Package evaluation to test QuasiNewtonMethods on Julia 1.13.0-DEV.1307 (5a5fc987d0*) started at 2025-10-14T17:26:08.220 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 10.0s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.1 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.173 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 4.94s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 207.62s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_cTikDE/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_cTikDE/Manifest.toml` [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.173 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:753 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1961 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [-2.356637107681081e-11, -4.426181643424343e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.4965030043233583e-11, -5.088784948981129e-11] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [-2.5639157463785978e-11, -5.432643224168032e-11, 1.503019930737537e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.957323192414151e-12, 4.278799536905353e-12, -2.3970825324681755e-12] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [1.3137047005784552e-11, 3.981481810910736e-12, 3.206901411090257e-11, 1.0373257808282688e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.7750245717707003e-12, 1.2523315717771766e-13, 3.553157768010351e-12, 2.760014439218139e-13] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [-1.3972711876419908e-11, -1.8978929539059664e-11, -2.4235502493752392e-11, -3.9659497907962304e-11, 2.0507373577061117e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-6.765632498684226e-11, 2.211919536421192e-11, -1.4021150906984303e-10, 4.517586305041732e-11, -4.224276484166012e-11] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [-1.3007162014133655e-10, 2.3047119768193625e-11, -6.703937405205806e-11, -2.5973878603480216e-10, 4.3024694917903616e-11, -1.4260459479942256e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.8994228412338998e-10, 1.4664491843063843e-11, -1.7200463275912625e-11, 3.7590663914954803e-10, 2.249223030048597e-11, -4.460509739345753e-11] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [-5.715916628901141e-11, -1.0575984532579241e-12, -6.313838341043265e-13, -1.1810175060134043e-10, 7.618350394977824e-13, 3.241851231905457e-12, -1.0110912107563763e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-9.90996174010661e-12, -5.722200491220519e-12, 3.030176110030425e-11, -2.112532371256748e-11, -1.118982684289449e-11, 6.240119532208155e-11, 9.954259638789154e-13] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [1.0240031045327669e-11, -2.7225111054463014e-11, -1.4585221919105607e-11, -1.9080181878905478e-11, 1.5140333431418185e-11, -5.346534326378105e-11, -2.6711521883271416e-11, -3.833178219281308e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-8.436351617291393e-11, -5.515998768856889e-11, 2.2341439809281383e-10, -9.841671921861916e-11, -1.7777812555408445e-10, -1.1149692280554291e-10, 4.461560010327048e-10, -1.9611134938202213e-10] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [1.194977450325041e-11, -2.2625235018836065e-12, -1.0885514711844735e-11, -1.0486722601399379e-11, 2.1475488054534253e-11, -8.58246806956231e-12, -2.0748180951102313e-11, -2.6459390234379043e-11, 1.4135803638737343e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.9942492102131837e-11, 5.4043658437308295e-11, 4.090727756533852e-11, 9.780842802342704e-12, -3.575850726633689e-11, 9.929324029656073e-11, 7.646150379514438e-11, 2.138134114204604e-11, -2.6081692361401565e-11] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [2.1857626819610232e-11, 1.709032915186981e-11, -7.085487752078734e-11, 1.1460676851982043e-10, 5.700018235188509e-11, 4.4150461064873525e-11, 2.811195720653359e-11, -1.3871059856285228e-10, 2.299749279899288e-10, 1.013749084677329e-10] QuasiNewtonMethods.optimum(state) .- 1 = [2.96076496653086e-11, -3.799938141924031e-11, -4.7266635050391415e-12, -1.310953567923434e-10, 4.8914650108145e-11, 6.264722074433848e-11, -7.947875690916817e-11, -1.1900480600957053e-11, -2.60620414138657e-10, 8.513389992970133e-11] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-6.032763177898914e-11, -1.2317236119940844e-10, -7.474065810697539e-11, 3.313880281297088e-10, -2.9726998640455804e-11, -9.786382815235584e-11, -2.687736699868992e-10, -1.497054702426226e-10, 6.433824584206604e-10, -5.0184301159106326e-11, -3.674516246832127e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-7.025824366735378e-12, -1.284504724807789e-10, -3.961431183086006e-11, -1.1732737004166438e-10, 7.341838248464683e-11, -2.3616553157523867e-11, -2.6939794839364595e-10, -7.933298462603489e-11, -2.370789120575978e-10, 1.4276846371785723e-10, -1.1814438316548603e-11] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [-8.513945104482445e-11, -7.968059545504502e-11, -1.0692136065415525e-10, -1.4262024894406977e-10, 6.34767793883384e-11, 4.6984194312926775e-11, -1.5712553480540237e-10, -1.6596657381739988e-10, -1.9445889343217004e-10, -2.9452162930709846e-10, 1.242923541866503e-10, 8.881029245344507e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-4.160516375861789e-11, 3.248556978974193e-11, 8.977774079710343e-11, -3.173961093949629e-11, -1.0440204256667585e-10, -7.195044560148744e-11, -5.99658100952638e-11, 6.318612300049153e-11, 1.8239032506528474e-10, -6.248135342445948e-11, -2.005002830429703e-10, -1.478098754503776e-10] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [-2.2848611891390647e-11, -9.32831589750549e-12, 1.4741541320972829e-12, -6.667133511939483e-11, -6.735834112703287e-12, -4.929867625236284e-11, -4.725053681653435e-11, -1.765076973470059e-11, -1.7456036616181336e-12, -1.276662109361837e-10, -1.0524470184236634e-11, -9.986178550747127e-11, 6.8407501885303645e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.0904055436355975e-10, -3.663214176441443e-11, -1.545696903804128e-11, 8.49331716068491e-11, 6.748512859644507e-11, 1.231861279649138e-10, 2.1282131612565536e-10, -8.090372816127456e-11, -2.8061553081215607e-11, 1.6709211791976486e-10, 1.3770939943924532e-10, 2.555187172958995e-10, -2.282618538629322e-12] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [-5.0100923409956977e-11, -5.6066262743570405e-11, -5.2264637062648944e-11, -1.0169309838659046e-10, 8.967782072488717e-11, -1.270972216360633e-10, -2.664457543488652e-11, -1.1152723189411518e-10, -1.1598655369482458e-10, -1.0907963421402656e-10, -2.1633317359714965e-10, 1.8243095922798602e-10, -2.628968154283484e-10, -5.2087667512523694e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.1043388425946432e-11, 3.4886538102796294e-11, -2.8552271658099926e-11, 5.703726380090757e-11, 1.8594459305631972e-11, 1.690536599596726e-11, 1.5575096767861396e-11, 1.8987256211744352e-11, 7.53634932237901e-11, -5.457601037761606e-11, 1.1393597176834191e-10, 3.887379307343508e-11, 3.1165736658067544e-11, 3.1589841853474354e-11] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [1.811373273596928e-11, -5.1228910002976136e-11, -2.2870927374185612e-11, -1.1754153206311457e-11, -2.0993207172637085e-12, -3.2612468281456586e-11, -1.2341461186338165e-11, 3.9229286485920056e-11, -9.571576864431108e-11, -4.123090757701675e-11, -2.7186808360113446e-11, -5.783706846784753e-12, -6.290346021842197e-11, -2.620814676390637e-11, 4.921174578953469e-12] QuasiNewtonMethods.optimum(state) .- 1 = [2.77408096494014e-10, -6.944939068276312e-10, 1.0634493285976987e-10, 6.884293135556163e-11, 3.0254887484204573e-10, -5.651741297185708e-10, 1.1939005339911546e-10, 5.80788528381504e-10, -1.416150419153439e-9, 1.947149108616486e-10, 1.327336018874803e-10, 6.154172726979823e-10, -1.1443430647517516e-9, 2.610391902635456e-10, -4.162592492917838e-11] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [7.868239393360454e-11, -5.069278330438465e-13, -2.214572969450046e-11, -4.928391028613532e-12, -5.271671987827631e-12, -1.8737900120413542e-11, -1.2634304713543543e-10, -4.38818981152167e-11, 1.5274381759411426e-10, 5.3734794391857577e-14, -4.2727377191909e-11, -9.280576307446609e-12, -1.4792167490895736e-11, -4.844036283202513e-11, -2.5478785747878874e-10, -9.40579836239408e-11] QuasiNewtonMethods.optimum(state) .- 1 = [6.18542994601512e-11, 8.863332290331982e-11, 3.170352869119597e-11, -1.7815304786950037e-11, 6.523892537302345e-12, 2.4558355349313388e-11, -1.9347579094386447e-10, -1.0947531770000296e-10, 1.2895262635481686e-10, 1.7481305292221805e-10, 5.6002757986561846e-11, -2.6225577265392985e-11, 1.5151879750874286e-11, 5.944489345210968e-11, -3.828812822348482e-10, -2.1490820234504326e-10] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [-4.59012827747074e-11, 4.539968401218175e-11, 1.0055067889425118e-11, -6.4783733932927134e-12, 3.631539513548887e-12, -1.0526834959279086e-10, -8.122280625855183e-12, 3.5101033191153874e-11, -9.452094662520949e-11, 8.990230782046638e-11, 1.779287828185261e-11, -1.556244022538067e-11, 8.405276474832135e-12, -2.115212449638193e-10, -1.716182751465567e-11, 7.253753153690923e-11, -2.904232410116947e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-4.764733052553538e-11, 7.167400006835578e-11, -4.2631120855674e-11, 1.458189125003173e-11, -1.1303580293997584e-10, 1.2939938009992602e-10, 9.79172298798403e-12, 1.4707346451814374e-11, -9.459177885418057e-11, 1.3363377071584637e-10, -8.582523580713541e-11, 3.8621994491450096e-11, -2.2763591012164852e-10, 2.640159202371706e-10, 1.9308332710465947e-11, 2.554267908294605e-11, 8.477663016037695e-13] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [1.4631629241534938e-11, 1.820166239951959e-11, -5.335953900953427e-12, 1.847122454989858e-11, 9.01145824627747e-12, 1.318722908649761e-12, -3.740896481474465e-12, -6.308953359734915e-11, 6.922906692352626e-12, 2.9496183273636234e-11, 3.590949759768591e-11, -9.657830091214237e-12, 3.965583417198104e-11, 1.8083534669699475e-11, -8.161249454019526e-13, -8.919420757536045e-12, -1.2581846675630004e-10, 1.1261658272587738e-11] QuasiNewtonMethods.optimum(state) .- 1 = [6.22553120166458e-11, 1.2827405804216596e-10, -2.4988122682145786e-11, -3.369315937362671e-11, -2.6407875886036436e-11, -8.270872875471014e-11, -4.1171066555989455e-11, 6.61646293309559e-11, 6.241984706889525e-11, 1.3665224507519724e-10, 2.6758439908292075e-10, -4.5130565951012613e-11, -7.195399831516625e-11, -5.255662571812536e-11, -1.610922506500856e-10, -7.847011929129621e-11, 1.356423862119982e-10, 1.2285128470068685e-10] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [-3.750777466393629e-12, 3.463163089634236e-11, 4.494582483971499e-11, -2.3228197143509988e-11, 2.245470476225364e-11, 3.0816682539125395e-11, 3.668865211636785e-11, -1.616307088170288e-11, -4.4151793332503075e-11, -1.233946278489384e-11, 7.331601992177639e-11, 8.925549188631976e-11, -4.3069214861191085e-11, 4.371236705935644e-11, 5.879741138414829e-11, 6.947908914867185e-11, -4.0078385055153376e-11, -9.208811491134838e-11, 4.984901380566953e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-3.6292635563484055e-11, 3.9470204882263715e-11, 7.05919767085561e-11, -5.465461416775952e-11, 5.196376662297553e-11, 4.412603615833177e-11, -7.226208520449973e-11, 6.499467630760591e-11, 6.704059529738515e-11, -6.667399965465393e-11, 7.149458802757636e-11, 1.3816570110236626e-10, -1.1332890181847688e-10, 9.94659909991924e-11, 8.511991111959105e-11, -1.4942924675409586e-10, 1.3044809676898694e-10, 1.3492607031651005e-10, 2.213562666497637e-12] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [-7.079179464852814e-10, -3.0828561925488884e-10, 2.7333690866271354e-13, 4.2090597673904995e-10, 2.6752311477196145e-10, -6.074851732762454e-11, -1.8853252292672096e-10, 5.862199614625752e-11, -2.6209234782470503e-10, -5.762912369533524e-11, -1.4320997721029016e-9, -6.354842208011746e-10, -3.703815032451985e-12, 8.234093407111231e-10, 5.254292556600149e-10, -1.0900447211525943e-10, -3.6606617737078295e-10, 1.2985501562923218e-10, -5.393315793966735e-10, -1.310784814023691e-10] QuasiNewtonMethods.optimum(state) .- 1 = [4.3083314693603825e-12, 1.2598144749631501e-11, 5.973888050903042e-12, 9.312328685950888e-12, 2.4729107650500737e-11, -2.73163713870872e-11, -3.555311600678124e-11, 4.242783901986513e-11, -6.7268413062038235e-12, -1.063993337879765e-11, 7.570166715709092e-12, 2.592082104513338e-11, 1.0864198429771932e-11, 1.8440582394418925e-11, 4.922062757373169e-11, -5.5667803700032437e-11, -7.358713638438985e-11, 8.406941809369073e-11, -1.074673683376659e-11, -2.3252400005446816e-11] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [-3.875011422849184e-11, 8.77380390562621e-11, -2.418907296686257e-10, 3.72382125135573e-11, -2.2671586830114165e-10, -1.2100198620856872e-10, 5.4361848356165865e-11, -1.7002010910260879e-10, -8.946687835020839e-11, 5.5401683241029787e-11, -6.33038066411018e-11, 1.7980794631000663e-10, -4.721600888046851e-10, 6.535261221074506e-11, -4.5314763053028173e-10, -2.3717505737153033e-10, 1.1928169563191204e-10, -3.4830294204368784e-10, -1.750320999249766e-10, 1.2246692548956162e-10, -9.692247004977617e-14] QuasiNewtonMethods.optimum(state) .- 1 = [-8.182610145013314e-11, 6.134026619974975e-11, -2.0182855386963183e-11, -2.3139268279237513e-12, -2.2139845512469947e-11, -6.475275871054009e-11, 2.8877567004315097e-11, -5.626910049016942e-11, 6.232658833482674e-11, 1.0083689438999954e-10, -1.5708134792902229e-10, 1.1287926149350369e-10, -5.192812846388506e-11, -6.3832272800823375e-12, -4.6581294377290305e-11, -1.2406375926587998e-10, 5.719091866751569e-11, -1.1576539726831925e-10, 1.3708612023322075e-10, 2.0478974072091205e-10, -5.944467140750476e-12] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-8.551458430261505e-10, 1.7156474019230927e-9, -2.1889368095884265e-9, 1.9579105003941777e-9, 5.075066145110441e-9, 3.861375441616133e-9, -2.3437485285882076e-10, -6.456641554741793e-9, -2.945801380604962e-10, -2.998066017667611e-9, -4.859991298289401e-10, -1.7106530636468165e-9, 3.4358833556069612e-9, -4.366129902066973e-9, 3.922439928416566e-9, 1.0151819829218311e-8, 7.748761188253184e-9, -4.5901460410391337e-10, -1.2933432214090601e-8, -5.937338398709358e-10, -5.997987551076278e-9, -9.64955448878868e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-5.254241486341016e-11, 1.6685319792486553e-11, 4.285261034908672e-11, -2.943103538655123e-10, 1.1573275671139527e-10, -8.647838001252239e-11, 1.1366929619782695e-10, 1.6601986452258188e-10, -1.172908437041542e-10, -2.681662669701268e-10, 4.87434537177478e-11, -8.978628951439305e-11, 3.343481047579644e-11, 8.413825192121749e-11, -6.058534784969538e-10, 2.2716939440670103e-10, -1.8951951119561272e-10, 2.2054380544034302e-10, 3.313864738174743e-10, -2.2077750738702662e-10, -5.468530073216016e-10, 1.1635448160518536e-10] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [-2.6202484626480782e-11, -2.9805047319086952e-12, -2.469136006766348e-13, -2.7003288494142907e-11, -4.541145237624278e-12, 6.1377569693377154e-12, -2.5930368963145156e-12, -8.633760373299992e-12, 2.0761614649700277e-11, 1.4450662888521038e-11, 3.4867664311377666e-12, -5.23897591975242e-11, -5.338840480817453e-12, -3.950173521616307e-13, -5.3341442374232884e-11, -9.288014801711597e-12, 1.3740564241970787e-11, -5.15687492708139e-12, -1.8822277070285054e-11, 4.270273024076232e-11, 2.933187026599171e-11, 7.0246031214082905e-12, -8.002487561498128e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-1.925459791607409e-11, -3.5651037677553177e-11, -1.5145773524238848e-11, -1.1736944749429767e-11, 4.912781292887303e-11, 1.0503820035978606e-11, -3.653810587422868e-11, -1.485056522199102e-11, -5.3326454363400444e-11, -6.260514329170519e-11, -2.9517388533406574e-11, -3.4531821846428556e-11, -7.483869080004979e-11, -3.1309177472849115e-11, -1.9925505689855072e-11, 9.613887463899573e-11, 2.378963692706293e-11, -6.723155365762068e-11, -3.1596503191622105e-11, -1.048464648434333e-10, -1.246391878595432e-10, -6.043376910014331e-11, -9.138245715689663e-13] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [-3.830125105963589e-11, 7.862688278237329e-11, 5.152034354694024e-11, -3.29696270284785e-11, -3.980238361123156e-11, -8.760936420770804e-11, 5.362954524912311e-11, -1.3654966046772188e-11, 1.3780088181647443e-12, 8.073630652916108e-11, -1.941871108357418e-10, -1.5443202272535927e-11, -7.517375610888166e-11, 1.5758971905199815e-10, 1.0261658189847367e-10, -7.038014615545762e-11, -7.589262551732645e-11, -1.858969644885633e-10, 1.0958545182404578e-10, -2.6398883079536972e-11, -1.177280495312516e-12, 1.619449019329977e-10, -3.8371106292345303e-10, -3.786659874549514e-11] QuasiNewtonMethods.optimum(state) .- 1 = [3.486610999914319e-11, 7.331024676204834e-12, -6.301736910074851e-12, -9.961920177659067e-12, 4.359623773098065e-12, -2.1024404439629052e-11, 1.0138334616272004e-11, 7.288836201269078e-12, 5.622613485911643e-12, -1.2187029163612806e-11, 9.632294961647858e-13, 3.434652562361862e-11, 6.974687494221143e-11, 1.6455947715598995e-11, -1.2712053631958042e-11, -2.014866051780473e-11, 1.0513812043200232e-11, -4.1172398823619005e-11, 1.7666534901650266e-11, 1.6349588349839905e-11, 1.0321965504545005e-11, -2.1144530570893494e-11, 4.21906953818052e-12, 6.661915463723744e-11] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 4m21.0s Method ambiguity | 1 1 10.5s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 7.6s Compat bounds | 3 1 4 11.6s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.9s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 54.8s RNG of the outermost testset: Random.Xoshiro(0x5aa14f0a433df101, 0x00e0e1ae3d3dae8d, 0x1ac643227eb819af, 0x77de7f81ba872a53, 0x2a38c04d8e41a558) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 289.68s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2674 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2523 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:548 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:525 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:172 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:161 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:160 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:160 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:159 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:309 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [14] _start() @ Base ./client.jl:577 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 530.63s: package has test failures