Package evaluation to test QuasiNewtonMethods on Julia 1.13.0-DEV.1296 (e8025198af*) started at 2025-10-12T16:51:19.887 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.95s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.1 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.173 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 5.03s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 202.2s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_Ezz4FL/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_Ezz4FL/Manifest.toml` [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.173 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:753 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1954 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [-3.864741859871401e-11, -6.721467826764638e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.4881429422075598e-12, -3.4010572136367045e-12] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [-4.014899523951954e-12, -7.0672356855538965e-12, -4.884814774896995e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.4798717806741024e-11, -3.0934921291247974e-11, -2.6644353390281594e-11] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [5.364597654988756e-13, 1.241229341530925e-13, 1.354916179252541e-12, 1.9384494009955233e-13] QuasiNewtonMethods.optimum(state) .- 1 = [9.432805647691112e-10, -2.0664688848981427e-9, 1.890214429423054e-9, -4.159769528833124e-9] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [-6.385003636921738e-12, 1.398186011414282e-10, -6.784572903484332e-12, 2.6602475777792733e-10, 3.402056414358867e-11] QuasiNewtonMethods.optimum(state) .- 1 = [8.930634010084759e-13, 4.347855409037038e-12, 4.334532732741536e-12, 1.0823786311675576e-11, -1.6237788891260152e-11] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [2.0900614572383347e-11, -1.2077228106477378e-11, -4.9505954891060355e-12, 4.0820236080207906e-11, -2.4240942586573055e-11, -1.1562417689958693e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.0583312004541767e-11, 3.878053433936657e-11, -3.275835158689233e-11, 2.371369767217857e-11, 8.775868920452012e-11, -6.19549966884847e-11] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [-1.0872858169364008e-11, 3.6908698319848554e-11, 2.686917355276819e-11, -1.7903456495105274e-11, 7.380118738353758e-11, 5.605049757662073e-11, 5.713207684721056e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-2.3153923223162565e-11, 9.835909864364112e-12, 1.6425083515514416e-11, -5.124112245624701e-11, 1.6726175999792758e-11, 3.9176661914552824e-11, -4.9716897265739135e-12] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-6.515121775407806e-12, 4.1315839638400575e-12, 5.933009639136344e-11, -1.902034085787818e-12, -1.414890427042792e-11, 9.429568237351305e-12, 1.276339034461671e-10, -6.531220009264871e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-3.2029046082016066e-11, -5.036371319988575e-11, -2.4914403873310675e-11, -5.804967617706325e-11, -6.353140236114996e-11, -9.908596165786321e-11, -5.065092789635628e-11, -1.1481471329233273e-10] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [6.689315767971493e-12, 5.944378322908506e-11, 9.609646411945505e-12, 5.249867207623993e-11, 2.337441351585312e-11, 1.1789902387704387e-10, 1.8001378165877213e-11, 1.0138889727784317e-10, 5.4998228193881005e-11] QuasiNewtonMethods.optimum(state) .- 1 = [8.062439604827887e-13, -3.344102772473434e-12, 6.000755448098971e-12, -9.004019752012482e-12, 1.5796253194366727e-12, -6.719846901148685e-12, 1.1176837233506376e-11, -1.9659607275457347e-11, 3.497868661384018e-12] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [-2.4897051087435784e-10, -2.1513490988667172e-10, -2.722732039828202e-10, -3.9647063410086503e-10, 1.6958145998557939e-10, -5.12712206024446e-10, -4.4777870300549694e-10, -5.614246845198068e-10, -8.124675376919299e-10, 3.2566527252697597e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-2.1923018955760654e-11, 6.531442053869796e-12, -4.5121795189118075e-11, -6.418476861114186e-11, -1.2660128501096324e-10, -4.1410763707006026e-11, 3.568256801145253e-12, -9.12326880708747e-11, -1.3957979216883132e-10, -2.469171533903136e-10] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [1.368816171520848e-11, 1.4481527088605617e-11, -1.7085666215166384e-11, 2.0989654458958285e-11, -2.953670641403505e-11, 3.097810896690589e-11, 2.6896485039173967e-11, -3.7588376855524075e-11, 4.328692959632008e-11, -5.976785732997314e-11, 4.849454171562684e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-2.6806334929574405e-11, 2.2998714044319968e-11, -2.1587731602323856e-11, -5.997535801327558e-11, -4.233724482105572e-12, -5.348022025231103e-11, 4.868216940678849e-11, -4.531175434863144e-11, -1.1897460794330073e-10, -2.6657565044274634e-12, -7.05768776754212e-13] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [5.242206668754079e-11, -7.83173526031078e-12, 1.7661205831132065e-11, -6.20725693067925e-12, -5.461753271873704e-11, -1.837896501655223e-11, 1.0820833118430073e-10, -1.889399747767584e-11, 3.8787861811329094e-11, -1.5197842984093768e-12, -1.1607792504975123e-10, -2.706423973819483e-11] QuasiNewtonMethods.optimum(state) .- 1 = [7.968536941405091e-11, -1.0813572259849025e-13, 4.501354844421712e-11, 2.2821300404984868e-11, -3.031852546797609e-11, -4.367706196717336e-11, 1.6627654808587522e-10, -5.566658245470535e-12, 8.77966588319623e-11, 4.268274622631907e-11, -6.526290619035535e-11, -7.860956330318913e-11] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [2.595479386968691e-11, -2.2116308784347893e-11, -1.1154410728408948e-11, 2.5928592606305756e-11, 1.3360867967548984e-11, -8.207434731843932e-12, 5.0949910956887834e-11, -4.700428934967249e-11, -2.3047008745891162e-11, 4.941091980015244e-11, 2.8440583221822635e-11, -1.3700596213084282e-11, 7.915890165577366e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-5.5530025022676455e-11, -1.3723799874298948e-11, -1.9899526471078843e-11, 7.238676325016513e-11, 1.2786216530003003e-11, 7.951861391575221e-12, -1.0578971032515483e-10, -2.847211355572199e-11, -4.465650071949767e-11, 1.5681567155922949e-10, 2.5180968421523175e-11, 2.166822277160918e-11, 4.661382391191182e-12] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [-2.9947944124586456e-10, -4.83278972396306e-11, -4.446387702472521e-11, 3.327738085090459e-11, 7.652123379386921e-11, 1.6183587803197952e-10, -1.3332013271138976e-10, -5.766755961644776e-10, -9.516465393488716e-11, -8.47237835444048e-11, 6.728551049661746e-11, 1.6527357260542885e-10, 3.368354484223346e-10, -2.730992099131413e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-5.1824211588780145e-11, -3.6665559477455645e-11, 1.387940873343041e-10, -9.133549472295499e-11, -5.276223902228594e-11, -2.961642042720314e-11, 1.6552093029531534e-11, -1.0727096988460971e-10, -7.343048391561524e-11, 2.7238966637810336e-10, -1.8715107241717988e-10, -1.0442235964802649e-10, -6.463118928934364e-11, 3.992584041156988e-11] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [4.782307883033354e-11, -1.0497958058408585e-10, -1.650770631300702e-10, 3.844036200462142e-11, -7.610478913733232e-11, -7.426936843302201e-11, -6.095290938645803e-11, 9.286393876095644e-11, -2.0826784741245774e-10, -3.3452796088795367e-10, 7.447220617962103e-11, -1.5776502326758646e-10, -1.4668533054873478e-10, -1.2423040374187622e-10, 5.796252366963017e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.4122236713376424e-10, -1.5596746116841587e-10, -2.6921453954997787e-10, -8.632061732072316e-11, -1.723154952060213e-10, -5.643230327478932e-11, -1.6811185776788307e-10, 2.897710960070299e-10, -3.249253088810633e-10, -5.318483431437926e-10, -1.714612896108747e-10, -3.3297842261248434e-10, -1.0502465563888563e-10, -3.57623264335416e-10, -6.78845868407052e-12] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [-5.2479132151006525e-12, -1.605715560515364e-12, -1.3834600132156538e-11, 8.232303727595536e-12, 1.4030776540607803e-11, 1.117279602169674e-10, -3.159461581248024e-11, -4.7008064107956216e-11, -1.0511591597150982e-11, -4.1808778661334145e-12, -2.7912672173613373e-11, 1.584266051679606e-11, 2.727706949201547e-11, 2.293449874457565e-10, -6.45377085106702e-11, -9.407508105852003e-11] QuasiNewtonMethods.optimum(state) .- 1 = [5.087086307753452e-11, -1.8006707236395414e-12, 6.660649809475672e-11, 1.453592801681225e-11, -2.5439650386260837e-11, -9.983458504336795e-12, 5.7692073340831485e-11, -5.897493604578585e-11, 9.630207742361563e-11, 1.0265122085684197e-12, 1.3633472129015445e-10, 3.0882851831393054e-11, -4.333022829428046e-11, -1.9853674260161824e-11, 1.1799405896795179e-10, -1.0369116676400836e-10] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [5.551936688164005e-11, 1.4514034418766641e-10, -3.5645153495522663e-11, 8.032530196544485e-11, 1.0640932579519813e-10, -9.186884586398492e-11, 2.7113200573580798e-11, 1.372257862897186e-10, 1.1078538086906065e-10, 2.9027558134941955e-10, -6.70028477145479e-11, 1.628734924707942e-10, 2.2250823406011477e-10, -1.7668277951798927e-10, 5.568523420151905e-11, 2.7590751905393063e-10, 5.4145576910968884e-12] QuasiNewtonMethods.optimum(state) .- 1 = [4.928235597390085e-11, -5.0181192534637376e-11, 1.393458681775428e-10, -7.38354932749985e-11, -2.052646941308467e-11, 1.2125189741141185e-11, -1.4534484726880237e-11, 7.047407102334091e-11, 9.30497900952787e-11, -1.0924661175693018e-10, 2.6362556582171237e-10, -1.5192291868970642e-10, -3.776912116393305e-11, 3.43747252884441e-11, -2.950673039237017e-11, 1.5192291868970642e-10, 3.581579477440755e-13] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [5.2969406638680994e-11, 2.4298341116946176e-11, -6.373557237537852e-11, 7.534906032446997e-11, -8.214207092294146e-11, 3.0524471839044054e-12, -4.300804157253424e-11, -3.1898927943529998e-12, 1.5456302904226504e-11, 1.1597323101852908e-10, 5.139688674660192e-11, -1.2208456467988071e-10, 1.6266543667597944e-10, -1.4809531379000873e-10, -3.3653080322437745e-12, -9.288825264519573e-11, -7.676748126073107e-12, 3.360067779567544e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.6722513091215205e-11, 4.9209303298880513e-11, 9.490874752771106e-11, -1.7361323489950564e-10, 7.146594427354103e-11, -1.0172418463127997e-11, -4.7305492856253295e-11, -2.885391925389058e-11, -1.1441847469484401e-10, -5.780353973250385e-11, 9.831424563344626e-11, 1.9977930421077872e-10, -3.467824916114637e-10, 1.350257683441214e-10, -2.2343349392883738e-11, -9.135636691581794e-11, -5.7598037450645734e-11, -2.2805135557746326e-10] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [1.609334887575642e-11, -6.05578920342964e-11, -7.969558346587746e-11, -5.4707460783731676e-11, -6.670985985834932e-11, -5.243483425232398e-11, -7.785549982486373e-11, -1.1001677346911265e-10, 7.635625465240992e-11, 3.2932767624060943e-11, -1.2774248325797544e-10, -1.5844459078095952e-10, -1.06683661904583e-10, -1.3905154805371467e-10, -1.0188705434899248e-10, -1.5223422522581131e-10, -2.2783297470851949e-10, 1.5387380258857775e-10, -2.419620059868066e-12] QuasiNewtonMethods.optimum(state) .- 1 = [2.1648127734863465e-10, -1.4624257360651427e-10, -1.4065304476673646e-10, -9.608747131295559e-11, 1.421074369289954e-10, -1.93928872960214e-10, 1.142419492339286e-12, -2.7651192446853656e-10, 4.4281911470989144e-11, 4.3166181740161846e-10, -3.03112313027043e-10, -2.9696844983106985e-10, -1.7813173158742757e-10, 2.827662548554599e-10, -3.864659703367579e-10, 3.922639990605603e-12, -5.589192442201352e-10, 8.400480311365754e-11, -5.586531237611325e-12] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [-1.599702592613994e-10, 8.573364240760384e-12, -3.821276628457326e-11, 1.585243047941276e-11, 1.6719514661645007e-11, -1.1460943305507953e-11, -2.2721702297445745e-10, 7.295053450206979e-12, 1.1934009336300733e-11, 2.363760298607076e-10, -3.0989244503842883e-10, 1.1723511050831803e-11, -8.637401904820763e-11, 2.1056711929645644e-11, 3.7293057530973783e-11, -1.2505774193982688e-11, -4.3961057016872473e-10, 2.4735768988648488e-11, 3.019606786835993e-11, 4.669620246033901e-10] QuasiNewtonMethods.optimum(state) .- 1 = [5.307998485193366e-11, -4.3257175619260124e-11, 1.717248565569207e-11, 4.102207462608476e-11, -1.4088730182493236e-12, 1.2016410089188412e-10, -1.9130630413144445e-10, 2.0632273667331447e-10, 2.139988186655728e-10, -3.7124792129361595e-10, 9.450773497121645e-11, -9.16784426152617e-11, 3.2386537895945366e-11, 8.158917985667813e-11, -1.1324274851176597e-13, 2.2943935640284963e-10, -4.0749448260157806e-10, 4.0614511753744864e-10, 4.299129940932289e-10, -7.442283456171594e-10] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [-4.55402382470993e-12, 1.5290879673557356e-11, -2.3770763135644302e-11, 5.606626274357041e-13, 9.693801317212092e-12, -1.7133516827527728e-11, -2.7796653867540044e-11, -7.313816219323144e-12, 1.5842438472191134e-11, 1.3206991056335937e-11, -8.837597320621171e-12, 3.519007307772881e-11, -5.678091330452162e-11, -1.08213438210214e-12, 1.9624968317089042e-11, -3.013500560200555e-11, -5.225131438635344e-11, -1.0512923864780532e-11, 2.7928992452075363e-11, 2.173394797466699e-11, 1.8071322216428598e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.0118772486578109e-10, 1.583388975490152e-10, 1.2732548348992623e-10, -1.2825163153706853e-10, 2.208921934254704e-10, 6.714251377104574e-11, 1.6412649017638614e-11, -7.060474427333929e-11, -1.4878509535520834e-10, 3.294047257185184e-10, 1.982676245404491e-10, 3.1196978333980496e-10, 2.530600173855646e-10, -2.6592461566110615e-10, 4.21122026139642e-10, 1.2125833670495467e-10, 3.890554545193936e-11, -1.3793499675784915e-10, -3.1325964044981447e-10, 6.593103840657477e-10, -3.1872282590938994e-12] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-1.8215329244952727e-10, 2.479487726247953e-10, 6.546096997794848e-12, -7.168809990076852e-11, -9.852507698582258e-11, -1.038880093062744e-11, -2.87321277880892e-11, 7.570388760314017e-11, -1.3724021918903873e-11, -1.1905798569245007e-10, -5.417155612974511e-11, -3.613229715426769e-10, 5.056077778675672e-10, 4.6487258487104555e-12, -1.511567537804126e-10, -1.9999768507972249e-10, -2.1980084419226387e-11, -5.756384258148728e-11, 1.5576429035490946e-10, -3.296884987236126e-11, -2.392638309700601e-10, -1.0979261944044083e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-3.135935955356217e-11, 9.793277300218506e-12, -2.8192670420423838e-11, -1.456723630610668e-11, -1.4422019134485708e-11, -1.789934866991416e-11, -9.801048861390882e-13, -2.289468614691259e-11, -3.341771304121721e-13, -4.738431869100168e-12, -1.1592060644716184e-11, -5.919442713775425e-11, 1.8215429165024943e-11, -5.964073679365356e-11, -2.062838788674526e-11, -3.317446317652184e-11, -3.482292232348527e-11, -9.255263222485155e-12, -4.5696890715873906e-11, -2.413513833232628e-12, -1.3631429318650135e-11, -2.2694512935572675e-11] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [5.819233983572758e-11, -1.554922857138763e-11, 1.459172782602991e-10, -5.6977533802182734e-11, -1.6041912243025536e-10, 1.1733880533881802e-10, -5.1842419246384e-11, -4.952149801340511e-12, -1.4668599668254956e-11, 3.673594761721688e-11, -3.9884207048146436e-11, 1.1894196738637675e-10, -2.7067237340361316e-11, 2.9043945026785423e-10, -1.0952461160229632e-10, -3.2574376529481697e-10, 2.3733104370649016e-10, -1.0404976880096228e-10, -1.0882295065073322e-11, -2.8198776647059276e-11, 7.066036644687301e-11, -7.75057795721068e-11, -1.1857181902996672e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.0768830271956631e-11, 2.903832729828082e-11, -2.678368637987205e-11, 1.354028000832841e-12, -4.59376980899151e-12, -6.98574531554641e-12, -2.5023316752026403e-11, -6.872502567034644e-12, -1.1826428725214555e-11, 9.996670158329835e-12, -1.9414247987015187e-11, -2.1086354884403136e-11, 5.62241364576721e-11, -5.260436530818424e-11, 1.5756285165480222e-12, -9.606093698266704e-12, -1.132438587347906e-11, -4.945066578443402e-11, -1.3698486789337494e-11, -2.49199549884338e-11, 1.8391066447520643e-11, -3.9442893395857936e-11, 2.291722367431248e-12] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [3.427058636873426e-11, 1.1386980247607426e-10, -2.0352719509730832e-11, 2.1788570947478547e-11, -2.856380687532578e-10, -1.4439449635972323e-11, -3.4186209418862745e-11, -3.7636449512490344e-11, 3.038524987175606e-11, -1.2437939567178091e-11, -6.897082904799845e-11, 1.198863230911229e-10, 6.942091346218149e-11, 2.34988695169136e-10, -4.2332581884352294e-11, 4.302447287329869e-11, -5.874234432212688e-10, -2.84620105261979e-11, -6.074096781105709e-11, -7.913403266002206e-11, 6.260791884926675e-11, -2.822453382123058e-11, -1.4310586049504082e-10, 2.382458674787813e-10] QuasiNewtonMethods.optimum(state) .- 1 = [3.8540282076837684e-11, 3.6180169971089526e-11, 2.2133694876913523e-10, 4.729860947350062e-11, 3.82893716732724e-12, 1.941586891263114e-10, -1.2516832015307955e-10, -3.0728364297516464e-10, -6.803335672600497e-12, -1.3661738407222401e-11, -4.896505423346298e-11, -6.84692302854728e-11, 8.285638841698528e-11, 7.308087468516078e-11, 4.4631853768350993e-10, 1.0121059546008837e-10, 6.9686478809671826e-12, 3.856417407632762e-10, -2.5221491561921994e-10, -6.210237879500369e-10, -1.788957870729746e-11, -2.444544566770901e-11, -1.0029865826766127e-10, -1.3800716125444978e-10] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 4m13.4s Method ambiguity | 1 1 9.5s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 7.0s Compat bounds | 3 1 4 10.8s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.0s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 53.3s RNG of the outermost testset: Random.Xoshiro(0xdc827868580e35cc, 0xb1c4f32816976181, 0x2c87531a9c3f2e3c, 0x2cba645df41fb739, 0x098eaff755ee440a) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 282.38s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2674 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2523 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:548 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:525 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:172 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:161 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:160 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:160 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:159 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:309 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [14] _start() @ Base ./client.jl:577 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 517.83s: package has test failures