 Iter 100: T = 644.3977706685824 K, F = -0.00027175611768337493, relative_change = 6.9152202756259504e-9 Iter 105: T = 644.397757057766 K, F = -0.00011365165496995955, relative_change = 2.8920280232881896e-9 Iter 110: T = 644.3977513655597 K, F = -4.7530479327762e-5, relative_change = 1.2094807065811545e-9 Iter 115: T = 644.3977489850109 K, F = -1.9877814363467028e-5, relative_change = 5.058192916313942e-10 Iter 120: T = 644.397747989437 K, F = -8.313139902016431e-6, relative_change = 2.1153968391659794e-10 Iter 125: T = 644.3977475730761 K, F = -3.4766541432418308e-6, relative_change = 8.846841620369168e-11 Iter 130: T = 644.397747398949 K, F = -1.4539780736622099e-6, relative_change = 3.699854292015718e-11 Iter 135: T = 644.3977473261269 K, F = -6.080709706313137e-7, relative_change = 1.547323190427666e-11 Iter 140: T = 644.3977472956719 K, F = -2.5430231143097615e-7, relative_change = 6.471084510686621e-12 Iter 145: T = 644.3977472829351 K, F = -1.0635159952698814e-7, relative_change = 2.706267924101818e-12 Iter 150: T = 644.3977472776086 K, F = -4.4476971494678e-8, relative_change = 1.1317798872543552e-12 Iter 155: T = 644.3977472753809 K, F = -1.8600226137088782e-8, relative_change = 4.733092459590079e-13 Converged in 160 iterations to T = 644.3977472744492 K Iter 1: T = 965.2141882363388 K, F = -7925.980300199695, relative_change = 0.034785811763661176 Iter 2: T = 932.4046643090427 K, F = -6722.464122696181, relative_change = 0.03399196191598311 Iter 3: T = 901.5419987733286 K, F = -5700.472380933482, relative_change = 0.033100076304942966 Iter 5: T = 845.5440823526284 K, F = -4095.8953088800154, relative_change = 0.031003783237598677 Iter 10: T = 737.4527054775826 K, F = -1782.1803379849637, relative_change = 0.023994569132282397 Iter 15: T = 669.9432269950786 K, F = -767.2881049830961, relative_change = 0.015689014796449838 Iter 20: T = 633.0522236037127 K, F = -326.6893680382771, relative_change = 0.008621343786410565 Iter 25: T = 615.1056016464364 K, F = -137.9174683364857, relative_change = 0.004157308747502046 Iter 30: T = 607.0178387329415 K, F = -57.93426015775104, relative_change = 0.0018583257377445186 Iter 35: T = 603.5188006029377 K, F = -24.276096585153628, relative_change = 0.0008002872678432439 Iter 40: T = 602.0337757622046 K, F = -10.161033355316732, relative_change = 0.0003389109824405523 Iter 45: T = 601.4088263430393 K, F = -4.250964386881812, relative_change = 0.00014248867255911232 Iter 50: T = 601.1467762396194 K, F = -1.7780674018816007, relative_change = 5.9723026237155695e-5 Iter 55: T = 601.0370627167166 K, F = -0.7436551645591911, relative_change = 2.5000143799899107e-5 Iter 60: T = 600.9911579992279 K, F = -0.3110135475844649, relative_change = 1.0459432638915759e-5 Iter 65: T = 600.9719563850902 K, F = -0.13007099294380917, relative_change = 4.3749725851236825e-6 Iter 70: T = 600.9639253910985 K, F = -0.0543974897943304, relative_change = 1.829790507506489e-6 Iter 75: T = 600.9605666198615 K, F = -0.02274972310413892, relative_change = 7.652620590237443e-7 Iter 80: T = 600.9591619217414 K, F = -0.009514213450003028, relative_change = 3.200455480563039e-7 Iter 85: T = 600.9585744567355 K, F = -0.0039789590095871685, relative_change = 1.3384753771797573e-7 Iter 90: T = 600.9583287712462 K, F = -0.0016640484069779804, relative_change = 5.597675545198084e-8 Iter 95: T = 600.9582260225343 K, F = -0.0006959249570199222, relative_change = 2.3410168044761304e-8 Iter 100: T = 600.9581830517772 K, F = -0.00029104413497021975, relative_change = 9.790415415941513e-9 Iter 105: T = 600.9581650808902 K, F = -0.00012171813456601788, relative_change = 4.094469283275163e-9 Iter 110: T = 600.9581575652501 K, F = -5.0903977902139186e-5, relative_change = 1.7123560681384171e-9 Iter 115: T = 600.9581544221195 K, F = -2.128865088241172e-5, relative_change = 7.161277552568126e-10 Iter 120: T = 600.9581531076246 K, F = -8.903167243334842e-6, relative_change = 2.994931559664527e-10 Iter 125: T = 600.9581525578873 K, F = -3.723410163525287e-6, relative_change = 1.25251591395542e-10 Iter 130: T = 600.9581523279805 K, F = -1.5571744312325997e-6, relative_change = 5.238170585077574e-11 Iter 135: T = 600.9581522318308 K, F = -6.512283128867757e-7, relative_change = 2.1906633752208587e-11 Iter 140: T = 600.9581521916199 K, F = -2.7235180560802874e-7, relative_change = 9.161627559865852e-12 Iter 145: T = 600.9581521748031 K, F = -1.1390051540827173e-7, relative_change = 3.831493236685959e-12 Iter 150: T = 600.9581521677702 K, F = -4.76341058264218e-8, relative_change = 1.6023610926209468e-12 Iter 155: T = 600.958152164829 K, F = -1.9921613192419585e-8, relative_change = 6.70142061632125e-13 Iter 160: T = 600.9581521635988 K, F = -8.330200251815967e-9, relative_change = 2.8021915277117123e-13 Converged in 162 iterations to T = 600.9581521633386 K Iter 1: T = 979.9268676401172 K, F = -4573.682302677618, relative_change = 0.02007313235988279 Iter 2: T = 961.906652049299 K, F = -3863.630662003108, relative_change = 0.018389347395091665 Iter 3: T = 945.8199944806947 K, F = -3262.2911968580197, relative_change = 0.016723720055716866 Iter 5: T = 918.9289784522167 K, F = -2322.623638413522, relative_change = 0.013536631945212488 Iter 10: T = 876.149096116097 K, F = -986.2679373463351, relative_change = 0.007137788011806447 Iter 15: T = 855.852796650451 K, F = -415.6674057000198, relative_change = 0.0033545294421105155 Iter 20: T = 846.8343609796158 K, F = -174.4554231269471, relative_change = 0.00147990649063717 Iter 25: T = 842.959239349286 K, F = -73.07251083641684, relative_change = 0.0006334934871373517 Iter 30: T = 841.319610440961 K, F = -30.57998324839876, relative_change = 0.0002675734793370722 Iter 35: T = 840.630503455927 K, F = -12.792474458587137, relative_change = 0.00011237075559890927 Iter 40: T = 840.341711688104 K, F = -5.350590479557526, relative_change = 4.7077207788492104e-5 Iter 45: T = 840.2208303661985 K, F = -2.2377902924215944, relative_change = 1.9702702277169803e-5 Iter 50: T = 840.1702579332066 K, F = -0.9358897805112044, relative_change = 8.242435745811712e-6 Iter 55: T = 840.1491047138921 K, F = -0.391403634188884, relative_change = 3.447527825252735e-6 Iter 60: T = 840.1402576209401 K, F = -0.1636902603120478, relative_change = 1.4418747624918236e-6 Iter 65: T = 840.1365575623539 K, F = -0.06845732425093232, relative_change = 6.030227930506672e-7 Iter 70: T = 840.1350101364093 K, F = -0.02862968847894498, relative_change = 2.5219370321077856e-7 Iter 75: T = 840.1343629813811 K, F = -0.011973280764934424, relative_change = 1.0547083293041588e-7 Iter 80: T = 840.1340923328918 K, F = -0.00500736955680936, relative_change = 4.4109234418672494e-8 Iter 85: T = 840.133979144369 K, F = -0.002094141844466435, relative_change = 1.84470212811738e-8 Iter 90: T = 840.1339318075609 K, F = -0.000875795143195246, relative_change = 7.714766801169703e-9 Iter 95: T = 840.1339120107396 K, F = -0.00036626799041639124, relative_change = 3.22640799252655e-9 Iter 100: T = 840.1339037314721 K, F = -0.00015317764889322127, relative_change = 1.3493224272553969e-9 Iter 105: T = 840.1339002689833 K, F = -6.406072210518587e-5, relative_change = 5.64302764557657e-10 Iter 110: T = 840.1338988209292 K, F = -2.6790957904143653e-5, relative_change = 2.359981473468424e-10 Iter 115: T = 840.1338982153358 K, F = -1.1204299054323741e-5, relative_change = 9.869724844017308e-11 Iter 120: T = 840.1338979620693 K, F = -4.685772990065118e-6, relative_change = 4.127637966072019e-11 Iter 125: T = 840.1338978561503 K, F = -1.95964605254062e-6, relative_change = 1.7262273414728275e-11 Iter 130: T = 840.1338978118536 K, F = -8.195462986027024e-7, relative_change = 7.219279352880336e-12 Iter 135: T = 840.1338977933283 K, F = -3.427438930447835e-7, relative_change = 3.019187463676569e-12 Iter 140: T = 840.1338977855808 K, F = -1.433415541818306e-7, relative_change = 1.2626775624916925e-12 Iter 145: T = 840.1338977823406 K, F = -5.994540352993738e-8, relative_change = 5.280514533638741e-13 Converged in 150 iterations to T = 840.1338977809855 K Iter 1: T = 976.404816067258 K, F = -5376.185103889563, relative_change = 0.023595183932742007 Iter 2: T = 954.9719354429634 K, F = -4545.95973291007, relative_change = 0.021950814120951928 Iter 3: T = 935.6099889467205 K, F = -3842.203294462184, relative_change = 0.020274885342323634 Iter 5: T = 902.6789517396354 K, F = -2740.8514177815096, relative_change = 0.016921465639024136 Iter 10: T = 848.4263009105665 K, F = -1168.8081552216133, relative_change = 0.009527417179767687 Iter 15: T = 821.6297555723637 K, F = -493.9495684855149, relative_change = 0.0046683107347106 Iter 20: T = 809.4453757291678 K, F = -207.60669239753645, relative_change = 0.0021044468262907384 Iter 25: T = 804.1506065104317 K, F = -87.01584265657253, relative_change = 0.0009098547945603121 Iter 30: T = 801.8989528563624 K, F = -36.42564749639729, relative_change = 0.0003859774237298325 Iter 35: T = 800.9505585654555 K, F = -15.239762568001245, relative_change = 0.0001623965312155832 Iter 40: T = 800.5527372809271 K, F = -6.374526861452563, relative_change = 6.808842044220453e-5 Iter 45: T = 800.3861541569895 K, F = -2.666091883342392, relative_change = 2.850562988676195e-5 Iter 50: T = 800.3164503785887 K, F = -1.1150244849730355, relative_change = 1.1926691986836775e-5 Iter 55: T = 800.2872929964433 K, F = -0.4663223330498292, relative_change = 4.988812103383749e-6 Iter 60: T = 800.275097906034 K, F = -0.19502257931714062, relative_change = 2.0865429919199723e-6 Iter 65: T = 800.2699975767921 K, F = -0.08156094848138107, relative_change = 8.726455683690825e-7 Iter 70: T = 800.2678645237709 K, F = -0.034109793605087924, relative_change = 3.6495576048048307e-7 Iter 75: T = 800.2669724495031 K, F = -0.01426512844585437, relative_change = 1.5262972541111516e-7 Iter 80: T = 800.2665993723379 K, F = -0.005965848022167264, relative_change = 6.383172574061437e-8 Iter 85: T = 800.2664433468277 K, F = -0.00249498905557477, relative_change = 2.6695216567386708e-8 Iter 90: T = 800.2663780950638 K, F = -0.0010434342471570268, relative_change = 1.1164263006778409e-8 Iter 95: T = 800.2663508059912 K, F = -0.000436376667523275, relative_change = 4.669028921092593e-9 Iter 100: T = 800.2663393933742 K, F = -0.00018249793536750936, relative_change = 1.9526438041792138e-9 Iter 105: T = 800.2663346204814 K, F = -7.632281707448119e-5, relative_change = 8.166189924827259e-10 Iter 110: T = 800.2663326244005 K, F = -3.191911468625186e-5, relative_change = 3.4151983095886037e-10 Iter 115: T = 800.2663317896156 K, F = -1.3348954187919482e-5, relative_change = 1.428276644007913e-10 Iter 120: T = 800.2663314404986 K, F = -5.5826905983602515e-6, relative_change = 5.973221944336668e-11 Iter 125: T = 800.2663312944937 K, F = -2.3347484930935636e-6, relative_change = 2.49807341099363e-11 Iter 130: T = 800.2663312334328 K, F = -9.764192839822883e-7, relative_change = 1.0447236862552995e-11 Iter 135: T = 800.2663312078963 K, F = -4.0834972558911886e-7, relative_change = 4.36915408843317e-12 Iter 140: T = 800.2663311972167 K, F = -1.7077717673341652e-7, relative_change = 1.827237177414117e-12 Iter 145: T = 800.2663311927503 K, F = -7.14200647511376e-8, relative_change = 7.641618161528861e-13 Iter 150: T = 800.2663311908824 K, F = -2.986905878188395e-8, relative_change = 3.1958517939360774e-13 Converged in 153 iterations to T = 800.2663311903356 K Iter 1: T = 980.7809801614407 K, F = -4379.071952223304, relative_change = 0.019219019838559295 Iter 2: T = 963.5766218259674 K, F = -3698.358843047434, relative_change = 0.01754148855195101 Iter 3: T = 948.2616063664507 K, F = -3122.007898874315, relative_change = 0.01589392593449907 Iter 5: T = 922.7629034346554 K, F = -2221.737974376292, relative_change = 0.012774227484719706 Iter 10: T = 882.5109538846576 K, F = -942.5526259094936, relative_change = 0.006640149507509532 Iter 15: T = 863.5752937363077 K, F = -397.02106722981245, relative_change = 0.0030942128484392683 Iter 20: T = 855.2001303449337 K, F = -166.5828460016874, relative_change = 0.0013592985258604096 Iter 25: T = 851.6092707008399 K, F = -69.76611822308266, relative_change = 0.000580752850088234 Iter 30: T = 850.0913856141223 K, F = -29.19468679000809, relative_change = 0.0002450939283301679 Iter 35: T = 849.4537095180541 K, F = -12.212679679731028, relative_change = 0.00010289402746638838 Iter 40: T = 849.1865182205146 K, F = -5.108034715982525, relative_change = 4.3100602872354785e-5 Iter 45: T = 849.0746865569553 K, F = -2.1363367849474786, relative_change = 1.803729958570079e-5 Iter 50: T = 849.0279016186615 K, F = -0.8934582977587473, relative_change = 7.545534718928129e-6 Iter 55: T = 849.0083328684686 K, F = -0.3736578589257751, relative_change = 3.156003783987491e-6 Iter 60: T = 849.0001485057925 K, F = -0.1562686912680007, relative_change = 1.3199433814890971e-6 Iter 65: T = 848.9967256240307 K, F = -0.06535352251712978, relative_change = 5.520274388827196e-7 Iter 70: T = 848.9952941193867 K, F = -0.027331639266965357, relative_change = 2.3086645326582043e-7 Iter 75: T = 848.9946954444931 K, F = -0.011430420689062082, relative_change = 9.65514551866007e-8 Iter 80: T = 848.9944450710559 K, F = -0.004780338917421467, relative_change = 4.037903235547438e-8 Iter 85: T = 848.9943403618162 K, F = -0.0019991949093165484, relative_change = 1.6887004190913486e-8 Iter 90: T = 848.994296571148 K, F = -0.0008360872016102139, relative_change = 7.0623486880600475e-9 Iter 95: T = 848.9942782573652 K, F = -0.00034966165569372265, relative_change = 2.9535588922128997e-9 Iter 100: T = 848.9942705983221 K, F = -0.0001462326826366933, relative_change = 1.2352136748556616e-9 Iter 105: T = 848.9942673952188 K, F = -6.115625409419678e-5, relative_change = 5.165811182221368e-10 Iter 110: T = 848.9942660556427 K, F = -2.5576274803817967e-5, relative_change = 2.1604038594352878e-10 Iter 115: T = 848.9942654954159 K, F = -1.069630442906977e-5, relative_change = 9.035067702435876e-11 Iter 120: T = 848.9942652611225 K, F = -4.4733213058201216e-6, relative_change = 3.778572419470169e-11 Iter 125: T = 848.9942651631382 K, F = -1.8707986679800115e-6, relative_change = 1.580246034171087e-11 Iter 130: T = 848.9942651221598 K, F = -7.82388943409984e-7, relative_change = 6.608765798524073e-12 Iter 135: T = 848.9942651050222 K, F = -3.2720427123322793e-7, relative_change = 2.763863696284166e-12 Iter 140: T = 848.9942650978551 K, F = -1.3684018096427053e-7, relative_change = 1.1558761349595043e-12 Iter 145: T = 848.9942650948577 K, F = -5.72283440636312e-8, relative_change = 4.834024383874963e-13 Converged in 150 iterations to T = 848.9942650936042 K Iter 1: T = 967.2606305498023 K, F = -7459.696472407869, relative_change = 0.032739369450197786 Iter 2: T = 936.5938130405189 K, F = -6323.482422321416, relative_change = 0.03170481309867027 Iter 3: T = 907.9683467969263 K, F = -5358.825977190453, relative_change = 0.03056337319874448 Iter 5: T = 856.7042346215823 K, F = -3844.851215597678, relative_change = 0.027964612330652134 Iter 10: T = 761.28081864992 K, F = -1665.0352869326493, relative_change = 0.020060298615425236 Iter 15: T = 705.3314945994763 K, F = -712.9656681779461, relative_change = 0.01204265033027532 Iter 20: T = 676.5218958352696 K, F = -302.202293469299, relative_change = 0.006175457334697271 Iter 25: T = 663.076536147485 K, F = -127.22714324401194, relative_change = 0.002855032904073677 Iter 30: T = 657.1549369683665 K, F = -53.36847923216979, relative_change = 0.0012493711139808666 Iter 35: T = 654.6211094251935 K, F = -22.34851910525167, relative_change = 0.0005328571981206278 Iter 40: T = 653.5509815018576 K, F = -9.351607110682847, relative_change = 0.0002247115356082064 Iter 45: T = 653.1015808687035 K, F = -3.9118678214922684, relative_change = 9.43071333517053e-5 Iter 50: T = 652.9133083506154 K, F = -1.6361501805516903, relative_change = 3.949839991044533e-5 Iter 55: T = 652.8345130221301 K, F = -0.6842856235368017, relative_change = 1.6528874087742448e-5 Iter 60: T = 652.8015498024954 K, F = -0.28618133327983974, relative_change = 6.9143531611887605e-6 Iter 65: T = 652.7877624277696 K, F = -0.11968531083400119, relative_change = 2.89197661696091e-6 Iter 70: T = 652.7819960746509 K, F = -0.05005397667341849, relative_change = 1.20951365762936e-6 Iter 75: T = 652.7795844629758 K, F = -0.02093319710720032, relative_change = 5.058425887343084e-7 Iter 80: T = 652.7785758887388 K, F = -0.008754517621693825, relative_change = 2.1155107887815149e-7 Iter 85: T = 652.7781540892983 K, F = -0.0036612446239343566, relative_change = 8.84734792355769e-8 Iter 90: T = 652.7779776874462 K, F = -0.001531176366584841, relative_change = 3.700071660915258e-8 Iter 95: T = 652.7779039140346 K, F = -0.00064035626684944, relative_change = 1.5474150479597465e-8 Iter 100: T = 652.777873061104 K, F = -0.00026780464251630054, relative_change = 6.471476089925123e-9 Iter 105: T = 652.7778601580383 K, F = -0.00011199909971065791, relative_change = 2.7064488399834846e-9 Iter 110: T = 652.777854761822 K, F = -4.683936107946485e-5, relative_change = 1.131869271948081e-9 Iter 115: T = 652.7778525050599 K, F = -1.9588781305812653e-5, relative_change = 4.733612818135573e-10 Iter 120: T = 652.7778515612549 K, F = -8.192261514106125e-6, relative_change = 1.9796532399963579e-10 Iter 125: T = 652.7778511665445 K, F = -3.4261019144499194e-6, relative_change = 8.27914705035406e-11 Iter 130: T = 652.7778510014717 K, F = -1.432836954085026e-6, relative_change = 3.46243869929891e-11 Iter 135: T = 652.7778509324364 K, F = -5.992286251088608e-7, relative_change = 1.448031038307625e-11 Iter 140: T = 652.7778509035651 K, F = -2.50605480422994e-7, relative_change = 6.055860799923875e-12 Iter 145: T = 652.7778508914906 K, F = -1.0480536022372533e-7, relative_change = 2.5326129005054983e-12 Iter 150: T = 652.777850886441 K, F = -4.383121310347349e-8, relative_change = 1.0591776557781589e-12 Iter 155: T = 652.7778508843292 K, F = -1.8329712747622295e-8, relative_change = 4.4293599936603477e-13 Converged in 159 iterations to T = 652.777850883567 K Iter 1: T = 973.4373415129481 K, F = -6052.327003886108, relative_change = 0.026562658487051895 Iter 2: T = 949.0678000060667 K, F = -5121.854500249305, relative_change = 0.025034525046065615 Iter 3: T = 926.8245692423052 K, F = -4332.616676747433, relative_change = 0.02343692491054833 Iter 5: T = 888.3974806692235 K, F = -3096.1217293758164, relative_change = 0.02011069988384706 Iter 10: T = 822.9081804198106 K, F = -1325.8458586072702, relative_change = 0.012085840153626392 Iter 15: T = 789.1619871012255 K, F = -562.0112061337451, relative_change = 0.006202591975956667 Iter 20: T = 773.4053217509855 K, F = -236.61391383429213, relative_change = 0.0028689064429582266 Iter 25: T = 766.4640493972321 K, F = -99.25487746878129, relative_change = 0.0012557261660923183 Iter 30: T = 763.4935619481382 K, F = -41.56413195547326, relative_change = 0.0005356219258743521 Iter 35: T = 762.2389523739599 K, F = -17.392318629401643, relative_change = 0.00022588731833673788 Iter 40: T = 761.7120670784826 K, F = -7.275384310584509, relative_change = 9.48023409883132e-5 Iter 45: T = 761.4913309926096 K, F = -3.0429523905098, relative_change = 3.970611527404109e-5 Iter 50: T = 761.398948737613 K, F = -1.2726515281052313, relative_change = 1.6615850805018983e-5 Iter 55: T = 761.3603015035467 K, F = -0.5322472543575647, relative_change = 6.950746720603152e-6 Iter 60: T = 761.3441366911911 K, F = -0.22259376521223107, relative_change = 2.90720013820401e-6 Iter 65: T = 761.3373760101715 K, F = -0.0930916520306676, relative_change = 1.2158808933414086e-6 Iter 70: T = 761.334548549057 K, F = -0.0389320897858928, relative_change = 5.08505543732182e-7 Iter 75: T = 761.3333660599327 K, F = -0.016281873490351262, relative_change = 2.1266477613382998e-7 Iter 80: T = 761.3328715269145 K, F = -0.006809275442760776, relative_change = 8.893924381883974e-8 Iter 85: T = 761.3326647069601 K, F = -0.0028477205736449074, relative_change = 3.719550547524266e-8 Iter 90: T = 761.3325782123258 K, F = -0.0011909507980817358, relative_change = 1.5555613602813052e-8 Iter 95: T = 761.3325420392264 K, F = -0.0004980698536892758, relative_change = 6.505544944737788e-9 Iter 100: T = 761.3325269112024 K, F = -0.00020829876455485952, relative_change = 2.7206968920316535e-9 Iter 105: T = 761.3325205844818 K, F = -8.711303137731718e-5, relative_change = 1.137827982838301e-9 Iter 110: T = 761.3325179385716 K, F = -3.6431712052031884e-5, relative_change = 4.758532847041233e-10 Iter 115: T = 761.3325168320204 K, F = -1.523617709375813e-5, relative_change = 1.9900752828239273e-10 Iter 120: T = 761.3325163692474 K, F = -6.371951928207942e-6, relative_change = 8.322733448381013e-11 Iter 125: T = 761.3325161757102 K, F = -2.664827772225209e-6, relative_change = 3.480668327508027e-11 Iter 130: T = 761.3325160947707 K, F = -1.1144628172532478e-6, relative_change = 1.4556570869580466e-11 Iter 135: T = 761.3325160609207 K, F = -4.660818146984269e-7, relative_change = 6.087733805994569e-12 Iter 140: T = 761.3325160467643 K, F = -1.949221436481352e-7, relative_change = 2.5459781654354707e-12 Iter 145: T = 761.332516040844 K, F = -8.151826802471618e-8, relative_change = 1.0647519394070328e-12 Iter 150: T = 761.332516038368 K, F = -3.409266624565532e-8, relative_change = 4.453018125234715e-13 Converged in 154 iterations to T = 761.3325160374742 K Iter 1: T = 969.9999840619198 K, F = -6835.532168873969, relative_change = 0.030000015938080188 Iter 2: T = 942.1571917547444 K, F = -5790.079249527805, relative_change = 0.02870391006666048 Iter 3: T = 916.4288873013546 K, F = -4902.790724900205, relative_change = 0.0273078682395572 Iter 5: T = 871.1102265260041 K, F = -3511.1819224401447, relative_change = 0.02425663570888652 Iter 10: T = 790.2696194075277 K, F = -1512.2489231593743, relative_change = 0.01595462984668802 Iter 15: T = 745.9028869736321 K, F = -644.0890516365056, relative_change = 0.008813066643798129 Iter 20: T = 724.2497403677899 K, F = -271.973254472807, relative_change = 0.004264109925258889 Iter 25: T = 714.4733118706308 K, F = -114.25968508912649, relative_change = 0.0019094281480480553 Iter 30: T = 710.2397997297089 K, F = -47.880645836824314, relative_change = 0.0008229667732656175 Iter 35: T = 708.4423111290834 K, F = -20.041460240637317, relative_change = 0.00034864010143323724 Iter 40: T = 707.6857305933611 K, F = -8.38461960523393, relative_change = 0.00014660144609950125 Iter 45: T = 707.3684615888562 K, F = -3.5070824735390396, relative_change = 6.145081383604032e-5 Iter 50: T = 707.2356251090482 K, F = -1.466797424535445, relative_change = 2.572409211413156e-5 Iter 55: T = 707.1800448791852 K, F = -0.6134485929263033, relative_change = 1.0762436041099818e-5 Iter 60: T = 707.1567959371329 K, F = -0.2565543957156115, relative_change = 4.501734164288573e-6 Iter 65: T = 707.1470721425086 K, F = -0.10729461386913802, relative_change = 1.882811051410186e-6 Iter 70: T = 707.1430053938834 K, F = -0.04487197662962261, relative_change = 7.874371672402093e-7 Iter 75: T = 707.1413046062762 K, F = -0.018766011854609133, relative_change = 3.293196676719378e-7 Iter 80: T = 707.1405933122558 K, F = -0.007848172953522803, relative_change = 1.3772612458074109e-7 Iter 85: T = 707.1402958398443 K, F = -0.003282200125182655, relative_change = 5.759883369025966e-8 Iter 90: T = 707.1401714331967 K, F = -0.0013726553712756218, relative_change = 2.408854172622229e-8 Iter 95: T = 707.1401194048277 K, F = -0.0005740608817820236, relative_change = 1.0074119577037661e-8 Iter 100: T = 707.1400976459385 K, F = -0.0002400791188312823, relative_change = 4.21311777572031e-9 Iter 105: T = 707.1400885461104 K, F = -0.00010040395475152675, relative_change = 1.7619762788739763e-9 Iter 110: T = 707.1400847404536 K, F = -4.1990133744396196e-5, relative_change = 7.368795550256575e-10 Iter 115: T = 707.1400831488824 K, F = -1.7560773655000972e-5, relative_change = 3.081718027915647e-10 Iter 120: T = 707.1400824832682 K, F = -7.34412479241886e-6, relative_change = 1.2888112060508518e-10 Iter 125: T = 707.1400822049005 K, F = -3.071400347498532e-6, relative_change = 5.389961779557247e-11 Iter 130: T = 707.1400820884838 K, F = -1.2844961960745138e-6, relative_change = 2.2541461955272943e-11 Iter 135: T = 707.140082039797 K, F = -5.371917983776342e-7, relative_change = 9.427111210441504e-12 Iter 140: T = 707.1400820194355 K, F = -2.2465956317496705e-7, relative_change = 3.942522378834121e-12 Iter 145: T = 707.1400820109201 K, F = -9.395460753847118e-8, relative_change = 1.6487975744337739e-12 Iter 150: T = 707.1400820073588 K, F = -3.929220038223491e-8, relative_change = 6.895338758072183e-13 Iter 155: T = 707.1400820058695 K, F = -1.643290103992001e-8, relative_change = 2.8837891069213857e-13 Converged in 157 iterations to T = 707.1400820055543 K Iter 1: T = 973.4529045422129 K, F = -6048.78095286386, relative_change = 0.02654709545778709 Iter 2: T = 949.0989127773855 K, F = -5118.8318139054245, relative_change = 0.02501815100780895 Iter 3: T = 926.8710946025377 K, F = -4330.0403146418785, relative_change = 0.02341991743495064 Iter 5: T = 888.4738793744049 K, F = -3094.251296320146, relative_change = 0.020093083938694873 Iter 10: T = 823.0479183071167 K, F = -1325.0135503459571, relative_change = 0.012070789177597576 Iter 15: T = 789.3427013793744 K, F = -561.6482490889572, relative_change = 0.006193147852928642 Iter 20: T = 773.6077176220316 K, F = -236.45861323608892, relative_change = 0.002864080144087766 Iter 25: T = 766.6765914411014 K, F = -99.18921840787019, relative_change = 0.0012535157995841614 Iter 30: T = 763.7105650482561 K, F = -41.53653976107833, relative_change = 0.0005346603915205511 Iter 35: T = 762.457861734261 K, F = -17.380755342004512, relative_change = 0.00022547840986926292 Iter 40: T = 761.9317809553914 K, F = -7.270544173885291, relative_change = 9.463012208982827e-5 Iter 45: T = 761.7113826187979 K, F = -3.040927443579046, relative_change = 3.9633878260815675e-5 Iter 50: T = 761.6191418414452 K, F = -1.27180454071868, relative_change = 1.6585603045811822e-5 Iter 55: T = 761.5805538147779 K, F = -0.5318930112881849, relative_change = 6.938090200151768e-6 Iter 60: T = 761.5644137706234 K, F = -0.22244561253583994, relative_change = 2.901905884591606e-6 Iter 65: T = 761.5576634491791 K, F = -0.09302969211378076, relative_change = 1.2136665728432768e-6 Iter 70: T = 761.5548403207757 K, F = -0.03890617728660606, relative_change = 5.075794534005489e-7 Iter 75: T = 761.5536596436804 K, F = -0.016271036553373253, relative_change = 2.122774679795062e-7 Iter 80: T = 761.5531658684805 K, F = -0.006804743301562999, relative_change = 8.877726583785689e-8 Iter 85: T = 761.5529593654561 K, F = -0.0028458251764518216, relative_change = 3.71277641489962e-8 Iter 90: T = 761.5528730033659 K, F = -0.0011901581207891532, relative_change = 1.5527283345734184e-8 Iter 95: T = 761.5528368856981 K, F = -0.0004977383475845976, relative_change = 6.493696900551866e-9 Iter 100: T = 761.5528217808562 K, F = -0.00020816012455848742, relative_change = 2.7157418950620855e-9 Iter 105: T = 761.5528154638306 K, F = -8.705504981165735e-5, relative_change = 1.1357557351043304e-9 Iter 110: T = 761.552812821975 K, F = -3.640746082755886e-5, relative_change = 4.749866114362799e-10 Iter 115: T = 761.5528117171194 K, F = -1.5226034783433207e-5, relative_change = 1.9864507309654981e-10 Iter 120: T = 761.5528112550556 K, F = -6.367710471466559e-6, relative_change = 8.307575371445591e-11 Iter 125: T = 761.5528110618151 K, F = -2.6630525259419002e-6, relative_change = 3.474327186081024e-11 Iter 130: T = 761.5528109809995 K, F = -1.1137196042065867e-6, relative_change = 1.453004123211129e-11 Iter 135: T = 761.5528109472015 K, F = -4.657714637312793e-7, relative_change = 6.076644919084141e-12 Iter 140: T = 761.5528109330668 K, F = -1.947902740218055e-7, relative_change = 2.5413135436504904e-12 Iter 145: T = 761.5528109271555 K, F = -8.146402141750997e-8, relative_change = 1.0628129253159093e-12 Iter 150: T = 761.5528109246833 K, F = -3.406833692931599e-8, relative_change = 4.444694504765925e-13 Converged in 154 iterations to T = 761.552810923791 K Iter 1: T = 964.3061106152744 K, F = -8132.886649964034, relative_change = 0.035693889384725556 Iter 2: T = 930.5366433083898 K, F = -6899.642952337211, relative_change = 0.03501944759567901 Iter 3: T = 898.660588454056 K, F = -5852.339291445195, relative_change = 0.03425556111471667 Iter 5: T = 840.4756730038667 K, F = -4207.799394186112, relative_change = 0.0324338618933287 Iter 10: T = 726.168964779171 K, F = -1835.1237121191903, relative_change = 0.026057539472153682 Iter 15: T = 652.3654078396809 K, F = -792.4458537778511, relative_change = 0.017862701730881763 Iter 20: T = 610.5949658642216 K, F = -338.34062706840473, relative_change = 0.010248817111755766 Iter 25: T = 589.7146548501206 K, F = -143.10631629312505, relative_change = 0.005086819065821141 Iter 30: T = 580.151160632059 K, F = -60.175110505115086, relative_change = 0.0023091057955580492 Iter 35: T = 575.9800471992248 K, F = -25.227162492014035, relative_change = 0.0010016182952476583 Iter 40: T = 574.2032720395931 K, F = -10.561342969765013, relative_change = 0.000425520270190125 Iter 45: T = 573.454352550498 K, F = -4.41883683562771, relative_change = 0.0001791446609843247 Iter 50: T = 573.1401076521994 K, F = -1.848354553414205, relative_change = 7.513008339578524e-5 Iter 55: T = 573.0085040870445 K, F = -0.7730642938079513, relative_change = 3.1457116385162115e-5 Iter 60: T = 572.9534338886708 K, F = -0.32331528487047895, relative_change = 1.3162192389965289e-5 Iter 65: T = 572.9303972686092 K, F = -0.13521616187934807, relative_change = 5.505715083493335e-6 Iter 70: T = 572.9207620981628 K, F = -0.05654933707896162, relative_change = 2.3027533289269966e-6 Iter 75: T = 572.9167323832363 K, F = -0.023649664664135706, relative_change = 9.63073495074082e-7 Iter 80: T = 572.915047078318 K, F = -0.009890582089682076, relative_change = 4.0277488065127365e-7 Iter 85: T = 572.9143422584253 K, F = -0.00413636127722028, relative_change = 1.6844632222922856e-7 Iter 90: T = 572.9140474934109 K, F = -0.0017298759872452218, relative_change = 7.04464485074234e-8 Iter 95: T = 572.913924219001 K, F = -0.0007234548500485438, relative_change = 2.9461578417114536e-8 Iter 100: T = 572.9138726641426 K, F = -0.000302557466736908, relative_change = 1.2321189567266988e-8 Iter 105: T = 572.9138511032802 K, F = -0.00012653314749766498, relative_change = 5.152869611876454e-9 Iter 110: T = 572.9138420862691 K, F = -5.291767358373001e-5, relative_change = 2.1549917785605278e-9 Iter 115: T = 572.9138383152473 K, F = -2.213080310881077e-5, relative_change = 9.012433279306335e-10 Iter 120: T = 572.9138367381609 K, F = -9.25536554480244e-6, relative_change = 3.7691070283884774e-10 Iter 125: T = 572.9138360786045 K, F = -3.8707043250596485e-6, relative_change = 1.5762855487161338e-10 Iter 130: T = 572.9138358027702 K, F = -1.618774862321981e-6, relative_change = 6.592214784870191e-11 Iter 135: T = 572.913835687413 K, F = -6.769914691617807e-7, relative_change = 2.7569449466962216e-11 Iter 140: T = 572.9138356391692 K, F = -2.831258253399582e-7, relative_change = 1.1529869271906512e-11 Iter 145: T = 572.9138356189931 K, F = -1.1840665015139251e-7, relative_change = 4.821931011625539e-12 Iter 150: T = 572.9138356105552 K, F = -4.95189415028463e-8, relative_change = 2.016583691937005e-12 Iter 155: T = 572.9138356070264 K, F = -2.0709359449533338e-8, relative_change = 8.433572138292703e-13 Iter 160: T = 572.9138356055506 K, F = -8.660760608680818e-9, relative_change = 3.5269632334444395e-13 Converged in 163 iterations to T = 572.9138356051185 K Iter 1: T = 963.585809148891 K, F = -8297.008024263074, relative_change = 0.03641419085110895 Iter 2: T = 929.0508688245345 K, F = -7040.243632954662, relative_change = 0.0358400258663629 Iter 3: T = 896.3617364356277 K, F = -5972.919737931464, relative_change = 0.035185514040007505 Iter 5: T = 836.4022990919143 K, F = -4296.791355442204, relative_change = 0.03360629094762682 Iter 10: T = 716.8667583865034 K, F = -1877.5881501989286, relative_change = 0.02786364720119637 Iter 15: T = 637.3977643605803 K, F = -812.9742059071028, relative_change = 0.019938552500748254 Iter 20: T = 590.8947577862469 K, F = -348.05706174621423, relative_change = 0.01193885743079646 Iter 25: T = 566.9903726707707 K, F = -147.51126789263336, relative_change = 0.006110481992231728 Iter 30: T = 555.8467564734414 K, F = -62.097713440625135, relative_change = 0.002821877899779037 Iter 35: T = 550.9417959234271 K, F = -26.047446488986115, relative_change = 0.0012341982437627781 Iter 40: T = 548.8435644008568 K, F = -10.90742185612629, relative_change = 0.0005262591227009774 Iter 45: T = 547.9575122718858 K, F = -4.564115296379759, relative_change = 0.00022190601747943054 Iter 50: T = 547.585433652515 K, F = -1.9092080316638067, relative_change = 9.312561637629567e-5 Iter 55: T = 547.4295579389276 K, F = -0.7985308696719869, relative_change = 3.900282737448515e-5 Iter 60: T = 547.3643218372358 K, F = -0.3339686772641052, relative_change = 1.6321365656784408e-5 Iter 65: T = 547.3370310865215 K, F = -0.13967205705225277, relative_change = 6.827526158704284e-6 Iter 70: T = 547.3256163277559 K, F = -0.058412936503962315, relative_change = 2.8556567403420775e-6 Iter 75: T = 547.3208422872486 K, F = -0.024429060091869653, relative_change = 1.1943228891661778e-6 Iter 80: T = 547.318845682403 K, F = -0.010216537344957644, relative_change = 4.994893896547773e-7 Iter 85: T = 547.3180106707002 K, F = -0.004272680143914215, relative_change = 2.0889405347564862e-7 Iter 90: T = 547.3176614574852 K, F = -0.001786886249879882, relative_change = 8.736227218639614e-8 Iter 95: T = 547.3175154121124 K, F = -0.0007472972372595255, relative_change = 3.6535995275321117e-8 Iter 100: T = 547.317454334152 K, F = -0.0003125286406784056, relative_change = 1.5279798233493212e-8 Iter 105: T = 547.3174287906124 K, F = -0.00013070321165331578, relative_change = 6.3901956055596885e-9 Iter 110: T = 547.3174181079979 K, F = -5.4661644782683094e-5, relative_change = 2.6724564019694204e-9 Iter 115: T = 547.3174136404007 K, F = -2.2860152583431548e-5, relative_change = 1.1176532235470297e-9 Iter 120: T = 547.3174117719981 K, F = -9.560389345575349e-6, relative_change = 4.674159590628043e-10 Iter 125: T = 547.3174109906098 K, F = -3.998268459454168e-6, relative_change = 1.954789111317663e-10 Iter 130: T = 547.3174106638239 K, F = -1.67212374468928e-6, relative_change = 8.175162151647693e-11 Iter 135: T = 547.3174105271581 K, F = -6.993023122237041e-7, relative_change = 3.41895139065171e-11 Iter 140: T = 547.3174104700029 K, F = -2.924569876827654e-7, relative_change = 1.4298483041781405e-11 Iter 145: T = 547.3174104460998 K, F = -1.2230811841096312e-7, relative_change = 5.979753026903059e-12 Iter 150: T = 547.3174104361033 K, F = -5.115023388180262e-8, relative_change = 2.5007805686322204e-12 Iter 155: T = 547.3174104319227 K, F = -2.1391942328641278e-8, relative_change = 1.045871145503104e-12 Iter 160: T = 547.3174104301743 K, F = -8.94672505524774e-9, relative_change = 4.3741336987654005e-13 Converged in 164 iterations to T = 547.3174104295432 K Iter 1: T = 969.351217693358 K, F = -6983.354203086932, relative_change = 0.03064878230664208 Iter 2: T = 940.8441383646821 K, F = -5916.3365368366685, relative_change = 0.029408411325371347 Iter 3: T = 914.43953255539 K, F = -5010.661847496192, relative_change = 0.0280648034383112 Iter 5: T = 867.7510781927056 K, F = -3589.966872621069, relative_change = 0.025100157108822987 Iter 10: T = 783.6695859626046 K, F = -1548.06064275249, relative_change = 0.016829589694044352 Iter 15: T = 736.8672927959154 K, F = -660.0764834940384, relative_change = 0.009458302130984995 Iter 20: T = 713.7774381407643 K, F = -278.9321561149911, relative_change = 0.004628739364369848 Iter 25: T = 703.2857590086475 K, F = -117.22990458263801, relative_change = 0.002085235077788334 Iter 30: T = 698.7281389396674 K, F = -49.13449312041348, relative_change = 0.0009012703231425453 Iter 35: T = 696.7902702773648 K, F = -20.567973376415658, relative_change = 0.0003822838130155068 Iter 40: T = 695.9740975868841 K, F = -8.605195496164624, relative_change = 0.00016083314392912685 Iter 45: T = 695.6317489810895 K, F = -3.5993972982439204, relative_change = 6.74312833937506e-5 Iter 50: T = 695.4883961562831 K, F = -1.5054164092129079, relative_change = 2.8230225209249675e-5 Iter 55: T = 695.4284129946724 K, F = -0.6296015844097461, relative_change = 1.1811412411620034e-5 Iter 60: T = 695.4033218409135 K, F = -0.26331013208993664, relative_change = 4.940582942248921e-6 Iter 65: T = 695.3928274620639 K, F = -0.11012000690647589, relative_change = 2.0663698546630425e-6 Iter 70: T = 695.388438419796 K, F = -0.04605360083134835, relative_change = 8.642083745976032e-7 Iter 75: T = 695.38660284057 K, F = -0.019260183148312238, relative_change = 3.614271296799619e-7 Iter 80: T = 695.3858351742857 K, F = -0.008054841629591136, relative_change = 1.5115399314944388e-7 Iter 85: T = 695.3855141261805 K, F = -0.003368631492923324, relative_change = 6.321455396213005e-8 Iter 90: T = 695.3853798598718 K, F = -0.0014088020117069, relative_change = 2.643710742670922e-8 Iter 95: T = 695.3853237080707 K, F = -0.0005891778424753635, relative_change = 1.1056318612452513e-8 Iter 100: T = 695.3853002247121 K, F = -0.0002464012132433746, relative_change = 4.623885288505962e-9 Iter 105: T = 695.3852904036901 K, F = -0.00010304793006521429, relative_change = 1.933764179190021e-9 Iter 110: T = 695.3852862964213 K, F = -4.309587530204606e-5, relative_change = 8.087233020667972e-10 Iter 115: T = 695.3852845787125 K, F = -1.802320959753967e-5, relative_change = 3.3821774471055263e-10 Iter 120: T = 695.3852838603461 K, F = -7.53752154170062e-6, relative_change = 1.4144670155907844e-10 Iter 125: T = 695.3852835599167 K, F = -3.1522818136897612e-6, relative_change = 5.915470534730185e-11 Iter 130: T = 695.3852834342736 K, F = -1.3183226827973016e-6, relative_change = 2.4739218930855393e-11 Iter 135: T = 695.3852833817281 K, F = -5.513373348975392e-7, relative_change = 1.0346218885311239e-11 Iter 140: T = 695.385283359753 K, F = -2.305760229415199e-7, relative_change = 4.326915397194676e-12 Iter 145: T = 695.3852833505626 K, F = -9.642878084914486e-8, relative_change = 1.8095514498528446e-12 Iter 150: T = 695.3852833467191 K, F = -4.03267365056692e-8, relative_change = 7.567585514510299e-13 Iter 155: T = 695.3852833451117 K, F = -1.6864757368395544e-8, relative_change = 3.1647860607382324e-13 Converged in 158 iterations to T = 695.3852833446412 K Iter 1: T = 966.5477178031953 K, F = -7622.1343198773675, relative_change = 0.03345228219680478 Iter 2: T = 935.1376795517631 K, F = -6462.4258962805, relative_change = 0.032497141809844726 Iter 3: T = 905.7400698455374 K, F = -5477.750178779891, relative_change = 0.031436664727611814 Iter 5: T = 852.856555268094 K, F = -3932.129959354478, relative_change = 0.028995629128865125 Iter 10: T = 753.2134844424841 K, F = -1705.5253912768937, relative_change = 0.021331529115004036 Iter 15: T = 693.5857349907375 K, F = -731.5619019619334, relative_change = 0.013155711034132916 Iter 20: T = 662.3167583347639 K, F = -310.50216200443356, relative_change = 0.006887307270270964 Iter 25: T = 647.5449120972766 K, F = -130.82563924893688, relative_change = 0.003222929921293746 Iter 30: T = 640.9964995292703 K, F = -54.8996576159826, relative_change = 0.0014188030214814511 Iter 35: T = 638.1858373916045 K, F = -22.99381987829924, relative_change = 0.0006067474994345508 Iter 40: T = 636.9971829004538 K, F = -9.622372525477815, relative_change = 0.0002561687763347746 Iter 45: T = 636.4977176063305 K, F = -4.025263474080487, relative_change = 0.00010756200305972333 Iter 50: T = 636.2884197186785 K, F = -1.6836014472510763, relative_change = 4.5059217254809564e-5 Iter 55: T = 636.2008159054324 K, F = -0.7041351928186486, relative_change = 1.8857540903789216e-5 Iter 60: T = 636.1641661686975 K, F = -0.2944835150863294, relative_change = 7.888766564336225e-6 Iter 65: T = 636.1488365752043 K, F = -0.12315753199595608, relative_change = 3.299581940950349e-6 Iter 70: T = 636.1424251649686 K, F = -0.05150612719601383, relative_change = 1.3799955171271744e-6 Iter 75: T = 636.1397437682177 K, F = -0.021540508375145095, relative_change = 5.771430149450497e-7 Iter 80: T = 636.1386223641065 K, F = -0.009008503247787514, relative_change = 2.4137027177340876e-7 Iter 85: T = 636.1381533774216 K, F = -0.0037674645854166577, relative_change = 1.0094430980422645e-7 Iter 90: T = 636.1379572412233 K, F = -0.0015755988483024952, relative_change = 4.221618229849416e-8 Iter 95: T = 636.1378752146586 K, F = -0.0006589342839724566, relative_change = 1.765532322032792e-8 Iter 100: T = 636.1378409101585 K, F = -0.0002755741916990462, relative_change = 7.383669044264185e-9 Iter 105: T = 636.137826563605 K, F = -0.0001152484197731729, relative_change = 3.087938952492916e-9 Iter 110: T = 636.1378205637045 K, F = -4.819826575463981e-5, relative_change = 1.291413012365759e-9 Iter 115: T = 636.1378180544745 K, F = -2.015709034158819e-5, relative_change = 5.400843544854965e-10 Iter 120: T = 636.1378170050845 K, F = -8.429935475173789e-6, relative_change = 2.258697172095249e-10 Iter 125: T = 636.137816566217 K, F = -3.5254990571886857e-6, relative_change = 9.446139653503895e-11 Iter 130: T = 636.1378163826773 K, F = -1.474405575019322e-6, relative_change = 3.950487792152401e-11 Iter 135: T = 636.1378163059189 K, F = -6.166137108687408e-7, relative_change = 1.652140347223127e-11 Iter 140: T = 636.1378162738176 K, F = -2.5787507690333555e-7, relative_change = 6.9094444656018876e-12 Iter 145: T = 636.1378162603925 K, F = -1.0784625376070167e-7, relative_change = 2.889607286620299e-12 Iter 150: T = 636.1378162547779 K, F = -4.510244239197547e-8, relative_change = 1.2084642872703258e-12 Iter 155: T = 636.1378162524298 K, F = -1.8861959383276172e-8, relative_change = 5.053829259385897e-13 Converged in 160 iterations to T = 636.1378162514479 K Iter 1: T = 966.5465685915431 K, F = -7622.396168845483, relative_change = 0.033453431408456885 Iter 2: T = 935.1353294941691 K, F = -6462.6499143776655, relative_change = 0.03249842285731407 Iter 3: T = 905.7364689130723 K, F = -5477.941965018335, relative_change = 0.03143808137053193 Iter 5: T = 852.8503186969189 K, F = -3932.270803266556, relative_change = 0.02899731449172899 Iter 10: T = 753.2002868453956 K, F = -1705.5909265368648, relative_change = 0.02133365813826955 Iter 15: T = 693.5663343143569 K, F = -731.5921420686876, relative_change = 0.013157624665067244 Iter 20: T = 662.2931265390326 K, F = -310.51572071710956, relative_change = 0.006888556296106258 Iter 25: T = 647.5189669764383 K, F = -130.83153581110096, relative_change = 0.0032235832462280275 Iter 30: T = 640.9694531567721 K, F = -54.90217068044065, relative_change = 0.0014191057005923362 Iter 35: T = 638.1583029337938 K, F = -22.99487977782231, relative_change = 0.0006068798546463825 Iter 40: T = 636.9694391435752 K, F = -9.622817400175837, relative_change = 0.00025622518922951824 Iter 45: T = 636.4698853841983 K, F = -4.025449812087861, relative_change = 0.00010758578498653603 Iter 50: T = 636.2605503338187 K, F = -1.6836794263783503, relative_change = 4.5069196556552195e-5 Iter 55: T = 636.1729309495689 K, F = -0.7041678134490861, relative_change = 1.886172023306172e-5 Iter 60: T = 636.1362746957518 K, F = -0.29449715896914386, relative_change = 7.890515437323176e-6 Iter 65: T = 636.1209423758435 K, F = -0.1231632383010926, relative_change = 3.300313520358285e-6 Iter 70: T = 636.1145298252321 K, F = -0.05150851368811532, relative_change = 1.3803015038307835e-6 Iter 75: T = 636.1118479515352 K, F = -0.021541506442853575, relative_change = 5.772709877405018e-7 Iter 80: T = 636.1107263479546 K, F = -0.009008920652864183, relative_change = 2.4142379248186957e-7 Iter 85: T = 636.1102572778485 K, F = -0.0037676391491822114, relative_change = 1.0096669296465172e-7 Iter 90: T = 636.1100611067621 K, F = -0.0015756718521520718, relative_change = 4.2225543210268716e-8 Iter 95: T = 636.109979065607 K, F = -0.0006589648151622551, relative_change = 1.7659238073264008e-8 Iter 100: T = 636.1099447550049 K, F = -0.00027558696031015906, relative_change = 7.385306286136718e-9 Iter 105: T = 636.1099304058993 K, F = -0.00011525375756005207, relative_change = 3.0886236078282404e-9 Iter 110: T = 636.1099244049318 K, F = -4.8200498462824815e-5, relative_change = 1.291699353666478e-9 Iter 115: T = 636.1099218952554 K, F = -2.0158023828598104e-5, relative_change = 5.402040989217401e-10 Iter 120: T = 636.1099208456787 K, F = -8.430326270236765e-6, relative_change = 2.2591980647150105e-10 Iter 125: T = 636.1099204067333 K, F = -3.5256638625247305e-6, relative_change = 9.448238117830182e-11 Iter 130: T = 636.1099202231611 K, F = -1.4744755360007744e-6, relative_change = 3.9513681750180644e-11 Iter 135: T = 636.109920146389 K, F = -6.166426918530199e-7, relative_change = 1.6525077899592154e-11 Iter 140: T = 636.1099201142819 K, F = -2.578872325686987e-7, relative_change = 6.910982104929991e-12 Iter 145: T = 636.1099201008543 K, F = -1.0785147008807172e-7, relative_change = 2.8902539005896973e-12 Iter 150: T = 636.1099200952389 K, F = -4.510526474543752e-8, relative_change = 1.2087518813295181e-12 Iter 155: T = 636.1099200928903 K, F = -1.8864387274497574e-8, relative_change = 5.055366316386573e-13 Converged in 160 iterations to T = 636.1099200919082 K Iter 1: T = 976.4020228515044 K, F = -5376.821540756042, relative_change = 0.02359797714849555 Iter 2: T = 954.9664045881802 K, F = -4546.501378659406, relative_change = 0.02195368071926269 Iter 3: T = 935.6017994287059 K, F = -3842.664125150749, relative_change = 0.02027778680635896 Iter 5: T = 902.6657713465135 K, F = -2741.1845518785717, relative_change = 0.016924314534204562 Iter 10: T = 848.4032789023523 K, F = -1168.9544874909802, relative_change = 0.009529561647861787 Iter 15: T = 821.6009131571408 K, F = -494.0126410990632, relative_change = 0.004669539340001815 Iter 20: T = 809.4136259857911 K, F = -207.6334812165719, relative_change = 0.0021050435528020893 Iter 25: T = 804.1175366418078 K, F = -87.02712609280016, relative_change = 0.0009101214866929739 Iter 30: T = 801.8653106316175 K, F = -36.43038104252248, relative_change = 0.0003860921829322882 Iter 35: T = 800.9166732633594 K, F = -15.24174481360797, relative_change = 0.00016244510703514696 Iter 40: T = 800.518749659037 K, F = -6.375356322458977, relative_change = 6.810883861085795e-5 Iter 45: T = 800.3521236270045 K, F = -2.6664388549757247, relative_change = 2.851418715615129e-5 Iter 50: T = 800.282401883438 K, F = -1.1151696068656607, relative_change = 1.193027392052172e-5 Iter 55: T = 800.2532369844571 K, F = -0.46638302724567027, relative_change = 4.99031066780857e-6 Iter 60: T = 800.2410387497894 K, F = -0.1950479627904399, relative_change = 2.0871698069221233e-6 Iter 65: T = 800.2359371054712 K, F = -0.08157156422847378, relative_change = 8.729077269294069e-7 Iter 70: T = 800.2338035024503 K, F = -0.03411423325254748, relative_change = 3.6506540132387604e-7 Iter 75: T = 800.2329111981627 K, F = -0.014266985163462254, relative_change = 1.5267557906086444e-7 Iter 80: T = 800.2325380247996 K, F = -0.005966624522752095, relative_change = 6.385090236185769e-8 Iter 85: T = 800.2323819590583 K, F = -0.0024953137980177065, relative_change = 2.6703236481288968e-8 Iter 90: T = 800.2323166904694 K, F = -0.001043570058717802, relative_change = 1.1167617037409777e-8 Iter 95: T = 800.2322893943602 K, F = -0.0004364334663216063, relative_change = 4.670431625586339e-9 Iter 100: T = 800.2322779788004 K, F = -0.00018252168690324755, relative_change = 1.95323040634912e-9 Iter 105: T = 800.2322732046769 K, F = -7.633275044871546e-5, relative_change = 8.168643186539374e-10 Iter 110: T = 800.2322712080813 K, F = -3.192326636936027e-5, relative_change = 3.4162240176731423e-10 Iter 115: T = 800.2322703730813 K, F = -1.3350691724811625e-5, relative_change = 1.4287057415032374e-10 Iter 120: T = 800.2322700238743 K, F = -5.58342051926175e-6, relative_change = 5.97501997207037e-11 Iter 125: T = 800.2322698778318 K, F = -2.335052628921197e-6, relative_change = 2.4988241630074525e-11 Iter 130: T = 800.232269816755 K, F = -9.765458909294367e-7, relative_change = 1.0450370322292361e-11 Iter 135: T = 800.232269791212 K, F = -4.084046224539506e-7, relative_change = 4.370485387600501e-12 Iter 140: T = 800.2322697805296 K, F = -1.707997223654445e-7, relative_change = 1.827789524923928e-12 Iter 145: T = 800.232269776062 K, F = -7.143051672375833e-8, relative_change = 7.644037614517444e-13 Iter 150: T = 800.2322697741937 K, F = -2.987244929197885e-8, relative_change = 3.1967587034441844e-13 Converged in 153 iterations to T = 800.2322697736466 K Iter 1: T = 965.2571976498695 K, F = -7916.180564414221, relative_change = 0.03474280235013052 Iter 2: T = 932.4929995742438 K, F = -6714.074458269094, relative_change = 0.03394349004120076 Iter 3: T = 901.6780123698411 K, F = -5693.283563078282, relative_change = 0.03304581076584183 Iter 5: T = 845.7823245619741 K, F = -4090.603026616995, relative_change = 0.030937337789922807 Iter 10: T = 737.9755759627859 K, F = -1779.6883065751101, relative_change = 0.02390223380206851 Iter 15: T = 670.7437468515645 K, F = -766.1145013062206, relative_change = 0.01559625727287178 Iter 20: T = 634.0595959489151 K, F = -326.15157388275554, relative_change = 0.008554885943218274 Iter 25: T = 616.2335232484725 K, F = -137.67992099960261, relative_change = 0.004120462274868464 Iter 30: T = 608.205269796527 K, F = -57.83215535078201, relative_change = 0.001840738661905794 Iter 35: T = 604.7330774620262 K, F = -24.232859912367143, relative_change = 0.0007924909147466279 Iter 40: T = 603.2596561640556 K, F = -10.142853303484904, relative_change = 0.0003355681451714217 Iter 45: T = 602.6396280450424 K, F = -4.243343803353446, relative_change = 0.00014107586063222014 Iter 50: T = 602.3796482891604 K, F = -1.7748773024212077, relative_change = 5.9129553120104503e-5 Iter 55: T = 602.270802759942 K, F = -0.742320486242499, relative_change = 2.475148607591986e-5 Iter 60: T = 602.2252614249022 K, F = -0.31045527448218735, relative_change = 1.0355360359018208e-5 Iter 65: T = 602.2062118476882 K, F = -0.12983749989145688, relative_change = 4.33143419686259e-6 Iter 70: T = 602.1982444489114 K, F = -0.05429983731313276, relative_change = 1.8115797634997487e-6 Iter 75: T = 602.1949122759746 K, F = -0.02270888316355335, relative_change = 7.576456763221905e-7 Iter 80: T = 602.193518701935 K, F = -0.009497133611007902, relative_change = 3.168602102944044e-7 Iter 85: T = 602.1929358892143 K, F = -0.003971816002141637, relative_change = 1.325153782301736e-7 Iter 90: T = 602.192692149377 K, F = -0.0016610611135465247, relative_change = 5.541962814310837e-8 Iter 95: T = 602.1925902143618 K, F = -0.0006946756352274042, relative_change = 2.3177170362063543e-8 Iter 100: T = 602.1925475839028 K, F = -0.000290521653826592, relative_change = 9.692972939569833e-9 Iter 105: T = 602.1925297553325 K, F = -0.00012149962628033029, relative_change = 4.053717649581417e-9 Iter 110: T = 602.192522299211 K, F = -5.081259508044056e-5, relative_change = 1.6953132445487789e-9 Iter 115: T = 602.1925191809718 K, F = -2.1250434440400756e-5, relative_change = 7.090002742497619e-10 Iter 120: T = 602.1925178768869 K, F = -8.88718572455982e-6, relative_change = 2.9651239360106497e-10 Iter 125: T = 602.192517331503 K, F = -3.716727168423528e-6, relative_change = 1.2400502341001934e-10 Iter 130: T = 602.192517103417 K, F = -1.5543798277395382e-6, relative_change = 5.1860386447531025e-11 Iter 135: T = 602.1925170080287 K, F = -6.500606502535256e-7, relative_change = 2.1688647755376126e-11 Iter 140: T = 602.1925169681361 K, F = -2.718635399023839e-7, relative_change = 9.070465277405282e-12 Iter 145: T = 602.1925169514526 K, F = -1.1369640523506419e-7, relative_change = 3.79337110212267e-12 Iter 150: T = 602.1925169444754 K, F = -4.7549767345778093e-8, relative_change = 1.5864522101570622e-12 Iter 155: T = 602.1925169415574 K, F = -1.9885935564900592e-8, relative_change = 6.634750954571476e-13 Iter 160: T = 602.192516940337 K, F = -8.316429322974273e-9, relative_change = 2.7746965793830863e-13 Converged in 162 iterations to T = 602.1925169400787 K Iter 1: T = 964.5832967057889 K, F = -8069.729535568272, relative_change = 0.035416703294211094 Iter 2: T = 931.1074469697901 K, F = -6845.55111424661, relative_change = 0.03470498592534666 Iter 3: T = 899.5420933811719 K, F = -5805.965238580146, relative_change = 0.03390087115224459 Iter 5: T = 842.030593574184 K, F = -4173.607520858847, relative_change = 0.03199176531921619 Iter 10: T = 729.6638676954265 K, F = -1818.895246181066, relative_change = 0.025403968050372185 Iter 15: T = 657.8737586426781 K, F = -784.6866110868035, relative_change = 0.017152422999265778 Iter 20: T = 617.7051637871709 K, F = -334.72025533883834, relative_change = 0.009701817004696389 Iter 25: T = 597.8075249150305 K, F = -141.48455648201093, relative_change = 0.00476847118200596 Iter 30: T = 588.7443579839385 K, F = -59.47236921153979, relative_change = 0.0021531612013818823 Iter 35: T = 584.8024936556382 K, F = -24.92841299123661, relative_change = 0.0009316408767117108 Iter 40: T = 583.1255126830883 K, F = -10.435504973944735, relative_change = 0.00039535485766800904 Iter 45: T = 582.4190486649752 K, F = -4.366049157805847, relative_change = 0.00016636635626814618 Iter 50: T = 582.1226878317542 K, F = -1.8262497214419235, relative_change = 6.975716998935793e-5 Iter 55: T = 581.9985863038692 K, F = -0.7638148018283608, relative_change = 2.920501969885754e-5 Iter 60: T = 581.9466575335485 K, F = -0.3194461630415917, relative_change = 1.2219447925243992e-5 Iter 65: T = 581.9249353945464 K, F = -0.13359789597782532, relative_change = 5.111292136731614e-6 Iter 70: T = 581.9158500779962 K, F = -0.05587253219476951, relative_change = 2.1377736540026047e-6 Iter 75: T = 581.9120503399179 K, F = -0.023366612097792283, relative_change = 8.940722511349722e-7 Iter 80: T = 581.9104612178041 K, F = -0.009772205306730564, relative_change = 3.739169013941063e-7 Iter 85: T = 581.9097966233631 K, F = -0.00408685454967167, relative_change = 1.563774246275764e-7 Iter 90: T = 581.9095186812275 K, F = -0.0017091716570368232, relative_change = 6.539906583634348e-8 Iter 95: T = 581.9094024423664 K, F = -0.0007147960465648251, relative_change = 2.7350698201298377e-8 Iter 100: T = 581.9093538298621 K, F = -0.00029893625213689434, relative_change = 1.1438393517649742e-8 Iter 105: T = 581.9093334995279 K, F = -0.00012501871275144572, relative_change = 4.783673646664705e-9 Iter 110: T = 581.9093249971385 K, F = -5.2284318453499345e-5, relative_change = 2.000589577461634e-9 Iter 115: T = 581.9093214413376 K, F = -2.1865926567887772e-5, relative_change = 8.366704847607761e-10 Iter 120: T = 581.9093199542592 K, F = -9.14459152434599e-6, relative_change = 3.4990558908840233e-10 Iter 125: T = 581.9093193323454 K, F = -3.824377948768998e-6, relative_change = 1.4633471842968018e-10 Iter 130: T = 581.9093190722535 K, F = -1.5994006876685063e-6, relative_change = 6.11989329819209e-11 Iter 135: T = 581.90931896348 K, F = -6.688886812211692e-7, relative_change = 2.5594132806408915e-11 Iter 140: T = 581.9093189179895 K, F = -2.7973721783425276e-7, relative_change = 1.0703771356601183e-11 Iter 145: T = 581.9093188989649 K, F = -1.1698946245086717e-7, relative_change = 4.47644566960207e-12 Iter 150: T = 581.9093188910085 K, F = -4.892550564683518e-8, relative_change = 1.8720691873603887e-12 Iter 155: T = 581.9093188876811 K, F = -2.0461094152324222e-8, relative_change = 7.829164644671707e-13 Iter 160: T = 581.9093188862896 K, F = -8.557442865431142e-9, relative_change = 3.2743913220292753e-13 Converged in 163 iterations to T = 581.9093188858822 K Iter 1: T = 964.3799496783929 K, F = -8116.062349193409, relative_change = 0.03562005032160709 Iter 2: T = 930.6887501667728 K, F = -6885.232769277836, relative_change = 0.034935607612804134 Iter 3: T = 898.8955805949993 K, F = -5839.984297579201, relative_change = 0.034160904562429054 Iter 5: T = 840.89056277745 K, F = -4198.68817419346, relative_change = 0.0323156068802664 Iter 10: T = 727.1044379472308 K, F = -1830.7946744159565, relative_change = 0.02588128807527468 Iter 15: T = 653.8456997979204 K, F = -790.3716507886129, relative_change = 0.01766910495112876 Iter 20: T = 612.5126595308544 K, F = -337.37027024151644, relative_change = 0.010098208653877425 Iter 25: T = 591.9026459864498 K, F = -142.67071377818073, relative_change = 0.00499855266376333 Iter 30: T = 582.4773945287816 K, F = -59.98611787520555, relative_change = 0.002265703383437728 Iter 35: T = 578.3697694855124 K, F = -25.146768302086087, relative_change = 0.0009821071454946455 Iter 40: T = 576.6206605763166 K, F = -10.527470281670803, relative_change = 0.0004171028408260387 Iter 45: T = 575.8835165630677 K, F = -4.404625910885526, relative_change = 0.00017557775804119202 Iter 50: T = 575.574232971296 K, F = -1.842403429513102, relative_change = 7.36300865666448e-5 Iter 55: T = 575.4447107548851 K, F = -0.7705740670131698, relative_change = 3.0828343569208934e-5 Iter 60: T = 575.390512137568 K, F = -0.3222735977305821, relative_change = 1.2898976741958179e-5 Iter 65: T = 575.3678402221475 K, F = -0.1347804730717849, relative_change = 5.395590447759309e-6 Iter 70: T = 575.3583576103722 K, F = -0.05636711932859467, relative_change = 2.2566900681244655e-6 Iter 75: T = 575.3543917033983 K, F = -0.023573457714935936, relative_change = 9.438079207921037e-7 Iter 80: T = 575.3527330847937 K, F = -0.009858711203928616, relative_change = 3.947175480210118e-7 Iter 85: T = 575.3520394256226 K, F = -0.004123032452509889, relative_change = 1.650766076476658e-7 Iter 90: T = 575.3517493281879 K, F = -0.0017243017062445465, relative_change = 6.903718629101561e-8 Iter 95: T = 575.3516280058213 K, F = -0.000721123617620778, relative_change = 2.8872206834500094e-8 Iter 100: T = 575.3515772673317 K, F = -0.0003015825180339715, relative_change = 1.207470713946516e-8 Iter 105: T = 575.3515560478846 K, F = -0.00012612541244466646, relative_change = 5.0497876847982905e-9 Iter 110: T = 575.3515471736577 K, F = -5.274715424469223e-5, relative_change = 2.1118816922751402e-9 Iter 115: T = 575.3515434623497 K, F = -2.205948989364437e-5, relative_change = 8.832141742073588e-10 Iter 120: T = 575.3515419102364 K, F = -9.225541562130068e-6, relative_change = 3.6937069788769195e-10 Iter 125: T = 575.3515412611241 K, F = -3.858231657827282e-6, relative_change = 1.5447523791651292e-10 Iter 130: T = 575.3515409896576 K, F = -1.6135586956012027e-6, relative_change = 6.460339504225775e-11 Iter 135: T = 575.351540876127 K, F = -6.748100123132872e-7, relative_change = 2.7017931212386227e-11 Iter 140: T = 575.3515408286472 K, F = -2.8221294701147315e-7, relative_change = 1.1299195111907386e-11 Iter 145: T = 575.3515408087906 K, F = -1.1802498089963365e-7, relative_change = 4.725464588373429e-12 Iter 150: T = 575.3515408004863 K, F = -4.9359194953524366e-8, relative_change = 1.976235252076636e-12 Iter 155: T = 575.3515407970134 K, F = -2.064315557381846e-8, relative_change = 8.265072353523416e-13 Iter 160: T = 575.3515407955609 K, F = -8.632748682568803e-9, relative_change = 3.4563655840759946e-13 Converged in 163 iterations to T = 575.3515407951357 K Iter 1: T = 980.1161055921319 K, F = -4530.564255299302, relative_change = 0.01988389440786808 Iter 2: T = 962.277043880448 K, F = -3827.006275826558, relative_change = 0.018200967834220587 Iter 3: T = 946.3620974713484 K, F = -3231.198260348722, relative_change = 0.016538840358200194 Iter 5: T = 919.7818977630457 K, F = -2300.253678509445, relative_change = 0.013365854604527567 Iter 10: T = 877.5699425710534 K, F = -976.5649029843204, relative_change = 0.007025098548851742 Iter 15: T = 857.5814526330474 K, F = -411.52572365834504, relative_change = 0.003295195890534562 Iter 20: T = 848.7091023213309 K, F = -172.70610985843197, relative_change = 0.0014523269765753016 Iter 25: T = 844.8986551847893 K, F = -72.33768594224455, relative_change = 0.0006214154638651056 Iter 30: T = 843.2867478615467 K, F = -30.27208527472256, relative_change = 0.0002624221988907466 Iter 35: T = 842.6093560420638 K, F = -12.663604044644517, relative_change = 0.0001101985367256401 Iter 40: T = 842.3254852636679 K, F = -5.296677072814831, relative_change = 4.6165601957831674e-5 Iter 45: T = 842.2066657517955 K, F = -2.215239860315216, relative_change = 1.9320903386609112e-5 Iter 50: T = 842.1569562574388 K, F = -0.9264583599740552, relative_change = 8.082665761690247e-6 Iter 55: T = 842.1361640458017 K, F = -0.38745920341063456, relative_change = 3.380693110603329e-6 Iter 60: T = 842.1274679509443 K, F = -0.16204063509444455, relative_change = 1.4139207126044545e-6 Iter 65: T = 842.1238310451284 K, F = -0.06776742827945847, relative_change = 5.913315552924956e-7 Iter 70: T = 842.12231003105 K, F = -0.02834116522095087, relative_change = 2.4730419697737927e-7 Iter 75: T = 842.1216739218887 K, F = -0.011852616800730464, relative_change = 1.034259671141728e-7 Iter 80: T = 842.121407892932 K, F = -0.00495690642918567, relative_change = 4.325404432365871e-8 Iter 85: T = 842.1212966363563 K, F = -0.0020730375595217065, relative_change = 1.808937008782649e-8 Iter 90: T = 842.1212501075121 K, F = -0.0008669690826850207, relative_change = 7.565192750650294e-9 Iter 95: T = 842.1212306485909 K, F = -0.0003625768245356653, relative_change = 3.1638543070251524e-9 Iter 100: T = 842.1212225106373 K, F = -0.00015163395686723646, relative_change = 1.323161705699125e-9 Iter 105: T = 842.1212191072478 K, F = -6.341513234064955e-5, relative_change = 5.533620438532081e-10 Iter 110: T = 842.1212176839098 K, F = -2.6520965844767375e-5, relative_change = 2.314226185650732e-10 Iter 115: T = 842.1212170886528 K, F = -1.1091384388484116e-5, relative_change = 9.678370095408407e-11 Iter 120: T = 842.1212168397091 K, F = -4.638549419233584e-6, relative_change = 4.0476099714824084e-11 Iter 125: T = 842.121216735598 K, F = -1.939896955738263e-6, relative_change = 1.6927589978364133e-11 Iter 130: T = 842.1212166920574 K, F = -8.112870790721871e-7, relative_change = 7.079311605720334e-12 Iter 135: T = 842.1212166738482 K, F = -3.392898040299741e-7, relative_change = 2.960651426084823e-12 Iter 140: T = 842.1212166662328 K, F = -1.4189473662717944e-7, relative_change = 1.2381770668539278e-12 Iter 145: T = 842.1212166630481 K, F = -5.934395064244313e-8, relative_change = 5.178368168536637e-13 Converged in 150 iterations to T = 842.1212166617163 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 1 ray tracing: 12%|███▌ | ETA: 0:00:16 Bin 1 ray tracing: 17%|█████▏ | ETA: 0:00:15 Bin 1 ray tracing: 22%|██████▋ | ETA: 0:00:14 Bin 1 ray tracing: 27%|████████▎ | ETA: 0:00:14 Bin 1 ray tracing: 33%|█████████▉ | ETA: 0:00:13 Bin 1 ray tracing: 38%|███████████▍ | ETA: 0:00:12 Bin 1 ray tracing: 43%|█████████████ | ETA: 0:00:11 Bin 1 ray tracing: 49%|██████████████▋ | ETA: 0:00:10 Bin 1 ray tracing: 54%|████████████████▎ | ETA: 0:00:09 Bin 1 ray tracing: 60%|█████████████████▉ | ETA: 0:00:08 Bin 1 ray tracing: 65%|███████████████████▋ | ETA: 0:00:06 Bin 1 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:05 Bin 1 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:04 Bin 1 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 1 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 1 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 1 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:18 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 2 ray tracing: 12%|███▊ | ETA: 0:00:14 Bin 2 ray tracing: 21%|██████▎ | ETA: 0:00:11 Bin 2 ray tracing: 29%|████████▊ | ETA: 0:00:10 Bin 2 ray tracing: 38%|███████████▍ | ETA: 0:00:08 Bin 2 ray tracing: 46%|█████████████▉ | ETA: 0:00:07 Bin 2 ray tracing: 54%|████████████████▎ | ETA: 0:00:06 Bin 2 ray tracing: 60%|██████████████████ | ETA: 0:00:06 Bin 2 ray tracing: 66%|███████████████████▊ | ETA: 0:00:05 Bin 2 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 2 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 2 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 2 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 3 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 3 ray tracing: 18%|█████▌ | ETA: 0:00:13 Bin 3 ray tracing: 27%|████████ | ETA: 0:00:11 Bin 3 ray tracing: 35%|██████████▌ | ETA: 0:00:09 Bin 3 ray tracing: 43%|█████████████ | ETA: 0:00:08 Bin 3 ray tracing: 52%|███████████████▌ | ETA: 0:00:07 Bin 3 ray tracing: 58%|█████████████████▍ | ETA: 0:00:06 Bin 3 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 3 ray tracing: 70%|█████████████████████ | ETA: 0:00:05 Bin 3 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:04 Bin 3 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 3 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 4 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 4 ray tracing: 28%|████████▎ | ETA: 0:00:09 Bin 4 ray tracing: 35%|██████████▌ | ETA: 0:00:08 Bin 4 ray tracing: 42%|████████████▌ | ETA: 0:00:08 Bin 4 ray tracing: 49%|██████████████▌ | ETA: 0:00:07 Bin 4 ray tracing: 55%|████████████████▌ | ETA: 0:00:06 Bin 4 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 4 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 4 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:04 Bin 4 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 4 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 4 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 4 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 5 ray tracing: 12%|███▊ | ETA: 0:00:14 Bin 5 ray tracing: 20%|█████▉ | ETA: 0:00:12 Bin 5 ray tracing: 27%|████████ | ETA: 0:00:11 Bin 5 ray tracing: 34%|██████████▎ | ETA: 0:00:10 Bin 5 ray tracing: 44%|█████████████▏ | ETA: 0:00:08 Bin 5 ray tracing: 54%|████████████████ | ETA: 0:00:06 Bin 5 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 5 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 5 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 5 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 5 ray tracing: 93%|███████████████████████████▊ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 6 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 6 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 6 ray tracing: 27%|████████ | ETA: 0:00:11 Bin 6 ray tracing: 33%|█████████▉ | ETA: 0:00:10 Bin 6 ray tracing: 39%|███████████▊ | ETA: 0:00:10 Bin 6 ray tracing: 45%|█████████████▌ | ETA: 0:00:09 Bin 6 ray tracing: 51%|███████████████▍ | ETA: 0:00:08 Bin 6 ray tracing: 57%|█████████████████▎ | ETA: 0:00:07 Bin 6 ray tracing: 63%|██████████████████▉ | ETA: 0:00:06 Bin 6 ray tracing: 69%|████████████████████▋ | ETA: 0:00:05 Bin 6 ray tracing: 74%|██████████████████████▍ | ETA: 0:00:04 Bin 6 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 6 ray tracing: 93%|███████████████████████████▊ | ETA: 0:00:01 Bin 6 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 7 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 7 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 7 ray tracing: 23%|███████ | ETA: 0:00:14 Bin 7 ray tracing: 29%|████████▊ | ETA: 0:00:12 Bin 7 ray tracing: 35%|██████████▌ | ETA: 0:00:11 Bin 7 ray tracing: 41%|████████████▎ | ETA: 0:00:10 Bin 7 ray tracing: 46%|█████████████▉ | ETA: 0:00:09 Bin 7 ray tracing: 52%|███████████████▋ | ETA: 0:00:08 Bin 7 ray tracing: 58%|█████████████████▍ | ETA: 0:00:07 Bin 7 ray tracing: 64%|███████████████████▏ | ETA: 0:00:06 Bin 7 ray tracing: 69%|████████████████████▉ | ETA: 0:00:05 Bin 7 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:04 Bin 7 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 7 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 7 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██ | ETA: 0:00:15 Bin 8 ray tracing: 13%|████ | ETA: 0:00:14 Bin 8 ray tracing: 19%|█████▉ | ETA: 0:00:13 Bin 8 ray tracing: 25%|███████▋ | ETA: 0:00:12 Bin 8 ray tracing: 31%|█████████▎ | ETA: 0:00:12 Bin 8 ray tracing: 36%|███████████ | ETA: 0:00:11 Bin 8 ray tracing: 42%|████████████▋ | ETA: 0:00:10 Bin 8 ray tracing: 48%|██████████████▍ | ETA: 0:00:09 Bin 8 ray tracing: 54%|████████████████▏ | ETA: 0:00:08 Bin 8 ray tracing: 60%|█████████████████▉ | ETA: 0:00:07 Bin 8 ray tracing: 65%|███████████████████▋ | ETA: 0:00:06 Bin 8 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:05 Bin 8 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:04 Bin 8 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:03 Bin 8 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:02 Bin 8 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 9 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 9 ray tracing: 18%|█████▌ | ETA: 0:00:13 Bin 9 ray tracing: 25%|███████▍ | ETA: 0:00:13 Bin 9 ray tracing: 30%|█████████▏ | ETA: 0:00:12 Bin 9 ray tracing: 36%|██████████▉ | ETA: 0:00:11 Bin 9 ray tracing: 42%|████████████▋ | ETA: 0:00:10 Bin 9 ray tracing: 48%|██████████████▌ | ETA: 0:00:09 Bin 9 ray tracing: 54%|████████████████▍ | ETA: 0:00:08 Bin 9 ray tracing: 61%|██████████████████▎ | ETA: 0:00:07 Bin 9 ray tracing: 67%|████████████████████ | ETA: 0:00:06 Bin 9 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:05 Bin 9 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 9 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 9 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 9 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 6%|█▋ | ETA: 0:00:17 Bin 10 ray tracing: 11%|███▎ | ETA: 0:00:16 Bin 10 ray tracing: 17%|█████ | ETA: 0:00:15 Bin 10 ray tracing: 23%|██████▊ | ETA: 0:00:13 Bin 10 ray tracing: 29%|████████▍ | ETA: 0:00:12 Bin 10 ray tracing: 35%|██████████▏ | ETA: 0:00:11 Bin 10 ray tracing: 41%|███████████▉ | ETA: 0:00:10 Bin 10 ray tracing: 47%|█████████████▌ | ETA: 0:00:09 Bin 10 ray tracing: 53%|███████████████▎ | ETA: 0:00:08 Bin 10 ray tracing: 59%|█████████████████ | ETA: 0:00:07 Bin 10 ray tracing: 65%|██████████████████▊ | ETA: 0:00:06 Bin 10 ray tracing: 72%|████████████████████▊ | ETA: 0:00:05 Bin 10 ray tracing: 79%|██████████████████████▊ | ETA: 0:00:04 Bin 10 ray tracing: 86%|████████████████████████▉ | ETA: 0:00:02 Bin 10 ray tracing: 93%|███████████████████████████ | ETA: 0:00:01 Bin 10 ray tracing: 99%|████████████████████████████▉| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.3312342501739 K, F = -7443.609352116714, relative_change = 0.032668765749826065 Iter 2: T = 936.7378350456573 K, F = -6309.724908675812, relative_change = 0.03162660123161542 Iter 3: T = 908.1884235898058 K, F = -5347.053710628663, relative_change = 0.030477483013654598 Iter 5: T = 857.0830109143003 K, F = -3836.2176407723096, relative_change = 0.02786405869693478 Iter 10: T = 762.0670676904635 K, F = -1661.0428414359558, relative_change = 0.019939570079409694 Iter 15: T = 706.4645416984716 K, F = -711.1410203809755, relative_change = 0.01193993181926114 Iter 20: T = 677.8818281299466 K, F = -301.3917539764164, relative_change = 0.006111208233052923 Iter 25: T = 664.5570536494666 K, F = -126.87681936041706, relative_change = 0.002822259565454541 Iter 30: T = 658.6919821405247 K, F = -53.21965717655404, relative_change = 0.0012343749793132736 Iter 35: T = 656.1830259064158 K, F = -22.285846633116982, relative_change = 0.0005263363501260106 Iter 40: T = 655.1235287958069 K, F = -9.325318653999544, relative_change = 0.00022193892057822875 Iter 45: T = 654.67861530985 K, F = -3.900859844734468, relative_change = 9.313948476081454e-5 Iter 50: T = 654.492226661907 K, F = -1.6315440813732351, relative_change = 3.900864632088812e-5 Iter 55: T = 654.4142204718839 K, F = -0.682358871570334, relative_change = 1.6323802547558245e-5 Iter 60: T = 654.3815875039619 K, F = -0.28537546797050517, relative_change = 6.8285458801514126e-6 Iter 65: T = 654.3679382837596 K, F = -0.11934827528024211, relative_change = 2.8560833023636527e-6 Iter 70: T = 654.3622297153908 K, F = -0.0499130220954922, relative_change = 1.1945013003883703e-6 Iter 75: T = 654.3598422711914 K, F = -0.020874247819682, relative_change = 4.995640064847588e-7 Iter 80: T = 654.358843804292 K, F = -0.008729864256415754, relative_change = 2.0892525968334961e-7 Iter 85: T = 654.3584262318972 K, F = -0.0036509342792860333, relative_change = 8.737532308004473e-8 Iter 90: T = 654.3582515978528 K, F = -0.0015268644548698251, relative_change = 3.654145332444212e-8 Iter 95: T = 654.3581785637606 K, F = -0.0006385529737763518, relative_change = 1.528208087576512e-8 Iter 100: T = 654.3581480200223 K, F = -0.00026705048383135477, relative_change = 6.391150251229944e-9 Iter 105: T = 654.3581352462647 K, F = -0.00011168370196040778, relative_change = 2.6728556186889656e-9 Iter 110: T = 654.3581299041265 K, F = -4.670745818413646e-5, relative_change = 1.1178201895463272e-9 Iter 115: T = 654.3581276699805 K, F = -1.9533617242883938e-5, relative_change = 4.674857706412209e-10 Iter 120: T = 654.3581267356338 K, F = -8.169192116991297e-6, relative_change = 1.9550813609196275e-10 Iter 125: T = 654.3581263448789 K, F = -3.41645292600834e-6, relative_change = 8.17638189851815e-11 Iter 130: T = 654.3581261814606 K, F = -1.4288019835051458e-6, relative_change = 3.419461921882292e-11 Iter 135: T = 654.3581261131171 K, F = -5.97542012759078e-7, relative_change = 1.430059717133119e-11 Iter 140: T = 654.358126084535 K, F = -2.498995712030272e-7, relative_change = 5.980689266190486e-12 Iter 145: T = 654.3581260725817 K, F = -1.0451137988365389e-7, relative_change = 2.5012051237633933e-12 Iter 150: T = 654.3581260675826 K, F = -4.370775008588623e-8, relative_change = 1.0460300934564864e-12 Iter 155: T = 654.3581260654919 K, F = -1.8277924229703757e-8, relative_change = 4.374340649635105e-13 Converged in 159 iterations to T = 654.3581260647372 K Iter 1: T = 970.2324199879084 K, F = -6782.571422033808, relative_change = 0.029767580012091534 Iter 2: T = 942.6269440001507 K, F = -5744.855118542616, relative_change = 0.02845243615761859 Iter 3: T = 917.1394812344392 K, F = -4864.163264471208, relative_change = 0.02703875899998394 Iter 5: T = 872.306022932855 K, F = -3482.9906222102545, relative_change = 0.02395939446996507 Iter 10: T = 792.5973790792596 K, F = -1499.4708371128854, relative_change = 0.01565393273658915 Iter 15: T = 749.0642356162678 K, F = -638.4042814163918, relative_change = 0.008596284253719392 Iter 20: T = 727.895120513801 K, F = -269.50559563040315, relative_change = 0.004143429972395709 Iter 25: T = 718.357402111392 K, F = -113.20810360358747, relative_change = 0.0018517038694842712 Iter 30: T = 714.2315493528679 K, F = -47.437074953848104, relative_change = 0.0007973522208457843 Iter 35: T = 712.4805910447901 K, F = -19.85526123373975, relative_change = 0.00033765259686067224 Iter 40: T = 711.743744515881 K, F = -8.306625543352553, relative_change = 0.00014195684280067798 Iter 45: T = 711.4347773662914 K, F = -3.4744426667646273, relative_change = 5.949962523927613e-5 Iter 50: T = 711.3054214300081 K, F = -1.4531432491156124, relative_change = 2.4906541988524226e-5 Iter 55: T = 711.2512983153529 K, F = -0.6077375849112253, relative_change = 1.0420256950750408e-5 Iter 60: T = 711.2286590207854 K, F = -0.25416586691992493, relative_change = 4.3585835416533356e-6 Iter 65: T = 711.219190234307 K, F = -0.10629568212589469, relative_change = 1.8229354860088963e-6 Iter 70: T = 711.2152301412315 K, F = -0.04445420786468435, relative_change = 7.623950448975992e-7 Iter 75: T = 711.2135739596652 K, F = -0.018591295341799596, relative_change = 3.1884650015211545e-7 Iter 80: T = 711.2128813206715 K, F = -0.007775104311974701, relative_change = 1.3334607661939974e-7 Iter 85: T = 711.2125916500582 K, F = -0.003251641926751425, relative_change = 5.57670375748163e-8 Iter 90: T = 711.2124705062234 K, F = -0.001359875564576174, relative_change = 2.3322461364772287e-8 Iter 95: T = 711.2124198424032 K, F = -0.0005687162146513769, relative_change = 9.753735406278588e-9 Iter 100: T = 711.2123986541845 K, F = -0.0002378439137892263, relative_change = 4.079129225409384e-9 Iter 105: T = 711.2123897930179 K, F = -9.946916559533392e-5, relative_change = 1.7059406650848927e-9 Iter 110: T = 711.2123860871721 K, F = -4.159919290269709e-5, relative_change = 7.134447760090086e-10 Iter 115: T = 711.212384537343 K, F = -1.739727848837358e-5, relative_change = 2.9837111532699187e-10 Iter 120: T = 711.2123838891861 K, F = -7.275749446811197e-6, relative_change = 1.2478236111211422e-10 Iter 125: T = 711.212383618119 K, F = -3.0428050311614996e-6, relative_change = 5.218546895503036e-11 Iter 130: T = 711.2123835047556 K, F = -1.272536430341198e-6, relative_change = 2.1824569681601784e-11 Iter 135: T = 711.2123834573458 K, F = -5.321907146083049e-7, relative_change = 9.12730909828844e-12 Iter 140: T = 711.2123834375184 K, F = -2.2256974174794664e-7, relative_change = 3.817170749821423e-12 Iter 145: T = 711.2123834292262 K, F = -9.30804027188259e-8, relative_change = 1.5963705931868963e-12 Iter 150: T = 711.2123834257584 K, F = -3.892792155291147e-8, relative_change = 6.676312887269892e-13 Iter 155: T = 711.2123834243081 K, F = -1.627956713878831e-8, relative_change = 2.792018673311219e-13 Converged in 157 iterations to T = 711.2123834240012 K Iter 1: T = 974.391633375604 K, F = -5834.890695214067, relative_change = 0.02560836662439607 Iter 2: T = 950.972664882633 K, F = -4936.556244879032, relative_change = 0.02403445153961369 Iter 3: T = 929.6685503881329 K, F = -4174.725141539366, relative_change = 0.02240244675921307 Iter 5: T = 893.0522698701975 K, F = -2981.5731200724495, relative_change = 0.019048439214334082 Iter 10: T = 831.3562028888738 K, F = -1274.9872870583, relative_change = 0.011197228524537296 Iter 15: T = 800.0266364297777 K, F = -539.8797080431299, relative_change = 0.005653720974652681 Iter 20: T = 785.535754346119 K, F = -227.15759749829797, relative_change = 0.002590932694625353 Iter 25: T = 779.1836223012951 K, F = -95.25977440219403, relative_change = 0.001128976880529496 Iter 30: T = 776.4715094466948 K, F = -39.88581478492783, relative_change = 0.0004805929263228389 Iter 35: T = 775.3271827211271 K, F = -16.689075282748977, relative_change = 0.00020250514261294984 Iter 40: T = 774.8468188358472 K, F = -6.981040498497807, relative_change = 8.495806474209895e-5 Iter 45: T = 774.6456092544282 K, F = -2.919812280105856, relative_change = 3.557756808664283e-5 Iter 50: T = 774.5614056383545 K, F = -1.2211455002419211, relative_change = 1.4887216128959591e-5 Iter 55: T = 774.5261809854887 K, F = -0.5107055294832853, relative_change = 6.227456082403383e-6 Iter 60: T = 774.5114479184845 K, F = -0.21358453309682035, relative_change = 2.6046492367406065e-6 Iter 65: T = 774.5052860771325 K, F = -0.0893238441216081, relative_change = 1.0893396260845157e-6 Iter 70: T = 774.5027090695797 K, F = -0.03735634062124549, relative_change = 4.5558257370457325e-7 Iter 75: T = 774.5016313251657 K, F = -0.015622875166522499, relative_change = 1.9053142559064103e-7 Iter 80: T = 774.5011805979927 K, F = -0.006533674263185518, relative_change = 7.968275415174465e-8 Iter 85: T = 774.5009920982285 K, F = -0.0027324608297386588, relative_change = 3.332432075119957e-8 Iter 90: T = 774.5009132653274 K, F = -0.0011427477917772544, relative_change = 1.3936636160170497e-8 Iter 95: T = 774.5008802964581 K, F = -0.0004779107804324667, relative_change = 5.828468942795956e-9 Iter 100: T = 774.5008665084819 K, F = -0.00019986799708138214, relative_change = 2.4375355402820486e-9 Iter 105: T = 774.5008607421853 K, F = -8.358718380729879e-5, relative_change = 1.01940651550064e-9 Iter 110: T = 774.5008583306511 K, F = -3.495715806978161e-5, relative_change = 4.263279800186411e-10 Iter 115: T = 774.5008573221187 K, F = -1.4619499575596606e-5, relative_change = 1.782954366355534e-10 Iter 120: T = 774.5008569003384 K, F = -6.114048755945234e-6, relative_change = 7.456527425866768e-11 Iter 125: T = 774.5008567239448 K, F = -2.556967062750104e-6, relative_change = 3.1184074272501136e-11 Iter 130: T = 774.5008566501749 K, F = -1.0693540717365835e-6, relative_change = 1.3041551178955047e-11 Iter 135: T = 774.5008566193235 K, F = -4.4721644143486117e-7, relative_change = 5.454129987720069e-12 Iter 140: T = 774.500856606421 K, F = -1.870302864803719e-7, relative_change = 2.280970464575289e-12 Iter 145: T = 774.500856601025 K, F = -7.821735137358843e-8, relative_change = 9.539175267482915e-13 Iter 150: T = 774.5008565987685 K, F = -3.271178328212443e-8, relative_change = 3.989440048334322e-13 Converged in 154 iterations to T = 774.5008565979539 K Iter 1: T = 970.3795469054227 K, F = -6749.048413924359, relative_change = 0.029620453094577295 Iter 2: T = 942.924101946943 K, F = -5716.232095190836, relative_change = 0.028293511591455225 Iter 3: T = 917.5886913554413 K, F = -4839.718340391823, relative_change = 0.026868981860988957 Iter 5: T = 873.0608603430079 K, F = -3465.155686661217, relative_change = 0.023772578844104907 Iter 10: T = 794.0610263194645 K, F = -1491.3965021320635, relative_change = 0.015466924109597444 Iter 15: T = 751.0454732616076 K, F = -634.8172201344005, relative_change = 0.00846271411553983 Iter 20: T = 730.17497473938 K, F = -267.95022121611436, relative_change = 0.004069523276749792 Iter 25: T = 720.7839678142143 K, F = -112.54570387638013, relative_change = 0.0018164648807457782 Iter 30: T = 716.7241580624585 K, F = -47.15775088397538, relative_change = 0.0007817384151223468 Iter 35: T = 715.001719150684 K, F = -19.73802444885726, relative_change = 0.0003309593092729668 Iter 40: T = 714.276963545186 K, F = -8.257520871713636, relative_change = 0.00013912825973603203 Iter 45: T = 713.9730821019728 K, F = -3.453893313295118, relative_change = 5.831148170150374e-5 Iter 50: T = 713.8458582018914 K, F = -1.4445469489956726, relative_change = 2.4408732930886847e-5 Iter 55: T = 713.7926276307303 K, F = -0.6041421040728157, relative_change = 1.0211907207556891e-5 Iter 60: T = 713.7703617662079 K, F = -0.2526621229387117, relative_change = 4.271421174197377e-6 Iter 65: T = 713.76104918023 K, F = -0.10566678602202317, relative_change = 1.7864782411394876e-6 Iter 70: T = 713.7571544168966 K, F = -0.0441911938306766, relative_change = 7.471473322077993e-7 Iter 75: T = 713.755525557853 K, F = -0.018481299350350033, relative_change = 3.1246957460105705e-7 Iter 80: T = 713.7548443456125 K, F = -0.007729102607267113, relative_change = 1.3067914394768594e-7 Iter 85: T = 713.7545594538296 K, F = -0.0032324034527726475, relative_change = 5.465168989243258e-8 Iter 90: T = 713.7544403085634 K, F = -0.0013518298027977993, relative_change = 2.2856008838720115e-8 Iter 95: T = 713.7543904805691 K, F = -0.0005653513803286492, relative_change = 9.558659243892583e-9 Iter 100: T = 713.7543696419032 K, F = -0.00023643670140882644, relative_change = 3.997546047128719e-9 Iter 105: T = 713.7543609269236 K, F = -9.888065337959606e-5, relative_change = 1.6718216151675812e-9 Iter 110: T = 713.754357282215 K, F = -4.1353070723282315e-5, relative_change = 6.99175792297371e-10 Iter 115: T = 713.7543557579543 K, F = -1.7294348118923608e-5, relative_change = 2.9240367062880053e-10 Iter 120: T = 713.7543551204902 K, F = -7.232702797455026e-6, relative_change = 1.2228670551750136e-10 Iter 125: T = 713.7543548538952 K, F = -3.024803899132067e-6, relative_change = 5.114178125075203e-11 Iter 130: T = 713.7543547424018 K, F = -1.265008762074693e-6, relative_change = 2.1388097739819412e-11 Iter 135: T = 713.754354695774 K, F = -5.290411745351165e-7, relative_change = 8.94474780894618e-12 Iter 140: T = 713.7543546762737 K, F = -2.21250852971977e-7, relative_change = 3.740792168671987e-12 Iter 145: T = 713.7543546681185 K, F = -9.252962884787053e-8, relative_change = 1.5644419279455147e-12 Iter 150: T = 713.7543546647079 K, F = -3.8697542392718276e-8, relative_change = 6.542775388035941e-13 Iter 155: T = 713.7543546632816 K, F = -1.6184456774759326e-8, relative_change = 2.736382181095819e-13 Converged in 157 iterations to T = 713.7543546629797 K Iter 1: T = 969.3196358255632 K, F = -6990.550161706069, relative_change = 0.03068036417443679 Iter 2: T = 940.7801475902406 K, F = -5922.483830588944, relative_change = 0.02944280419019439 Iter 3: T = 914.3424655818845 K, F = -5015.91509397484, relative_change = 0.02810187064010103 Iter 5: T = 867.5867397576087 K, F = -3593.805838814143, relative_change = 0.02514174918255282 Iter 10: T = 783.3443334310776 K, F = -1549.8095620144036, relative_change = 0.016873579522021714 Iter 15: T = 736.4191743565906 K, F = -660.859443257981, relative_change = 0.009491322454566402 Iter 20: T = 713.2559359746172 K, F = -279.2737247012758, relative_change = 0.004647621510913658 Iter 25: T = 702.7274494932469 K, F = -117.37588610667059, relative_change = 0.0020943966875505687 Iter 30: T = 698.1530877987468 K, F = -49.1961574542162, relative_change = 0.000905362914839076 Iter 35: T = 696.2079554610419 K, F = -20.593874829854247, relative_change = 0.00038404450746169885 Iter 40: T = 695.3886970070455 K, F = -8.61604792735532, relative_change = 0.00016157835170490934 Iter 45: T = 695.0450493351872 K, F = -3.6039394678601906, relative_change = 6.77445091491974e-5 Iter 50: T = 694.9011517153461 K, F = -1.5073166226179413, relative_change = 2.836149625026936e-5 Iter 55: T = 694.8409404489113 K, F = -0.6303963856312129, relative_change = 1.1866359964296847e-5 Iter 60: T = 694.8157538525685 K, F = -0.2636425465775284, relative_change = 4.963571144639793e-6 Iter 65: T = 694.8052195503664 K, F = -0.11025902996174919, relative_change = 2.075985279157633e-6 Iter 70: T = 694.8008138102541 K, F = -0.04611174251728378, relative_change = 8.68229919473575e-7 Iter 75: T = 694.7989712475417 K, F = -0.019284498796499072, relative_change = 3.631090331422282e-7 Iter 80: T = 694.7982006606366 K, F = -0.00806501074126409, relative_change = 1.5185739319076194e-7 Iter 85: T = 694.7978783910852 K, F = -0.003372884338194937, relative_change = 6.350872561453601e-8 Iter 90: T = 694.7977436139519 K, F = -0.0014105806029176549, relative_change = 2.6560133767370187e-8 Iter 95: T = 694.7976872485176 K, F = -0.0005899216713435296, relative_change = 1.1107769752807393e-8 Iter 100: T = 694.7976636758148 K, F = -0.0002467122894773688, relative_change = 4.6454027415665576e-9 Iter 105: T = 694.7976538174282 K, F = -0.00010317802694748135, relative_change = 1.942763056699684e-9 Iter 110: T = 694.7976496945331 K, F = -4.315028214851857e-5, relative_change = 8.124867173063954e-10 Iter 115: T = 694.7976479702892 K, F = -1.8045964204960185e-5, relative_change = 3.397916690391484e-10 Iter 120: T = 694.7976472491897 K, F = -7.547038525457239e-6, relative_change = 1.4210494936228842e-10 Iter 125: T = 694.7976469476172 K, F = -3.1562609854596246e-6, relative_change = 5.942997467508116e-11 Iter 130: T = 694.7976468214961 K, F = -1.319986170922327e-6, relative_change = 2.485432768030267e-11 Iter 135: T = 694.7976467687507 K, F = -5.520344552589762e-7, relative_change = 1.0394385599658246e-11 Iter 140: T = 694.797646746692 K, F = -2.308677213846977e-7, relative_change = 4.347062209774507e-12 Iter 145: T = 694.7976467374666 K, F = -9.655132415797851e-8, relative_change = 1.8179874174700848e-12 Iter 150: T = 694.7976467336085 K, F = -4.037693923653052e-8, relative_change = 7.602668128072643e-13 Iter 155: T = 694.7976467319951 K, F = -1.6886396170257e-8, relative_change = 3.17957894755154e-13 Converged in 158 iterations to T = 694.7976467315227 K Iter 1: T = 963.6148611931494 K, F = -8290.388488343171, relative_change = 0.03638513880685057 Iter 2: T = 929.11086406817 K, F = -7034.571741207478, relative_change = 0.03580683374087494 Iter 3: T = 896.4546854690823 K, F = -5968.054333523253, relative_change = 0.035147773922371985 Iter 5: T = 836.5675163960514 K, F = -4293.198077925048, relative_change = 0.033558332022811395 Iter 10: T = 717.2483227662781 K, F = -1875.8669871597383, relative_change = 0.02778761394491357 Iter 15: T = 638.0209794700726 K, F = -812.1353464643188, relative_change = 0.01984764520251163 Iter 20: T = 591.7270012963305 K, F = -347.6556276592583, relative_change = 0.011861850180577761 Iter 25: T = 567.9601876029352 K, F = -147.3275440690465, relative_change = 0.006062474233416521 Iter 30: T = 556.889831661165 K, F = -62.01705497034854, relative_change = 0.0027974360917090674 Iter 35: T = 552.0192356209418 K, F = -26.012932049893873, relative_change = 0.0012230248527165897 Iter 40: T = 549.9361272456881 K, F = -10.892840721474014, relative_change = 0.0005214025812054538 Iter 45: T = 549.0565397709785 K, F = -4.5579908248406955, relative_change = 0.00021984142730313325 Iter 50: T = 548.6871898976632 K, F = -1.906642015227826, relative_change = 9.225620947474494e-5 Iter 55: T = 548.5324598275012 K, F = -0.7974569063190737, relative_change = 3.8638178796550196e-5 Iter 60: T = 548.4677036294809 K, F = -0.33351938840406997, relative_change = 1.6168680643910776e-5 Iter 65: T = 548.4406137172447 K, F = -0.13948413377749963, relative_change = 6.763639129091661e-6 Iter 70: T = 548.4292829755165 K, F = -0.058334340318833444, relative_change = 2.828932763256496e-6 Iter 75: T = 548.4245440761341 K, F = -0.02439618945406158, relative_change = 1.1831456129157953e-6 Iter 80: T = 548.4225621684608 K, F = -0.010202790316120425, relative_change = 4.94814746091016e-7 Iter 85: T = 548.4217333034195 K, F = -0.004266930949021558, relative_change = 2.0693903144687955e-7 Iter 90: T = 548.4213866608342 K, F = -0.0017844818637111903, relative_change = 8.654465332636848e-8 Iter 95: T = 548.4212416905332 K, F = -0.0007462916932996222, relative_change = 3.6194056366331305e-8 Iter 100: T = 548.4211810621815 K, F = -0.0003121081102954726, relative_change = 1.5136795147740187e-8 Iter 105: T = 548.4211557066737 K, F = -0.00013052734081547834, relative_change = 6.3303899796845456e-9 Iter 110: T = 548.4211451026963 K, F = -5.458809328917624e-5, relative_change = 2.6474449599547643e-9 Iter 115: T = 548.4211406679862 K, F = -2.282939243217208e-5, relative_change = 1.107193137155437e-9 Iter 120: T = 548.4211388133373 K, F = -9.547524638803262e-6, relative_change = 4.630414041244275e-10 Iter 125: T = 548.4211380377009 K, F = -3.992888153198093e-6, relative_change = 1.9364941378663353e-10 Iter 130: T = 548.4211377133206 K, F = -1.6698736280129634e-6, relative_change = 8.09865034196018e-11 Iter 135: T = 548.4211375776609 K, F = -6.983610111865879e-7, relative_change = 3.386951894945809e-11 Iter 140: T = 548.4211375209263 K, F = -2.9206278728821644e-7, relative_change = 1.4164631121880904e-11 Iter 145: T = 548.4211374971994 K, F = -1.2214477296268456e-7, relative_change = 5.9238483235159046e-12 Iter 150: T = 548.4211374872765 K, F = -5.108286288413311e-8, relative_change = 2.477446429697639e-12 Iter 155: T = 548.4211374831266 K, F = -2.1363643798455456e-8, relative_change = 1.0361064370212123e-12 Iter 160: T = 548.421137481391 K, F = -8.934441769747892e-9, relative_change = 4.333077594953967e-13 Converged in 164 iterations to T = 548.4211374807645 K Iter 1: T = 966.9306932084593 K, F = -7534.873009484304, relative_change = 0.03306930679154078 Iter 2: T = 935.9203391727407 K, F = -6387.779260505745, relative_change = 0.03207091703007205 Iter 3: T = 906.9384734258757 K, F = -5413.851847197591, relative_change = 0.030966167240773966 Iter 5: T = 854.9287544488031 K, F = -3885.22078994718, relative_change = 0.028438194842283156 Iter 10: T = 757.5766191532898 K, F = -1683.7337415087043, relative_change = 0.020636578996744107 Iter 15: T = 699.9659444196103 K, F = -721.5323260249857, relative_change = 0.012540011736478208 Iter 20: T = 670.0576931353796 K, F = -306.0166185178569, relative_change = 0.006489965250864884 Iter 25: T = 656.0241965446071 K, F = -128.8782499905275, relative_change = 0.0030164879009264944 Iter 30: T = 649.8258185544394 K, F = -54.070446162708826, relative_change = 0.001323480046906423 Iter 35: T = 647.169988870085 K, F = -22.644241877098874, relative_change = 0.0005651278175544485 Iter 40: T = 646.0476709522 K, F = -9.475670091596896, relative_change = 0.00023844110578202587 Iter 45: T = 645.5762338610052 K, F = -3.9638212339308647, relative_change = 0.00010009064324424682 Iter 50: T = 645.3787082678091 K, F = -1.657889816646064, relative_change = 4.192447386919712e-5 Iter 55: T = 645.2960366599958 K, F = -0.6933795199418146, relative_change = 1.7544775443031432e-5 Iter 60: T = 645.2614511890606 K, F = -0.28998488067760136, relative_change = 7.339440872308396e-6 Iter 65: T = 645.2469851690312 K, F = -0.12127606474820601, relative_change = 3.0697928606861113e-6 Iter 70: T = 645.2409349632725 K, F = -0.05071926032338325, relative_change = 1.2838854422255425e-6 Iter 75: T = 645.2384046348989 K, F = -0.021211428663559406, relative_change = 5.369469655784798e-7 Iter 80: T = 645.2373464108479 K, F = -0.008870877729327487, relative_change = 2.245595120888483e-7 Iter 85: T = 645.2369038470742 K, F = -0.0037099078717245937, relative_change = 9.391379833049047e-8 Iter 90: T = 645.2367187612974 K, F = -0.0015515279289687323, relative_change = 3.927592949983127e-8 Iter 95: T = 645.236641356159 K, F = -0.0006488675351432605, relative_change = 1.642567281251845e-8 Iter 100: T = 645.2366089843958 K, F = -0.000271364157078291, relative_change = 6.869414295659668e-9 Iter 105: T = 645.2365954461362 K, F = -0.00011348773187891403, relative_change = 2.8728713991644622e-9 Iter 110: T = 645.2365897842741 K, F = -4.746192599996979e-5, relative_change = 1.2014692089932043e-9 Iter 115: T = 645.2365874164155 K, F = -1.984914327612941e-5, relative_change = 5.02468755436688e-10 Iter 120: T = 645.2365864261488 K, F = -8.301147874090198e-6, relative_change = 2.1013841320213124e-10 Iter 125: T = 645.2365860120075 K, F = -3.471638604868321e-6, relative_change = 8.788237975432413e-11 Iter 130: T = 645.2365858388087 K, F = -1.4518811573549506e-6, relative_change = 3.6753471750473094e-11 Iter 135: T = 645.2365857663748 K, F = -6.071938102869545e-7, relative_change = 1.537073503042599e-11 Iter 140: T = 645.2365857360821 K, F = -2.5393549746288713e-7, relative_change = 6.428219756306945e-12 Iter 145: T = 645.2365857234134 K, F = -1.0619953833002072e-7, relative_change = 2.6883755020004823e-12 Iter 150: T = 645.2365857181152 K, F = -4.441387657649898e-8, relative_change = 1.1243097627294323e-12 Iter 155: T = 645.2365857158994 K, F = -1.8575119720143363e-8, relative_change = 4.702176449199486e-13 Converged in 160 iterations to T = 645.2365857149726 K Iter 1: T = 965.2539785951068 K, F = -7916.914029104014, relative_change = 0.03474602140489321 Iter 2: T = 932.4863885278775 K, F = -6714.702379144451, relative_change = 0.033947117332705924 Iter 3: T = 901.6678338148907 K, F = -5693.821599946372, relative_change = 0.033049870852957096 Iter 5: T = 845.7644988561635 K, F = -4090.9991049567443, relative_change = 0.030942306960267528 Iter 10: T = 737.9364765739905 K, F = -1779.8747762792034, relative_change = 0.023909128728936364 Iter 15: T = 670.6839261194759 K, F = -766.2022870808547, relative_change = 0.015603170882761707 Iter 20: T = 633.9843609186996 K, F = -326.191784976418, relative_change = 0.008559831217158436 Iter 25: T = 616.1493153709241 K, F = -137.69767722345347, relative_change = 0.004123201182613386 Iter 30: T = 608.1166354246509 K, F = -57.839786218735895, relative_change = 0.0018420452318631644 Iter 35: T = 604.642446883718 K, F = -24.236090973452985, relative_change = 0.0007930699672702861 Iter 40: T = 603.1681628965954 K, F = -10.144211843856963, relative_change = 0.0003358163969713527 Iter 45: T = 602.5477689173001 K, F = -4.243913257843784, relative_change = 0.0001411807763370586 Iter 50: T = 602.2876352514853 K, F = -1.7751156837366695, relative_change = 5.9173623656596124e-5 Iter 55: T = 602.1787251962431 K, F = -0.742420220284246, relative_change = 2.476995091475236e-5 Iter 60: T = 602.1331568477464 K, F = -0.3104969914768514, relative_change = 1.0363088536299117e-5 Iter 65: T = 602.1140959682956 K, F = -0.12985494766779246, relative_change = 4.33466725643401e-6 Iter 70: T = 602.1061238419331 K, F = -0.054307134395419954, relative_change = 1.8129320501543098e-6 Iter 75: T = 602.1027896917141 K, F = -0.02271193492808954, relative_change = 7.582112506861023e-7 Iter 80: T = 602.1013952907251 K, F = -0.009498409901883165, relative_change = 3.1709674583119327e-7 Iter 85: T = 602.1008121321598 K, F = -0.003972349763067429, relative_change = 1.3261430118312773e-7 Iter 90: T = 602.1005682476855 K, F = -0.0016612843399468336, relative_change = 5.546099910786274e-8 Iter 95: T = 602.100466252181 K, F = -0.0006947689910384303, relative_change = 2.3194472217794413e-8 Iter 100: T = 602.1004235964248 K, F = -0.0002905606961645657, relative_change = 9.70020878137391e-9 Iter 105: T = 602.1004057572749 K, F = -0.00012151595450649033, relative_change = 4.056743774398536e-9 Iter 110: T = 602.1003982967287 K, F = -5.081942349627333e-5, relative_change = 1.6965787981194042e-9 Iter 115: T = 602.1003951766393 K, F = -2.1253289959777266e-5, relative_change = 7.095295370338041e-10 Iter 120: T = 602.1003938717804 K, F = -8.888379553928516e-6, relative_change = 2.967337248437813e-10 Iter 125: T = 602.100393326073 K, F = -3.717226721933198e-6, relative_change = 1.240975961203361e-10 Iter 130: T = 602.1003930978516 K, F = -1.5545882982581638e-6, relative_change = 5.1899086483069166e-11 Iter 135: T = 602.1003930024067 K, F = -6.501484710041971e-7, relative_change = 2.1704853810332688e-11 Iter 140: T = 602.1003929624906 K, F = -2.7190043594416125e-7, relative_change = 9.077248472000696e-12 Iter 145: T = 602.1003929457971 K, F = -1.1371237473856155e-7, relative_change = 3.7962259103968605e-12 Iter 150: T = 602.1003929388156 K, F = -4.755550953028376e-8, relative_change = 1.5876148738078659e-12 Iter 155: T = 602.1003929358959 K, F = -1.988801162644549e-8, relative_change = 6.639504734825872e-13 Iter 160: T = 602.1003929346748 K, F = -8.317380173483713e-9, relative_change = 2.776712226489934e-13 Converged in 162 iterations to T = 602.1003929344164 K Iter 1: T = 980.1528524493132 K, F = -4522.191448935273, relative_change = 0.019847147550686846 Iter 2: T = 962.3489419099996 K, F = -3819.894866396808, relative_change = 0.018164422513104263 Iter 3: T = 946.4672895692635 K, F = -3225.161299210055, relative_change = 0.01650300805570104 Iter 5: T = 919.947290047383 K, F = -2295.9109737739245, relative_change = 0.0133328162902524 Iter 10: T = 877.845092296794 K, F = -974.6818974683805, relative_change = 0.007003379854216063 Iter 15: T = 857.9159461619786 K, F = -410.7221729858213, relative_change = 0.0032837865789143075 Iter 20: T = 849.0717221995475 K, F = -172.3667616330618, relative_change = 0.0014470297593063388 Iter 25: T = 845.2737189802526 K, F = -72.19514676121173, relative_change = 0.0006190968377376336 Iter 30: T = 843.6671439768432 K, F = -30.21236179937779, relative_change = 0.00026143352759192294 Iter 35: T = 842.9920053193831 K, F = -12.638607138132548, relative_change = 0.00010978166864767274 Iter 40: T = 842.7090809383405 K, F = -5.286219578831114, relative_change = 4.599066377569278e-5 Iter 45: T = 842.5906579419116 K, F = -2.210865799726156, relative_change = 1.9247636992015925e-5 Iter 50: T = 842.5411144014066 K, F = -0.9246289685014688, relative_change = 8.052006459182434e-6 Iter 55: T = 842.520391615774 K, F = -0.38669411130964204, relative_change = 3.367867800101559e-6 Iter 60: T = 842.5117245595716 K, F = -0.1617206611639268, relative_change = 1.4085564505534417e-6 Iter 65: T = 842.5080997987452 K, F = -0.06763361078758168, relative_change = 5.890880581814299e-7 Iter 70: T = 842.5065838639647 K, F = -0.028285201044596864, relative_change = 2.46365922410649e-7 Iter 75: T = 842.5059498790472 K, F = -0.011829211897453451, relative_change = 1.0303356647687903e-7 Iter 80: T = 842.5056847384783 K, F = -0.004947118213762591, relative_change = 4.308993714300495e-8 Iter 85: T = 842.5055738534376 K, F = -0.002068944010743534, relative_change = 1.802073841569244e-8 Iter 90: T = 842.5055274799739 K, F = -0.0008652571111456009, relative_change = 7.536490145551967e-9 Iter 95: T = 842.5055080860349 K, F = -0.000361860861108676, relative_change = 3.1518505627748014e-9 Iter 100: T = 842.5054999752574 K, F = -0.00015133453396409813, relative_change = 1.3181416095791275e-9 Iter 105: T = 842.5054965832333 K, F = -6.328990809389978e-5, relative_change = 5.512625620799845e-10 Iter 110: T = 842.5054951646483 K, F = -2.6468594904738296e-5, relative_change = 2.3054458440943584e-10 Iter 115: T = 842.5054945713791 K, F = -1.106948099005578e-5, relative_change = 9.64164857341948e-11 Iter 120: T = 842.5054943232669 K, F = -4.6293883735337715e-6, relative_change = 4.0322519104707866e-11 Iter 125: T = 842.5054942195035 K, F = -1.9360667782297725e-6, relative_change = 1.6863370147393314e-11 Iter 130: T = 842.5054941761083 K, F = -8.096859125394928e-7, relative_change = 7.052459865106716e-12 Iter 135: T = 842.5054941579599 K, F = -3.38619096984516e-7, relative_change = 2.9494123021072436e-12 Iter 140: T = 842.50549415037 K, F = -1.4161525974110134e-7, relative_change = 1.23348562731396e-12 Iter 145: T = 842.5054941471958 K, F = -5.9223795867424656e-8, relative_change = 5.158462522492742e-13 Converged in 150 iterations to T = 842.5054941458684 K Iter 1: T = 976.4395512451622 K, F = -5368.2706605624, relative_change = 0.023560448754837777 Iter 2: T = 955.0407105144856 K, F = -4539.224137338628, relative_change = 0.021915172017959186 Iter 3: T = 935.7118176996669 K, F = -3836.4727336241695, relative_change = 0.020238815583480316 Iter 5: T = 902.8428170895896 K, F = -2736.70890820511, relative_change = 0.01688606102475454 Iter 10: T = 848.7124452087836 K, F = -1166.9886532368505, relative_change = 0.00950078664113682 Iter 15: T = 821.9881797381745 K, F = -493.16536896530044, relative_change = 0.004653061302508874 Iter 20: T = 809.8398928499672 K, F = -207.27363175130176, relative_change = 0.00209704227524775 Iter 25: T = 804.5615096951258 K, F = -86.87556024909955, relative_change = 0.0009065459367255745 Iter 30: T = 802.3169598998566 K, F = -36.366797711976815, relative_change = 0.00038455368278980987 Iter 35: T = 801.3715824940657 K, F = -15.215118398554607, relative_change = 0.00016179389790741091 Iter 40: T = 800.9750311053825 K, F = -6.3642146444590395, relative_change = 6.783511450626161e-5 Iter 45: T = 800.8089805128475 K, F = -2.66177818505682, relative_change = 2.8399469637039073e-5 Iter 50: T = 800.7394996991866 K, F = -1.113220268619907, relative_change = 1.1882255113612045e-5 Iter 55: T = 800.7104356080032 K, F = -0.4655677573865752, relative_change = 4.970221176427117e-6 Iter 60: T = 800.6982795407665 K, F = -0.19470700136662444, relative_change = 2.0787668376354545e-6 Iter 65: T = 800.6931955328422 K, F = -0.08142896906863872, relative_change = 8.693932766959357e-7 Iter 70: T = 800.6910693058289 K, F = -0.03405459807472788, relative_change = 3.635955763569583e-7 Iter 75: T = 800.6901800863209 K, F = -0.01424204498592152, relative_change = 1.52060873697668e-7 Iter 80: T = 800.6898082030574 K, F = -0.005956194237731083, relative_change = 6.359382402293474e-8 Iter 85: T = 800.6896526768526 K, F = -0.0024909517261404446, relative_change = 2.65957230238615e-8 Iter 90: T = 800.6895876339044 K, F = -0.0010417457887561543, relative_change = 1.112265359631171e-8 Iter 95: T = 800.689560432161 K, F = -0.000435670533688981, relative_change = 4.651627359066761e-9 Iter 100: T = 800.6895490560662 K, F = -0.0001822026214940431, relative_change = 1.94536625920665e-9 Iter 105: T = 800.6895442984473 K, F = -7.619931456026574e-5, relative_change = 8.135754496747558e-10 Iter 110: T = 800.6895423087542 K, F = -3.1867462858548024e-5, relative_change = 3.402469678567063e-10 Iter 115: T = 800.6895414766408 K, F = -1.332735275982877e-5, relative_change = 1.4229533768201414e-10 Iter 120: T = 800.6895411286409 K, F = -5.573658080071375e-6, relative_change = 5.950960963978075e-11 Iter 125: T = 800.6895409831033 K, F = -2.3309682972705303e-6, relative_change = 2.4887607309335653e-11 Iter 130: T = 800.6895409222377 K, F = -9.748384072194582e-7, relative_change = 1.0408290625885493e-11 Iter 135: T = 800.6895408967831 K, F = -4.076910421479951e-7, relative_change = 4.352892562975806e-12 Iter 140: T = 800.6895408861376 K, F = -1.7050070910684667e-7, relative_change = 1.8204257439408286e-12 Iter 145: T = 800.6895408816855 K, F = -7.130483004047505e-8, relative_change = 7.613173514433798e-13 Iter 150: T = 800.6895408798237 K, F = -2.9820890201648353e-8, relative_change = 3.18395838449752e-13 Converged in 153 iterations to T = 800.6895408792785 K Iter 1: T = 980.8765112958014 K, F = -4357.305092385658, relative_change = 0.01912348870419863 Iter 2: T = 963.7631232430858 K, F = -3679.878220565304, relative_change = 0.017447036253429797 Iter 3: T = 948.5338796057206 K, F = -3106.325817119112, relative_change = 0.01580185345349013 Iter 5: T = 923.1892361993993 K, F = -2210.466732275339, relative_change = 0.01269027861935771 Iter 10: T = 883.2144775514284 K, F = -937.6755527912666, relative_change = 0.00658620185945483 Iter 15: T = 864.426542562304 K, F = -394.9428636082386, relative_change = 0.0030662551105963146 Iter 20: T = 856.1208365576675 K, F = -165.70588733802492, relative_change = 0.0013464056568866214 Iter 25: T = 852.5605893252557 K, F = -69.39789801839538, relative_change = 0.0005751268405409907 Iter 30: T = 851.0557995742055 K, F = -29.040428683193852, relative_change = 0.00024269815913531995 Iter 35: T = 850.4236528415552 K, F = -12.148120336576541, relative_change = 0.00010188443305083676 Iter 40: T = 850.1587833282496 K, F = -5.081027005835047, relative_change = 4.267702826566175e-5 Iter 45: T = 850.0479243043784 K, F = -2.125040396818901, relative_change = 1.7859918649358586e-5 Iter 50: T = 850.0015464233948 K, F = -0.8887337610325171, relative_change = 7.471310384298453e-6 Iter 55: T = 849.9821479598085 K, F = -0.3716819570998362, relative_change = 3.1249550164409078e-6 Iter 60: T = 849.9740348218395 K, F = -0.15544233780740235, relative_change = 1.306957145245504e-6 Iter 65: T = 849.9706417286425 K, F = -0.0650079302765485, relative_change = 5.465962174631498e-7 Iter 70: T = 849.9692226822021 K, F = -0.027187108231654378, relative_change = 2.2859501275016685e-7 Iter 75: T = 849.9686292175251 K, F = -0.011369976043003494, relative_change = 9.560150483803392e-8 Iter 80: T = 849.9683810230707 K, F = -0.004755060235968278, relative_change = 3.998175057388981e-8 Iter 85: T = 849.9682772251092 K, F = -0.001988623057279204, relative_change = 1.6720855961091573e-8 Iter 90: T = 849.9682338155488 K, F = -0.0008316659276716987, relative_change = 6.992863486621777e-9 Iter 95: T = 849.9682156611499 K, F = -0.00034781262638095, relative_change = 2.924499347185152e-9 Iter 100: T = 849.9682080687629 K, F = -0.00014545939525500984, relative_change = 1.2230606145150857e-9 Iter 105: T = 849.968204893536 K, F = -6.0832857369907956e-5, relative_change = 5.114985739524866e-10 Iter 110: T = 849.9682035656182 K, F = -2.5441025113481786e-5, relative_change = 2.139147941564911e-10 Iter 115: T = 849.968203010267 K, F = -1.0639740295026456e-5, relative_change = 8.946171988028473e-11 Iter 120: T = 849.9682027780125 K, F = -4.449665559791427e-6, relative_change = 3.7413952159621666e-11 Iter 125: T = 849.968202680881 K, F = -1.8609031786631647e-6, relative_change = 1.564696078896721e-11 Iter 130: T = 849.9682026402594 K, F = -7.782512747578352e-7, relative_change = 6.5437403313043166e-12 Iter 135: T = 849.9682026232709 K, F = -3.254716745004771e-7, relative_change = 2.7366509923049304e-12 Iter 140: T = 849.9682026161661 K, F = -1.361143935341147e-7, relative_change = 1.1444854324685567e-12 Iter 145: T = 849.9682026131949 K, F = -5.6925340885527476e-8, relative_change = 4.786431595608478e-13 Converged in 150 iterations to T = 849.9682026119522 K Iter 1: T = 967.3447398679284 K, F = -7440.532084264206, relative_change = 0.03265526013207162 Iter 2: T = 936.7653808474297 K, F = -6307.093323980514, relative_change = 0.03161164552843256 Iter 3: T = 908.2305092576618 K, F = -5344.8019330122925, relative_change = 0.030461065463322626 Iter 5: T = 857.1554197348739 K, F = -3834.5663509678275, relative_change = 0.027844855483365794 Iter 10: T = 762.2172129276208 K, F = -1660.2794877555118, relative_change = 0.019916578091234767 Iter 15: T = 706.6806843851604 K, F = -710.7923238500082, relative_change = 0.011920426936139908 Iter 20: T = 678.1410535841153 K, F = -301.23693004150795, relative_change = 0.006099035175334744 Iter 25: T = 664.8391434199874 K, F = -126.80992326068757, relative_change = 0.0028160580707231116 Iter 30: T = 658.9847818233892 K, F = -53.191243356705925, relative_change = 0.0012315391353513892 Iter 35: T = 656.4805360532148 K, F = -22.273881775591814, relative_change = 0.0005251035727370239 Iter 40: T = 655.4230520226786 K, F = -9.320300060524014, relative_change = 0.00022141481670301705 Iter 45: T = 654.978988176338 K, F = -3.8987583971245954, relative_change = 9.291877700568858e-5 Iter 50: T = 654.7929562280364 K, F = -1.6306647716456448, relative_change = 3.8916075597480944e-5 Iter 55: T = 654.715099454863 K, F = -0.6819910532418364, relative_change = 1.6285041323715487e-5 Iter 60: T = 654.6825290170524 K, F = -0.28522162785823574, relative_change = 6.812327234709687e-6 Iter 65: T = 654.6689059550765 K, F = -0.11928393504204132, relative_change = 2.849299029382623e-6 Iter 70: T = 654.663208327683 K, F = -0.0498861138074822, relative_change = 1.1916637841660412e-6 Iter 75: T = 654.6608254593564 K, F = -0.020862994377943256, relative_change = 4.983772792214241e-7 Iter 80: T = 654.659828906181 K, F = -0.008725157919183824, relative_change = 2.0842894844536602e-7 Iter 85: T = 654.6594121341354 K, F = -0.003648966030595946, relative_change = 8.716775844477884e-8 Iter 90: T = 654.6592378348079 K, F = -0.0015260413097362702, relative_change = 3.64546470881273e-8 Iter 95: T = 654.6591649406984 K, F = -0.0006382087244605761, relative_change = 1.5245777426905176e-8 Iter 100: T = 654.6591344555026 K, F = -0.00026690651454230885, relative_change = 6.375967705711592e-9 Iter 105: T = 654.6591217062282 K, F = -0.00011162349246118808, relative_change = 2.6665060998642362e-9 Iter 110: T = 654.6591163743292 K, F = -4.6682278284027046e-5, relative_change = 1.1151647550361206e-9 Iter 115: T = 654.6591141444652 K, F = -1.9523086483730356e-5, relative_change = 4.663752308055309e-10 Iter 120: T = 654.6591132119094 K, F = -8.164786567177451e-6, relative_change = 1.9504366016836724e-10 Iter 125: T = 654.6591128219035 K, F = -3.4146111293487103e-6, relative_change = 8.156958533198285e-11 Iter 130: T = 654.6591126587983 K, F = -1.428030947381309e-6, relative_change = 3.411336985231511e-11 Iter 135: T = 654.6591125905859 K, F = -5.972192851921854e-7, relative_change = 1.4266611242678461e-11 Iter 140: T = 654.6591125620586 K, F = -2.497637242582229e-7, relative_change = 5.966454944783306e-12 Iter 145: T = 654.659112550128 K, F = -1.0445384429624838e-7, relative_change = 2.4952348773143823e-12 Iter 150: T = 654.6591125451387 K, F = -4.3683800243776716e-8, relative_change = 1.0435359529393246e-12 Iter 155: T = 654.659112543052 K, F = -1.8268122570219703e-8, relative_change = 4.363961603302066e-13 Converged in 159 iterations to T = 654.6591125422988 K Iter 1: T = 973.5331740670886 K, F = -6030.491465264912, relative_change = 0.02646682593291144 Iter 2: T = 949.2593583138162 K, F = -5103.242085877206, relative_change = 0.02493373251151234 Iter 3: T = 927.110982375486 K, F = -4316.752932404963, relative_change = 0.02333227030563352 Iter 5: T = 888.8676631535417 K, F = -3084.6053826317225, relative_change = 0.020002382023419207 Iter 10: T = 823.7675906746822 K, F = -1320.7222941544903, relative_change = 0.01199346495246583 Iter 15: T = 790.2728622151645 K, F = -559.7773195415552, relative_change = 0.006144709996294314 Iter 20: T = 774.6491322732231 K, F = -235.65820738806696, relative_change = 0.0028393506353921434 Iter 25: T = 767.770038337686 K, F = -98.8508438265274, relative_change = 0.0012421954790293518 Iter 30: T = 764.8268831187426 K, F = -41.39434828913811, relative_change = 0.0005297369777141934 Iter 35: T = 763.5839517308407 K, F = -17.321166939022476, relative_change = 0.0002233848394649809 Iter 40: T = 763.0619948738484 K, F = -7.245601952958958, relative_change = 9.374841304366429e-5 Iter 45: T = 762.8433277893434 K, F = -3.0304925048385067, relative_change = 3.926405252402709e-5 Iter 50: T = 762.7518121984613 K, F = -1.2674398579553319, relative_change = 1.6430747214069292e-5 Iter 55: T = 762.7135276560604 K, F = -0.530067532110509, relative_change = 6.873294314582799e-6 Iter 60: T = 762.6975145681195 K, F = -0.2216821549235931, relative_change = 2.8748016391614696e-6 Iter 65: T = 762.6908173474854 K, F = -0.09271040144969034, relative_change = 1.2023302333870602e-6 Iter 70: T = 762.6880164275607 K, F = -0.038772645492240576, relative_change = 5.028382823753855e-7 Iter 75: T = 762.6868450385061 K, F = -0.016215191853168553, relative_change = 2.1029462242176203e-7 Iter 80: T = 762.6863551477092 K, F = -0.006781388361813856, relative_change = 8.794801068470555e-8 Iter 85: T = 762.6861502691942 K, F = -0.0028360578595530983, relative_change = 3.6780958800745293e-8 Iter 90: T = 762.6860645864942 K, F = -0.0011860733115318656, relative_change = 1.53822450390762e-8 Iter 95: T = 762.6860287529556 K, F = -0.0004960300301554144, relative_change = 6.433040102352592e-9 Iter 100: T = 762.6860137669402 K, F = -0.00020744568654973428, relative_change = 2.690374502252178e-9 Iter 105: T = 762.6860074996091 K, F = -8.67562633808383e-5, relative_change = 1.1251467886586139e-9 Iter 110: T = 762.6860048785363 K, F = -3.628250399290156e-5, relative_change = 4.705498131111626e-10 Iter 115: T = 762.6860037823724 K, F = -1.5173776854116028e-5, relative_change = 1.9678955766533768e-10 Iter 120: T = 762.6860033239435 K, F = -6.345854148603891e-6, relative_change = 8.229973634728932e-11 Iter 125: T = 762.6860031322232 K, F = -2.65391313258867e-6, relative_change = 3.44187474605164e-11 Iter 130: T = 762.6860030520434 K, F = -1.1098982604096364e-6, relative_change = 1.4394332460220634e-11 Iter 135: T = 762.6860030185113 K, F = -4.64172189018619e-7, relative_change = 6.019875016702023e-12 Iter 140: T = 762.6860030044877 K, F = -1.9412075202840384e-7, relative_change = 2.517562863755773e-12 Iter 145: T = 762.6860029986229 K, F = -8.11845096704289e-8, relative_change = 1.0528864355319943e-12 Iter 150: T = 762.6860029961701 K, F = -3.3951393141329334e-8, relative_change = 4.403175119438782e-13 Converged in 154 iterations to T = 762.6860029952849 K Iter 1: T = 969.9450195719319 K, F = -6848.055880202442, relative_change = 0.0300549804280681 Iter 2: T = 942.0460563012728 K, F = -5800.774283879968, relative_change = 0.02876344814159862 Iter 3: T = 916.2606874898636 K, F = -4911.926556645373, relative_change = 0.027371664727995865 Iter 5: T = 870.8268647267846 K, F = -3517.851072860008, relative_change = 0.0243273042829276 Iter 10: T = 789.7163732376608 K, F = -1515.2745547140794, relative_change = 0.016026695408040366 Iter 15: T = 745.1496095944862 K, F = -645.4365831626898, relative_change = 0.008865393032123579 Iter 20: T = 723.3797375361239 K, F = -272.5586942920064, relative_change = 0.004293375650236549 Iter 25: T = 713.5455749278717 K, F = -114.50929028295427, relative_change = 0.0019234611157324679 Iter 30: T = 709.2859864901692 K, F = -47.98595769477435, relative_change = 0.0008292008790924847 Iter 35: T = 707.4772202982485 K, F = -20.08567200239723, relative_change = 0.00035131559562249533 Iter 40: T = 706.7158554455174 K, F = -8.403139643157154, relative_change = 0.0001477326643076928 Iter 45: T = 706.3965734932849 K, F = -3.5148330913281796, relative_change = 6.192607919007034e-5 Iter 50: T = 706.2628930442743 K, F = -1.4700397585614349, relative_change = 2.592323634345381e-5 Iter 55: T = 706.2069594826175 K, F = -0.6148047391709472, relative_change = 1.0845787592003234e-5 Iter 60: T = 706.1835627075259 K, F = -0.2571215808732087, relative_change = 4.536604516866337e-6 Iter 65: T = 706.173777075903 K, F = -0.1075318224785014, relative_change = 1.8973963031289327e-6 Iter 70: T = 706.1696844643025 K, F = -0.04497118097855579, relative_change = 7.935372529756173e-7 Iter 75: T = 706.1679728601395 K, F = -0.018807500451350823, relative_change = 3.3187085922152496e-7 Iter 80: T = 706.1672570424448 K, F = -0.007865524005715718, relative_change = 1.3879307432416366e-7 Iter 85: T = 706.166957678168 K, F = -0.0032894565449195223, relative_change = 5.804504669879849e-8 Iter 90: T = 706.166832480318 K, F = -0.0013756900943224792, relative_change = 2.4275153686162557e-8 Iter 95: T = 706.1667801210585 K, F = -0.0005753300417171703, relative_change = 1.0152163027780745e-8 Iter 100: T = 706.1667582237867 K, F = -0.00024060989679541844, relative_change = 4.245756490840983e-9 Iter 105: T = 706.1667490660855 K, F = -0.00010062593254567265, relative_change = 1.7756261829690477e-9 Iter 110: T = 706.1667452362254 K, F = -4.208296806595957e-5, relative_change = 7.425881181329047e-10 Iter 115: T = 706.166743634532 K, F = -1.7599599221429507e-5, relative_change = 3.105592121350495e-10 Iter 120: T = 706.1667429646849 K, F = -7.360364102759753e-6, relative_change = 1.2987959886724488e-10 Iter 125: T = 706.1667426845466 K, F = -3.078191853411738e-6, relative_change = 5.431719386854068e-11 Iter 130: T = 706.1667425673895 K, F = -1.2873362378318376e-6, relative_change = 2.271609288486732e-11 Iter 135: T = 706.1667425183931 K, F = -5.383806042091877e-7, relative_change = 9.500162783628982e-12 Iter 140: T = 706.1667424979021 K, F = -2.2515672959411148e-7, relative_change = 3.9730732618257355e-12 Iter 145: T = 706.1667424893326 K, F = -9.416389901151234e-8, relative_change = 1.6615984345124304e-12 Iter 150: T = 706.1667424857487 K, F = -3.938035630923764e-8, relative_change = 6.948983536413694e-13 Iter 155: T = 706.1667424842499 K, F = -1.646936209631633e-8, relative_change = 2.9061526301337303e-13 Converged in 157 iterations to T = 706.1667424839327 K Iter 1: T = 973.5493355196701 K, F = -6026.809062920694, relative_change = 0.026450664480329875 Iter 2: T = 949.2916573309532 K, F = -5100.103333426664, relative_change = 0.024916742586823727 Iter 3: T = 927.1592658803792 K, F = -4314.077802052487, relative_change = 0.023314638109010574 Iter 5: T = 888.946895249909 K, F = -3082.6635249166748, relative_change = 0.01998415165199754 Iter 10: T = 823.9122762991503 K, F = -1319.8586056254683, relative_change = 0.011977957882211458 Iter 15: T = 790.4597550608669 K, F = -559.4008481702178, relative_change = 0.00613501231384508 Iter 20: T = 774.8583094989332 K, F = -235.49717260757666, relative_change = 0.002834404400873356 Iter 25: T = 767.9896316329998 K, F = -98.78277110328754, relative_change = 0.0012399323450506424 Iter 30: T = 765.0510536131621 K, F = -41.36574386537989, relative_change = 0.0005287529108260034 Iter 35: T = 763.810077638681 K, F = -17.309179828082435, relative_change = 0.00022296642602176494 Iter 40: T = 763.2889459569412 K, F = -7.240584480792946, relative_change = 9.357220476265756e-5 Iter 45: T = 763.0706252793165 K, F = -3.0283933787828263, relative_change = 3.919014460357204e-5 Iter 50: T = 762.9792547899251 K, F = -1.2665618452910334, relative_change = 1.6399800224219723e-5 Iter 55: T = 762.9410309710076 K, F = -0.5297003134292546, relative_change = 6.860345291028771e-6 Iter 60: T = 762.9250432854086 K, F = -0.2215285756079145, relative_change = 2.8693850438631355e-6 Iter 65: T = 762.9183566895717 K, F = -0.09264617203303793, relative_change = 1.2000647457943537e-6 Iter 70: T = 762.91556021328 K, F = -0.038745783858369576, relative_change = 5.018907929423363e-7 Iter 75: T = 762.9143906826437 K, F = -0.016203957976139383, relative_change = 2.0989836483346635e-7 Iter 80: T = 762.913901569066 K, F = -0.006776690216586112, relative_change = 8.778228994561317e-8 Iter 85: T = 762.9136970155946 K, F = -0.00283409303766069, relative_change = 3.671165220861321e-8 Iter 90: T = 762.9136114688318 K, F = -0.001185251600319015, relative_change = 1.5353260172819466e-8 Iter 95: T = 762.9135756921439 K, F = -0.0004956863818172952, relative_change = 6.4209182939179855e-9 Iter 100: T = 762.913560729904 K, F = -0.0002073019668866749, relative_change = 2.6853049925612696e-9 Iter 105: T = 762.9135544725162 K, F = -8.669615878820203e-5, relative_change = 1.123026667896782e-9 Iter 110: T = 762.9135518556019 K, F = -3.625736840695559e-5, relative_change = 4.696631645842226e-10 Iter 115: T = 762.9135507611771 K, F = -1.516326563055781e-5, relative_change = 1.9641876073814112e-10 Iter 120: T = 762.9135503034755 K, F = -6.341459122261028e-6, relative_change = 8.214467621762504e-11 Iter 125: T = 762.9135501120593 K, F = -2.652073687103851e-6, relative_change = 3.4353881400563324e-11 Iter 130: T = 762.9135500320068 K, F = -1.1091299741972094e-6, relative_change = 1.4367217545914548e-11 Iter 135: T = 762.9135499985279 K, F = -4.638520126887258e-7, relative_change = 6.00854988309666e-12 Iter 140: T = 762.9135499845264 K, F = -1.9398747264087746e-7, relative_change = 2.5128346418162266e-12 Iter 145: T = 762.913549978671 K, F = -8.112808291826923e-8, relative_change = 1.0509001143904681e-12 Iter 150: T = 762.9135499762222 K, F = -3.392845382421683e-8, relative_change = 4.394953599658751e-13 Converged in 154 iterations to T = 762.9135499753382 K Iter 1: T = 964.3263672615974 K, F = -8128.271153830316, relative_change = 0.035673632738402655 Iter 2: T = 930.578375288437 K, F = -6895.689678223628, relative_change = 0.03499644219933011 Iter 3: T = 898.7250673322303 K, F = -5848.949774549995, relative_change = 0.03422958108857144 Iter 5: T = 840.5895409524705 K, F = -4205.299655777952, relative_change = 0.032401385112598935 Iter 10: T = 726.4259241882446 K, F = -1833.9356702865277, relative_change = 0.02600902995275686 Iter 15: T = 652.7724547449853 K, F = -791.8762954963951, relative_change = 0.017809265146987198 Iter 20: T = 611.1228058537389 K, F = -338.073984270933, relative_change = 0.010207131325974395 Iter 25: T = 590.3172898767659 K, F = -142.98654775944243, relative_change = 0.005062341389684461 Iter 30: T = 580.7920969267387 K, F = -60.12312911600468, relative_change = 0.002297056905820876 Iter 35: T = 576.6385846944412 K, F = -25.205046727255414, relative_change = 0.0009961991108614504 Iter 40: T = 574.8694818405186 K, F = -10.552024161495385, relative_change = 0.0004231818260623253 Iter 45: T = 574.1238283029712 K, F = -4.414927099288409, relative_change = 0.00017815364618288705 Iter 50: T = 573.8109595079884 K, F = -1.846717245980975, relative_change = 7.471331319985155e-5 Iter 55: T = 573.6799332538278 K, F = -0.772379164237359, relative_change = 3.1282410551882194e-5 Iter 60: T = 573.6251048112795 K, F = -0.3230286875074402, relative_change = 1.3089056857747114e-5 Iter 65: T = 573.6021693520075 K, F = -0.13509629153822852, relative_change = 5.4751164175019204e-6 Iter 70: T = 573.5925764979453 K, F = -0.05649920378862172, relative_change = 2.2899544118649168e-6 Iter 75: T = 573.5885644819391 K, F = -0.023628697959262146, relative_change = 9.577204520896377e-7 Iter 80: T = 573.5868865792185 K, F = -0.009881813499537262, relative_change = 4.005361071478393e-7 Iter 85: T = 573.5861848550654 K, F = -0.0041326941370185555, relative_change = 1.6751002869801732e-7 Iter 90: T = 573.5858913847354 K, F = -0.0017283423437822187, relative_change = 7.005487733413441e-8 Iter 95: T = 573.5857686517796 K, F = -0.0007228134617214832, relative_change = 2.9297818318633446e-8 Iter 100: T = 573.5857173233641 K, F = -0.0003022892317892656, relative_change = 1.2252703131343593e-8 Iter 105: T = 573.5856958572026 K, F = -0.00012642096795167923, relative_change = 5.124227736172267e-9 Iter 110: T = 573.5856868797968 K, F = -5.2870757967171667e-5, relative_change = 2.14301337021103e-9 Iter 115: T = 573.5856831253383 K, F = -2.211118230754927e-5, relative_change = 8.962338089102891e-10 Iter 120: T = 573.5856815551789 K, F = -9.247160778491637e-6, relative_change = 3.7481569817701907e-10 Iter 125: T = 573.5856808985195 K, F = -3.867273283830741e-6, relative_change = 1.567524106634244e-10 Iter 130: T = 573.5856806238967 K, F = -1.6173396241714322e-6, relative_change = 6.555572025080902e-11 Iter 135: T = 573.5856805090461 K, F = -6.76390738862942e-7, relative_change = 2.7416184848697546e-11 Iter 140: T = 573.5856804610142 K, F = -2.828743199123629e-7, relative_change = 1.1465761136523027e-11 Iter 145: T = 573.5856804409267 K, F = -1.1830109575283743e-7, relative_change = 4.795105143292464e-12 Iter 150: T = 573.5856804325259 K, F = -4.9475070873494786e-8, relative_change = 2.005375903892303e-12 Iter 155: T = 573.5856804290127 K, F = -2.069110871527613e-8, relative_change = 8.38673904070545e-13 Iter 160: T = 573.5856804275433 K, F = -8.653389560464575e-9, relative_change = 3.5074833862568976e-13 Converged in 163 iterations to T = 573.5856804271131 K Iter 1: T = 963.5704282988577 K, F = -8300.512565574132, relative_change = 0.03642957170114228 Iter 2: T = 929.0191035415161 K, F = -7043.246503374859, relative_change = 0.035857601834398886 Iter 3: T = 896.3125191620826 K, F = -5975.495668450909, relative_change = 0.03520550250770154 Iter 5: T = 836.3147973216492 K, F = -4298.693858021307, relative_change = 0.03363170470560122 Iter 10: T = 716.6645260967497 K, F = -1878.4996691815456, relative_change = 0.027904014325558984 Iter 15: T = 637.0671197275532 K, F = -813.4187077993529, relative_change = 0.019986947129348637 Iter 20: T = 590.4527649183949 K, F = -348.26994202418086, relative_change = 0.011979968739736899 Iter 25: T = 566.4749392184393 K, F = -147.60876389994007, relative_change = 0.006136166422815187 Iter 30: T = 555.292158626507 K, F = -62.140534794983346, relative_change = 0.002834970580518909 Iter 35: T = 550.3688131437289 K, F = -26.065774171218248, relative_change = 0.0012401870849001663 Iter 40: T = 548.2624878898055 K, F = -10.915165440680276, relative_change = 0.000528862893194393 Iter 45: T = 547.3729754103427 K, F = -4.567367954817182, relative_change = 0.00022301304964529448 Iter 50: T = 546.999436070642 K, F = -1.91057084820877, relative_change = 9.359181499381319e-5 Iter 55: T = 546.8429470672647 K, F = -0.7991012582843385, relative_change = 3.91983655094894e-5 Iter 60: T = 546.7774540588252 K, F = -0.3342072981570175, relative_change = 1.640324175645718e-5 Iter 65: T = 546.7500557927477 K, F = -0.1397718647380122, relative_change = 6.861785185310073e-6 Iter 70: T = 546.7385960568386 K, F = -0.05845467964668105, relative_change = 2.8699873306159696e-6 Iter 75: T = 546.7338032040893 K, F = -0.02444651798808581, relative_change = 1.2003166478055121e-6 Iter 80: T = 546.7317987313437 K, F = -0.010223838518428535, relative_change = 5.019961446228618e-7 Iter 85: T = 546.7309604291219 K, F = -0.004275733594786502, relative_change = 2.0994242470822756e-7 Iter 90: T = 546.7306098397605 K, F = -0.001788163241979196, relative_change = 8.78007164294594e-8 Iter 95: T = 546.7304632188645 K, F = -0.0007478312907882589, relative_change = 3.67193583841141e-8 Iter 100: T = 546.7304019002133 K, F = -0.00031275198855937325, relative_change = 1.5356482975081026e-8 Iter 105: T = 546.7303762560138 K, F = -0.00013079661887571703, relative_change = 6.422266118092789e-9 Iter 110: T = 546.730365531302 K, F = -5.470070866031573e-5, relative_change = 2.6858686691783243e-9 Iter 115: T = 546.7303610460993 K, F = -2.287649033075323e-5, relative_change = 1.1232624319631426e-9 Iter 120: T = 546.7303591703338 K, F = -9.567221212536392e-6, relative_change = 4.697617591894696e-10 Iter 125: T = 546.7303583858662 K, F = -4.001125729125032e-6, relative_change = 1.9645995763415487e-10 Iter 130: T = 546.7303580577926 K, F = -1.6733186491424412e-6, relative_change = 8.21619049521862e-11 Iter 135: T = 546.7303579205883 K, F = -6.998013461767538e-7, relative_change = 3.436106553174917e-11 Iter 140: T = 546.7303578632078 K, F = -2.9266575579667276e-7, relative_change = 1.4370231314635294e-11 Iter 145: T = 546.7303578392106 K, F = -1.223963664864769e-7, relative_change = 6.009804919134597e-12 Iter 150: T = 546.7303578291747 K, F = -5.118796689296268e-8, relative_change = 2.5133891151474577e-12 Iter 155: T = 546.7303578249775 K, F = -2.140723318055926e-8, relative_change = 1.0511202169040372e-12 Iter 160: T = 546.7303578232222 K, F = -8.952466601375164e-9, relative_change = 4.3957659341764645e-13 Converged in 164 iterations to T = 546.7303578225886 K Iter 1: T = 969.372050352357 K, F = -6978.6074619170395, relative_change = 0.030627949647643097 Iter 2: T = 940.8863455924212 K, F = -5912.281592917361, relative_change = 0.029385729400369574 Iter 3: T = 914.503550310234 K, F = -5007.196703191894, relative_change = 0.028040363648359178 Iter 5: T = 867.8594406519014 K, F = -3587.434727594919, relative_change = 0.025072748519468915 Iter 10: T = 783.88393057862 K, F = -1546.90727529145, relative_change = 0.016800645287686607 Iter 15: T = 737.1624582391818 K, F = -659.5602567951905, relative_change = 0.009436606192058833 Iter 20: T = 714.1208269900236 K, F = -278.7069915213464, relative_change = 0.004616344772779034 Iter 25: T = 703.6533207807249 K, F = -117.1336827782306, relative_change = 0.002079224323654698 Iter 30: T = 699.106692261335 K, F = -49.09385002736457, relative_change = 0.0008985859036406418 Iter 35: T = 697.1735918249581 K, F = -20.55090207777908, relative_change = 0.00038112905862699087 Iter 40: T = 696.3594446545897 K, F = -8.598042878147856, relative_change = 0.0001603444204649341 Iter 45: T = 696.0179487441559 K, F = -3.596403659017847, relative_change = 6.722586708856518e-5 Iter 50: T = 695.8749535140403 K, F = -1.504164024664084, relative_change = 2.8144137160290884e-5 Iter 55: T = 695.8151200760785 K, F = -0.6290777506101051, relative_change = 1.1775377719267591e-5 Iter 60: T = 695.7900915688883 K, F = -0.2630910460034185, relative_change = 4.925507263952075e-6 Iter 65: T = 695.7796233948935 K, F = -0.11002838029659329, relative_change = 2.0600640567012163e-6 Iter 70: T = 695.7752453127379 K, F = -0.04601528110462216, relative_change = 8.615710450156454e-7 Iter 75: T = 695.7734143173243 K, F = -0.019244157312204524, relative_change = 3.603241372638159e-7 Iter 80: T = 695.7726485680737 K, F = -0.00804813942167748, relative_change = 1.5069270335884892e-7 Iter 85: T = 695.7723283216997 K, F = -0.0033658285468857185, relative_change = 6.302163614435634e-8 Iter 90: T = 695.7721943906855 K, F = -0.0014076297862156695, relative_change = 2.635642673977156e-8 Iter 95: T = 695.7721383791087 K, F = -0.000588687602654625, relative_change = 1.102257693806184e-8 Iter 100: T = 695.7721149543936 K, F = -0.00024619618936139176, relative_change = 4.609774117624791e-9 Iter 105: T = 695.772105157897 K, F = -0.00010296218734684448, relative_change = 1.9278627316465853e-9 Iter 110: T = 695.7721010608852 K, F = -4.306001678899829e-5, relative_change = 8.06255248242471e-10 Iter 115: T = 695.7720993474659 K, F = -1.800821407849096e-5, relative_change = 3.371855926958541e-10 Iter 120: T = 695.7720986308934 K, F = -7.531251247749893e-6, relative_change = 1.4101506218759229e-10 Iter 125: T = 695.7720983312142 K, F = -3.149660338763738e-6, relative_change = 5.897420426440654e-11 Iter 130: T = 695.7720982058847 K, F = -1.317224963215402e-6, relative_change = 2.4663705210814293e-11 Iter 135: T = 695.7720981534706 K, F = -5.508791539599045e-7, relative_change = 1.0314655009086068e-11 Iter 140: T = 695.7720981315504 K, F = -2.3038535279518157e-7, relative_change = 4.3137327243250315e-12 Iter 145: T = 695.772098122383 K, F = -9.63506192608321e-8, relative_change = 1.804067898839092e-12 Iter 150: T = 695.7720981185491 K, F = -4.02949154043597e-8, relative_change = 7.544815376075199e-13 Iter 155: T = 695.7720981169457 K, F = -1.6851524842209642e-8, relative_change = 3.1552775943402375e-13 Converged in 158 iterations to T = 695.7720981164762 K Iter 1: T = 966.4685827080461 K, F = -7640.165326583999, relative_change = 0.03353141729195388 Iter 2: T = 934.9758328810976 K, F = -6477.852171898081, relative_change = 0.03258538393323221 Iter 3: T = 905.4920407870904 K, F = -5490.9572529767975, relative_change = 0.03153428255268788 Iter 5: T = 852.4268439195473 K, F = -3941.8296602570117, relative_change = 0.029111862001220536 Iter 10: T = 752.3032049544206 K, F = -1710.0402109698855, relative_change = 0.02147875941028529 Iter 15: T = 692.2461405192871 K, F = -733.6463065059753, relative_change = 0.013288446882088321 Iter 20: T = 660.683644183166 K, F = -311.43724687782606, relative_change = 0.006974153125488117 Iter 25: T = 645.7510587135231 K, F = -131.23244833492066, relative_change = 0.003268422130480648 Iter 30: T = 639.1260582654448 K, F = -55.07306994067447, relative_change = 0.0014398944273620853 Iter 35: T = 636.2814371155021 K, F = -23.066964170801814, relative_change = 0.0006159733657927214 Iter 40: T = 635.0782176678147 K, F = -9.653074812690733, relative_change = 0.00026010161802156605 Iter 45: T = 634.5725956440485 K, F = -4.038123499994224, relative_change = 0.00010922006757484026 Iter 50: T = 634.360711331128 K, F = -1.688983176875621, relative_change = 4.5754987116512664e-5 Iter 55: T = 634.2720238024435 K, F = -0.7063865124805684, relative_change = 1.9148932277288195e-5 Iter 60: T = 634.2349204850734 K, F = -0.29542515172238876, relative_change = 8.010702107285068e-6 Iter 65: T = 634.2194011360838 K, F = -0.12355135455783528, relative_change = 3.3505894756971316e-6 Iter 70: T = 634.2129103568699 K, F = -0.051670831796746974, relative_change = 1.4013296877060922e-6 Iter 75: T = 634.2101957651466 K, F = -0.021609390382864746, relative_change = 5.860656064837179e-7 Iter 80: T = 634.2090604781661 K, F = -0.0090373106266472, relative_change = 2.451018737287289e-7 Iter 85: T = 634.2085856854408 K, F = -0.003779512192892298, relative_change = 1.0250492213281982e-7 Iter 90: T = 634.2083871210766 K, F = -0.001580637303299548, relative_change = 4.286885104246177e-8 Iter 95: T = 634.2083040790224 K, F = -0.0006610414263932274, relative_change = 1.792827744079055e-8 Iter 100: T = 634.2082693498321 K, F = -0.00027645542431359305, relative_change = 7.49782183294271e-9 Iter 105: T = 634.2082548256678 K, F = -0.00011561696042117209, relative_change = 3.135678986131757e-9 Iter 110: T = 634.2082487514886 K, F = -4.835239389749946e-5, relative_change = 1.311378467612606e-9 Iter 115: T = 634.2082462111943 K, F = -2.0221548771237607e-5, relative_change = 5.484341520358621e-10 Iter 120: T = 634.2082451488128 K, F = -8.45689347633849e-6, relative_change = 2.2936172159771104e-10 Iter 125: T = 634.2082447045121 K, F = -3.5367730175095424e-6, relative_change = 9.592178891357963e-11 Iter 130: T = 634.2082445187004 K, F = -1.4791213364673261e-6, relative_change = 4.0115654612181965e-11 Iter 135: T = 634.2082444409916 K, F = -6.185864894203696e-7, relative_change = 1.6776853500804015e-11 Iter 140: T = 634.2082444084929 K, F = -2.5869996711502807e-7, relative_change = 7.016272621921227e-12 Iter 145: T = 634.2082443949015 K, F = -1.0819065116018933e-7, relative_change = 2.9342682653801597e-12 Iter 150: T = 634.2082443892174 K, F = -4.5246098367979215e-8, relative_change = 1.22713181920425e-12 Iter 155: T = 634.2082443868404 K, F = -1.8923390465719336e-8, relative_change = 5.132264527930836e-13 Converged in 160 iterations to T = 634.2082443858463 K Iter 1: T = 966.434029211983 K, F = -7648.038373530836, relative_change = 0.03356597078801698 Iter 2: T = 934.9051509335931 K, F = -6484.588091403298, relative_change = 0.03262393223477251 Iter 3: T = 905.383698452615 K, F = -5496.724369726465, relative_change = 0.031576949224740046 Iter 5: T = 852.2390499704698 K, F = -3946.065659114392, relative_change = 0.029162727521873703 Iter 10: T = 751.9047901882382 K, F = -1712.0128614764812, relative_change = 0.021543446159453968 Iter 15: T = 691.6588786183851 K, F = -734.5577591226938, relative_change = 0.013347023591196898 Iter 20: T = 659.9668274308174 K, F = -311.84645793732886, relative_change = 0.007012613919600586 Iter 25: T = 644.9631258105348 K, F = -131.41057207086473, relative_change = 0.0032886117786968573 Iter 30: T = 638.3041960176172 K, F = -55.14902138123997, relative_change = 0.001449264848916066 Iter 35: T = 635.4445211765101 K, F = -23.099004336029267, relative_change = 0.0006200741824360876 Iter 40: T = 634.2348434277316 K, F = -9.666524449971055, relative_change = 0.000261850097227018 Iter 45: T = 633.7264910987669 K, F = -4.043757185284931, relative_change = 0.00010995728227738894 Iter 50: T = 633.5134597340044 K, F = -1.6913408153492635, relative_change = 4.606435441352433e-5 Iter 55: T = 633.4242915789267 K, F = -0.7073727793126647, relative_change = 1.92784986453915e-5 Iter 60: T = 633.3869870973383 K, F = -0.2958376683127229, relative_change = 8.064920764800566e-6 Iter 65: T = 633.371383590967 K, F = -0.12372388232424764, relative_change = 3.373270045908174e-6 Iter 70: T = 633.3648576112139 K, F = -0.05174298644038661, relative_change = 1.4108159668078621e-6 Iter 75: T = 633.3621282973445 K, F = -0.02163956657458943, relative_change = 5.900330555451631e-7 Iter 80: T = 633.3609868532361 K, F = -0.009049930716080845, relative_change = 2.467611387302317e-7 Iter 85: T = 633.3605094855002 K, F = -0.0037847900732028705, relative_change = 1.0319885189876358e-7 Iter 90: T = 633.3603098442311 K, F = -0.0015828445779461076, relative_change = 4.315906170672473e-8 Iter 95: T = 633.3602263518015 K, F = -0.0006619645350749437, relative_change = 1.804964716428422e-8 Iter 100: T = 633.3601914342587 K, F = -0.00027684147820045135, relative_change = 7.5485800956992e-9 Iter 105: T = 633.3601768313233 K, F = -0.00011577841314175386, relative_change = 3.156906712715996e-9 Iter 110: T = 633.360170724201 K, F = -4.8419914986441714e-5, relative_change = 1.3202561472316988e-9 Iter 115: T = 633.3601681701293 K, F = -2.0249786708337325e-5, relative_change = 5.521468987003574e-10 Iter 120: T = 633.3601671019861 K, F = -8.46870228088381e-6, relative_change = 2.3091441926280203e-10 Iter 125: T = 633.3601666552759 K, F = -3.541712124577323e-6, relative_change = 9.657115979092861e-11 Iter 130: T = 633.3601664684563 K, F = -1.4811861694941086e-6, relative_change = 4.038720862223527e-11 Iter 135: T = 633.3601663903261 K, F = -6.194489157729244e-7, relative_change = 1.68903903655652e-11 Iter 140: T = 633.3601663576511 K, F = -2.5906045220125407e-7, relative_change = 7.0637498195860455e-12 Iter 145: T = 633.3601663439861 K, F = -1.0834229141609697e-7, relative_change = 2.95414770961672e-12 Iter 150: T = 633.3601663382711 K, F = -4.5309388130299055e-8, relative_change = 1.2354420736861133e-12 Iter 155: T = 633.3601663358812 K, F = -1.8948794922035717e-8, relative_change = 5.166730220551926e-13 Converged in 160 iterations to T = 633.3601663348817 K Iter 1: T = 976.35530822778 K, F = -5387.465512208736, relative_change = 0.023644691772219995 Iter 2: T = 954.8738974467566 K, F = -4555.560154039948, relative_change = 0.022001632602392632 Iter 3: T = 935.4648132975473 K, F = -3850.3714213260087, relative_change = 0.0203263323053519 Iter 5: T = 902.4452670709703 K, F = -2746.756340860953, relative_change = 0.016972001161239033 Iter 10: T = 848.0179901715987 K, F = -1171.4021863969301, relative_change = 0.009565492437685286 Iter 15: T = 821.1181039096471 K, F = -495.0677420889904, relative_change = 0.0046901385024419075 Iter 20: T = 808.882084510343 K, F = -208.08163592176817, relative_change = 0.002115052046530586 Iter 25: T = 803.5638627608172 K, F = -87.21589317746022, relative_change = 0.0009145952927745639 Iter 30: T = 801.302040057861 K, F = -36.509572116865954, relative_change = 0.0003880174318700216 Iter 35: T = 800.3493268420464 K, F = -15.274907456101408, relative_change = 0.00016326006155723772 Iter 40: T = 799.9496875398003 K, F = -6.38923309613661, relative_change = 6.845139800200163e-5 Iter 45: T = 799.7823420195957 K, F = -2.6722436497117545, relative_change = 2.8657754859857893e-5 Iter 50: T = 799.7123190329899 K, F = -1.1175974799746287, relative_change = 1.1990369167122868e-5 Iter 55: T = 799.6830280902321 K, F = -0.4673984345385631, relative_change = 5.015452587248343e-6 Iter 60: T = 799.6707771319917 K, F = -0.1954726255511482, relative_change = 2.0976860972964803e-6 Iter 65: T = 799.6656534361982 K, F = -0.08174916454335979, relative_change = 8.773060519288461e-7 Iter 70: T = 799.6635106106639 K, F = -0.034188508047457544, relative_change = 3.669048835144807e-7 Iter 75: T = 799.6626144493545 K, F = -0.014298047805962777, relative_change = 1.5344488122413431e-7 Iter 80: T = 799.6622396629291 K, F = -0.005979615298802643, relative_change = 6.417263526080683e-8 Iter 85: T = 799.6620829225841 K, F = -0.002500746695910161, relative_change = 2.6837789279719096e-8 Iter 90: T = 799.6620173718675 K, F = -0.0010458421623420477, relative_change = 1.1223888678332546e-8 Iter 95: T = 799.6619899577693 K, F = -0.0004373836876914172, relative_change = 4.693965111019312e-9 Iter 100: T = 799.661978492865 K, F = -0.00018291908354706177, relative_change = 1.9630724215005523e-9 Iter 105: T = 799.6619736981049 K, F = -7.649894630545884e-5, relative_change = 8.20980365422944e-10 Iter 110: T = 799.661971692879 K, F = -3.199277221077601e-5, relative_change = 3.433437897197832e-10 Iter 115: T = 799.6619708542695 K, F = -1.3379758634912697e-5, relative_change = 1.435904656189004e-10 Iter 120: T = 799.661970503553 K, F = -5.595572930894299e-6, relative_change = 6.005122709260852e-11 Iter 125: T = 799.6619703568792 K, F = -2.340135688005951e-6, relative_change = 2.5114143178226382e-11 Iter 130: T = 799.6619702955386 K, F = -9.786744996631569e-7, relative_change = 1.0503054008522028e-11 Iter 135: T = 799.6619702698852 K, F = -4.0929376343701307e-7, relative_change = 4.392506910996852e-12 Iter 140: T = 799.6619702591565 K, F = -1.7117206607686342e-7, relative_change = 1.8370044951246093e-12 Iter 145: T = 799.6619702546697 K, F = -7.158633552606375e-8, relative_change = 7.682586485539044e-13 Iter 150: T = 799.6619702527933 K, F = -2.993921999205895e-8, relative_change = 3.213052396255121e-13 Converged in 153 iterations to T = 799.6619702522438 K Iter 1: T = 965.2297429008888 K, F = -7922.436155085664, relative_change = 0.034770257099111135 Iter 2: T = 932.436612854389 K, F = -6719.42991830264, relative_change = 0.03397442970203535 Iter 3: T = 901.5911938421483 K, F = -5697.872450618938, relative_change = 0.033080445991729386 Iter 5: T = 845.6302630968482 K, F = -4093.981235479212, relative_change = 0.03097973954473605 Iter 10: T = 737.6419222719901 K, F = -1781.2789191486097, relative_change = 0.023961122166181886 Iter 15: T = 670.2330561693578 K, F = -766.8634857663026, relative_change = 0.015655371912219277 Iter 20: T = 633.4170886490576 K, F = -326.49473625698806, relative_change = 0.008597212519243244 Iter 25: T = 615.5142304990145 K, F = -137.83148044570345, relative_change = 0.004143919750695018 Iter 30: T = 607.4480817005597 K, F = -57.897295763177084, relative_change = 0.0018519326233323577 Iter 35: T = 603.9587963254005 K, F = -24.260443001489016, relative_change = 0.0007974526942542441 Iter 40: T = 602.477987349419 K, F = -10.154451212039662, relative_change = 0.00033769550933057885 Iter 45: T = 601.8548260450737 K, F = -4.2482053021774915, relative_change = 0.00014197494966250286 Iter 50: T = 601.5935282000984 K, F = -1.7769123992582134, relative_change = 5.950722610086964e-5 Iter 55: T = 601.4841300642493 K, F = -0.7431719320236464, relative_change = 2.4909725741978983e-5 Iter 60: T = 601.4383573828652 K, F = -0.31081141952450064, relative_change = 1.0421589307587642e-5 Iter 65: T = 601.4192110118781 K, F = -0.12998645454586852, relative_change = 4.359140902016833e-6 Iter 70: T = 601.411203125445 K, F = -0.054362133772698995, relative_change = 1.8231686075244994e-6 Iter 75: T = 601.407854018802 K, F = -0.022734936609325518, relative_change = 7.624925437548183e-7 Iter 80: T = 601.4064533626595 K, F = -0.00950802952971791, relative_change = 3.188872761500204e-7 Iter 85: T = 601.4058675880793 K, F = -0.003976372814776419, relative_change = 1.3336312975709548e-7 Iter 90: T = 601.4056226095504 K, F = -0.001662966829421464, relative_change = 5.577416944745862e-8 Iter 95: T = 601.4055201564981 K, F = -0.0006954726283366353, relative_change = 2.332544401549139e-8 Iter 100: T = 601.4054773093898 K, F = -0.00029085496570530056, relative_change = 9.754982790062287e-9 Iter 105: T = 601.4054593902141 K, F = -0.00012163902150363892, relative_change = 4.079650924348337e-9 Iter 110: T = 601.4054518962002 K, F = -5.087089215688456e-5, relative_change = 1.706158862155633e-9 Iter 115: T = 601.405448762114 K, F = -2.1274814343108517e-5, relative_change = 7.13536020183152e-10 Iter 120: T = 601.4054474514018 K, F = -8.897382013040023e-6, relative_change = 2.984093076029031e-10 Iter 125: T = 601.4054469032462 K, F = -3.7209909379831707e-6, relative_change = 1.2479832074100417e-10 Iter 130: T = 601.405446674001 K, F = -1.556162744165146e-6, relative_change = 5.219214474336493e-11 Iter 135: T = 601.405446578128 K, F = -6.5080629080283e-7, relative_change = 2.1827393235452507e-11 Iter 140: T = 601.4054465380326 K, F = -2.721742450861875e-7, relative_change = 9.128452447218557e-12 Iter 145: T = 601.4054465212644 K, F = -1.1382643050339425e-7, relative_change = 3.817624837705566e-12 Iter 150: T = 601.4054465142516 K, F = -4.760309096907278e-8, relative_change = 1.596560145490633e-12 Iter 155: T = 601.4054465113189 K, F = -1.9908647175270744e-8, relative_change = 6.677161500302676e-13 Iter 160: T = 601.4054465100924 K, F = -8.325877820514194e-9, relative_change = 2.7924162978263795e-13 Converged in 162 iterations to T = 601.4054465098328 K Iter 1: T = 964.5732670677139 K, F = -8072.014798144307, relative_change = 0.035426732932286084 Iter 2: T = 931.0868023420603 K, F = -6847.508224653484, relative_change = 0.034716351643718946 Iter 3: T = 899.5102274740013 K, F = -5807.642959067917, relative_change = 0.03391367463122784 Iter 5: T = 841.9744513148667 K, F = -4174.84419262986, relative_change = 0.03200767565935122 Iter 10: T = 729.5382016698393 K, F = -1819.4813945430465, relative_change = 0.02542723769421477 Iter 15: T = 657.6767246088123 K, F = -784.9660948144566, relative_change = 0.017177357076963686 Iter 20: T = 617.4520299804467 K, F = -334.8502150954989, relative_change = 0.009720762606506167 Iter 25: T = 597.5203081725724 K, F = -141.54261302103683, relative_change = 0.004779395046255627 Iter 30: T = 588.4398914448502 K, F = -59.49748574842522, relative_change = 0.002158485193597736 Iter 35: T = 584.4901474259829 K, F = -24.939082091062353, relative_change = 0.0009340241764004071 Iter 40: T = 582.80974116819 K, F = -10.439997370873064, relative_change = 0.000396381141413261 Iter 45: T = 582.1018208216888 K, F = -4.367933381188802, relative_change = 0.00016680089982771865 Iter 50: T = 581.8048466803164 K, F = -1.8270386885199497, relative_change = 6.993984798233842e-5 Iter 55: T = 581.6804879091529 K, F = -0.7641449262861844, relative_change = 2.9281584344166523e-5 Iter 60: T = 581.6284514248866 K, F = -0.3195842546416285, relative_change = 1.225149736997778e-5 Iter 65: T = 581.6066842155509 K, F = -0.133655652717604, relative_change = 5.124700708799421e-6 Iter 70: T = 581.5975800460103 K, F = -0.05589668765921538, relative_change = 2.1433821733317685e-6 Iter 75: T = 581.5937724226798 K, F = -0.02337671436034544, relative_change = 8.964179573629941e-7 Iter 80: T = 581.5921800027357 K, F = -0.009776430221534071, relative_change = 3.748979311266765e-7 Iter 85: T = 581.5915140290813 K, F = -0.0040886214651695285, relative_change = 1.5678770779553314e-7 Iter 90: T = 581.5912355101382 K, F = -0.0017099106026510769, relative_change = 6.55706519789106e-8 Iter 95: T = 581.5911190300487 K, F = -0.0007151050827674532, relative_change = 2.742245772830249e-8 Iter 100: T = 581.5910703166595 K, F = -0.0002990654936150805, relative_change = 1.1468404189296839e-8 Iter 105: T = 581.591049944134 K, F = -0.00012507276255357969, relative_change = 4.796224452074722e-9 Iter 110: T = 581.5910414241 K, F = -5.230692359259326e-5, relative_change = 2.0058385081043096e-9 Iter 115: T = 581.5910378609199 K, F = -2.1875380333824523e-5, relative_change = 8.38865651412239e-10 Iter 120: T = 581.5910363707552 K, F = -9.148545062120927e-6, relative_change = 3.5082362864155915e-10 Iter 125: T = 581.5910357475507 K, F = -3.826031134468444e-6, relative_change = 1.4671864472690839e-10 Iter 130: T = 581.591035486919 K, F = -1.6000921545522573e-6, relative_change = 6.135949881326764e-11 Iter 135: T = 581.5910353779198 K, F = -6.691769886546517e-7, relative_change = 2.5661249923038143e-11 Iter 140: T = 581.591035332335 K, F = -2.7985752715231627e-7, relative_change = 1.0731830399931864e-11 Iter 145: T = 581.5910353132709 K, F = -1.1703963498366221e-7, relative_change = 4.488174842719132e-12 Iter 150: T = 581.5910353052981 K, F = -4.894738697691636e-8, relative_change = 1.8770088516735225e-12 Iter 155: T = 581.5910353019638 K, F = -2.047058494936138e-8, relative_change = 7.849953086986111e-13 Iter 160: T = 581.5910353005694 K, F = -8.561200248724532e-9, relative_change = 3.283004393269432e-13 Converged in 163 iterations to T = 581.591035300161 K Iter 1: T = 964.2950851460275 K, F = -8135.398813619875, relative_change = 0.03570491485397248 Iter 2: T = 930.5139278660766 K, F = -6901.794693385094, relative_change = 0.0350319708150698 Iter 3: T = 898.6254894055808 K, F = -5854.184202598323, relative_change = 0.03426970570298153 Iter 5: T = 840.4136803097095 K, F = -4209.160041335849, relative_change = 0.03245154987532368 Iter 10: T = 726.0290006087537 K, F = -1835.7704887385892, relative_change = 0.0260839929876894 Iter 15: T = 652.1435528322752 K, F = -792.7560279313865, relative_change = 0.017891891307962815 Iter 20: T = 610.3071079872027 K, F = -338.48589876670985, relative_change = 0.010271624979927087 Iter 25: T = 589.3858796127455 K, F = -143.17159088910375, relative_change = 0.005100227022529076 Iter 30: T = 579.8014168511941 K, F = -60.20344651550397, relative_change = 0.0023157098689715007 Iter 35: T = 575.6206637488984 K, F = -25.23921942641276, relative_change = 0.001004589471865737 Iter 40: T = 573.8396859544353 K, F = -10.56642357167476, relative_change = 0.00042680253869184075 Iter 45: T = 573.0889773488287 K, F = -4.420968460753727, relative_change = 0.0001796881074098136 Iter 50: T = 572.7739785847348 K, F = -1.8492472363340027, relative_change = 7.535863467348502e-5 Iter 55: T = 572.642058749016 K, F = -0.7734378373494125, relative_change = 3.155292372360298e-5 Iter 60: T = 572.5868561078322 K, F = -0.3234715425431494, relative_change = 1.3202299523773307e-5 Iter 65: T = 572.5637640680035 K, F = -0.13528151723326462, relative_change = 5.52249525750172e-6 Iter 70: T = 572.5541057149926 K, F = -0.05657667061155319, relative_change = 2.3097722040317263e-6 Iter 75: T = 572.5500663039037 K, F = -0.0236610960726501, relative_change = 9.66009083376325e-7 Iter 80: T = 572.5483769437707 K, F = -0.009895362875920466, relative_change = 4.040026156253189e-7 Iter 85: T = 572.5476704279101 K, F = -0.004138360665345786, relative_change = 1.6895978211599434e-7 Iter 90: T = 572.5473749536168 K, F = -0.0017307121570258044, relative_change = 7.066118472225488e-8 Iter 95: T = 572.547251382577 K, F = -0.0007238045459982967, relative_change = 2.9551383846727784e-8 Iter 100: T = 572.5471997036642 K, F = -0.0003027037139118338, relative_change = 1.2358747309784435e-8 Iter 105: T = 572.5471780909209 K, F = -0.00012659431074740768, relative_change = 5.168576752295247e-9 Iter 110: T = 572.5471690522126 K, F = -5.294325309668224e-5, relative_change = 2.1615607059872635e-9 Iter 115: T = 572.5471652721167 K, F = -2.214150080803723e-5, relative_change = 9.039905336985875e-10 Iter 120: T = 572.5471636912354 K, F = -9.259840621389515e-6, relative_change = 3.7805966487572495e-10 Iter 125: T = 572.547163030092 K, F = -3.8725758644830854e-6, relative_change = 1.5810906487950394e-10 Iter 130: T = 572.5471627535937 K, F = -1.6195572299371186e-6, relative_change = 6.612308930637735e-11 Iter 135: T = 572.547162637959 K, F = -6.773182646968579e-7, relative_change = 2.7653469306665692e-11 Iter 140: T = 572.5471625895992 K, F = -2.832627516990982e-7, relative_change = 1.1565017837646024e-11 Iter 145: T = 572.5471625693744 K, F = -1.1846343339616539e-7, relative_change = 4.836610928715377e-12 Iter 150: T = 572.5471625609163 K, F = -4.954293636449947e-8, relative_change = 2.0227330966907294e-12 Iter 155: T = 572.5471625573789 K, F = -2.0718756321702614e-8, relative_change = 8.459029119121989e-13 Iter 160: T = 572.5471625558995 K, F = -8.664456707663248e-9, relative_change = 3.537514050282234e-13 Converged in 163 iterations to T = 572.5471625554665 K Iter 1: T = 980.1239015558248 K, F = -4528.787937556013, relative_change = 0.01987609844417524 Iter 2: T = 962.2922979816266 K, F = -3825.497555636377, relative_change = 0.018193213680324262 Iter 3: T = 946.3844163564958 K, F = -3229.917478771422, relative_change = 0.016531236567617815 Iter 5: T = 919.8169925186435 K, F = -2299.332328034805, relative_change = 0.013358842065258196 Iter 10: T = 877.6283369130325 K, F = -976.1653858372406, relative_change = 0.007020486436073125 Iter 15: T = 857.6524484995845 K, F = -411.3552290000685, relative_change = 0.00329277234209622 Iter 20: T = 848.7860717810764 K, F = -172.63410686977468, relative_change = 0.0014512015860152685 Iter 25: T = 844.9782677547437 K, F = -72.30744170040589, relative_change = 0.0006209228405990305 Iter 30: T = 843.3674930674196 K, F = -30.259412986065687, relative_change = 0.00026221213637321595 Iter 35: T = 842.6905798487477 K, F = -12.65830012530833, relative_change = 0.00011010996388692852 Iter 40: T = 842.4069100987584 K, F = -5.294458168643745, relative_change = 4.612843228336345e-5 Iter 45: T = 842.2881748127049 K, F = -2.214311758050468, relative_change = 1.9305336208277214e-5 Iter 50: T = 842.2385005694733 K, F = -0.9260701937554376, relative_change = 8.076151461903839e-6 Iter 55: T = 842.2177231049837 K, F = -0.38729686367664695, relative_change = 3.377968066569689e-6 Iter 60: T = 842.2090331783834 K, F = -0.16197274198412992, relative_change = 1.4127809466397629e-6 Iter 65: T = 842.2053988523503 K, F = -0.06773903445010299, relative_change = 5.908548705778594e-7 Iter 70: T = 842.2038789171929 K, F = -0.028329290559715226, relative_change = 2.4710483805265094e-7 Iter 75: T = 842.2032432592537 K, F = -0.011847650672974996, relative_change = 1.0334259219846504e-7 Iter 80: T = 842.2029774190042 K, F = -0.004954829535102956, relative_change = 4.3219175830268356e-8 Iter 85: T = 842.2028662413483 K, F = -0.0020721689778691044, relative_change = 1.8074787651055046e-8 Iter 90: T = 842.2028197455093 K, F = -0.000866605829975331, relative_change = 7.55909418518069e-9 Iter 95: T = 842.2028003003913 K, F = -0.0003624249103886257, relative_change = 3.161303835133814e-9 Iter 100: T = 842.2027921682103 K, F = -0.00015157042593161307, relative_change = 1.3220950797939832e-9 Iter 105: T = 842.2027887672351 K, F = -6.338856278143012e-5, relative_change = 5.52915966718264e-10 Iter 110: T = 842.2027873449066 K, F = -2.650985595331612e-5, relative_change = 2.3123607961255404e-10 Iter 115: T = 842.2027867500717 K, F = -1.108673625016543e-5, relative_change = 9.670567200826672e-11 Iter 120: T = 842.2027865013048 K, F = -4.636604903573982e-6, relative_change = 4.04434617681877e-11 Iter 125: T = 842.2027863972675 K, F = -1.9390837120436544e-6, relative_change = 1.6913940189087193e-11 Iter 130: T = 842.2027863537578 K, F = -8.109476696827045e-7, relative_change = 7.073609199888947e-12 Iter 135: T = 842.2027863355615 K, F = -3.3914738195583993e-7, relative_change = 2.958262451517383e-12 Iter 140: T = 842.2027863279517 K, F = -1.4183621743768526e-7, relative_change = 1.237187071619043e-12 Iter 145: T = 842.2027863247691 K, F = -5.931800473035764e-8, relative_change = 5.174099386864881e-13 Converged in 150 iterations to T = 842.2027863234381 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014872825417515396 Iteration 10: d = 1.5072112186358065e-5 Iteration 20: d = 1.783505007302486e-7 Iteration 30: d = 2.481933423028247e-9 Iteration 40: d = 3.51749699152532e-11 Iteration 50: d = 4.978995008625179e-13 Iteration 60: d = 7.032544385986491e-15 Converged after 63 iterations. d = 1.9676475699892036e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.657388121956 Iteration 2: convergence error = 4832.2725490997145 Iteration 3: convergence error = 1093.7514729812567 Iteration 4: convergence error = 315.96040643419633 Iteration 5: convergence error = 93.62110855088963 Iteration 6: convergence error = 28.29674065786412 Iteration 7: convergence error = 8.509203536596942 Iteration 8: convergence error = 2.548447686382815 Iteration 9: convergence error = 0.7614006846856682 Iteration 10: convergence error = 0.2271669147266948 Iteration 11: convergence error = 0.06772219925596801 Iteration 12: convergence error = 0.020179942908271187 Iteration 13: convergence error = 0.006011685099792885 Iteration 14: convergence error = 0.0017906385942296765 Iteration 15: convergence error = 0.0005333133558451664 Iteration 16: convergence error = 0.00015883108017078484 Iteration 17: convergence error = 4.730160821964091e-5 Iteration 18: convergence error = 1.408669913871563e-5 Iteration 19: convergence error = 4.195062047074316e-6 Iteration 20: convergence error = 1.2492962468968472e-6 Iteration 21: convergence error = 3.720340373547515e-7 Iteration 22: convergence error = 1.1064776117564179e-7 Iteration 23: convergence error = 3.205332177458331e-8 Iteration 24: convergence error = 9.22568688110914e-9 Iteration 25: convergence error = 2.6554971555015072e-9 Iteration 26: convergence error = 7.601101970067248e-10 Iteration 27: convergence error = 2.1827872842550278e-10 Iteration 28: convergence error = 6.093614501878619e-11 Iteration 29: convergence error = 2.000888343900442e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 72%|███████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018681315558558861 Iteration 10: d = 1.848005818224847e-5 Iteration 20: d = 1.9157325537839047e-7 Iteration 30: d = 2.2152067674872798e-9 Iteration 40: d = 2.636199472434749e-11 Iteration 50: d = 3.189731911961366e-13 Iteration 60: d = 3.9396198050284565e-15 Converged after 62 iterations. d = 1.675204857108592e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12277.47317717657 Iteration 2: convergence error = 8317.752665808706 Iteration 3: convergence error = 1951.541593817942 Iteration 4: convergence error = 480.01345910052896 Iteration 5: convergence error = 122.31501107834993 Iteration 6: convergence error = 32.63741505180883 Iteration 7: convergence error = 8.884357558284819 Iteration 8: convergence error = 2.4320723196835843 Iteration 9: convergence error = 0.6665533972918638 Iteration 10: convergence error = 0.1827008966140511 Iteration 11: convergence error = 0.05007438802249453 Iteration 12: convergence error = 0.013723411365390348 Iteration 13: convergence error = 0.003760897706342803 Iteration 14: convergence error = 0.0010306522165137721 Iteration 15: convergence error = 0.0002824414691531274 Iteration 16: convergence error = 7.740032037872879e-5 Iteration 17: convergence error = 2.121075499417202e-5 Iteration 18: convergence error = 5.8125822306465125e-6 Iteration 19: convergence error = 1.5928742413962027e-6 Iteration 20: convergence error = 4.365112999948906e-7 Iteration 21: convergence error = 1.204828095069388e-7 Iteration 22: convergence error = 3.234231371607166e-8 Iteration 23: convergence error = 8.641109161544591e-9 Iteration 24: convergence error = 2.3048869479680434e-9 Iteration 25: convergence error = 6.127720553195104e-10 Iteration 26: convergence error = 1.646185410209e-10 Iteration 27: convergence error = 4.4565240386873484e-11 Iteration 28: convergence error = 1.0913936421275139e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018681315558558861 Iteration 10: d = 1.848005818224847e-5 Iteration 20: d = 1.9157325537839047e-7 Iteration 30: d = 2.2152067674872798e-9 Iteration 40: d = 2.636199472434749e-11 Iteration 50: d = 3.189731911961366e-13 Iteration 60: d = 3.9396198050284565e-15 Converged after 62 iterations. d = 1.675204857108592e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10994.671737821007 Iteration 2: convergence error = 5743.047987737105 Iteration 3: convergence error = 2016.8119919249189 Iteration 4: convergence error = 894.591310894898 Iteration 5: convergence error = 410.3076776524622 Iteration 6: convergence error = 193.5727782736326 Iteration 7: convergence error = 91.3881174292801 Iteration 8: convergence error = 43.16209304680115 Iteration 9: convergence error = 20.384242971454114 Iteration 10: convergence error = 9.624545548755123 Iteration 11: convergence error = 4.543030239257405 Iteration 12: convergence error = 2.1439156787287175 Iteration 13: convergence error = 1.0115582343628375 Iteration 14: convergence error = 0.47721879884647933 Iteration 15: convergence error = 0.22511538039179868 Iteration 16: convergence error = 0.10609445776117354 Iteration 17: convergence error = 0.04956026277204728 Iteration 18: convergence error = 0.022626274756021303 Iteration 19: convergence error = 0.010290980962963658 Iteration 20: convergence error = 0.004670408785841573 Iteration 21: convergence error = 0.002116921667038696 Iteration 22: convergence error = 0.000958814893692761 Iteration 23: convergence error = 0.00043408674810052617 Iteration 24: convergence error = 0.0001964746634257608 Iteration 25: convergence error = 8.891390143617173e-5 Iteration 26: convergence error = 4.0233917388832197e-5 Iteration 27: convergence error = 1.8204987100034487e-5 Iteration 28: convergence error = 8.237083875428652e-6 Iteration 29: convergence error = 3.7268905543896835e-6 Iteration 30: convergence error = 1.6862254597072024e-6 Iteration 31: convergence error = 7.629218998772558e-7 Iteration 32: convergence error = 3.4517370295361616e-7 Iteration 33: convergence error = 1.5617115423083305e-7 Iteration 34: convergence error = 7.06550054019317e-8 Iteration 35: convergence error = 3.1967829272616655e-8 Iteration 36: convergence error = 1.4465058484347537e-8 Iteration 37: convergence error = 6.5456333686597645e-9 Iteration 38: convergence error = 2.9567672754637897e-9 Iteration 39: convergence error = 1.3410499377641827e-9 Iteration 40: convergence error = 6.070877134334296e-10 Iteration 41: convergence error = 2.7694113668985665e-10 Iteration 42: convergence error = 1.241460267920047e-10 Iteration 43: convergence error = 5.638867150992155e-11 Iteration 44: convergence error = 2.546585164964199e-11 Iteration 45: convergence error = 1.546140993013978e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 1 progress: 72%|███████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018681315558558861 Iteration 10: d = 1.848005818224847e-5 Iteration 20: d = 1.9157325537839047e-7 Iteration 30: d = 2.2152067674872798e-9 Iteration 40: d = 2.636199472434749e-11 Iteration 50: d = 3.189731911961366e-13 Iteration 60: d = 3.9396198050284565e-15 Converged after 62 iterations. d = 1.675204857108592e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.679692185171 Iteration 2: convergence error = 7365.280686002219 Iteration 3: convergence error = 1732.4709197815591 Iteration 4: convergence error = 505.1307683058794 Iteration 5: convergence error = 156.97907162073034 Iteration 6: convergence error = 48.7627669006888 Iteration 7: convergence error = 15.119040777490227 Iteration 8: convergence error = 4.679499662817307 Iteration 9: convergence error = 1.4466064697762704 Iteration 10: convergence error = 0.4468683773052362 Iteration 11: convergence error = 0.1379814562537831 Iteration 12: convergence error = 0.0425945515676176 Iteration 13: convergence error = 0.013146982184025546 Iteration 14: convergence error = 0.004057544286297343 Iteration 15: convergence error = 0.0012522200368039194 Iteration 16: convergence error = 0.00038644413916699705 Iteration 17: convergence error = 0.00011925767194043146 Iteration 18: convergence error = 3.6802920021727914e-5 Iteration 19: convergence error = 1.1357320545357652e-5 Iteration 20: convergence error = 3.5048442441620864e-6 Iteration 21: convergence error = 1.0815874702529982e-6 Iteration 22: convergence error = 3.3359992812620476e-7 Iteration 23: convergence error = 1.0171288522542454e-7 Iteration 24: convergence error = 3.025570549652912e-8 Iteration 25: convergence error = 8.97307472769171e-9 Iteration 26: convergence error = 2.6589077606331557e-9 Iteration 27: convergence error = 7.826201908756047e-10 Iteration 28: convergence error = 2.332853910047561e-10 Iteration 29: convergence error = 6.957634468562901e-11 Iteration 30: convergence error = 2.000888343900442e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▍ | ETA: 0:00:03 Bin 1 progress: 72%|███████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018681315558558861 Iteration 10: d = 1.848005818224847e-5 Iteration 20: d = 1.9157325537839047e-7 Iteration 30: d = 2.2152067674872798e-9 Iteration 40: d = 2.636199472434749e-11 Iteration 50: d = 3.189731911961366e-13 Iteration 60: d = 3.9396198050284565e-15 Converged after 62 iterations. d = 1.675204857108592e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.710296063184 Iteration 2: convergence error = 5534.281193256874 Iteration 3: convergence error = 937.2103402686425 Iteration 4: convergence error = 170.3748021612364 Iteration 5: convergence error = 30.889611724514452 Iteration 6: convergence error = 5.616367290647759 Iteration 7: convergence error = 1.025135545813555 Iteration 8: convergence error = 0.18749695719725423 Iteration 9: convergence error = 0.03425134944882302 Iteration 10: convergence error = 0.006253138346892229 Iteration 11: convergence error = 0.001141261549491901 Iteration 12: convergence error = 0.00020825905903620878 Iteration 13: convergence error = 3.80003075406421e-5 Iteration 14: convergence error = 6.933483291504672e-6 Iteration 15: convergence error = 1.2650548342207912e-6 Iteration 16: convergence error = 2.308092916791793e-7 Iteration 17: convergence error = 4.211142368149012e-8 Iteration 18: convergence error = 7.674771040910855e-9 Iteration 19: convergence error = 1.4083525456953794e-9 Iteration 20: convergence error = 2.546585164964199e-10 Iteration 21: convergence error = 4.524736141320318e-11 Iteration 22: convergence error = 1.000444171950221e-11 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018681315558558861 Iteration 10: d = 1.848005818224847e-5 Iteration 20: d = 1.9157325537839047e-7 Iteration 30: d = 2.2152067674872798e-9 Iteration 40: d = 2.636199472434749e-11 Iteration 50: d = 3.189731911961366e-13 Iteration 60: d = 3.9396198050284565e-15 Converged after 62 iterations. d = 1.675204857108592e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4832701070586 Iteration 2: convergence error = 2721.1275770452185 Iteration 3: convergence error = 204.62072625466368 Iteration 4: convergence error = 19.309860463290338 Iteration 5: convergence error = 1.5941938765189214 Iteration 6: convergence error = 0.12970020567830676 Iteration 7: convergence error = 0.010566864609410385 Iteration 8: convergence error = 0.0008641250030751539 Iteration 9: convergence error = 7.074121598489046e-5 Iteration 10: convergence error = 5.798045824159752e-6 Iteration 11: convergence error = 4.752764021544391e-7 Iteration 12: convergence error = 3.8954344226101115e-8 Iteration 13: convergence error = 3.1938812310364205e-9 Iteration 14: convergence error = 2.605964692158805e-10 Iteration 15: convergence error = 2.2396307031158358e-11 Iteration 16: convergence error = 4.206412995699793e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014872825417515396 Iteration 10: d = 1.5072112186358065e-5 Iteration 20: d = 1.783505007302486e-7 Iteration 30: d = 2.481933423028247e-9 Iteration 40: d = 3.51749699152532e-11 Iteration 50: d = 4.978995008625179e-13 Iteration 60: d = 7.032544385986491e-15 Converged after 63 iterations. d = 1.9676475699892036e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.326835826017 Iteration 2: convergence error = 3617.728739637383 Iteration 3: convergence error = 591.5732313852973 Iteration 4: convergence error = 103.16387913074482 Iteration 5: convergence error = 18.323657201547803 Iteration 6: convergence error = 3.2260685324888527 Iteration 7: convergence error = 0.5659004913725312 Iteration 8: convergence error = 0.099113771304701 Iteration 9: convergence error = 0.017347908702276982 Iteration 10: convergence error = 0.0030355923872775747 Iteration 11: convergence error = 0.0005311181528213638 Iteration 12: convergence error = 9.292197682952974e-5 Iteration 13: convergence error = 1.625687013984134e-5 Iteration 14: convergence error = 2.8441570520953974e-6 Iteration 15: convergence error = 4.975802312401356e-7 Iteration 16: convergence error = 8.705296750122216e-8 Iteration 17: convergence error = 1.5245177564793266e-8 Iteration 18: convergence error = 2.6423094823257998e-9 Iteration 19: convergence error = 4.688445187639445e-10 Iteration 20: convergence error = 8.094502845779061e-11 Iteration 21: convergence error = 1.432454155292362e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 10m31.7s Testing RayTraceHeatTransfer tests passed Testing completed after 639.09s PkgEval succeeded after 774.32s