Package evaluation to test StructuralIdentifiability on Julia 1.13.0-DEV.1296 (e8025198af*) started at 2025-10-12T14:53:45.961 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.06s ################################################################################ # Installation # Installing StructuralIdentifiability... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [220ca800] + StructuralIdentifiability v0.5.16 Updating `~/.julia/environments/v1.13/Manifest.toml` ⌅ [c3fe647b] + AbstractAlgebra v0.46.5 [a9b6321e] + Atomix v1.1.2 [861a8166] + Combinatorics v1.0.3 [864edb3b] + DataStructures v0.19.1 [e2ba6199] + ExprTools v0.1.10 ⌅ [0b43b601] + Groebner v0.9.5 [18e54dd8] + IntegerMathUtils v0.1.3 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [1914dd2f] + MacroTools v0.5.16 ⌅ [2edaba10] + Nemo v0.51.1 [bac558e1] + OrderedCollections v1.8.1 [3e851597] + ParamPunPam v0.5.5 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.11.0 [fb686558] + RandomExtensions v0.4.4 [220ca800] + StructuralIdentifiability v0.5.16 [a759f4b9] + TimerOutputs v0.5.29 [013be700] + UnsafeAtomics v0.3.0 [e134572f] + FLINT_jll v301.300.102+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.33s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 228.02s ################################################################################ # Testing # Testing StructuralIdentifiability Status `/tmp/jl_lKbxFk/Project.toml` ⌅ [c3fe647b] AbstractAlgebra v0.46.5 [4c88cf16] Aqua v0.8.14 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [864edb3b] DataStructures v0.19.1 ⌅ [0b43b601] Groebner v0.9.5 [c8e1da08] IterTools v1.10.0 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.51.1 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [27ebfcd6] Primes v0.5.7 [276daf66] SpecialFunctions v2.6.1 [220ca800] StructuralIdentifiability v0.5.16 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_lKbxFk/Manifest.toml` ⌅ [c3fe647b] AbstractAlgebra v0.46.5 [4c88cf16] Aqua v0.8.14 [a9b6321e] Atomix v1.1.2 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [864edb3b] DataStructures v0.19.1 [ab62b9b5] DeepDiffs v1.2.0 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 ⌅ [0b43b601] Groebner v0.9.5 [615f187c] IfElse v0.1.1 [18e54dd8] IntegerMathUtils v0.1.3 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.51.1 [bac558e1] OrderedCollections v1.8.1 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.11.0 [fb686558] RandomExtensions v0.4.4 [431bcebd] SciMLPublic v1.0.0 [276daf66] SpecialFunctions v2.6.1 [aedffcd0] Static v1.3.0 [220ca800] StructuralIdentifiability v0.5.16 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [013be700] UnsafeAtomics v0.3.0 [e134572f] FLINT_jll v301.300.102+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.2+0 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.46.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Resolving package versions... Updating `/tmp/jl_lKbxFk/Project.toml` ⌅ [c3fe647b] ↓ AbstractAlgebra v0.46.5 ⇒ v0.44.13 [loaded: v0.46.5] [961ee093] + ModelingToolkit v10.25.0 ⌅ [2edaba10] ↓ Nemo v0.51.1 ⇒ v0.49.5 [loaded: v0.51.1] Updating `/tmp/jl_lKbxFk/Manifest.toml` [47edcb42] + ADTypes v1.18.0 ⌅ [c3fe647b] ↓ AbstractAlgebra v0.46.5 ⇒ v0.44.13 [loaded: v0.46.5] [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.4.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.20.0 [4c555306] + ArrayLayouts v1.12.0 [e2ed5e7c] + Bijections v0.2.2 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] + BlockArrays v1.7.2 [70df07ce] + BracketingNonlinearSolve v1.5.0 [d360d2e6] + ChainRulesCore v1.26.0 [fb6a15b2] + CloseOpenIntervals v0.1.13 [a80b9123] + CommonMark v0.9.1 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 [187b0558] + ConstructionBase v1.6.0 [9a962f9c] + DataAPI v1.16.0 [2b5f629d] + DiffEqBase v6.190.2 [459566f4] + DiffEqCallbacks v4.10.1 [77a26b50] + DiffEqNoiseProcess v5.24.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.9 [8d63f2c5] + DispatchDoctor v0.4.26 [31c24e10] + Distributions v0.25.122 [5b8099bc] + DomainSets v0.7.16 [7c1d4256] + DynamicPolynomials v0.6.4 [06fc5a27] + DynamicQuantities v1.10.0 [4e289a0a] + EnumX v1.0.5 [f151be2c] + EnzymeCore v0.8.14 [55351af7] + ExproniconLite v0.10.14 [7034ab61] + FastBroadcast v0.3.5 [9aa1b823] + FastClosures v0.3.2 [a4df4552] + FastPower v1.1.3 [1a297f60] + FillArrays v1.14.0 [64ca27bc] + FindFirstFunctions v1.4.2 [6a86dc24] + FiniteDiff v2.28.1 [1fa38f19] + Format v1.3.7 ⌃ [f6369f11] + ForwardDiff v0.10.39 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [c27321d9] + Glob v1.3.1 [86223c79] + Graphs v1.13.1 [34004b35] + HypergeometricFunctions v0.3.28 [3263718b] + ImplicitDiscreteSolve v1.2.0 [d25df0c9] + Inflate v0.1.5 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [82899510] + IteratorInterfaceExtensions v1.0.0 [ae98c720] + Jieko v0.2.1 [98e50ef6] + JuliaFormatter v2.1.6 ⌅ [70703baa] + JuliaSyntax v0.4.10 [ccbc3e58] + JumpProcesses v9.19.1 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.10 [10f19ff3] + LayoutPointers v0.1.17 [87fe0de2] + LineSearch v0.1.4 [d3d80556] + LineSearches v7.4.0 [d8e11817] + MLStyle v0.4.17 [d125e4d3] + ManualMemory v0.1.8 [bb5d69b7] + MaybeInplace v0.1.4 [e1d29d7a] + Missings v1.2.0 [961ee093] + ModelingToolkit v10.25.0 [2e0e35c7] + Moshi v0.3.7 [46d2c3a1] + MuladdMacro v0.2.4 [102ac46a] + MultivariatePolynomials v0.5.13 [d8a4904e] + MutableArithmetics v1.6.6 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 ⌅ [2edaba10] ↓ Nemo v0.51.1 ⇒ v0.49.5 [loaded: v0.51.1] [be0214bd] + NonlinearSolveBase v2.0.0 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.13.2 [bbf590c4] + OrdinaryDiffEqCore v1.36.0 [90014a1f] + PDMats v0.11.35 [d96e819e] + Parameters v0.12.3 [e409e4f3] + PoissonRandom v0.4.7 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [85a6dd25] + PositiveFactorizations v0.2.4 [d236fae5] + PreallocationTools v0.4.34 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.37.1 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [ae5879a3] + ResettableStacks v1.1.1 [79098fc4] + Rmath v0.8.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.15 [9dfe8606] + SCCNonlinearSolve v1.6.0 [94e857df] + SIMDTypes v0.1.0 [0bca4576] + SciMLBase v2.120.0 [19f34311] + SciMLJacobianOperators v0.1.11 [c0aeaf25] + SciMLOperators v1.9.0 [53ae85a6] + SciMLStructures v1.7.0 [efcf1570] + Setfield v1.1.2 [727e6d20] + SimpleNonlinearSolve v2.9.0 [699a6c99] + SimpleTraits v0.9.5 [ce78b400] + SimpleUnPack v1.1.0 [a2af1166] + SortingAlgorithms v1.2.2 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [4c63d2b9] + StatsFuns v1.5.0 [7792a7ef] + StrideArraysCore v0.5.8 [2efcf032] + SymbolicIndexingInterface v0.3.45 ⌃ [19f23fe9] + SymbolicLimits v0.2.3 ⌅ [d1185830] + SymbolicUtils v3.31.0 [0c5d862f] + Symbolics v6.55.0 [ed4db957] + TaskLocalValues v0.1.3 [8ea1fca8] + TermInterface v2.0.0 [1c621080] + TestItems v1.0.0 [8290d209] + ThreadingUtilities v0.5.5 [410a4b4d] + Tricks v0.1.12 [781d530d] + TruncatedStacktraces v1.4.0 [5c2747f8] + URIs v1.6.1 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.25.0 [a7c27f48] + Unityper v0.1.6 ⌅ [e134572f] ↓ FLINT_jll v301.300.102+0 ⇒ v300.200.201+0 [loaded: v301.300.102+0] [61579ee1] + Ghostscript_jll v9.55.1+0 [aacddb02] + JpegTurbo_jll v3.1.3+0 [f50d1b31] + Rmath_jll v0.5.1+0 [9fa8497b] + Future v1.11.0 [a63ad114] + Mmap v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [4607b0f0] + SuiteSparse Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Resolving package versions... Updating `/tmp/jl_lKbxFk/Project.toml` [0c5d862f] + Symbolics v6.55.0 Manifest No packages added to or removed from `/tmp/jl_lKbxFk/Manifest.toml` WARNING: Method definition convert(Type{ForwardDiff.Dual{T, V, N}}, Unitful.Quantity{T2, Unitful.Dimensions{()}(), U} where U) where {T, V, N, T2} in module ForwardDiffExt at /home/pkgeval/.julia/packages/Unitful/HCJFR/ext/ForwardDiffExt.jl:5 overwritten in module ForwardDiffExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `ForwardDiffExt` └ @ Base loading.jl:2589 [ Info: Testing started [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y ┌ Warning: New variable c, treating as a scalar parameter └ @ StructuralIdentifiability ~/.julia/packages/StructuralIdentifiability/0tPYp/src/pb_representation.jl:94 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: a [ Info: Parameters: b [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: a, b [ Info: Parameters: k1, k2 [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y 2.083514 seconds (936.63 k allocations: 47.431 MiB, 99.50% compilation time) 0.002387 seconds (7.33 k allocations: 335.719 KiB) 0.002439 seconds (10.80 k allocations: 485.156 KiB) 0.002688 seconds (10.78 k allocations: 480.328 KiB) 0.003298 seconds (14.53 k allocations: 635.766 KiB) 0.001519 seconds (7.95 k allocations: 360.883 KiB) 0.001147 seconds (7.45 k allocations: 300.758 KiB) 15.083512 seconds (6.81 M allocations: 350.342 MiB, 0.99% gc time, 99.80% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.339419 seconds (112.44 k allocations: 6.028 MiB, 97.57% compilation time) [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.011463 seconds (9.76 k allocations: 519.117 KiB, 89.93% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b [ Info: Inputs: u [ Info: Outputs: y Coefficient extraction for rational functions: Test Failed at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/extract_coefficients.jl:27 Expression: Set(C) == Set([x // 1, (y + 3) // 1, y ^ 2 // 1, one(R) // 1, 3 * one(R) // 1, -((x ^ 2 + y ^ 2)) // 1]) Evaluated: Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[1//3, -1//3*x^2 - 1//3*y^2, 1//3*y^2, 1//3*x, 1, 1//3*y + 1]) == Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[y^2, 3, y + 3, 1, x, -x^2 - y^2]) Stacktrace: [1] top-level scope @ ~/.julia/packages/StructuralIdentifiability/0tPYp/test/extract_coefficients.jl:2 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1954 [inlined] [3] macro expansion @ ~/.julia/packages/StructuralIdentifiability/0tPYp/test/extract_coefficients.jl:27 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:753 [inlined] [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 IOEQS: Dict{QQMPolyRingElem, QQMPolyRingElem}(y2(t)_1 => -a*y2(t)_0 + a*u(t)_0 + y2(t)_1 - u(t)_1, y1(t)_2 => -y1(t)_0 + y1(t)_2) [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a, b, c, d [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, I, W, R [ Info: Parameters: a, bi, bw, gam, k, mu, xi [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a01, a12, a13, a21, a31 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, In [ Info: Parameters: N, a, b, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003133519 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 5.932949872 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.057535528 seconds [ Info: Global identifiability assessed in 52.631663764 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002534365 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Global identifiability assessed in 0.706358049 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Global identifiability assessed in 4.704e-5 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.031272914 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.49064934 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.3829e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:13 ✓ # Computing specializations.. Time: 0:00:15 [ Info: Search for polynomial generators concluded in 13.431108662 [ Info: Selecting generators in 0.01329836 [ Info: Inclusion checked with probability 0.9955 in 0.065414899 seconds [ Info: Global identifiability assessed in 100.123459568 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.668520254 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 1.617637793 seconds [ Info: Dimensions of the Wronskians [676] [ Info: Ranks of the Wronskians computed in 0.100718003 seconds [ Info: Global identifiability assessed in 35.904894877 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014731336 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031097095 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000320987 seconds [ Info: Global identifiability assessed in 0.076328921 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Note: the input model has nontrivial submodels. If the computation for the full model will be too heavy, you may want to try to first analyze one of the submodels. They can be produced using function `find_submodels` [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 17.158122809 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004495096 seconds [ Info: Dimensions of the Wronskians [2, 3, 2] [ Info: Ranks of the Wronskians computed in 2.644e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.014897782 [ Info: Selecting generators in 0.000476545 [ Info: Inclusion checked with probability 0.9955 in 0.003150839 seconds [ Info: Global identifiability assessed in 19.679229015 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002888292 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002207968 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.882e-5 seconds [ Info: Global identifiability assessed in 0.008834164 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003201758 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002477616 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.793e-5 seconds [ Info: Global identifiability assessed in 0.009653326 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005695594 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004700624 seconds [ Info: Dimensions of the Wronskians [6] [ Info: Ranks of the Wronskians computed in 2.067e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.169584714 [ Info: Selecting generators in 0.017535718 [ Info: Inclusion checked with probability 0.9955 in 0.005033101 seconds [ Info: Global identifiability assessed in 2.453626935 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008280008 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004025501 seconds [ Info: Dimensions of the Wronskians [2, 5] [ Info: Ranks of the Wronskians computed in 2.357e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.011626116 [ Info: Selecting generators in 0.00604691 [ Info: Inclusion checked with probability 0.9955 in 0.004007301 seconds [ Info: Global identifiability assessed in 0.065029382 seconds [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: V_m, c, k01, k_m [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k1, k2, k3, k4 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: s, i, r, x1, x2 [ Info: Parameters: M, b0, b1, g, mu, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, E, I, R, Q [ Info: Parameters: beta, gamma, psi, v [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: k01, k12, k13, k14, k21, k31, k41 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x5, x7, x4, x6 [ Info: Parameters: k10, k5, k6, k7, k8, k9 [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, In, L, Q [ Info: Parameters: Ninv, a, b, e, g, s [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, R, W [ Info: Parameters: Dd, T, a, d, dr, e, g, r, rR [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: P3, P0, P5, P4, P1, P2 [ Info: Parameters: Ks, M, Mar, alpa, beta, beta_SA, beta_SI, phi, siga1, siga2 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: C, α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR [ Info: Parameters: EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1 [ Info: Inputs: pro_EGFR [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio [ Info: Parameters: kOHbeta10, kbeta, kbeta10, kcryOH, kcrybeta, kzea [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: EpoR_A, k1, k2, k3, k5, k6, k7 [ Info: Inputs: [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, U, I [ Info: Parameters: N, a, b, d, g [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: alpha [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k01, k02, k12, k21, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: K_M, V_M, b1, c, k02, k12, k21 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: k02, k03, k12, k13, k21, k31, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: a03, a04, a13, a24, a31, a42, a43 [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, I [ Info: Parameters: N, beta, k, mu, nu [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4, p5 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: beta, c, d, k1, k2, mu1, mu2, q1, q2, s [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001614245 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001307067 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.824e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000100679 [ Info: Selecting generators in 1.232166748 [ Info: Inclusion checked with probability 0.995 in 0.002407437 seconds [ Info: The search for identifiable functions concluded in 2.597010824 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001540185 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001459176 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.975e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000107899 [ Info: Selecting generators in 0.000722963 [ Info: Inclusion checked with probability 0.995 in 0.001222437 seconds [ Info: The search for identifiable functions concluded in 0.010765174 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001403937 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001257658 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.215e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.4149e-5 [ Info: Selecting generators in 0.000784702 [ Info: Inclusion checked with probability 0.995 in 0.001429176 seconds [ Info: The search for identifiable functions concluded in 0.010919292 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001323156 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001281707 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.444e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000678613 [ Info: Selecting generators in 0.000975951 [ Info: Inclusion checked with probability 0.995 in 0.001353407 seconds [ Info: The search for identifiable functions concluded in 0.011418678 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001347337 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001185148 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.883e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000512215 [ Info: Selecting generators in 0.000891322 [ Info: Inclusion checked with probability 0.995 in 0.001257138 seconds [ Info: The search for identifiable functions concluded in 0.010231459 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001210738 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001177688 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.003e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000487335 [ Info: Selecting generators in 0.000806322 [ Info: Inclusion checked with probability 0.995 in 0.001196268 seconds [ Info: The search for identifiable functions concluded in 0.009797794 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001779933 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001349187 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.722e-5 seconds [ Info: The search for identifiable functions concluded in 0.0224082 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001700494 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001357037 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.523e-5 seconds [ Info: The search for identifiable functions concluded in 0.004155899 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001573965 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001450706 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.718e-5 seconds [ Info: The search for identifiable functions concluded in 0.003840642 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001751593 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001485226 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.377e-5 seconds [ Info: The search for identifiable functions concluded in 0.004499446 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0020105 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001523785 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.864e-5 seconds [ Info: The search for identifiable functions concluded in 0.004821703 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001633104 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001253978 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.237e-5 seconds [ Info: The search for identifiable functions concluded in 0.003956751 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001952631 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001401777 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.809e-5 seconds [ Info: The search for identifiable functions concluded in 0.004855522 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001702214 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001290488 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.055e-5 seconds [ Info: The search for identifiable functions concluded in 0.00409213 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001663924 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001404896 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.8309e-5 seconds [ Info: The search for identifiable functions concluded in 0.004318178 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001750253 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001370187 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.279e-5 seconds [ Info: The search for identifiable functions concluded in 0.004395387 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001690483 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001305047 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.09e-5 seconds [ Info: The search for identifiable functions concluded in 0.004164739 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001585144 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001287477 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.613e-5 seconds [ Info: The search for identifiable functions concluded in 0.003957591 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.29856686 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001800152 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.502e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.0339e-5 [ Info: Selecting generators in 0.000640084 [ Info: Inclusion checked with probability 0.995 in 0.001114249 seconds [ Info: The search for identifiable functions concluded in 0.30868471 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002437466 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001632884 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.765e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.7219e-5 [ Info: Selecting generators in 0.000647284 [ Info: Inclusion checked with probability 0.995 in 0.001113359 seconds [ Info: The search for identifiable functions concluded in 0.011045911 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002676014 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001653754 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.795e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.0419e-5 [ Info: Selecting generators in 0.000684983 [ Info: Inclusion checked with probability 0.995 in 0.001173539 seconds [ Info: The search for identifiable functions concluded in 0.011576537 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002515666 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001740943 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.66e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000474535 [ Info: Selecting generators in 0.000781793 [ Info: Inclusion checked with probability 0.995 in 0.001141019 seconds [ Info: The search for identifiable functions concluded in 0.012028652 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002665423 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001712243 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.944e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000438966 [ Info: Selecting generators in 0.000704193 [ Info: Inclusion checked with probability 0.995 in 0.00109911 seconds [ Info: The search for identifiable functions concluded in 0.011756974 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002532225 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001801263 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.31e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000469245 [ Info: Selecting generators in 0.000681533 [ Info: Inclusion checked with probability 0.995 in 0.001226098 seconds [ Info: The search for identifiable functions concluded in 0.011781724 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001495586 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001968521 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.257e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000123598 [ Info: Selecting generators in 0.002581654 [ Info: Inclusion checked with probability 0.995 in 0.003480356 seconds [ Info: The search for identifiable functions concluded in 0.020331091 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001663084 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001668904 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.409e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000114009 [ Info: Selecting generators in 0.002498525 [ Info: Inclusion checked with probability 0.995 in 0.003552885 seconds [ Info: The search for identifiable functions concluded in 0.021445159 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001567865 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001597845 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.705e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000122029 [ Info: Selecting generators in 0.002590445 [ Info: Inclusion checked with probability 0.995 in 0.003627984 seconds [ Info: The search for identifiable functions concluded in 0.020632498 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001435916 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001409066 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.236e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.255324244 [ Info: Selecting generators in 0.004218589 [ Info: Inclusion checked with probability 0.995 in 0.003630794 seconds [ Info: The search for identifiable functions concluded in 0.275854673 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001475055 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001668164 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.0249e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.017421469 [ Info: Selecting generators in 0.00407338 [ Info: Inclusion checked with probability 0.995 in 0.003625935 seconds [ Info: The search for identifiable functions concluded in 0.038017007 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001667644 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001741033 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.427e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.018712606 [ Info: Selecting generators in 0.005477166 [ Info: Inclusion checked with probability 0.995 in 0.003764663 seconds [ Info: The search for identifiable functions concluded in 0.042993648 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001554914 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001390176 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.02e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000119569 [ Info: Selecting generators in 0.003328647 [ Info: Inclusion checked with probability 0.995 in 0.0031006 seconds [ Info: The search for identifiable functions concluded in 1.55277157 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001595265 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001531595 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.063e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000108369 [ Info: Selecting generators in 0.002677793 [ Info: Inclusion checked with probability 0.995 in 0.002579505 seconds [ Info: The search for identifiable functions concluded in 0.016760726 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001510745 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001352626 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.4909e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.8669e-5 [ Info: Selecting generators in 0.002314407 [ Info: Inclusion checked with probability 0.995 in 0.002332907 seconds [ Info: The search for identifiable functions concluded in 0.015234421 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001630284 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001359007 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.5169e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.262061518 [ Info: Selecting generators in 0.003419217 [ Info: Inclusion checked with probability 0.995 in 0.002905812 seconds [ Info: The search for identifiable functions concluded in 0.279507816 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001758652 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001461396 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.4629e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005822003 [ Info: Selecting generators in 0.002358487 [ Info: Inclusion checked with probability 0.995 in 0.002217468 seconds [ Info: The search for identifiable functions concluded in 0.021502519 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001430746 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001213828 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.5e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006346608 [ Info: Selecting generators in 0.002497955 [ Info: Inclusion checked with probability 0.995 in 0.002410557 seconds [ Info: The search for identifiable functions concluded in 0.02131147 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002428696 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001830662 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.998e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000100899 [ Info: Selecting generators in 0.000649374 [ Info: Inclusion checked with probability 0.995 in 0.002557675 seconds [ Info: The search for identifiable functions concluded in 0.01835391 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002278238 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001861202 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.5219e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000110079 [ Info: Selecting generators in 0.000630304 [ Info: Inclusion checked with probability 0.995 in 0.002505015 seconds [ Info: The search for identifiable functions concluded in 0.018632347 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002276488 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001733913 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.454e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000106819 [ Info: Selecting generators in 0.000606144 [ Info: Inclusion checked with probability 0.995 in 0.002551765 seconds [ Info: The search for identifiable functions concluded in 0.018415119 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002355666 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001854092 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.963e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007731914 [ Info: Selecting generators in 0.000731393 [ Info: Inclusion checked with probability 0.995 in 0.002640154 seconds [ Info: The search for identifiable functions concluded in 0.026936515 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002455646 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001894152 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.382e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00814598 [ Info: Selecting generators in 0.000855131 [ Info: Inclusion checked with probability 0.995 in 0.002647724 seconds [ Info: The search for identifiable functions concluded in 0.027239263 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002409917 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001717233 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.9419e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008028841 [ Info: Selecting generators in 0.000924161 [ Info: Inclusion checked with probability 0.995 in 0.002563084 seconds [ Info: The search for identifiable functions concluded in 0.026880116 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002893562 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002157519 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.581e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000114139 [ Info: Selecting generators in 0.003654084 [ Info: Inclusion checked with probability 0.995 in 0.003268268 seconds [ Info: The search for identifiable functions concluded in 0.02442464 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00311057 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002264538 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.8179e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000127159 [ Info: Selecting generators in 0.003678624 [ Info: Inclusion checked with probability 0.995 in 0.003353977 seconds [ Info: The search for identifiable functions concluded in 0.025377931 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00299624 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002271778 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.76e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000116548 [ Info: Selecting generators in 0.003725724 [ Info: Inclusion checked with probability 0.995 in 0.003180219 seconds [ Info: The search for identifiable functions concluded in 0.024912786 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00306895 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002297598 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.541e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.016597547 [ Info: Selecting generators in 0.003956221 [ Info: Inclusion checked with probability 0.995 in 0.003762483 seconds [ Info: The search for identifiable functions concluded in 0.042287095 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002663683 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002067449 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.2959e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.015631396 [ Info: Selecting generators in 0.003828762 [ Info: Inclusion checked with probability 0.995 in 0.003268788 seconds [ Info: The search for identifiable functions concluded in 0.039489232 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002944431 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002232718 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.498e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.016066033 [ Info: Selecting generators in 0.004016651 [ Info: Inclusion checked with probability 0.995 in 0.003354737 seconds [ Info: The search for identifiable functions concluded in 0.04077437 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.016661456 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005395797 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.152e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000138839 [ Info: Selecting generators in 0.010457318 [ Info: Inclusion checked with probability 0.995 in 0.005948442 seconds [ Info: The search for identifiable functions concluded in 0.329371067 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007726224 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005281808 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.4839e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000124329 [ Info: Selecting generators in 0.010746014 [ Info: Inclusion checked with probability 0.995 in 0.005643874 seconds [ Info: The search for identifiable functions concluded in 0.05099299 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007538466 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00504877 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.638e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000136308 [ Info: Selecting generators in 0.010065631 [ Info: Inclusion checked with probability 0.995 in 0.005750523 seconds [ Info: The search for identifiable functions concluded in 0.049348316 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007556776 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005223108 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.5689e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002322717 [ Info: Selecting generators in 0.011018402 [ Info: Inclusion checked with probability 0.995 in 0.00611465 seconds [ Info: The search for identifiable functions concluded in 0.053350367 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007393338 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004981581 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.5479e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002872742 [ Info: Selecting generators in 0.010482117 [ Info: Inclusion checked with probability 0.995 in 0.00611573 seconds [ Info: The search for identifiable functions concluded in 0.067907353 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008668914 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006004751 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 4.033e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002588724 [ Info: Selecting generators in 0.010795304 [ Info: Inclusion checked with probability 0.995 in 0.00605929 seconds [ Info: The search for identifiable functions concluded in 0.055846772 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005838823 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003546225 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.867e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000112549 [ Info: Selecting generators in 0.002162328 [ Info: Inclusion checked with probability 0.995 in 0.003920112 seconds [ Info: The search for identifiable functions concluded in 0.028569469 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0060679 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003806982 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.6319e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000112879 [ Info: Selecting generators in 0.002234498 [ Info: Inclusion checked with probability 0.995 in 0.003652024 seconds [ Info: The search for identifiable functions concluded in 0.028264962 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005839553 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003834162 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.543e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000125469 [ Info: Selecting generators in 0.00207971 [ Info: Inclusion checked with probability 0.995 in 0.003523466 seconds [ Info: The search for identifiable functions concluded in 0.028207273 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005809103 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003556185 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.68e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001596395 [ Info: Selecting generators in 0.002286908 [ Info: Inclusion checked with probability 0.995 in 0.003786363 seconds [ Info: The search for identifiable functions concluded in 0.030870687 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006038161 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003707684 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.7719e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001394166 [ Info: Selecting generators in 0.002261748 [ Info: Inclusion checked with probability 0.995 in 0.003708934 seconds [ Info: The search for identifiable functions concluded in 0.030254213 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005272528 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003355457 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.659e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001466855 [ Info: Selecting generators in 0.002337917 [ Info: Inclusion checked with probability 0.995 in 0.003918052 seconds [ Info: The search for identifiable functions concluded in 0.029200274 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005421636 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003410646 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.427e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000126249 [ Info: Selecting generators in 0.00308568 [ Info: Inclusion checked with probability 0.995 in 0.003755403 seconds [ Info: The search for identifiable functions concluded in 0.032261893 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005677314 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003343567 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.866e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000122528 [ Info: Selecting generators in 0.003022281 [ Info: Inclusion checked with probability 0.995 in 0.003794853 seconds [ Info: The search for identifiable functions concluded in 0.032556061 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005860783 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003391857 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.5799e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000125039 [ Info: Selecting generators in 0.002758103 [ Info: Inclusion checked with probability 0.995 in 0.003661544 seconds [ Info: The search for identifiable functions concluded in 0.032556271 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00506724 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003363997 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.9379e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.594816262 [ Info: Selecting generators in 0.004481736 [ Info: Inclusion checked with probability 0.995 in 0.003409796 seconds [ Info: The search for identifiable functions concluded in 0.627175114 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005447747 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003447326 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.0109e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.020121403 [ Info: Selecting generators in 0.003855462 [ Info: Inclusion checked with probability 0.995 in 0.003196558 seconds [ Info: The search for identifiable functions concluded in 0.052029559 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005327387 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003240598 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.499e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.020105822 [ Info: Selecting generators in 0.00413839 [ Info: Inclusion checked with probability 0.995 in 0.003398077 seconds [ Info: The search for identifiable functions concluded in 0.052182948 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002798322 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002174329 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.654e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000110979 [ Info: Selecting generators in 0.00194512 [ Info: Inclusion checked with probability 0.995 in 0.002990511 seconds [ Info: The search for identifiable functions concluded in 0.020670397 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002505946 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001914341 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.28e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000100119 [ Info: Selecting generators in 0.001811972 [ Info: Inclusion checked with probability 0.995 in 0.002750843 seconds [ Info: The search for identifiable functions concluded in 0.018932934 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002630135 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00202055 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.1559e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000101269 [ Info: Selecting generators in 0.001712393 [ Info: Inclusion checked with probability 0.995 in 0.002622134 seconds [ Info: The search for identifiable functions concluded in 0.018629807 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002541625 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00203267 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.267e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.013052802 [ Info: Selecting generators in 0.003289648 [ Info: Inclusion checked with probability 0.995 in 0.00302999 seconds [ Info: The search for identifiable functions concluded in 0.033471932 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002642534 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002009011 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.143e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.01325943 [ Info: Selecting generators in 0.003227799 [ Info: Inclusion checked with probability 0.995 in 0.002824892 seconds [ Info: The search for identifiable functions concluded in 0.034121455 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002579374 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001997171 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.694e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014425058 [ Info: Selecting generators in 0.003091979 [ Info: Inclusion checked with probability 0.995 in 0.002911631 seconds [ Info: The search for identifiable functions concluded in 0.035304083 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015865464 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.032085895 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000391886 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:05 ✓ # Computing specializations.. Time: 0:00:05 [ Info: Search for polynomial generators concluded in 0.000220278 [ Info: Selecting generators in 0.019042493 [ Info: Inclusion checked with probability 0.995 in 0.030384662 seconds [ Info: The search for identifiable functions concluded in 12.452286194 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015806785 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.032822687 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000371276 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000163679 [ Info: Selecting generators in 0.016457989 [ Info: Inclusion checked with probability 0.995 in 0.027641789 seconds [ Info: The search for identifiable functions concluded in 0.171065291 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012948443 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.027410951 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000286037 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000150838 [ Info: Selecting generators in 0.017420058 [ Info: Inclusion checked with probability 0.995 in 0.028440931 seconds [ Info: The search for identifiable functions concluded in 0.154520393 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015947844 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.033113725 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000279017 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.152179959 [ Info: Selecting generators in 0.01624755 [ Info: Inclusion checked with probability 0.995 in 0.033811278 seconds [ Info: The search for identifiable functions concluded in 1.760706414 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013732025 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031808148 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000355496 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.0458592 [ Info: Selecting generators in 0.016437769 [ Info: Inclusion checked with probability 0.995 in 0.025090834 seconds [ Info: The search for identifiable functions concluded in 0.207068897 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013376389 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031080404 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000371986 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.044385595 [ Info: Selecting generators in 0.01429359 [ Info: Inclusion checked with probability 0.995 in 0.026444551 seconds [ Info: The search for identifiable functions concluded in 0.199106605 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.774830895 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.218749892 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.202287253 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000143389 [ Info: Selecting generators in 0.98477675 [ Info: Inclusion checked with probability 0.995 in 2.51616365 seconds [ Info: The search for identifiable functions concluded in 17.870596216 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.668267997 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.911490794 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.199684438 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000169629 [ Info: Selecting generators in 0.611381075 [ Info: Inclusion checked with probability 0.995 in 2.825614333 seconds [ Info: The search for identifiable functions concluded in 18.609611085 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.700428626 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.81889989 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.205158324 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 2   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000208818 [ Info: Selecting generators in 1.187921028 [ Info: Inclusion checked with probability 0.995 in 2.501395951 seconds [ Info: The search for identifiable functions concluded in 18.706469622 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.701892057 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.896574962 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.211212654 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 4   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.031301213 [ Info: Selecting generators in 0.584140599 [ Info: Inclusion checked with probability 0.995 in 2.617453954 seconds [ Info: The search for identifiable functions concluded in 18.406874905 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.986536984 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.995728583 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.185824114 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 2   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.030820297 [ Info: Selecting generators in 0.609870674 [ Info: Inclusion checked with probability 0.995 in 2.755197173 seconds [ Info: The search for identifiable functions concluded in 18.979798122 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.058982167 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.503930921 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.186671844 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 2   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.032851807 [ Info: Selecting generators in 0.621894384 [ Info: Inclusion checked with probability 0.995 in 2.70779116 seconds [ Info: The search for identifiable functions concluded in 19.488795154 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013614946 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011313319 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.5509e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000123819 [ Info: Selecting generators in 0.007943802 [ Info: Inclusion checked with probability 0.995 in 0.008903663 seconds [ Info: The search for identifiable functions concluded in 0.080221131 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.697883987 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012800174 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.028e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000148728 [ Info: Selecting generators in 0.011932682 [ Info: Inclusion checked with probability 0.995 in 0.010442268 seconds [ Info: The search for identifiable functions concluded in 0.782812011 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014292549 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012494007 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.6509e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000138169 [ Info: Selecting generators in 0.00917778 [ Info: Inclusion checked with probability 0.995 in 0.009379947 seconds [ Info: The search for identifiable functions concluded in 0.086649048 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013731485 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011775854 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.981e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.032684859 [ Info: Selecting generators in 0.012404678 [ Info: Inclusion checked with probability 0.995 in 0.008415258 seconds [ Info: The search for identifiable functions concluded in 0.115280416 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012247369 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010648845 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.021e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.032214783 [ Info: Selecting generators in 0.011940353 [ Info: Inclusion checked with probability 0.995 in 0.008117541 seconds [ Info: The search for identifiable functions concluded in 0.110371054 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012085561 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010079301 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.855e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.031438791 [ Info: Selecting generators in 0.011863383 [ Info: Inclusion checked with probability 0.995 in 0.008026761 seconds [ Info: The search for identifiable functions concluded in 0.108535443 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.021636137 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015540807 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.5549e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000148729 [ Info: Selecting generators in 0.01012019 [ Info: Inclusion checked with probability 0.995 in 0.013102171 seconds [ Info: The search for identifiable functions concluded in 0.368806423 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.021253851 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.019381339 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.358e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000137029 [ Info: Selecting generators in 0.022269731 [ Info: Inclusion checked with probability 0.995 in 0.013902943 seconds [ Info: The search for identifiable functions concluded in 0.12004258 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0212977 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01528935 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 0.000109319 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000166978 [ Info: Selecting generators in 0.010389138 [ Info: Inclusion checked with probability 0.995 in 0.014957262 seconds [ Info: The search for identifiable functions concluded in 0.104553861 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.024853355 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0183103 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.2779e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.056136828 [ Info: Selecting generators in 0.019665347 [ Info: Inclusion checked with probability 0.995 in 0.013974942 seconds [ Info: The search for identifiable functions concluded in 0.183644004 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.030843567 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017956194 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.109e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.053137047 [ Info: Selecting generators in 0.018461198 [ Info: Inclusion checked with probability 0.995 in 0.015968073 seconds [ Info: The search for identifiable functions concluded in 0.18397859 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.024226312 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017572337 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.8369e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.055927619 [ Info: Selecting generators in 0.017517068 [ Info: Inclusion checked with probability 0.995 in 0.014575517 seconds [ Info: The search for identifiable functions concluded in 0.175577114 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012383848 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017122072 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 8.0419e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000189308 [ Info: Selecting generators in 0.091732088 [ Info: Inclusion checked with probability 0.995 in 0.017001363 seconds [ Info: The search for identifiable functions concluded in 1.360151563 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011932193 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016102502 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.249e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000167578 [ Info: Selecting generators in 0.076812144 [ Info: Inclusion checked with probability 0.995 in 0.015828415 seconds [ Info: The search for identifiable functions concluded in 0.492487216 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010874993 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01424134 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.3859e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000241327 [ Info: Selecting generators in 0.09759266 [ Info: Inclusion checked with probability 0.995 in 0.017803444 seconds [ Info: The search for identifiable functions concluded in 0.56331438 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011798594 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016700045 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.5349e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.087693538 [ Info: Selecting generators in 0.087972895 [ Info: Inclusion checked with probability 0.995 in 0.017638647 seconds [ Info: The search for identifiable functions concluded in 0.631999114 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012703115 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016477968 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.2149e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 2.472335893 [ Info: Selecting generators in 0.079098942 [ Info: Inclusion checked with probability 0.995 in 0.014106011 seconds [ Info: The search for identifiable functions concluded in 3.881166226 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010547826 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.013983122 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.9399e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.273792291 [ Info: Selecting generators in 0.087137723 [ Info: Inclusion checked with probability 0.995 in 0.014806784 seconds [ Info: The search for identifiable functions concluded in 1.782919873 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 3.134933813 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.079108872 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 9.5489e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ⌝ # Computing specializations.. Time: 0:00:00 Points: 18   ⌟ # Computing specializations.. Time: 0:00:01 Points: 28   ⌞ # Computing specializations.. Time: 0:00:01 Points: 38   ⌜ # Computing specializations.. Time: 0:00:01 Points: 46   ⌝ # Computing specializations.. Time: 0:00:02 Points: 56   ⌟ # Computing specializations.. Time: 0:00:02 Points: 66   ⌞ # Computing specializations.. Time: 0:00:02 Points: 76   ⌜ # Computing specializations.. Time: 0:00:03 Points: 86   ⌝ # Computing specializations.. Time: 0:00:03 Points: 96   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 29   ⌞ # Computing specializations.. Time: 0:00:01 Points: 39   ⌜ # Computing specializations.. Time: 0:00:01 Points: 49   ⌝ # Computing specializations.. Time: 0:00:02 Points: 60   ⌟ # Computing specializations.. Time: 0:00:02 Points: 70   ⌞ # Computing specializations.. Time: 0:00:02 Points: 81   ⌜ # Computing specializations.. Time: 0:00:03 Points: 90   ⌝ # Computing specializations.. Time: 0:00:03 Points: 101   ⌟ # Computing specializations.. Time: 0:00:04 Points: 111   ⌞ # Computing specializations.. Time: 0:00:04 Points: 122   ⌜ # Computing specializations.. Time: 0:00:04 Points: 132   ⌝ # Computing specializations.. Time: 0:00:05 Points: 143   ⌟ # Computing specializations.. Time: 0:00:05 Points: 153   ⌞ # Computing specializations.. Time: 0:00:05 Points: 165   ⌜ # Computing specializations.. Time: 0:00:06 Points: 176   ⌝ # Computing specializations.. Time: 0:00:06 Points: 187   ⌟ # Computing specializations.. Time: 0:00:07 Points: 198   ⌞ # Computing specializations.. Time: 0:00:07 Points: 209   ⌜ # Computing specializations.. Time: 0:00:07 Points: 220   ⌝ # Computing specializations.. Time: 0:00:08 Points: 231   ⌟ # Computing specializations.. Time: 0:00:08 Points: 242   ⌞ # Computing specializations.. Time: 0:00:09 Points: 253   ⌜ # Computing specializations.. Time: 0:00:09 Points: 264   ⌝ # Computing specializations.. Time: 0:00:09 Points: 275   ⌟ # Computing specializations.. Time: 0:00:10 Points: 286   ⌞ # Computing specializations.. Time: 0:00:10 Points: 297   ⌜ # Computing specializations.. Time: 0:00:10 Points: 307   ⌝ # Computing specializations.. Time: 0:00:11 Points: 317   ⌟ # Computing specializations.. Time: 0:00:11 Points: 326   ⌞ # Computing specializations.. Time: 0:00:12 Points: 335   ⌜ # Computing specializations.. Time: 0:00:12 Points: 346   ⌝ # Computing specializations.. Time: 0:00:12 Points: 356   ⌟ # Computing specializations.. Time: 0:00:13 Points: 367   ⌞ # Computing specializations.. Time: 0:00:13 Points: 378   ⌜ # Computing specializations.. Time: 0:00:14 Points: 387   ⌝ # Computing specializations.. Time: 0:00:14 Points: 397   ⌟ # Computing specializations.. Time: 0:00:14 Points: 406   ⌞ # Computing specializations.. Time: 0:00:15 Points: 417   ⌜ # Computing specializations.. Time: 0:00:15 Points: 427   ⌝ # Computing specializations.. Time: 0:00:15 Points: 436   ⌟ # Computing specializations.. Time: 0:00:16 Points: 446   ⌞ # Computing specializations.. Time: 0:00:16 Points: 454   ⌜ # Computing specializations.. Time: 0:00:16 Points: 466   ⌝ # Computing specializations.. Time: 0:00:17 Points: 477   ⌟ # Computing specializations.. Time: 0:00:17 Points: 488   ⌞ # Computing specializations.. Time: 0:00:18 Points: 499   ⌜ # Computing specializations.. Time: 0:00:18 Points: 509   ⌝ # Computing specializations.. Time: 0:00:18 Points: 519   ⌟ # Computing specializations.. Time: 0:00:19 Points: 528   ⌞ # Computing specializations.. Time: 0:00:19 Points: 539   ⌜ # Computing specializations.. Time: 0:00:19 Points: 549   ⌝ # Computing specializations.. Time: 0:00:20 Points: 559   ⌟ # Computing specializations.. Time: 0:00:20 Points: 569   ⌞ # Computing specializations.. Time: 0:00:21 Points: 579   ⌜ # Computing specializations.. Time: 0:00:21 Points: 590   ⌝ # Computing specializations.. Time: 0:00:21 Points: 601   ⌟ # Computing specializations.. Time: 0:00:22 Points: 610   ⌞ # Computing specializations.. Time: 0:00:22 Points: 620   ⌜ # Computing specializations.. Time: 0:00:22 Points: 628   ⌝ # Computing specializations.. Time: 0:00:23 Points: 639   ✓ # Computing specializations.. Time: 0:00:23 [ Info: Search for polynomial generators concluded in 0.000358626 [ Info: Selecting generators in 0.041565151 [ Info: Inclusion checked with probability 0.995 in 9.278658626 seconds [ Info: The search for identifiable functions concluded in 57.178731022 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.70312314 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.106232304 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 9.42e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:00 Points: 29   ⌞ # Computing specializations.. Time: 0:00:01 Points: 38   ⌜ # Computing specializations.. Time: 0:00:01 Points: 49   ⌝ # Computing specializations.. Time: 0:00:02 Points: 59   ⌟ # Computing specializations.. Time: 0:00:02 Points: 70   ⌞ # Computing specializations.. Time: 0:00:02 Points: 80   ⌜ # Computing specializations.. Time: 0:00:03 Points: 89   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:01 Points: 27   ⌞ # Computing specializations.. Time: 0:00:01 Points: 38   ⌜ # Computing specializations.. Time: 0:00:01 Points: 48   ⌝ # Computing specializations.. Time: 0:00:02 Points: 59   ⌟ # Computing specializations.. Time: 0:00:02 Points: 69   ⌞ # Computing specializations.. Time: 0:00:02 Points: 78   ⌜ # Computing specializations.. Time: 0:00:03 Points: 88   ⌝ # Computing specializations.. Time: 0:00:03 Points: 96   ⌟ # Computing specializations.. Time: 0:00:04 Points: 107   ⌞ # Computing specializations.. Time: 0:00:04 Points: 117   ⌜ # Computing specializations.. Time: 0:00:04 Points: 126   ⌝ # Computing specializations.. Time: 0:00:05 Points: 136   ⌟ # Computing specializations.. Time: 0:00:05 Points: 146   ⌞ # Computing specializations.. Time: 0:00:05 Points: 157   ⌜ # Computing specializations.. Time: 0:00:06 Points: 167   ⌝ # Computing specializations.. Time: 0:00:06 Points: 179   ⌟ # Computing specializations.. Time: 0:00:07 Points: 189   ⌞ # Computing specializations.. Time: 0:00:07 Points: 198   ⌜ # Computing specializations.. Time: 0:00:07 Points: 208   ⌝ # Computing specializations.. Time: 0:00:08 Points: 217   ⌟ # Computing specializations.. Time: 0:00:08 Points: 229   ⌞ # Computing specializations.. Time: 0:00:08 Points: 240   ⌜ # Computing specializations.. Time: 0:00:09 Points: 249   ⌝ # Computing specializations.. Time: 0:00:09 Points: 259   ⌟ # Computing specializations.. Time: 0:00:10 Points: 267   ⌞ # Computing specializations.. Time: 0:00:10 Points: 279   ⌜ # Computing specializations.. Time: 0:00:10 Points: 290   ⌝ # Computing specializations.. Time: 0:00:11 Points: 301   ⌟ # Computing specializations.. Time: 0:00:11 Points: 312   ⌞ # Computing specializations.. Time: 0:00:12 Points: 321   ⌜ # Computing specializations.. Time: 0:00:12 Points: 331   ⌝ # Computing specializations.. Time: 0:00:12 Points: 341   ⌟ # Computing specializations.. Time: 0:00:13 Points: 352   ⌞ # Computing specializations.. Time: 0:00:13 Points: 362   ⌜ # Computing specializations.. Time: 0:00:13 Points: 371   ⌝ # Computing specializations.. Time: 0:00:14 Points: 382   ⌟ # Computing specializations.. Time: 0:00:14 Points: 391   ⌞ # Computing specializations.. Time: 0:00:15 Points: 402   ⌜ # Computing specializations.. Time: 0:00:15 Points: 413   ⌝ # Computing specializations.. Time: 0:00:15 Points: 423   ⌟ # Computing specializations.. Time: 0:00:16 Points: 433   ⌞ # Computing specializations.. Time: 0:00:16 Points: 443   ⌜ # Computing specializations.. Time: 0:00:16 Points: 455   ⌝ # Computing specializations.. Time: 0:00:17 Points: 466   ⌟ # Computing specializations.. Time: 0:00:17 Points: 478   ⌞ # Computing specializations.. Time: 0:00:18 Points: 489   ⌜ # Computing specializations.. Time: 0:00:18 Points: 498   ⌝ # Computing specializations.. Time: 0:00:18 Points: 508   ⌟ # Computing specializations.. Time: 0:00:19 Points: 518   ⌞ # Computing specializations.. Time: 0:00:19 Points: 530   ⌜ # Computing specializations.. Time: 0:00:20 Points: 541   ⌝ # Computing specializations.. Time: 0:00:20 Points: 550   ⌟ # Computing specializations.. Time: 0:00:20 Points: 560   ⌞ # Computing specializations.. Time: 0:00:21 Points: 570   ⌜ # Computing specializations.. Time: 0:00:21 Points: 581   ⌝ # Computing specializations.. Time: 0:00:21 Points: 591   ⌟ # Computing specializations.. Time: 0:00:22 Points: 601   ⌞ # Computing specializations.. Time: 0:00:22 Points: 612   ⌜ # Computing specializations.. Time: 0:00:23 Points: 621   ⌝ # Computing specializations.. Time: 0:00:23 Points: 632   ✓ # Computing specializations.. Time: 0:00:24 [ Info: Search for polynomial generators concluded in 0.000481536 [ Info: Selecting generators in 0.049796899 [ Info: Inclusion checked with probability 0.995 in 9.242396287 seconds [ Info: The search for identifiable functions concluded in 55.685013966 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.591107465 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.105440571 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 8.085e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 18   ⌟ # Computing specializations.. Time: 0:00:00 Points: 27   ⌞ # Computing specializations.. Time: 0:00:01 Points: 36   ⌜ # Computing specializations.. Time: 0:00:01 Points: 45   ⌝ # Computing specializations.. Time: 0:00:02 Points: 54   ⌟ # Computing specializations.. Time: 0:00:02 Points: 62   ⌞ # Computing specializations.. Time: 0:00:02 Points: 72   ⌜ # Computing specializations.. Time: 0:00:03 Points: 82   ⌝ # Computing specializations.. Time: 0:00:03 Points: 92   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 9   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:00 Points: 26   ⌞ # Computing specializations.. Time: 0:00:01 Points: 35   ⌜ # Computing specializations.. Time: 0:00:01 Points: 44   ⌝ # Computing specializations.. Time: 0:00:02 Points: 53   ⌟ # Computing specializations.. Time: 0:00:02 Points: 62   ⌞ # Computing specializations.. Time: 0:00:02 Points: 71   ⌜ # Computing specializations.. Time: 0:00:03 Points: 80   ⌝ # Computing specializations.. Time: 0:00:03 Points: 87   ⌟ # Computing specializations.. Time: 0:00:03 Points: 97   ⌞ # Computing specializations.. Time: 0:00:04 Points: 106   ⌜ # Computing specializations.. Time: 0:00:04 Points: 116   ⌝ # Computing specializations.. Time: 0:00:04 Points: 124   ⌟ # Computing specializations.. Time: 0:00:05 Points: 134   ⌞ # Computing specializations.. Time: 0:00:05 Points: 143   ⌜ # Computing specializations.. Time: 0:00:06 Points: 153   ⌝ # Computing specializations.. Time: 0:00:06 Points: 162   ⌟ # Computing specializations.. Time: 0:00:06 Points: 171   ⌞ # Computing specializations.. Time: 0:00:07 Points: 180   ⌜ # Computing specializations.. Time: 0:00:07 Points: 190   ⌝ # Computing specializations.. Time: 0:00:07 Points: 198   ⌟ # Computing specializations.. Time: 0:00:08 Points: 207   ⌞ # Computing specializations.. Time: 0:00:08 Points: 216   ⌜ # Computing specializations.. Time: 0:00:09 Points: 226   ⌝ # Computing specializations.. Time: 0:00:09 Points: 236   ⌟ # Computing specializations.. Time: 0:00:09 Points: 246   ⌞ # Computing specializations.. Time: 0:00:10 Points: 255   ⌜ # Computing specializations.. Time: 0:00:10 Points: 264   ⌝ # Computing specializations.. Time: 0:00:10 Points: 273   ⌟ # Computing specializations.. Time: 0:00:11 Points: 281   ⌞ # Computing specializations.. Time: 0:00:11 Points: 289   ⌜ # Computing specializations.. Time: 0:00:12 Points: 297   ⌝ # Computing specializations.. Time: 0:00:12 Points: 307   ⌟ # Computing specializations.. Time: 0:00:12 Points: 316   ⌞ # Computing specializations.. Time: 0:00:13 Points: 325   ⌜ # Computing specializations.. Time: 0:00:13 Points: 334   ⌝ # Computing specializations.. Time: 0:00:13 Points: 344   ⌟ # Computing specializations.. Time: 0:00:14 Points: 354   ⌞ # Computing specializations.. Time: 0:00:14 Points: 365   ⌜ # Computing specializations.. Time: 0:00:15 Points: 375   ⌝ # Computing specializations.. Time: 0:00:15 Points: 386   ⌟ # Computing specializations.. Time: 0:00:16 Points: 396   ⌞ # Computing specializations.. Time: 0:00:16 Points: 407   ⌜ # Computing specializations.. Time: 0:00:16 Points: 417   ⌝ # Computing specializations.. Time: 0:00:17 Points: 427   ⌟ # Computing specializations.. Time: 0:00:17 Points: 437   ⌞ # Computing specializations.. Time: 0:00:17 Points: 446   ⌜ # Computing specializations.. Time: 0:00:18 Points: 455   ⌝ # Computing specializations.. Time: 0:00:18 Points: 464   ⌟ # Computing specializations.. Time: 0:00:19 Points: 474   ⌞ # Computing specializations.. Time: 0:00:19 Points: 483   ⌜ # Computing specializations.. Time: 0:00:19 Points: 493   ⌝ # Computing specializations.. Time: 0:00:20 Points: 502   ⌟ # Computing specializations.. Time: 0:00:20 Points: 512   ⌞ # Computing specializations.. Time: 0:00:20 Points: 522   ⌜ # Computing specializations.. Time: 0:00:21 Points: 530   ⌝ # Computing specializations.. Time: 0:00:21 Points: 539   ⌟ # Computing specializations.. Time: 0:00:22 Points: 548   ⌞ # Computing specializations.. Time: 0:00:22 Points: 558   ⌜ # Computing specializations.. Time: 0:00:22 Points: 567   ⌝ # Computing specializations.. Time: 0:00:23 Points: 577   ⌟ # Computing specializations.. Time: 0:00:23 Points: 586   ⌞ # Computing specializations.. Time: 0:00:24 Points: 594   ⌜ # Computing specializations.. Time: 0:00:24 Points: 603   ⌝ # Computing specializations.. Time: 0:00:24 Points: 612   ⌟ # Computing specializations.. Time: 0:00:25 Points: 623   ⌞ # Computing specializations.. Time: 0:00:25 Points: 633   ✓ # Computing specializations.. Time: 0:00:26 [ Info: Search for polynomial generators concluded in 0.000327387 [ Info: Selecting generators in 0.043161515 [ Info: Inclusion checked with probability 0.995 in 8.890803622 seconds [ Info: The search for identifiable functions concluded in 64.4291771 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.381927278 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.082206009 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 8.5729e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 23   ⌟ # Computing specializations.. Time: 0:00:01 Points: 33   ⌞ # Computing specializations.. Time: 0:00:01 Points: 43   ⌜ # Computing specializations.. Time: 0:00:02 Points: 53   ⌝ # Computing specializations.. Time: 0:00:02 Points: 64   ⌟ # Computing specializations.. Time: 0:00:02 Points: 74   ⌞ # Computing specializations.. Time: 0:00:03 Points: 84   ⌜ # Computing specializations.. Time: 0:00:03 Points: 94   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 29   ⌞ # Computing specializations.. Time: 0:00:01 Points: 37   ⌜ # Computing specializations.. Time: 0:00:01 Points: 47   ⌝ # Computing specializations.. Time: 0:00:02 Points: 55   ⌟ # Computing specializations.. Time: 0:00:02 Points: 66   ⌞ # Computing specializations.. Time: 0:00:02 Points: 76   ⌜ # Computing specializations.. Time: 0:00:03 Points: 87   ⌝ # Computing specializations.. Time: 0:00:03 Points: 97   ⌟ # Computing specializations.. Time: 0:00:04 Points: 106   ⌞ # Computing specializations.. Time: 0:00:04 Points: 116   ⌜ # Computing specializations.. Time: 0:00:04 Points: 126   ⌝ # Computing specializations.. Time: 0:00:05 Points: 136   ⌟ # Computing specializations.. Time: 0:00:05 Points: 144   ⌞ # Computing specializations.. Time: 0:00:05 Points: 154   ⌜ # Computing specializations.. Time: 0:00:06 Points: 164   ⌝ # Computing specializations.. Time: 0:00:06 Points: 175   ⌟ # Computing specializations.. Time: 0:00:06 Points: 185   ⌞ # Computing specializations.. Time: 0:00:07 Points: 194   ⌜ # Computing specializations.. Time: 0:00:07 Points: 204   ⌝ # Computing specializations.. Time: 0:00:08 Points: 213   ⌟ # Computing specializations.. Time: 0:00:08 Points: 224   ⌞ # Computing specializations.. Time: 0:00:08 Points: 234   ⌜ # Computing specializations.. Time: 0:00:09 Points: 244   ⌝ # Computing specializations.. Time: 0:00:09 Points: 254   ⌟ # Computing specializations.. Time: 0:00:09 Points: 263   ⌞ # Computing specializations.. Time: 0:00:10 Points: 273   ⌜ # Computing specializations.. Time: 0:00:10 Points: 283   ⌝ # Computing specializations.. Time: 0:00:11 Points: 294   ⌟ # Computing specializations.. Time: 0:00:11 Points: 304   ⌞ # Computing specializations.. Time: 0:00:11 Points: 313   ⌜ # Computing specializations.. Time: 0:00:12 Points: 322   ⌝ # Computing specializations.. Time: 0:00:12 Points: 331   ⌟ # Computing specializations.. Time: 0:00:12 Points: 341   ⌞ # Computing specializations.. Time: 0:00:13 Points: 351   ⌜ # Computing specializations.. Time: 0:00:13 Points: 363   ⌝ # Computing specializations.. Time: 0:00:14 Points: 374   ⌟ # Computing specializations.. Time: 0:00:14 Points: 386   ⌞ # Computing specializations.. Time: 0:00:14 Points: 397   ⌜ # Computing specializations.. Time: 0:00:15 Points: 406   ⌝ # Computing specializations.. Time: 0:00:15 Points: 416   ⌟ # Computing specializations.. Time: 0:00:15 Points: 424   ⌞ # Computing specializations.. Time: 0:00:16 Points: 434   ⌜ # Computing specializations.. Time: 0:00:16 Points: 444   ⌝ # Computing specializations.. Time: 0:00:17 Points: 453   ⌟ # Computing specializations.. Time: 0:00:17 Points: 463   ⌞ # Computing specializations.. Time: 0:00:17 Points: 471   ⌜ # Computing specializations.. Time: 0:00:18 Points: 482   ⌝ # Computing specializations.. Time: 0:00:18 Points: 492   ⌟ # Computing specializations.. Time: 0:00:18 Points: 504   ⌞ # Computing specializations.. Time: 0:00:19 Points: 515   ⌜ # Computing specializations.. Time: 0:00:19 Points: 524   ⌝ # Computing specializations.. Time: 0:00:19 Points: 534   ⌟ # Computing specializations.. Time: 0:00:20 Points: 542   ⌞ # Computing specializations.. Time: 0:00:20 Points: 553   ⌜ # Computing specializations.. Time: 0:00:21 Points: 563   ⌝ # Computing specializations.. Time: 0:00:21 Points: 575   ⌟ # Computing specializations.. Time: 0:00:22 Points: 586   ⌞ # Computing specializations.. Time: 0:00:22 Points: 597   ⌜ # Computing specializations.. Time: 0:00:22 Points: 608   ⌝ # Computing specializations.. Time: 0:00:23 Points: 618   ⌟ # Computing specializations.. Time: 0:00:23 Points: 628   ⌞ # Computing specializations.. Time: 0:00:23 Points: 636   ✓ # Computing specializations.. Time: 0:00:24 [ Info: Search for polynomial generators concluded in 1.987488129 [ Info: Selecting generators in 0.042035525 [ Info: Inclusion checked with probability 0.995 in 8.909856689 seconds [ Info: The search for identifiable functions concluded in 55.6767276 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 3.190450315 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 2.390911105 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000113019 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 5   ⌝ # Computing specializations.. Time: 0:00:00 Points: 16   ⌟ # Computing specializations.. Time: 0:00:00 Points: 26   ⌞ # Computing specializations.. Time: 0:00:01 Points: 34   ⌜ # Computing specializations.. Time: 0:00:01 Points: 45   ⌝ # Computing specializations.. Time: 0:00:02 Points: 55   ⌟ # Computing specializations.. Time: 0:00:02 Points: 64   ⌞ # Computing specializations.. Time: 0:00:02 Points: 75   ⌜ # Computing specializations.. Time: 0:00:03 Points: 85   ⌝ # Computing specializations.. Time: 0:00:03 Points: 94   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:00 Points: 27   ⌞ # Computing specializations.. Time: 0:00:01 Points: 37   ⌜ # Computing specializations.. Time: 0:00:01 Points: 48   ⌝ # Computing specializations.. Time: 0:00:02 Points: 58   ⌟ # Computing specializations.. Time: 0:00:02 Points: 69   ⌞ # Computing specializations.. Time: 0:00:02 Points: 79   ⌜ # Computing specializations.. Time: 0:00:03 Points: 88   ⌝ # Computing specializations.. Time: 0:00:03 Points: 98   ⌟ # Computing specializations.. Time: 0:00:04 Points: 107   ⌞ # Computing specializations.. Time: 0:00:04 Points: 118   ⌜ # Computing specializations.. Time: 0:00:04 Points: 128   ⌝ # Computing specializations.. Time: 0:00:05 Points: 139   ⌟ # Computing specializations.. Time: 0:00:05 Points: 150   ⌞ # Computing specializations.. Time: 0:00:05 Points: 161   ⌜ # Computing specializations.. Time: 0:00:06 Points: 171   ⌝ # Computing specializations.. Time: 0:00:06 Points: 182   ⌟ # Computing specializations.. Time: 0:00:07 Points: 193   ⌞ # Computing specializations.. Time: 0:00:07 Points: 203   ⌜ # Computing specializations.. Time: 0:00:07 Points: 213   ⌝ # Computing specializations.. Time: 0:00:08 Points: 223   ⌟ # Computing specializations.. Time: 0:00:08 Points: 234   ⌞ # Computing specializations.. Time: 0:00:09 Points: 243   ⌜ # Computing specializations.. Time: 0:00:09 Points: 254   ⌝ # Computing specializations.. Time: 0:00:09 Points: 264   ⌟ # Computing specializations.. Time: 0:00:10 Points: 276   ⌞ # Computing specializations.. Time: 0:00:10 Points: 287   ⌜ # Computing specializations.. Time: 0:00:10 Points: 298   ⌝ # Computing specializations.. Time: 0:00:11 Points: 309   ⌟ # Computing specializations.. Time: 0:00:11 Points: 319   ⌞ # Computing specializations.. Time: 0:00:12 Points: 328   ⌜ # Computing specializations.. Time: 0:00:12 Points: 337   ⌝ # Computing specializations.. Time: 0:00:12 Points: 347   ⌟ # Computing specializations.. Time: 0:00:13 Points: 357   ⌞ # Computing specializations.. Time: 0:00:13 Points: 368   ⌜ # Computing specializations.. Time: 0:00:14 Points: 379   ⌝ # Computing specializations.. Time: 0:00:14 Points: 390   ⌟ # Computing specializations.. Time: 0:00:14 Points: 401   ⌞ # Computing specializations.. Time: 0:00:15 Points: 411   ⌜ # Computing specializations.. Time: 0:00:15 Points: 421   ⌝ # Computing specializations.. Time: 0:00:15 Points: 431   ⌟ # Computing specializations.. Time: 0:00:16 Points: 442   ⌞ # Computing specializations.. Time: 0:00:16 Points: 452   ⌜ # Computing specializations.. Time: 0:00:16 Points: 463   ⌝ # Computing specializations.. Time: 0:00:17 Points: 474   ⌟ # Computing specializations.. Time: 0:00:17 Points: 486   ⌞ # Computing specializations.. Time: 0:00:18 Points: 497   ⌜ # Computing specializations.. Time: 0:00:18 Points: 509   ⌝ # Computing specializations.. Time: 0:00:18 Points: 520   ⌟ # Computing specializations.. Time: 0:00:19 Points: 532   ⌞ # Computing specializations.. Time: 0:00:19 Points: 543   ⌜ # Computing specializations.. Time: 0:00:20 Points: 553   ⌝ # Computing specializations.. Time: 0:00:20 Points: 564   ⌟ # Computing specializations.. Time: 0:00:20 Points: 573   ⌞ # Computing specializations.. Time: 0:00:21 Points: 584   ⌜ # Computing specializations.. Time: 0:00:21 Points: 595   ⌝ # Computing specializations.. Time: 0:00:21 Points: 607   ⌟ # Computing specializations.. Time: 0:00:22 Points: 618   ⌞ # Computing specializations.. Time: 0:00:22 Points: 628   ⌜ # Computing specializations.. Time: 0:00:22 Points: 638   ✓ # Computing specializations.. Time: 0:00:23 [ Info: Search for polynomial generators concluded in 2.64742016 [ Info: Selecting generators in 0.049108585 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 51 running 1 of 1 signal (10): User defined signal 1 __gmpn_mul_basecase_zen at /opt/julia/bin/../lib/julia/libgmp.so.10 (unknown line) unknown function (ip: 0x85d39d2a50e9a90d) at (unknown file) unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== [ Info: Inclusion checked with probability 0.995 in 9.472335387 seconds [ Info: The search for identifiable functions concluded in 61.50437395 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 [ Info: Computed IO-equations in 2.791831958 seconds Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x000070fe15dfc010 Total snapshots: 249. Utilization: 100% ╎208 @Base/client.jl:577 _start() ╎ 208 @Base/client.jl:310 exec_options(opts::Base.JLOptions) ╎ 208 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ 208 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ 208 @Base/Base.jl:310 include(mapexpr::Function, mod::Module, _path::S… ╎ 208 @Base/loading.jl:3014 _include(mapexpr::Function, mod::Module, _p… ╎ ╎ 208 @Base/loading.jl:2954 include_string(mapexpr::typeof(identity), … ╎ ╎ 208 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ 208 @StructuralIdentifiability/…:159 top-level scope ╎ ╎ 208 @Base/timing.jl:689 macro expansion ╎ ╎ 208 @StructuralIdentifiability/…:160 macro expansion ╎ ╎ ╎ 208 @Test/src/Test.jl:1954 macro expansion ╎ ╎ ╎ 208 @StructuralIdentifiability/…:162 macro expansion ╎ ╎ ╎ 208 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ ╎ ╎ 208 @Base/Base.jl:310 include(mapexpr::Function, mod::Module… ╎ ╎ ╎ 208 @Base/loading.jl:3014 _include(mapexpr::Function, mod::… ╎ ╎ ╎ ╎ 208 @Base/loading.jl:2954 include_string(mapexpr::typeof(i… ╎ ╎ ╎ ╎ 208 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ ╎ ╎ 208 @StructuralIdentifiability/…:49 kwcall(::@NamedTuple… ╎ ╎ ╎ ╎ 208 @StructuralIdentifiability/…:61 #find_identifiable_… ╎ ╎ ╎ ╎ 208 @Base/…gging.jl:651 with_logger ╎ ╎ ╎ ╎ ╎ 208 @Base/…gging.jl:540 with_logstate(f::StructuralId… ╎ ╎ ╎ ╎ ╎ 208 @StructuralIdentifiability/…:63 (::StructuralIde… ╎ ╎ ╎ ╎ ╎ 208 @StructuralIdentifiability/…:86 _find_identifia… ╎ ╎ ╎ ╎ ╎ 208 @StructuralIdentifiability/…:120 _find_identif… ╎ ╎ ╎ ╎ ╎ 208 @StructuralIdentifiability/…:720 kwcall(::@Na… ╎ ╎ ╎ ╎ ╎ ╎ 208 @StructuralIdentifiability/…:720 simplified_… ╎ ╎ ╎ ╎ ╎ ╎ 208 @StructuralIdentifiability/…:430 fields_equ… ╎ ╎ ╎ ╎ ╎ ╎ 208 @StructuralIdentifiability/…:421 issubfiel… ╎ ╎ ╎ ╎ ╎ ╎ 208 @StructuralIdentifiability/…:347 field_co… ╎ ╎ ╎ ╎ ╎ ╎ 208 @Groebner/…l:580 normalform(basis::Vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 208 @Groebner/…l:582 #normalform#183 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 208 @Groebner/…l:16 normalform0(polynomial… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 208 @Groebner/…l:49 _normalform1(ring::Gr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 208 @Groebner/…l:79 __normalform1(ring::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 208 @Groebner/…l:119 normalform2(ring::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 208 @Groebner/…l:140 _normalform2(ring… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 208 @Groebner/…l:486 f4_normalform!(r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 208 @Groebner/…l:112 linalg_normalfo… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 208 @Groebner/…l:253 _linalg_normal… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:232 linalg_reduce… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:861 linalg_load_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:1025 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 207 @Groebner/…l:235 linalg_reduce… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 207 @Groebner/…l:603 linalg_reduce… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 207 @Groebner/…l:603 linalg_reduce… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 207 @Groebner/…l:651 linalg_reduce… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 4 @Groebner/…l:841 linalg_vector… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:964 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ls.jl:385 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 3 @Base/…al.jl:343 - ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 3 @Base/gmp.jl:569 - ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 3 @Base/gmp.jl:208 neg(a::BigInt) ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/gmp.jl:69 BigInt ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/gmp.jl:70 _ 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/gmp.jl:157 init2! 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 2 @Base/gmp.jl:207 neg! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 203 @Groebner/…l:844 linalg_vector… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 90 @Base/gmp.jl:1097 *(x::Rationa… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 3 @Base/gmp.jl:69 BigInt 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 3 @Base/gmp.jl:70 _ 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 2 @Base/gmp.jl:157 init2! 86╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 87 @Base/gmp.jl:1067 mul!(z::Rati… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/gmp.jl:977 _MPQ ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/gmp.jl:973 _MPQ 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/gmp.jl:961 _MPQ ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 112 @Base/gmp.jl:1097 +(x::Rationa… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 4 @Base/gmp.jl:69 BigInt 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 3 @Base/gmp.jl:70 _ 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/gmp.jl:157 init2! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/gmp.jl:71 _ 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ls.jl:92 finalizer ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/gmp.jl:0 add!(z::Rationa… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…er.jl:57 getproperty 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/gmp.jl:1032 add!(z::Rati… 102╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 106 @Base/gmp.jl:1040 add!(z::Rati… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 4 @Base/gmp.jl:977 _MPQ ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 4 @Base/gmp.jl:973 _MPQ 4╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 4 @Base/gmp.jl:961 _MPQ [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.083567405 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000173089 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 18   ⌟ # Computing specializations.. Time: 0:00:00 Points: 27   ⌞ # Computing specializations.. Time: 0:00:01 Points: 36   ⌜ # Computing specializations.. Time: 0:00:01 Points: 45   ⌝ # Computing specializations.. Time: 0:00:02 Points: 53   ⌟ # Computing specializations.. Time: 0:00:02 Points: 62  ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457  ⌞ # Computing specializations.. Time: 0:00:02 Points: 71 wait at ./task.jl:1217 wait_forever at ./task.jl:1139 jfptr_wait_forever_63682.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file)  ⌜ # Computing specializations.. Time: 0:00:03 Points: 77   ⌝ # Computing specializations.. Time: 0:00:03 Points: 84  ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ==============================================================  ✓ # Computing specializations.. Time: 0:00:04 ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x000070a0295d3940 Total snapshots: 501. Utilization: 0% ╎501 @Base/task.jl:1139 wait_forever() 500╎ 501 @Base/task.jl:1217 wait() ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 20   ⌟ # Computing specializations.. Time: 0:00:01 Points: 33   ⌞ # Computing specializations.. Time: 0:00:01 Points: 46   ⌜ # Computing specializations.. Time: 0:00:01 Points: 57   ⌝ # Computing specializations.. Time: 0:00:02 Points: 69   ⌟ # Computing specializations.. Time: 0:00:02 Points: 82   ⌞ # Computing specializations.. Time: 0:00:02 Points: 95   ⌜ # Computing specializations.. Time: 0:00:03 Points: 106   ⌝ # Computing specializations.. Time: 0:00:03 Points: 119   ⌟ # Computing specializations.. Time: 0:00:03 Points: 133   ⌞ # Computing specializations.. Time: 0:00:04 Points: 146   ⌜ # Computing specializations.. Time: 0:00:04 Points: 157   ⌝ # Computing specializations.. Time: 0:00:04 Points: 169  [51] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/identifiable_functions.jl:1077 PkgEval terminated after 2735.88s: test duration exceeded the time limit