Package evaluation to test StructuralIdentifiability on Julia 1.13.0-DEV.1290 (92af0d8cdf*) started at 2025-10-09T14:54:43.409 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.88s ################################################################################ # Installation # Installing StructuralIdentifiability... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [220ca800] + StructuralIdentifiability v0.5.16 Updating `~/.julia/environments/v1.13/Manifest.toml` ⌅ [c3fe647b] + AbstractAlgebra v0.46.5 [a9b6321e] + Atomix v1.1.2 [861a8166] + Combinatorics v1.0.3 [864edb3b] + DataStructures v0.19.1 [e2ba6199] + ExprTools v0.1.10 ⌅ [0b43b601] + Groebner v0.9.5 [18e54dd8] + IntegerMathUtils v0.1.3 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [1914dd2f] + MacroTools v0.5.16 ⌅ [2edaba10] + Nemo v0.51.1 [bac558e1] + OrderedCollections v1.8.1 [3e851597] + ParamPunPam v0.5.5 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.11.0 [fb686558] + RandomExtensions v0.4.4 [220ca800] + StructuralIdentifiability v0.5.16 [a759f4b9] + TimerOutputs v0.5.29 [013be700] + UnsafeAtomics v0.3.0 [e134572f] + FLINT_jll v301.300.102+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.8s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 235.58s ################################################################################ # Testing # Testing StructuralIdentifiability Status `/tmp/jl_yNdQ0M/Project.toml` ⌅ [c3fe647b] AbstractAlgebra v0.46.5 [4c88cf16] Aqua v0.8.14 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [864edb3b] DataStructures v0.19.1 ⌅ [0b43b601] Groebner v0.9.5 [c8e1da08] IterTools v1.10.0 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.51.1 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [27ebfcd6] Primes v0.5.7 [276daf66] SpecialFunctions v2.6.1 [220ca800] StructuralIdentifiability v0.5.16 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_yNdQ0M/Manifest.toml` ⌅ [c3fe647b] AbstractAlgebra v0.46.5 [4c88cf16] Aqua v0.8.14 [a9b6321e] Atomix v1.1.2 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [864edb3b] DataStructures v0.19.1 [ab62b9b5] DeepDiffs v1.2.0 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 ⌅ [0b43b601] Groebner v0.9.5 [615f187c] IfElse v0.1.1 [18e54dd8] IntegerMathUtils v0.1.3 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.51.1 [bac558e1] OrderedCollections v1.8.1 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.11.0 [fb686558] RandomExtensions v0.4.4 [431bcebd] SciMLPublic v1.0.0 [276daf66] SpecialFunctions v2.6.1 [aedffcd0] Static v1.3.0 [220ca800] StructuralIdentifiability v0.5.16 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [013be700] UnsafeAtomics v0.3.0 [e134572f] FLINT_jll v301.300.102+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.2+0 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.46.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Resolving package versions... Installed ModelingToolkit ─ v10.25.0 Updating `/tmp/jl_yNdQ0M/Project.toml` ⌅ [c3fe647b] ↓ AbstractAlgebra v0.46.5 ⇒ v0.44.13 [loaded: v0.46.5] [961ee093] + ModelingToolkit v10.25.0 ⌅ [2edaba10] ↓ Nemo v0.51.1 ⇒ v0.49.5 [loaded: v0.51.1] Updating `/tmp/jl_yNdQ0M/Manifest.toml` [47edcb42] + ADTypes v1.18.0 ⌅ [c3fe647b] ↓ AbstractAlgebra v0.46.5 ⇒ v0.44.13 [loaded: v0.46.5] [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.4.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.20.0 [4c555306] + ArrayLayouts v1.12.0 [e2ed5e7c] + Bijections v0.2.2 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] + BlockArrays v1.7.2 [70df07ce] + BracketingNonlinearSolve v1.5.0 [d360d2e6] + ChainRulesCore v1.26.0 [fb6a15b2] + CloseOpenIntervals v0.1.13 [a80b9123] + CommonMark v0.9.1 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 [187b0558] + ConstructionBase v1.6.0 [9a962f9c] + DataAPI v1.16.0 [2b5f629d] + DiffEqBase v6.190.2 [459566f4] + DiffEqCallbacks v4.10.0 [77a26b50] + DiffEqNoiseProcess v5.24.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.8 [8d63f2c5] + DispatchDoctor v0.4.26 [31c24e10] + Distributions v0.25.122 [5b8099bc] + DomainSets v0.7.16 [7c1d4256] + DynamicPolynomials v0.6.4 [06fc5a27] + DynamicQuantities v1.10.0 [4e289a0a] + EnumX v1.0.5 [f151be2c] + EnzymeCore v0.8.14 [55351af7] + ExproniconLite v0.10.14 [7034ab61] + FastBroadcast v0.3.5 [9aa1b823] + FastClosures v0.3.2 [a4df4552] + FastPower v1.1.3 [1a297f60] + FillArrays v1.14.0 [64ca27bc] + FindFirstFunctions v1.4.2 [6a86dc24] + FiniteDiff v2.28.1 [1fa38f19] + Format v1.3.7 ⌃ [f6369f11] + ForwardDiff v0.10.39 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [c27321d9] + Glob v1.3.1 [86223c79] + Graphs v1.13.1 [34004b35] + HypergeometricFunctions v0.3.28 [3263718b] + ImplicitDiscreteSolve v1.2.0 [d25df0c9] + Inflate v0.1.5 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [82899510] + IteratorInterfaceExtensions v1.0.0 [ae98c720] + Jieko v0.2.1 [98e50ef6] + JuliaFormatter v2.1.6 ⌅ [70703baa] + JuliaSyntax v0.4.10 [ccbc3e58] + JumpProcesses v9.19.1 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.10 [10f19ff3] + LayoutPointers v0.1.17 [87fe0de2] + LineSearch v0.1.4 [d3d80556] + LineSearches v7.4.0 [d8e11817] + MLStyle v0.4.17 [d125e4d3] + ManualMemory v0.1.8 [bb5d69b7] + MaybeInplace v0.1.4 [e1d29d7a] + Missings v1.2.0 [961ee093] + ModelingToolkit v10.25.0 [2e0e35c7] + Moshi v0.3.7 [46d2c3a1] + MuladdMacro v0.2.4 [102ac46a] + MultivariatePolynomials v0.5.13 [d8a4904e] + MutableArithmetics v1.6.6 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 ⌅ [2edaba10] ↓ Nemo v0.51.1 ⇒ v0.49.5 [loaded: v0.51.1] [be0214bd] + NonlinearSolveBase v2.0.0 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.13.2 [bbf590c4] + OrdinaryDiffEqCore v1.35.0 [90014a1f] + PDMats v0.11.35 [d96e819e] + Parameters v0.12.3 [e409e4f3] + PoissonRandom v0.4.7 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [85a6dd25] + PositiveFactorizations v0.2.4 [d236fae5] + PreallocationTools v0.4.34 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.37.1 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [ae5879a3] + ResettableStacks v1.1.1 [79098fc4] + Rmath v0.8.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.15 [9dfe8606] + SCCNonlinearSolve v1.6.0 [94e857df] + SIMDTypes v0.1.0 [0bca4576] + SciMLBase v2.120.0 [19f34311] + SciMLJacobianOperators v0.1.11 [c0aeaf25] + SciMLOperators v1.7.2 [53ae85a6] + SciMLStructures v1.7.0 [efcf1570] + Setfield v1.1.2 [727e6d20] + SimpleNonlinearSolve v2.9.0 [699a6c99] + SimpleTraits v0.9.5 [ce78b400] + SimpleUnPack v1.1.0 [a2af1166] + SortingAlgorithms v1.2.2 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [4c63d2b9] + StatsFuns v1.5.0 [7792a7ef] + StrideArraysCore v0.5.8 [2efcf032] + SymbolicIndexingInterface v0.3.45 ⌃ [19f23fe9] + SymbolicLimits v0.2.3 ⌅ [d1185830] + SymbolicUtils v3.31.0 [0c5d862f] + Symbolics v6.55.0 [ed4db957] + TaskLocalValues v0.1.3 [8ea1fca8] + TermInterface v2.0.0 [1c621080] + TestItems v1.0.0 [8290d209] + ThreadingUtilities v0.5.5 [410a4b4d] + Tricks v0.1.12 [781d530d] + TruncatedStacktraces v1.4.0 [5c2747f8] + URIs v1.6.1 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.25.0 [a7c27f48] + Unityper v0.1.6 ⌅ [e134572f] ↓ FLINT_jll v301.300.102+0 ⇒ v300.200.201+0 [loaded: v301.300.102+0] [61579ee1] + Ghostscript_jll v9.55.1+0 [aacddb02] + JpegTurbo_jll v3.1.3+0 [f50d1b31] + Rmath_jll v0.5.1+0 [9fa8497b] + Future v1.11.0 [a63ad114] + Mmap v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [4607b0f0] + SuiteSparse Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Resolving package versions... Updating `/tmp/jl_yNdQ0M/Project.toml` [0c5d862f] + Symbolics v6.55.0 Manifest No packages added to or removed from `/tmp/jl_yNdQ0M/Manifest.toml` WARNING: Method definition rrule(typeof(ArrayInterface.restructure), Any, Any) in module ArrayInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/ArrayInterface/HGmwH/ext/ArrayInterfaceChainRulesCoreExt.jl:7 overwritten in module ArrayInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `ArrayInterfaceChainRulesCoreExt` └ @ Base loading.jl:2589 [ Info: Testing started [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y ┌ Warning: New variable c, treating as a scalar parameter └ @ StructuralIdentifiability ~/.julia/packages/StructuralIdentifiability/0tPYp/src/pb_representation.jl:94 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: a [ Info: Parameters: b [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: a, b [ Info: Parameters: k1, k2 [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y 1.846191 seconds (943.72 k allocations: 47.814 MiB, 99.45% compilation time) 0.002115 seconds (7.33 k allocations: 343.156 KiB) 0.001854 seconds (10.80 k allocations: 485.531 KiB) 0.001690 seconds (10.76 k allocations: 479.844 KiB) 0.002311 seconds (14.53 k allocations: 635.953 KiB) 0.001130 seconds (7.95 k allocations: 361.180 KiB) 0.001007 seconds (7.45 k allocations: 301.109 KiB) 14.362137 seconds (6.82 M allocations: 350.818 MiB, 1.27% gc time, 99.77% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.292441 seconds (112.44 k allocations: 6.027 MiB, 98.03% compilation time) [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.010338 seconds (9.76 k allocations: 518.805 KiB, 91.23% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b [ Info: Inputs: u [ Info: Outputs: y Coefficient extraction for rational functions: Test Failed at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/extract_coefficients.jl:27 Expression: Set(C) == Set([x // 1, (y + 3) // 1, y ^ 2 // 1, one(R) // 1, 3 * one(R) // 1, -((x ^ 2 + y ^ 2)) // 1]) Evaluated: Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[1//3, -1//3*x^2 - 1//3*y^2, 1//3*y^2, 1//3*x, 1, 1//3*y + 1]) == Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[y^2, 3, y + 3, 1, x, -x^2 - y^2]) Stacktrace: [1] top-level scope @ ~/.julia/packages/StructuralIdentifiability/0tPYp/test/extract_coefficients.jl:2 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1954 [inlined] [3] macro expansion @ ~/.julia/packages/StructuralIdentifiability/0tPYp/test/extract_coefficients.jl:27 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:753 [inlined] [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 IOEQS: Dict{QQMPolyRingElem, QQMPolyRingElem}(y2(t)_1 => -a*y2(t)_0 + a*u(t)_0 + y2(t)_1 - u(t)_1, y1(t)_2 => -y1(t)_0 + y1(t)_2) [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a, b, c, d [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, I, W, R [ Info: Parameters: a, bi, bw, gam, k, mu, xi [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a01, a12, a13, a21, a31 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, In [ Info: Parameters: N, a, b, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003014889 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.02992492 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.067913024 seconds [ Info: Global identifiability assessed in 60.933097689 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00300184 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Global identifiability assessed in 0.888406833 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Global identifiability assessed in 5.48e-5 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.037852631 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.5834304 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.1769e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:14 ✓ # Computing specializations.. Time: 0:00:16 [ Info: Search for polynomial generators concluded in 13.859002898 [ Info: Selecting generators in 0.013635694 [ Info: Inclusion checked with probability 0.9955 in 0.069024629 seconds [ Info: Global identifiability assessed in 107.723584397 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.777363493 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 1.691854178 seconds [ Info: Dimensions of the Wronskians [676] [ Info: Ranks of the Wronskians computed in 0.102860871 seconds [ Info: Global identifiability assessed in 36.007800008 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.017116698 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.035598973 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000343287 seconds [ Info: Global identifiability assessed in 0.088982699 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Note: the input model has nontrivial submodels. If the computation for the full model will be too heavy, you may want to try to first analyze one of the submodels. They can be produced using function `find_submodels` [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 16.009216239 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004257528 seconds [ Info: Dimensions of the Wronskians [2, 3, 2] [ Info: Ranks of the Wronskians computed in 3.4489e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.998780008 [ Info: Selecting generators in 0.000420156 [ Info: Inclusion checked with probability 0.9955 in 0.002965711 seconds [ Info: Global identifiability assessed in 18.484729338 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002895341 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00204742 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.6729e-5 seconds [ Info: Global identifiability assessed in 0.008467676 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003460575 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002632894 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.427e-5 seconds [ Info: Global identifiability assessed in 0.010607274 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006193328 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004766352 seconds [ Info: Dimensions of the Wronskians [6] [ Info: Ranks of the Wronskians computed in 2.7139e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.198639096 [ Info: Selecting generators in 0.01797362 [ Info: Inclusion checked with probability 0.9955 in 0.00603874 seconds [ Info: Global identifiability assessed in 2.502077512 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010202548 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005059669 seconds [ Info: Dimensions of the Wronskians [2, 5] [ Info: Ranks of the Wronskians computed in 3.3189e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009372476 [ Info: Selecting generators in 0.005276897 [ Info: Inclusion checked with probability 0.9955 in 0.004859811 seconds [ Info: Global identifiability assessed in 0.06388901 seconds [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: V_m, c, k01, k_m [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k1, k2, k3, k4 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: s, i, r, x1, x2 [ Info: Parameters: M, b0, b1, g, mu, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, E, I, R, Q [ Info: Parameters: beta, gamma, psi, v [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: k01, k12, k13, k14, k21, k31, k41 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x5, x7, x4, x6 [ Info: Parameters: k10, k5, k6, k7, k8, k9 [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, In, L, Q [ Info: Parameters: Ninv, a, b, e, g, s [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, R, W [ Info: Parameters: Dd, T, a, d, dr, e, g, r, rR [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: P3, P0, P5, P4, P1, P2 [ Info: Parameters: Ks, M, Mar, alpa, beta, beta_SA, beta_SI, phi, siga1, siga2 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: C, α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR [ Info: Parameters: EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1 [ Info: Inputs: pro_EGFR [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio [ Info: Parameters: kOHbeta10, kbeta, kbeta10, kcryOH, kcrybeta, kzea [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: EpoR_A, k1, k2, k3, k5, k6, k7 [ Info: Inputs: [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, U, I [ Info: Parameters: N, a, b, d, g [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: alpha [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k01, k02, k12, k21, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: K_M, V_M, b1, c, k02, k12, k21 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: k02, k03, k12, k13, k21, k31, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: a03, a04, a13, a24, a31, a42, a43 [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, I [ Info: Parameters: N, beta, k, mu, nu [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4, p5 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: beta, c, d, k1, k2, mu1, mu2, q1, q2, s [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002251288 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001728403 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.66e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000137989 [ Info: Selecting generators in 1.171730013 [ Info: Inclusion checked with probability 0.995 in 0.001675404 seconds [ Info: The search for identifiable functions concluded in 2.545309395 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001804262 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001632513 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.897e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000152348 [ Info: Selecting generators in 0.001256887 [ Info: Inclusion checked with probability 0.995 in 0.001443886 seconds [ Info: The search for identifiable functions concluded in 0.014562074 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001286147 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001182848 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.339e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000113259 [ Info: Selecting generators in 0.000747952 [ Info: Inclusion checked with probability 0.995 in 0.001234918 seconds [ Info: The search for identifiable functions concluded in 0.010407625 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001234378 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001135379 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.573e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000939431 [ Info: Selecting generators in 0.000912221 [ Info: Inclusion checked with probability 0.995 in 0.001346636 seconds [ Info: The search for identifiable functions concluded in 0.01199139 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001614733 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001048809 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.948e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000534164 [ Info: Selecting generators in 0.000794792 [ Info: Inclusion checked with probability 0.995 in 0.001337437 seconds [ Info: The search for identifiable functions concluded in 0.010256527 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001072759 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001233428 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.697e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000475445 [ Info: Selecting generators in 0.000755843 [ Info: Inclusion checked with probability 0.995 in 0.001164929 seconds [ Info: The search for identifiable functions concluded in 0.009410925 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001637463 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001130078 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.419e-5 seconds [ Info: The search for identifiable functions concluded in 0.025630063 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00206924 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001344107 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.327e-5 seconds [ Info: The search for identifiable functions concluded in 0.004936601 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001743672 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001274727 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.106e-5 seconds [ Info: The search for identifiable functions concluded in 0.004325987 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001609844 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001458856 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.3599e-5 seconds [ Info: The search for identifiable functions concluded in 0.004094419 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001624974 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001182818 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.9169e-5 seconds [ Info: The search for identifiable functions concluded in 0.0039329 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001609084 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001191798 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.226e-5 seconds [ Info: The search for identifiable functions concluded in 0.00398017 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00202499 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001351636 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.79e-5 seconds [ Info: The search for identifiable functions concluded in 0.00500596 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001788242 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001368886 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.111e-5 seconds [ Info: The search for identifiable functions concluded in 0.004524265 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001779972 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001377416 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.054e-5 seconds [ Info: The search for identifiable functions concluded in 0.004491644 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001889511 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001532774 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.353e-5 seconds [ Info: The search for identifiable functions concluded in 0.004498904 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001876072 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001306067 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.086e-5 seconds [ Info: The search for identifiable functions concluded in 0.004484365 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001708083 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001365586 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.067e-5 seconds [ Info: The search for identifiable functions concluded in 0.004332687 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.334362801 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002113549 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.445e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000111558 [ Info: Selecting generators in 0.00098404 [ Info: Inclusion checked with probability 0.995 in 0.001484955 seconds [ Info: The search for identifiable functions concluded in 0.347932854 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00299753 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002138688 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.546e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000125319 [ Info: Selecting generators in 0.000923901 [ Info: Inclusion checked with probability 0.995 in 0.001321507 seconds [ Info: The search for identifiable functions concluded in 0.01401065 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002901021 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001826652 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.5859e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000119909 [ Info: Selecting generators in 0.000717903 [ Info: Inclusion checked with probability 0.995 in 0.001200828 seconds [ Info: The search for identifiable functions concluded in 0.013559425 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002390716 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001701003 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.935e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000587984 [ Info: Selecting generators in 0.000801312 [ Info: Inclusion checked with probability 0.995 in 0.001239208 seconds [ Info: The search for identifiable functions concluded in 0.012447085 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002646704 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001677213 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.156e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000506705 [ Info: Selecting generators in 0.000652614 [ Info: Inclusion checked with probability 0.995 in 0.001122959 seconds [ Info: The search for identifiable functions concluded in 0.012204097 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002809262 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001729923 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.925e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000542605 [ Info: Selecting generators in 0.000810852 [ Info: Inclusion checked with probability 0.995 in 0.001334146 seconds [ Info: The search for identifiable functions concluded in 0.013008349 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001391426 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001851721 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.082e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000121778 [ Info: Selecting generators in 0.002188378 [ Info: Inclusion checked with probability 0.995 in 0.003846881 seconds [ Info: The search for identifiable functions concluded in 0.021080238 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001333387 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001543634 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.2679e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000128008 [ Info: Selecting generators in 0.002079689 [ Info: Inclusion checked with probability 0.995 in 0.003668893 seconds [ Info: The search for identifiable functions concluded in 0.018489025 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001627723 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001646224 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.2569e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000161648 [ Info: Selecting generators in 0.002390547 [ Info: Inclusion checked with probability 0.995 in 0.003202818 seconds [ Info: The search for identifiable functions concluded in 0.020449435 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001677684 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001451935 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.3809e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.269048385 [ Info: Selecting generators in 0.003834081 [ Info: Inclusion checked with probability 0.995 in 0.003070169 seconds [ Info: The search for identifiable functions concluded in 0.288454611 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001703792 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001528194 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.471e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.020853661 [ Info: Selecting generators in 0.004739032 [ Info: Inclusion checked with probability 0.995 in 0.003857671 seconds [ Info: The search for identifiable functions concluded in 0.044482724 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001620673 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001542804 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.326e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.017977999 [ Info: Selecting generators in 0.003443956 [ Info: Inclusion checked with probability 0.995 in 0.003599824 seconds [ Info: The search for identifiable functions concluded in 0.038769092 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001459385 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00203666 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.4e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000117138 [ Info: Selecting generators in 0.002665963 [ Info: Inclusion checked with probability 0.995 in 0.002539685 seconds [ Info: The search for identifiable functions concluded in 1.098449746 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001457435 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001185978 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.9869e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000109049 [ Info: Selecting generators in 0.002476105 [ Info: Inclusion checked with probability 0.995 in 0.002558414 seconds [ Info: The search for identifiable functions concluded in 0.014902191 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001536285 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001234258 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.987e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000100989 [ Info: Selecting generators in 0.002571904 [ Info: Inclusion checked with probability 0.995 in 0.002628593 seconds [ Info: The search for identifiable functions concluded in 0.01497734 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001491875 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001201978 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.077e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.2625671 [ Info: Selecting generators in 0.002873561 [ Info: Inclusion checked with probability 0.995 in 0.002559795 seconds [ Info: The search for identifiable functions concluded in 0.277770417 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001437816 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001308646 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.272e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006804372 [ Info: Selecting generators in 0.00294817 [ Info: Inclusion checked with probability 0.995 in 0.0030434 seconds [ Info: The search for identifiable functions concluded in 0.022712693 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001640293 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001582224 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 5.1959e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006074129 [ Info: Selecting generators in 0.002299457 [ Info: Inclusion checked with probability 0.995 in 0.002897071 seconds [ Info: The search for identifiable functions concluded in 0.022184848 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002542105 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001827922 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.239e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000104379 [ Info: Selecting generators in 0.000670533 [ Info: Inclusion checked with probability 0.995 in 0.002645994 seconds [ Info: The search for identifiable functions concluded in 0.018288637 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002252927 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001610874 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.752e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000123599 [ Info: Selecting generators in 0.000626164 [ Info: Inclusion checked with probability 0.995 in 0.002741623 seconds [ Info: The search for identifiable functions concluded in 0.017387366 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002434976 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001885231 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.904e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000105369 [ Info: Selecting generators in 0.000642334 [ Info: Inclusion checked with probability 0.995 in 0.002493935 seconds [ Info: The search for identifiable functions concluded in 0.017778882 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002382406 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001703313 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.867e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007626173 [ Info: Selecting generators in 0.000660543 [ Info: Inclusion checked with probability 0.995 in 0.002333896 seconds [ Info: The search for identifiable functions concluded in 0.024840812 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002085759 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001562404 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.6999e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008338117 [ Info: Selecting generators in 0.000755842 [ Info: Inclusion checked with probability 0.995 in 0.002413156 seconds [ Info: The search for identifiable functions concluded in 0.024164348 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002500595 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001678164 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.8909e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007738523 [ Info: Selecting generators in 0.000831171 [ Info: Inclusion checked with probability 0.995 in 0.002547334 seconds [ Info: The search for identifiable functions concluded in 0.025413375 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00301234 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002101379 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.1229e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000100349 [ Info: Selecting generators in 0.003105189 [ Info: Inclusion checked with probability 0.995 in 0.002827062 seconds [ Info: The search for identifiable functions concluded in 0.021494115 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002625853 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00200509 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.818e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000105849 [ Info: Selecting generators in 0.003851341 [ Info: Inclusion checked with probability 0.995 in 0.003551124 seconds [ Info: The search for identifiable functions concluded in 0.022493465 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003173178 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002205588 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.032e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000108209 [ Info: Selecting generators in 0.003440916 [ Info: Inclusion checked with probability 0.995 in 0.003369217 seconds [ Info: The search for identifiable functions concluded in 0.023510404 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003129489 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002160068 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.281e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.016340377 [ Info: Selecting generators in 0.003758862 [ Info: Inclusion checked with probability 0.995 in 0.003428816 seconds [ Info: The search for identifiable functions concluded in 0.039652413 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003135419 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002204358 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.9419e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.015753922 [ Info: Selecting generators in 0.003378276 [ Info: Inclusion checked with probability 0.995 in 0.338175422 seconds [ Info: The search for identifiable functions concluded in 0.373957004 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003035999 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002310917 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.3779e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.016182798 [ Info: Selecting generators in 0.00398235 [ Info: Inclusion checked with probability 0.995 in 0.003302407 seconds [ Info: The search for identifiable functions concluded in 0.040495695 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.017568694 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005492765 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.121e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000140818 [ Info: Selecting generators in 0.010418445 [ Info: Inclusion checked with probability 0.995 in 0.006139719 seconds [ Info: The search for identifiable functions concluded in 0.339218832 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007055299 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005122758 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.126e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000127039 [ Info: Selecting generators in 0.010120619 [ Info: Inclusion checked with probability 0.995 in 0.005761522 seconds [ Info: The search for identifiable functions concluded in 0.047206707 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006846652 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00490739 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.0039e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000126329 [ Info: Selecting generators in 0.010751892 [ Info: Inclusion checked with probability 0.995 in 0.005934901 seconds [ Info: The search for identifiable functions concluded in 0.047033809 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007317236 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005172759 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.082e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002775032 [ Info: Selecting generators in 0.010669043 [ Info: Inclusion checked with probability 0.995 in 0.005640213 seconds [ Info: The search for identifiable functions concluded in 0.051552424 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007678743 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006067429 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.747e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002683804 [ Info: Selecting generators in 0.010898591 [ Info: Inclusion checked with probability 0.995 in 0.006212688 seconds [ Info: The search for identifiable functions concluded in 0.054618522 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007798782 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005769572 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.8089e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002593164 [ Info: Selecting generators in 0.010467985 [ Info: Inclusion checked with probability 0.995 in 0.006313257 seconds [ Info: The search for identifiable functions concluded in 0.053284846 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005169178 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003467235 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.828e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000118459 [ Info: Selecting generators in 0.00202818 [ Info: Inclusion checked with probability 0.995 in 0.003631974 seconds [ Info: The search for identifiable functions concluded in 0.025852971 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005178008 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003462905 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.836e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000117989 [ Info: Selecting generators in 0.00199834 [ Info: Inclusion checked with probability 0.995 in 0.003538534 seconds [ Info: The search for identifiable functions concluded in 0.025089739 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005084389 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003413076 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.776e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000123729 [ Info: Selecting generators in 0.00198204 [ Info: Inclusion checked with probability 0.995 in 0.003476155 seconds [ Info: The search for identifiable functions concluded in 0.024686693 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005190488 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003419716 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.903e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001444416 [ Info: Selecting generators in 0.00206931 [ Info: Inclusion checked with probability 0.995 in 0.003508565 seconds [ Info: The search for identifiable functions concluded in 0.026736952 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005341286 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003929901 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.935e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001364657 [ Info: Selecting generators in 0.002140599 [ Info: Inclusion checked with probability 0.995 in 0.003610254 seconds [ Info: The search for identifiable functions concluded in 0.027438036 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005724572 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00397026 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.954e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001632614 [ Info: Selecting generators in 0.002411415 [ Info: Inclusion checked with probability 0.995 in 0.004429405 seconds [ Info: The search for identifiable functions concluded in 0.030692103 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005731122 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003503925 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.146e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000112749 [ Info: Selecting generators in 0.002603884 [ Info: Inclusion checked with probability 0.995 in 0.003299087 seconds [ Info: The search for identifiable functions concluded in 0.030740612 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005427645 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003771612 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.074e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000137918 [ Info: Selecting generators in 0.002673943 [ Info: Inclusion checked with probability 0.995 in 0.00395924 seconds [ Info: The search for identifiable functions concluded in 0.031203958 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005880741 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003637474 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.2e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000120248 [ Info: Selecting generators in 0.002648633 [ Info: Inclusion checked with probability 0.995 in 0.003487405 seconds [ Info: The search for identifiable functions concluded in 0.031546124 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005387715 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003515705 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.9889e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.395624307 [ Info: Selecting generators in 0.004030419 [ Info: Inclusion checked with probability 0.995 in 0.003116119 seconds [ Info: The search for identifiable functions concluded in 0.441776634 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00492534 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002972521 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.923e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.019175207 [ Info: Selecting generators in 0.003738123 [ Info: Inclusion checked with probability 0.995 in 0.003094029 seconds [ Info: The search for identifiable functions concluded in 0.047366896 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004817722 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00297748 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.886e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.019184967 [ Info: Selecting generators in 0.003834801 [ Info: Inclusion checked with probability 0.995 in 0.003123549 seconds [ Info: The search for identifiable functions concluded in 0.047622593 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002489705 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001937471 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.645e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000104639 [ Info: Selecting generators in 0.001796032 [ Info: Inclusion checked with probability 0.995 in 0.003195748 seconds [ Info: The search for identifiable functions concluded in 0.018389726 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002402645 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001932181 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.664e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000100539 [ Info: Selecting generators in 0.001560175 [ Info: Inclusion checked with probability 0.995 in 0.002682963 seconds [ Info: The search for identifiable functions concluded in 0.017276787 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002640534 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002098079 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 4.0649e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000111799 [ Info: Selecting generators in 0.001794622 [ Info: Inclusion checked with probability 0.995 in 0.002810752 seconds [ Info: The search for identifiable functions concluded in 0.018119588 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002695723 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00204772 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.6849e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.013336677 [ Info: Selecting generators in 0.002768742 [ Info: Inclusion checked with probability 0.995 in 0.002632264 seconds [ Info: The search for identifiable functions concluded in 0.032074179 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002492055 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001891121 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.638e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.012861651 [ Info: Selecting generators in 0.002900271 [ Info: Inclusion checked with probability 0.995 in 0.002591074 seconds [ Info: The search for identifiable functions concluded in 0.031305067 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002422626 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00192744 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.6819e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.013106879 [ Info: Selecting generators in 0.002860551 [ Info: Inclusion checked with probability 0.995 in 0.002606734 seconds [ Info: The search for identifiable functions concluded in 0.031123938 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014382036 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.032877701 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000356336 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:05 ✓ # Computing specializations.. Time: 0:00:05 [ Info: Search for polynomial generators concluded in 0.000119989 [ Info: Selecting generators in 0.011585334 [ Info: Inclusion checked with probability 0.995 in 0.019255227 seconds [ Info: The search for identifiable functions concluded in 11.262416575 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009881841 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.020328176 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000208107 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000158768 [ Info: Selecting generators in 0.018198937 [ Info: Inclusion checked with probability 0.995 in 0.030989039 seconds [ Info: The search for identifiable functions concluded in 0.136898358 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015640744 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.034228087 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000284237 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000170198 [ Info: Selecting generators in 0.021124479 [ Info: Inclusion checked with probability 0.995 in 0.030661143 seconds [ Info: The search for identifiable functions concluded in 0.183716099 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.36129637 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.03288678 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000335307 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.108154857 [ Info: Selecting generators in 0.017876291 [ Info: Inclusion checked with probability 0.995 in 0.028387175 seconds [ Info: The search for identifiable functions concluded in 1.622100497 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014041139 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.029195567 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000315707 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.045787631 [ Info: Selecting generators in 0.014779422 [ Info: Inclusion checked with probability 0.995 in 0.026030149 seconds [ Info: The search for identifiable functions concluded in 0.196215073 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013333597 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.028448085 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000306807 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.045692192 [ Info: Selecting generators in 0.015372685 [ Info: Inclusion checked with probability 0.995 in 0.025180568 seconds [ Info: The search for identifiable functions concluded in 0.194112485 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.781385371 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.859517104 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.217050375 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000142869 [ Info: Selecting generators in 0.869671194 [ Info: Inclusion checked with probability 0.995 in 2.662279949 seconds [ Info: The search for identifiable functions concluded in 17.377852668 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.787749893 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.516538893 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.22247941 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000134969 [ Info: Selecting generators in 0.560028456 [ Info: Inclusion checked with probability 0.995 in 2.905847831 seconds [ Info: The search for identifiable functions concluded in 18.152241599 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.651725072 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.031250637 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.193669908 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000136769 [ Info: Selecting generators in 0.556968805 [ Info: Inclusion checked with probability 0.995 in 1.845610065 seconds [ Info: The search for identifiable functions concluded in 18.85391785 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.404405878 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.208307665 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.228779856 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.04581982 [ Info: Selecting generators in 1.409902951 [ Info: Inclusion checked with probability 0.995 in 2.208156615 seconds [ Info: The search for identifiable functions concluded in 19.083830599 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.197217684 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.420648552 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.187365431 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.042611712 [ Info: Selecting generators in 0.64699816 [ Info: Inclusion checked with probability 0.995 in 3.621809008 seconds [ Info: The search for identifiable functions concluded in 20.773781462 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.535239389 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.123871565 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.182819676 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.030549464 [ Info: Selecting generators in 1.296224354 [ Info: Inclusion checked with probability 0.995 in 2.778003056 seconds [ Info: The search for identifiable functions concluded in 19.242664672 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014193067 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01190805 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.749e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000168008 [ Info: Selecting generators in 0.007693283 [ Info: Inclusion checked with probability 0.995 in 0.008077249 seconds [ Info: The search for identifiable functions concluded in 0.080140346 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013190118 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01092998 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.305e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000136909 [ Info: Selecting generators in 0.00796594 [ Info: Inclusion checked with probability 0.995 in 0.008494855 seconds [ Info: The search for identifiable functions concluded in 0.077551942 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013177798 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011207127 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.167e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000122039 [ Info: Selecting generators in 0.007798841 [ Info: Inclusion checked with probability 0.995 in 0.008326817 seconds [ Info: The search for identifiable functions concluded in 0.077611961 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01298346 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01098673 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.232e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.035281366 [ Info: Selecting generators in 0.012059929 [ Info: Inclusion checked with probability 0.995 in 0.008271317 seconds [ Info: The search for identifiable functions concluded in 0.1166273 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012608823 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010732462 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.207e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.036241107 [ Info: Selecting generators in 0.012654243 [ Info: Inclusion checked with probability 0.995 in 0.008622344 seconds [ Info: The search for identifiable functions concluded in 0.117726589 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012725643 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011773612 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.153e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.037645532 [ Info: Selecting generators in 0.012849431 [ Info: Inclusion checked with probability 0.995 in 0.008654783 seconds [ Info: The search for identifiable functions concluded in 0.121787398 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.023117138 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.018070069 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.339e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000171978 [ Info: Selecting generators in 0.011096508 [ Info: Inclusion checked with probability 0.995 in 0.015724992 seconds [ Info: The search for identifiable functions concluded in 0.397121495 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.022717432 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.740580439 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 0.003771842 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000172168 [ Info: Selecting generators in 0.01392204 [ Info: Inclusion checked with probability 0.995 in 0.017867321 seconds [ Info: The search for identifiable functions concluded in 0.858588555 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.026627733 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.018046289 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.6689e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000144199 [ Info: Selecting generators in 0.010844501 [ Info: Inclusion checked with probability 0.995 in 0.015298357 seconds [ Info: The search for identifiable functions concluded in 0.119743558 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.02483953 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01698811 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.2979e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.050393745 [ Info: Selecting generators in 0.015692543 [ Info: Inclusion checked with probability 0.995 in 0.014179838 seconds [ Info: The search for identifiable functions concluded in 0.169366811 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.022346086 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015651243 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.8439e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.047408194 [ Info: Selecting generators in 0.016388115 [ Info: Inclusion checked with probability 0.995 in 0.014853271 seconds [ Info: The search for identifiable functions concluded in 0.158931275 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.021310656 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016249156 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.8099e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.047031138 [ Info: Selecting generators in 0.015162178 [ Info: Inclusion checked with probability 0.995 in 0.013457915 seconds [ Info: The search for identifiable functions concluded in 0.154222593 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011071579 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015001799 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.484e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000193228 [ Info: Selecting generators in 0.084340114 [ Info: Inclusion checked with probability 0.995 in 0.017851191 seconds [ Info: The search for identifiable functions concluded in 0.505357749 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012158178 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017208437 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.673e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000238048 [ Info: Selecting generators in 0.875122828 [ Info: Inclusion checked with probability 0.995 in 0.021733942 seconds [ Info: The search for identifiable functions concluded in 1.340983284 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013508315 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.018966629 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.291e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000188328 [ Info: Selecting generators in 0.082082366 [ Info: Inclusion checked with probability 0.995 in 0.016690752 seconds [ Info: The search for identifiable functions concluded in 0.520834724 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011471795 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014773322 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.5419e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.084225875 [ Info: Selecting generators in 0.081411133 [ Info: Inclusion checked with probability 0.995 in 0.015534364 seconds [ Info: The search for identifiable functions concluded in 0.552596725 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01096607 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015806131 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.2989e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 3.135415896 [ Info: Selecting generators in 0.121977526 [ Info: Inclusion checked with probability 0.995 in 0.017379825 seconds [ Info: The search for identifiable functions concluded in 3.688649255 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012417816 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016845961 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.352e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.315142872 [ Info: Selecting generators in 0.084343173 [ Info: Inclusion checked with probability 0.995 in 0.016133398 seconds [ Info: The search for identifiable functions concluded in 1.82356288 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 3.068680874 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.073098156 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 7.8089e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 9   ⌝ # Computing specializations.. Time: 0:00:00 Points: 20   ⌟ # Computing specializations.. Time: 0:00:01 Points: 31   ⌞ # Computing specializations.. Time: 0:00:01 Points: 42   ⌜ # Computing specializations.. Time: 0:00:01 Points: 51   ⌝ # Computing specializations.. Time: 0:00:02 Points: 61   ⌟ # Computing specializations.. Time: 0:00:02 Points: 71   ⌞ # Computing specializations.. Time: 0:00:02 Points: 81   ⌜ # Computing specializations.. Time: 0:00:03 Points: 89   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 30   ⌞ # Computing specializations.. Time: 0:00:01 Points: 39   ⌜ # Computing specializations.. Time: 0:00:01 Points: 49   ⌝ # Computing specializations.. Time: 0:00:02 Points: 58   ⌟ # Computing specializations.. Time: 0:00:02 Points: 69   ⌞ # Computing specializations.. Time: 0:00:02 Points: 79   ⌜ # Computing specializations.. Time: 0:00:03 Points: 90   ⌝ # Computing specializations.. Time: 0:00:03 Points: 100   ⌟ # Computing specializations.. Time: 0:00:04 Points: 111   ⌞ # Computing specializations.. Time: 0:00:04 Points: 120   ⌜ # Computing specializations.. Time: 0:00:04 Points: 131   ⌝ # Computing specializations.. Time: 0:00:05 Points: 141   ⌟ # Computing specializations.. Time: 0:00:05 Points: 152   ⌞ # Computing specializations.. Time: 0:00:05 Points: 163   ⌜ # Computing specializations.. Time: 0:00:06 Points: 173   ⌝ # Computing specializations.. Time: 0:00:06 Points: 183   ⌟ # Computing specializations.. Time: 0:00:07 Points: 194   ⌞ # Computing specializations.. Time: 0:00:07 Points: 204   ⌜ # Computing specializations.. Time: 0:00:07 Points: 215   ⌝ # Computing specializations.. Time: 0:00:08 Points: 225   ⌟ # Computing specializations.. Time: 0:00:08 Points: 234   ⌞ # Computing specializations.. Time: 0:00:08 Points: 244   ⌜ # Computing specializations.. Time: 0:00:09 Points: 252   ⌝ # Computing specializations.. Time: 0:00:09 Points: 263   ⌟ # Computing specializations.. Time: 0:00:10 Points: 273   ⌞ # Computing specializations.. Time: 0:00:10 Points: 284   ⌜ # Computing specializations.. Time: 0:00:10 Points: 294   ⌝ # Computing specializations.. Time: 0:00:11 Points: 303   ⌟ # Computing specializations.. Time: 0:00:11 Points: 313   ⌞ # Computing specializations.. Time: 0:00:11 Points: 321   ⌜ # Computing specializations.. Time: 0:00:12 Points: 331   ⌝ # Computing specializations.. Time: 0:00:12 Points: 341   ⌟ # Computing specializations.. Time: 0:00:13 Points: 352   ⌞ # Computing specializations.. Time: 0:00:13 Points: 362   ⌜ # Computing specializations.. Time: 0:00:13 Points: 371   ⌝ # Computing specializations.. Time: 0:00:14 Points: 381   ⌟ # Computing specializations.. Time: 0:00:14 Points: 389   ⌞ # Computing specializations.. Time: 0:00:14 Points: 399   ⌜ # Computing specializations.. Time: 0:00:15 Points: 409   ⌝ # Computing specializations.. Time: 0:00:15 Points: 420   ⌟ # Computing specializations.. Time: 0:00:16 Points: 430   ⌞ # Computing specializations.. Time: 0:00:16 Points: 438   ⌜ # Computing specializations.. Time: 0:00:16 Points: 448   ⌝ # Computing specializations.. Time: 0:00:17 Points: 458   ⌟ # Computing specializations.. Time: 0:00:17 Points: 469   ⌞ # Computing specializations.. Time: 0:00:18 Points: 479   ⌜ # Computing specializations.. Time: 0:00:18 Points: 490   ⌝ # Computing specializations.. Time: 0:00:18 Points: 500   ⌟ # Computing specializations.. Time: 0:00:19 Points: 509   ⌞ # Computing specializations.. Time: 0:00:19 Points: 519   ⌜ # Computing specializations.. Time: 0:00:19 Points: 527   ⌝ # Computing specializations.. Time: 0:00:20 Points: 538   ⌟ # Computing specializations.. Time: 0:00:20 Points: 548   ⌞ # Computing specializations.. Time: 0:00:20 Points: 557   ⌜ # Computing specializations.. Time: 0:00:21 Points: 567   ⌝ # Computing specializations.. Time: 0:00:21 Points: 576   ⌟ # Computing specializations.. Time: 0:00:22 Points: 587   ⌞ # Computing specializations.. Time: 0:00:22 Points: 597   ⌜ # Computing specializations.. Time: 0:00:22 Points: 606   ⌝ # Computing specializations.. Time: 0:00:23 Points: 616   ⌟ # Computing specializations.. Time: 0:00:23 Points: 624   ⌞ # Computing specializations.. Time: 0:00:23 Points: 635   ✓ # Computing specializations.. Time: 0:00:24 [ Info: Search for polynomial generators concluded in 0.000379556 [ Info: Selecting generators in 0.053669931 [ Info: Inclusion checked with probability 0.995 in 9.578651312 seconds [ Info: The search for identifiable functions concluded in 58.545973917 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.880641431 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.10649036 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 9.8309e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:00 Points: 27   ⌞ # Computing specializations.. Time: 0:00:01 Points: 35   ⌜ # Computing specializations.. Time: 0:00:01 Points: 45   ⌝ # Computing specializations.. Time: 0:00:02 Points: 54   ⌟ # Computing specializations.. Time: 0:00:02 Points: 65   ⌞ # Computing specializations.. Time: 0:00:02 Points: 75   ⌜ # Computing specializations.. Time: 0:00:03 Points: 85   ⌝ # Computing specializations.. Time: 0:00:03 Points: 95   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 18   ⌟ # Computing specializations.. Time: 0:00:00 Points: 28   ⌞ # Computing specializations.. Time: 0:00:01 Points: 38   ⌜ # Computing specializations.. Time: 0:00:01 Points: 48   ⌝ # Computing specializations.. Time: 0:00:02 Points: 56   ⌟ # Computing specializations.. Time: 0:00:02 Points: 66   ⌞ # Computing specializations.. Time: 0:00:02 Points: 76   ⌜ # Computing specializations.. Time: 0:00:03 Points: 86   ⌝ # Computing specializations.. Time: 0:00:03 Points: 96   ⌟ # Computing specializations.. Time: 0:00:04 Points: 107   ⌞ # Computing specializations.. Time: 0:00:04 Points: 117   ⌜ # Computing specializations.. Time: 0:00:04 Points: 128   ⌝ # Computing specializations.. Time: 0:00:05 Points: 138   ⌟ # Computing specializations.. Time: 0:00:05 Points: 149   ⌞ # Computing specializations.. Time: 0:00:06 Points: 159   ⌜ # Computing specializations.. Time: 0:00:06 Points: 169   ⌝ # Computing specializations.. Time: 0:00:06 Points: 178   ⌟ # Computing specializations.. Time: 0:00:07 Points: 187   ⌞ # Computing specializations.. Time: 0:00:07 Points: 196   ⌜ # Computing specializations.. Time: 0:00:07 Points: 203   ⌝ # Computing specializations.. Time: 0:00:08 Points: 214   ⌟ # Computing specializations.. Time: 0:00:08 Points: 224   ⌞ # Computing specializations.. Time: 0:00:09 Points: 235   ⌜ # Computing specializations.. Time: 0:00:09 Points: 245   ⌝ # Computing specializations.. Time: 0:00:09 Points: 256   ⌟ # Computing specializations.. Time: 0:00:10 Points: 266   ⌞ # Computing specializations.. Time: 0:00:10 Points: 277   ⌜ # Computing specializations.. Time: 0:00:11 Points: 287   ⌝ # Computing specializations.. Time: 0:00:11 Points: 296   ⌟ # Computing specializations.. Time: 0:00:11 Points: 305   ⌞ # Computing specializations.. Time: 0:00:12 Points: 314   ⌜ # Computing specializations.. Time: 0:00:12 Points: 324   ⌝ # Computing specializations.. Time: 0:00:13 Points: 332   ⌟ # Computing specializations.. Time: 0:00:13 Points: 342   ⌞ # Computing specializations.. Time: 0:00:13 Points: 351   ⌜ # Computing specializations.. Time: 0:00:14 Points: 359   ⌝ # Computing specializations.. Time: 0:00:14 Points: 368   ⌟ # Computing specializations.. Time: 0:00:14 Points: 377   ⌞ # Computing specializations.. Time: 0:00:15 Points: 388   ⌜ # Computing specializations.. Time: 0:00:15 Points: 398   ⌝ # Computing specializations.. Time: 0:00:15 Points: 407   ⌟ # Computing specializations.. Time: 0:00:16 Points: 416   ⌞ # Computing specializations.. Time: 0:00:16 Points: 425   ⌜ # Computing specializations.. Time: 0:00:16 Points: 435   ⌝ # Computing specializations.. Time: 0:00:17 Points: 444   ⌟ # Computing specializations.. Time: 0:00:17 Points: 455   ⌞ # Computing specializations.. Time: 0:00:18 Points: 465   ⌜ # Computing specializations.. Time: 0:00:18 Points: 474   ⌝ # Computing specializations.. Time: 0:00:18 Points: 483   ⌟ # Computing specializations.. Time: 0:00:19 Points: 492   ⌞ # Computing specializations.. Time: 0:00:19 Points: 502   ⌜ # Computing specializations.. Time: 0:00:19 Points: 511   ⌝ # Computing specializations.. Time: 0:00:20 Points: 520   ⌟ # Computing specializations.. Time: 0:00:20 Points: 529   ⌞ # Computing specializations.. Time: 0:00:21 Points: 538   ⌜ # Computing specializations.. Time: 0:00:21 Points: 549   ⌝ # Computing specializations.. Time: 0:00:21 Points: 559   ⌟ # Computing specializations.. Time: 0:00:22 Points: 568   ⌞ # Computing specializations.. Time: 0:00:22 Points: 577   ⌜ # Computing specializations.. Time: 0:00:23 Points: 586   ⌝ # Computing specializations.. Time: 0:00:23 Points: 596   ⌟ # Computing specializations.. Time: 0:00:23 Points: 605   ⌞ # Computing specializations.. Time: 0:00:24 Points: 616   ⌜ # Computing specializations.. Time: 0:00:24 Points: 626   ⌝ # Computing specializations.. Time: 0:00:24 Points: 635   ✓ # Computing specializations.. Time: 0:00:25 [ Info: Search for polynomial generators concluded in 0.000550854 [ Info: Selecting generators in 0.038460744 [ Info: Inclusion checked with probability 0.995 in 9.504196815 seconds [ Info: The search for identifiable functions concluded in 57.988296548 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.754510577 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.074556946 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 8.5349e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ⌝ # Computing specializations.. Time: 0:00:00 Points: 15   ⌟ # Computing specializations.. Time: 0:00:01 Points: 24   ⌞ # Computing specializations.. Time: 0:00:01 Points: 33   ⌜ # Computing specializations.. Time: 0:00:01 Points: 43   ⌝ # Computing specializations.. Time: 0:00:02 Points: 52   ⌟ # Computing specializations.. Time: 0:00:02 Points: 61   ⌞ # Computing specializations.. Time: 0:00:02 Points: 70   ⌜ # Computing specializations.. Time: 0:00:03 Points: 79   ⌝ # Computing specializations.. Time: 0:00:03 Points: 89   ✓ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 9   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:01 Points: 27   ⌞ # Computing specializations.. Time: 0:00:01 Points: 36   ⌜ # Computing specializations.. Time: 0:00:01 Points: 45   ⌝ # Computing specializations.. Time: 0:00:02 Points: 54   ⌟ # Computing specializations.. Time: 0:00:02 Points: 63   ⌞ # Computing specializations.. Time: 0:00:02 Points: 72   ⌜ # Computing specializations.. Time: 0:00:03 Points: 84   ⌝ # Computing specializations.. Time: 0:00:03 Points: 94   ⌟ # Computing specializations.. Time: 0:00:04 Points: 101   ⌞ # Computing specializations.. Time: 0:00:04 Points: 111   ⌜ # Computing specializations.. Time: 0:00:04 Points: 120   ⌝ # Computing specializations.. Time: 0:00:05 Points: 130   ⌟ # Computing specializations.. Time: 0:00:05 Points: 139   ⌞ # Computing specializations.. Time: 0:00:05 Points: 148   ⌜ # Computing specializations.. Time: 0:00:06 Points: 157   ⌝ # Computing specializations.. Time: 0:00:06 Points: 166   ⌟ # Computing specializations.. Time: 0:00:07 Points: 175   ⌞ # Computing specializations.. Time: 0:00:07 Points: 183   ⌜ # Computing specializations.. Time: 0:00:07 Points: 192   ⌝ # Computing specializations.. Time: 0:00:08 Points: 199   ⌟ # Computing specializations.. Time: 0:00:08 Points: 208   ⌞ # Computing specializations.. Time: 0:00:08 Points: 216   ⌜ # Computing specializations.. Time: 0:00:09 Points: 225   ⌝ # Computing specializations.. Time: 0:00:09 Points: 234   ⌟ # Computing specializations.. Time: 0:00:09 Points: 244   ⌞ # Computing specializations.. Time: 0:00:10 Points: 253   ⌜ # Computing specializations.. Time: 0:00:10 Points: 263   ⌝ # Computing specializations.. Time: 0:00:11 Points: 272   ⌟ # Computing specializations.. Time: 0:00:11 Points: 282   ⌞ # Computing specializations.. Time: 0:00:11 Points: 290   ⌜ # Computing specializations.. Time: 0:00:12 Points: 298   ⌝ # Computing specializations.. Time: 0:00:12 Points: 307   ⌟ # Computing specializations.. Time: 0:00:12 Points: 315   ⌞ # Computing specializations.. Time: 0:00:13 Points: 324   ⌜ # Computing specializations.. Time: 0:00:13 Points: 331   ⌝ # Computing specializations.. Time: 0:00:13 Points: 341   ⌟ # Computing specializations.. Time: 0:00:14 Points: 351   ⌞ # Computing specializations.. Time: 0:00:14 Points: 361   ⌜ # Computing specializations.. Time: 0:00:15 Points: 370   ⌝ # Computing specializations.. Time: 0:00:15 Points: 380   ⌟ # Computing specializations.. Time: 0:00:15 Points: 389   ⌞ # Computing specializations.. Time: 0:00:16 Points: 397   ⌜ # Computing specializations.. Time: 0:00:16 Points: 406   ⌝ # Computing specializations.. Time: 0:00:17 Points: 413   ⌟ # Computing specializations.. Time: 0:00:17 Points: 423   ⌞ # Computing specializations.. Time: 0:00:17 Points: 432   ⌜ # Computing specializations.. Time: 0:00:18 Points: 442   ⌝ # Computing specializations.. Time: 0:00:18 Points: 451   ⌟ # Computing specializations.. Time: 0:00:18 Points: 459   ⌞ # Computing specializations.. Time: 0:00:19 Points: 468   ⌜ # Computing specializations.. Time: 0:00:19 Points: 475   ⌝ # Computing specializations.. Time: 0:00:19 Points: 485   ⌟ # Computing specializations.. Time: 0:00:20 Points: 494   ⌞ # Computing specializations.. Time: 0:00:20 Points: 504   ⌜ # Computing specializations.. Time: 0:00:21 Points: 513   ⌝ # Computing specializations.. Time: 0:00:21 Points: 521   ⌟ # Computing specializations.. Time: 0:00:21 Points: 530   ⌞ # Computing specializations.. Time: 0:00:22 Points: 537   ⌜ # Computing specializations.. Time: 0:00:22 Points: 546   ⌝ # Computing specializations.. Time: 0:00:22 Points: 555   ⌟ # Computing specializations.. Time: 0:00:23 Points: 565   ⌞ # Computing specializations.. Time: 0:00:23 Points: 574   ⌜ # Computing specializations.. Time: 0:00:24 Points: 582   ⌝ # Computing specializations.. Time: 0:00:24 Points: 591   ⌟ # Computing specializations.. Time: 0:00:24 Points: 599   ⌞ # Computing specializations.. Time: 0:00:25 Points: 609   ⌜ # Computing specializations.. Time: 0:00:25 Points: 618   ⌝ # Computing specializations.. Time: 0:00:25 Points: 628   ⌟ # Computing specializations.. Time: 0:00:26 Points: 637   ✓ # Computing specializations.. Time: 0:00:26 [ Info: Search for polynomial generators concluded in 0.000263998 [ Info: Selecting generators in 0.04332407 [ Info: Inclusion checked with probability 0.995 in 7.226720687 seconds [ Info: The search for identifiable functions concluded in 61.125242738 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.505333209 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.07924543 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 8.6139e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 12   ⌝ # Computing specializations.. Time: 0:00:00 Points: 22   ⌟ # Computing specializations.. Time: 0:00:01 Points: 32   ⌞ # Computing specializations.. Time: 0:00:01 Points: 43   ⌜ # Computing specializations.. Time: 0:00:01 Points: 53   ⌝ # Computing specializations.. Time: 0:00:02 Points: 63   ⌟ # Computing specializations.. Time: 0:00:02 Points: 71   ⌞ # Computing specializations.. Time: 0:00:02 Points: 81   ⌜ # Computing specializations.. Time: 0:00:03 Points: 91   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:01 Points: 26   ⌞ # Computing specializations.. Time: 0:00:01 Points: 38   ⌜ # Computing specializations.. Time: 0:00:01 Points: 48   ⌝ # Computing specializations.. Time: 0:00:02 Points: 58   ⌟ # Computing specializations.. Time: 0:00:02 Points: 68   ⌞ # Computing specializations.. Time: 0:00:03 Points: 79   ⌜ # Computing specializations.. Time: 0:00:03 Points: 89   ⌝ # Computing specializations.. Time: 0:00:03 Points: 98   ⌟ # Computing specializations.. Time: 0:00:04 Points: 107   ⌞ # Computing specializations.. Time: 0:00:04 Points: 116   ⌜ # Computing specializations.. Time: 0:00:04 Points: 126   ⌝ # Computing specializations.. Time: 0:00:05 Points: 136   ⌟ # Computing specializations.. Time: 0:00:05 Points: 147   ⌞ # Computing specializations.. Time: 0:00:06 Points: 157   ⌜ # Computing specializations.. Time: 0:00:06 Points: 166   ⌝ # Computing specializations.. Time: 0:00:06 Points: 175   ⌟ # Computing specializations.. Time: 0:00:07 Points: 184   ⌞ # Computing specializations.. Time: 0:00:07 Points: 193   ⌜ # Computing specializations.. Time: 0:00:08 Points: 202   ⌝ # Computing specializations.. Time: 0:00:08 Points: 213   ⌟ # Computing specializations.. Time: 0:00:08 Points: 223   ⌞ # Computing specializations.. Time: 0:00:09 Points: 232   ⌜ # Computing specializations.. Time: 0:00:09 Points: 242   ⌝ # Computing specializations.. Time: 0:00:09 Points: 252   ⌟ # Computing specializations.. Time: 0:00:10 Points: 261   ⌞ # Computing specializations.. Time: 0:00:10 Points: 270   ⌜ # Computing specializations.. Time: 0:00:10 Points: 280   ⌝ # Computing specializations.. Time: 0:00:11 Points: 290   ⌟ # Computing specializations.. Time: 0:00:11 Points: 299   ⌞ # Computing specializations.. Time: 0:00:12 Points: 308   ⌜ # Computing specializations.. Time: 0:00:12 Points: 317   ⌝ # Computing specializations.. Time: 0:00:12 Points: 325   ⌟ # Computing specializations.. Time: 0:00:13 Points: 334   ⌞ # Computing specializations.. Time: 0:00:13 Points: 341   ⌜ # Computing specializations.. Time: 0:00:13 Points: 350   ⌝ # Computing specializations.. Time: 0:00:14 Points: 359   ⌟ # Computing specializations.. Time: 0:00:14 Points: 369   ⌞ # Computing specializations.. Time: 0:00:14 Points: 378   ⌜ # Computing specializations.. Time: 0:00:15 Points: 386   ⌝ # Computing specializations.. Time: 0:00:15 Points: 396   ⌟ # Computing specializations.. Time: 0:00:16 Points: 405   ⌞ # Computing specializations.. Time: 0:00:16 Points: 414   ⌜ # Computing specializations.. Time: 0:00:16 Points: 423   ⌝ # Computing specializations.. Time: 0:00:17 Points: 432   ⌟ # Computing specializations.. Time: 0:00:17 Points: 442   ⌞ # Computing specializations.. Time: 0:00:17 Points: 452   ⌜ # Computing specializations.. Time: 0:00:18 Points: 461   ⌝ # Computing specializations.. Time: 0:00:18 Points: 470   ⌟ # Computing specializations.. Time: 0:00:19 Points: 479   ⌞ # Computing specializations.. Time: 0:00:19 Points: 491   ⌜ # Computing specializations.. Time: 0:00:19 Points: 501   ⌝ # Computing specializations.. Time: 0:00:20 Points: 510   ⌟ # Computing specializations.. Time: 0:00:20 Points: 519   ⌞ # Computing specializations.. Time: 0:00:20 Points: 528   ⌜ # Computing specializations.. Time: 0:00:21 Points: 541   ⌝ # Computing specializations.. Time: 0:00:21 Points: 552   ⌟ # Computing specializations.. Time: 0:00:22 Points: 563   ⌞ # Computing specializations.. Time: 0:00:22 Points: 573   ⌜ # Computing specializations.. Time: 0:00:22 Points: 581   ⌝ # Computing specializations.. Time: 0:00:23 Points: 592   ⌟ # Computing specializations.. Time: 0:00:23 Points: 602   ⌞ # Computing specializations.. Time: 0:00:23 Points: 615   ⌜ # Computing specializations.. Time: 0:00:24 Points: 626   ⌝ # Computing specializations.. Time: 0:00:24 Points: 639   ✓ # Computing specializations.. Time: 0:00:25 [ Info: Search for polynomial generators concluded in 1.774736933 [ Info: Selecting generators in 0.037349456 [ Info: Inclusion checked with probability 0.995 in 8.506825675 seconds [ Info: The search for identifiable functions concluded in 54.465375764 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.677827769 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.077632164 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 8.9379e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:01 Points: 26   ⌞ # Computing specializations.. Time: 0:00:01 Points: 37   ⌜ # Computing specializations.. Time: 0:00:01 Points: 47   ⌝ # Computing specializations.. Time: 0:00:02 Points: 56   ⌟ # Computing specializations.. Time: 0:00:02 Points: 65   ⌞ # Computing specializations.. Time: 0:00:02 Points: 72   ⌜ # Computing specializations.. Time: 0:00:03 Points: 82   ⌝ # Computing specializations.. Time: 0:00:03 Points: 91   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 12   ⌝ # Computing specializations.. Time: 0:00:00 Points: 24   ⌟ # Computing specializations.. Time: 0:00:01 Points: 35   ⌞ # Computing specializations.. Time: 0:00:01 Points: 48   ⌜ # Computing specializations.. Time: 0:00:02 Points: 60   ⌝ # Computing specializations.. Time: 0:00:02 Points: 70   ⌟ # Computing specializations.. Time: 0:00:02 Points: 79   ⌞ # Computing specializations.. Time: 0:00:03 Points: 88   ⌜ # Computing specializations.. Time: 0:00:03 Points: 97   ⌝ # Computing specializations.. Time: 0:00:03 Points: 104   ⌟ # Computing specializations.. Time: 0:00:04 Points: 115   ⌞ # Computing specializations.. Time: 0:00:04 Points: 125   ⌜ # Computing specializations.. Time: 0:00:05 Points: 134   ⌝ # Computing specializations.. Time: 0:00:05 Points: 143   ⌟ # Computing specializations.. Time: 0:00:05 Points: 151   ⌞ # Computing specializations.. Time: 0:00:06 Points: 162   ⌜ # Computing specializations.. Time: 0:00:06 Points: 172   ⌝ # Computing specializations.. Time: 0:00:06 Points: 180   ⌟ # Computing specializations.. Time: 0:00:07 Points: 189   ⌞ # Computing specializations.. Time: 0:00:07 Points: 198   ⌜ # Computing specializations.. Time: 0:00:08 Points: 207   ⌝ # Computing specializations.. Time: 0:00:08 Points: 216   ⌟ # Computing specializations.. Time: 0:00:08 Points: 225   ⌞ # Computing specializations.. Time: 0:00:09 Points: 235   ⌜ # Computing specializations.. Time: 0:00:09 Points: 244   ⌝ # Computing specializations.. Time: 0:00:09 Points: 253   ⌟ # Computing specializations.. Time: 0:00:10 Points: 262   ⌞ # Computing specializations.. Time: 0:00:10 Points: 271   ⌜ # Computing specializations.. Time: 0:00:10 Points: 282   ⌝ # Computing specializations.. Time: 0:00:11 Points: 292   ⌟ # Computing specializations.. Time: 0:00:11 Points: 301   ⌞ # Computing specializations.. Time: 0:00:12 Points: 310   ⌜ # Computing specializations.. Time: 0:00:12 Points: 319   ⌝ # Computing specializations.. Time: 0:00:12 Points: 328   ⌟ # Computing specializations.. Time: 0:00:13 Points: 337   ⌞ # Computing specializations.. Time: 0:00:13 Points: 346   ⌜ # Computing specializations.. Time: 0:00:13 Points: 356   ⌝ # Computing specializations.. Time: 0:00:14 Points: 365   ⌟ # Computing specializations.. Time: 0:00:14 Points: 374   ⌞ # Computing specializations.. Time: 0:00:15 Points: 383   ⌜ # Computing specializations.. Time: 0:00:15 Points: 391   ⌝ # Computing specializations.. Time: 0:00:15 Points: 401   ⌟ # Computing specializations.. Time: 0:00:16 Points: 410   ⌞ # Computing specializations.. Time: 0:00:16 Points: 419   ⌜ # Computing specializations.. Time: 0:00:16 Points: 429   ⌝ # Computing specializations.. Time: 0:00:17 Points: 438   ⌟ # Computing specializations.. Time: 0:00:17 Points: 447   ⌞ # Computing specializations.. Time: 0:00:18 Points: 456   ⌜ # Computing specializations.. Time: 0:00:18 Points: 465   ⌝ # Computing specializations.. Time: 0:00:18 Points: 475   ⌟ # Computing specializations.. Time: 0:00:19 Points: 485   ⌞ # Computing specializations.. Time: 0:00:19 Points: 494   ⌜ # Computing specializations.. Time: 0:00:19 Points: 503   ⌝ # Computing specializations.. Time: 0:00:20 Points: 512   ⌟ # Computing specializations.. Time: 0:00:20 Points: 523   ⌞ # Computing specializations.. Time: 0:00:21 Points: 533   ⌜ # Computing specializations.. Time: 0:00:21 Points: 542   ⌝ # Computing specializations.. Time: 0:00:21 Points: 551   ⌟ # Computing specializations.. Time: 0:00:22 Points: 560   ⌞ # Computing specializations.. Time: 0:00:22 Points: 571   ⌜ # Computing specializations.. Time: 0:00:23 Points: 581   ⌝ # Computing specializations.. Time: 0:00:23 Points: 590   ⌟ # Computing specializations.. Time: 0:00:23 Points: 599   ⌞ # Computing specializations.. Time: 0:00:24 Points: 608   ⌜ # Computing specializations.. Time: 0:00:24 Points: 616   ⌝ # Computing specializations.. Time: 0:00:24 Points: 625  ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 55 running 1 of 1 signal (10): User defined signal 1 malloc_usable_size at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) jl_gc_free_memory at /source/src/gc-stock.c:634 [inlined] sweep_malloced_memory at /source/src/gc-stock.c:664 [inlined] gc_sweep_other at /source/src/gc-stock.c:995 [inlined] _jl_gc_collect at /source/src/gc-stock.c:3195 ijl_gc_collect at /source/src/gc-stock.c:3491 maybe_collect at /source/src/gc-stock.c:349 [inlined] ijl_gc_counted_malloc at /source/src/gc-stock.c:3780 flint_realloc at /workspace/srcdir/flint-3.3.1/src/generic_files/memory_manager.c:108 _nmod_mpoly_fit_length at /workspace/srcdir/flint-3.3.1/src/nmod_mpoly.h:314 [inlined] nmod_mpoly_fit_length_reset_bits at /workspace/srcdir/flint-3.3.1/src/nmod_mpoly/fit_length.c:82 nmod_mpoly_scalar_mul_nmod_invertible at /workspace/srcdir/flint-3.3.1/src/nmod_mpoly/scalar.c:239 * at /home/pkgeval/.julia/packages/Nemo/sUaag/src/flint/nmod_mpoly.jl:307 * at /home/pkgeval/.julia/packages/Nemo/sUaag/src/flint/nmod_mpoly.jl:313 [inlined] fractions_to_mqs_specialized at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/IdealMQS.jl:276 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 specialize_mod_p at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/IdealMQS.jl:305 interpolate_exponents! at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:431 _paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:138 #paramgb#56 at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:103 paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:60 [inlined] #groebner_basis_coeffs#326 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:548 groebner_basis_coeffs at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:548 unknown function (ip: 0x7e9732073944) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#328 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:720 unknown function (ip: 0x7e972c8f1f49) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #_find_identifiable_functions#389 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:86 [inlined] #387 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#385 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:49 unknown function (ip: 0x7e972c8f10f4) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2954 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3014 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x7e97067b1942) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:162 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:1954 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:160 [inlined] macro expansion at ./timing.jl:689 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:159 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2954 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3014 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_63216.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_57501.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7e9747c42249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file)  ⌟ # Computing specializations.. Time: 0:00:25 Points: 634   ⌞ # Computing specializations.. Time: 0:00:25 Points: 640  ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ==============================================================  ✓ # Computing specializations.. Time: 0:00:26 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1217 wait_forever at ./task.jl:1139 jfptr_wait_forever_70160.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007e972dbfc010 Total snapshots: 202. Utilization: 100% ╎197 @Base/client.jl:577 _start() ╎ 197 @Base/client.jl:310 exec_options(opts::Base.JLOptions) ╎ 197 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ 197 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ 197 @Base/Base.jl:310 include(mapexpr::Function, mod::Module, _path::St… ╎ 197 @Base/loading.jl:3014 _include(mapexpr::Function, mod::Module, _pa… ╎ ╎ 197 @Base/loading.jl:2954 include_string(mapexpr::typeof(identity), m… ╎ ╎ 197 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ 197 @StructuralIdentifiability/…:159 top-level scope ╎ ╎ 197 @Base/timing.jl:689 macro expansion ╎ ╎ 197 @StructuralIdentifiability/…:160 macro expansion ╎ ╎ ╎ 197 @Test/src/Test.jl:1954 macro expansion ╎ ╎ ╎ 197 @StructuralIdentifiability/…:162 macro expansion ╎ ╎ ╎ 197 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ ╎ ╎ 197 @Base/Base.jl:310 include(mapexpr::Function, mod::Module,… ╎ ╎ ╎ 197 @Base/loading.jl:3014 _include(mapexpr::Function, mod::M… ╎ ╎ ╎ ╎ 197 @Base/loading.jl:2954 include_string(mapexpr::typeof(id… ╎ ╎ ╎ ╎ 197 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ ╎ ╎ 197 @StructuralIdentifiability/…:49 kwcall(::@NamedTuple{… ╎ ╎ ╎ ╎ 197 @StructuralIdentifiability/…:61 #find_identifiable_f… ╎ ╎ ╎ ╎ 197 @Base/…ogging.jl:651 with_logger ╎ ╎ ╎ ╎ ╎ 197 @Base/…gging.jl:540 with_logstate(f::StructuralIde… ╎ ╎ ╎ ╎ ╎ 197 @StructuralIdentifiability/…:63 (::StructuralIden… ╎ ╎ ╎ ╎ ╎ 197 @StructuralIdentifiability/…:86 _find_identifiab… ╎ ╎ ╎ ╎ ╎ 197 @StructuralIdentifiability/…:120 _find_identifi… ╎ ╎ ╎ ╎ ╎ 197 @StructuralIdentifiability/…:720 kwcall(::@Nam… ╎ ╎ ╎ ╎ ╎ ╎ 197 @StructuralIdentifiability/…:720 simplified_g… ╎ ╎ ╎ ╎ ╎ ╎ 197 @StructuralIdentifiability/…:548 kwcall(::@N… ╎ ╎ ╎ ╎ ╎ ╎ 197 @StructuralIdentifiability/…:548 groebner_b… ╎ ╎ ╎ ╎ ╎ ╎ 197 @ParamPunPam/…:60 paramgb ╎ ╎ ╎ ╎ ╎ ╎ 197 @ParamPunPam/…:103 paramgb(blackbox::Stru… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 197 @ParamPunPam/…:138 _paramgb(blackbox::St… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 56 @ParamPunPam/…:431 interpolate_exponent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 56 @StructuralIdentifiability/…:305 speci… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 12 @StructuralIdentifiability/…:270 frac… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 12 @Base/…ay.jl:3392 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 12 @Base/…ay.jl:763 collect_similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ay.jl:848 _collect(c::Vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @StructuralIdentifiability/…:270 … 3╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Nemo/…ly.jl:548 evaluate(a::fp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 9 @Base/…ay.jl:858 _collect(c::Vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 9 @Base/…ay.jl:864 collect_to_with_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 9 @Base/…ay.jl:886 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 9 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 9 @StructuralIdentifiability/…:270… 9╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 9 @Nemo/…ly.jl:548 evaluate(a::fp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 44 @StructuralIdentifiability/…:276 frac… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 42 @Nemo/…ly.jl:313 * 39╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 42 @Nemo/…ly.jl:307 *(a::fpMPolyRingEl… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:5080 _fmpz_clear_fn(a… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:5220 _nmod_mpoly_clea… 2╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:251 -(a::fpMPolyRingEle… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 76 @ParamPunPam/…:432 interpolate_exponent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 76 @Groebner/…l:403 groebner_apply!(trace… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 76 @Groebner/…l:405 #groebner_apply!#177 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 26 @Groebner/…l:128 groebner_apply0!(wr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 13 @Groebner/…l:22 io_convert_polynomi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 13 @Groebner/…l:108 io_extract_coeffs… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 13 @Groebner/…l:128 io_extract_coeff… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 13 @Base/…ay.jl:3422 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 13 @Base/…ay.jl:838 collect(itr::B… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 13 @Base/…ay.jl:864 collect_to_wit… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 12 @Base/…ay.jl:886 collect_to!(de… 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 4 @Base/…or.jl:45 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @AbstractAlgebra/…:821 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Nemo/…ly.jl:118 coeff(a::fpMPo… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Nemo/…em.jl:404 fpField 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…er.jl:57 getproperty 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Nemo/…em.jl:405 fpField ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 8 @Base/…or.jl:48 iterate 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 8 @Groebner/…l:116 io_lift_coeff_… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Nemo/…pz.jl:2935 UInt64(a::ZZR… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Nemo/…pz.jl:2936 UInt64(a::ZZR… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Nemo/…pz.jl:865 < 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Nemo/…pz.jl:858 cmp ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 4 @Nemo/…em.jl:46 lift ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 4 @Nemo/…em.jl:45 lift 3╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 3 @Nemo/…es.jl:71 ZZRingElem ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Nemo/…es.jl:73 ZZRingElem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ls.jl:86 finalizer ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ay.jl:890 collect_to!(de… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1024 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 13 @Groebner/…l:23 io_convert_polynomi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 13 @Groebner/…l:181 io_extract_monoms… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 13 @Base/…ay.jl:759 collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 13 @Base/…ay.jl:765 _collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:951 copyto!(dest::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ay.jl:1025 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 11 @Base/…ay.jl:953 copyto!(dest::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 11 @AbstractAlgebra/…:838 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 11 @Nemo/…ly.jl:39 exponent_vector ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Nemo/…ly.jl:19 exponent_vector… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Nemo/…ly.jl:726 exponent_vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 6 @Nemo/…ly.jl:23 exponent_vector… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 5 @Base/…ot.jl:648 Array 5╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 5 @Base/…ot.jl:588 GenericMemory 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ot.jl:649 Array ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 4 @Nemo/…ly.jl:24 exponent_vector… 4╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 4 @Nemo/…ly.jl:736 exponent_vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:693 _similar_for ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ay.jl:827 similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ay.jl:838 similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ot.jl:661 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ot.jl:649 Array ╎ ╎ ╎ ╎ ╎ ╎ ╎ 50 @Groebner/…l:129 groebner_apply0!(wr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Groebner/…l:218 __groebner_apply1!… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Groebner/…l:61 wrapped_trace_chec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Base/…rs.jl:320 != ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:3055 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…rs.jl:415 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…rs.jl:425 _zip_iterate_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…rs.jl:435 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…rs.jl:433 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1245 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ay.jl:1245 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ay.jl:1253 _iterate_abst… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:3056 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/int.jl:564 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…on.jl:487 == 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…on.jl:637 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:3062 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…rs.jl:416 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 2 @Base/…rs.jl:425 _zip_iterate_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…rs.jl:433 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:1245 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1252 _iterate_abst… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:381 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…rs.jl:435 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…rs.jl:433 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1245 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ay.jl:1253 _iterate_abst… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ls.jl:965 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 36 @Groebner/…l:234 __groebner_apply1!… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:212 ir_extract_coeffs… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ls.jl:965 getindex 34╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 34 @Groebner/…l:213 ir_extract_coeffs… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Groebner/…l:237 __groebner_apply1!… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Groebner/…l:253 groebner_apply2!(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Groebner/…l:266 _groebner_apply2… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @Groebner/…l:502 f4_apply!(trace… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @Groebner/…l:342 f4_symbolic_pr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:304 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:236 hashtable_resi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1025 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 4 @Groebner/…l:306 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Groebner/…l:482 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Base/…ay.jl:1363 getindex 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Groebner/…l:519 hashtable_inse… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:708 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:720 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1363 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:964 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ls.jl:385 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @Groebner/…l:504 f4_apply!(trace… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Groebner/…l:271 f4_reduction_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 4 @Groebner/…l:23 linalg_main! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 4 @Groebner/…l:56 #linalg_main!#83 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 4 @Groebner/…l:210 _linalg_main_w… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 4 @Groebner/…l:39 linalg_apply_sp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 4 @Groebner/…l:125 linalg_apply_r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 4 @Groebner/…l:369 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 4 @Groebner/…l:369 linalg_reduce_… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Groebner/…l:395 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 2 @Groebner/…l:415 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Groebner/…l:751 linalg_vector_… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Groebner/…l:752 linalg_vector_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Groebner/…l:124 mod_p 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Base/int.jl:1043 * ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Groebner/…l:428 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Groebner/…l:886 linalg_extract… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:274 f4_reduction_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:189 matrix_convert… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:239 matrix_convert… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:390 matrix_insert_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1363 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:433 interpolate_exponent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ProgressMeter/…:499 update! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ProgressMeter/…:500 #update!#19 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ProgressMeter/…:470 lock_if_threadi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ProgressMeter/…:503 #21 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ProgressMeter/…:211 updateProgres… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ProgressMeter/…:213 #updateProgr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ProgressMeter/…:378 _updateProg… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ProgressMeter/…:435 _updatePro… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 64 @ParamPunPam/…:455 interpolate_exponent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @ParamPunPam/…:183 interpolate!(vdhl::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:3422 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:838 collect(itr::Base.G… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:864 collect_to_with_fi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:886 collect_to!(dest:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…or.jl:45 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…rs.jl:416 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…rs.jl:425 _zip_iterate_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…rs.jl:435 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…rs.jl:433 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:1245 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1253 _iterate_abst… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:183 #interpolate!… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…em.jl:146 * 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Nemo/…od.jl:171 mulmod ╎ ╎ ╎ ╎ ╎ ╎ ╎ 56 @ParamPunPam/…:186 interpolate!(vdhl::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:19 interpolate!(c::Par… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:51 gen ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:548 fpPolyRing 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:688 fpPolyRingElem(n:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 16 @ParamPunPam/…:23 interpolate!(c::Par… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:264 interpolate(R::fpPo… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:494 fpPolyRing 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:650 fpPolyRingElem ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:266 interpolate(R::fpPo… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ot.jl:649 Array 14╎ ╎ ╎ ╎ ╎ ╎ ╎ 14 @Nemo/…ly.jl:274 interpolate(R::fpPo… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 18 @ParamPunPam/…:26 interpolate!(c::Par… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 18 @ParamPunPam/…:12 producttree ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 18 @ParamPunPam/…:5 _producttree(z::fp… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:158 *(x::fpPolyRingEl… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 17 @ParamPunPam/…:5 _producttree(z::f… 3╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Nemo/…ly.jl:158 *(x::fpPolyRingE… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 14 @ParamPunPam/…:5 _producttree(z::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:157 *(x::fpPolyRing… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:494 fpPolyRing 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Nemo/…es.jl:650 fpPolyRingElem 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:158 *(x::fpPolyRing… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @ParamPunPam/…:3 _producttree(z:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @Nemo/…ly.jl:116 - 5╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 5 @Nemo/…ly.jl:231 -(x::fpPolyRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @ParamPunPam/…:5 _producttree(z:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:157 *(x::fpPolyRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Nemo/…ly.jl:494 fpPolyRing ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Nemo/…es.jl:652 fpPolyRingElem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ls.jl:86 finalizer 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:158 *(x::fpPolyRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @ParamPunPam/…:3 _producttree(z… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 3 @Nemo/…ly.jl:116 - ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Nemo/…ly.jl:229 -(x::fpPolyRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Nemo/…ly.jl:494 fpPolyRing 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Nemo/…es.jl:651 fpPolyRingElem 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Nemo/…ly.jl:231 -(x::fpPolyRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 16 @ParamPunPam/…:29 interpolate!(c::Par… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 16 @ParamPunPam/…:160 Padé(f::fpPolyRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 11 @ParamPunPam/…:143 fastconstrainedE… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @ParamPunPam/…:89 _fastgcd(r0::fpP… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @AbstractAlgebra/…:362 zero ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @AbstractAlgebra/…:362 zero ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @AbstractAlgebra/…:362 #zero#154 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 2 @Nemo/…ly.jl:69 similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Nemo/…ly.jl:70 #similar#265 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…er.jl:57 getproperty 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Nemo/…es.jl:651 fpPolyRingElem ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 9 @ParamPunPam/…:92 _fastgcd(r0::fpP… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:65 _direct_eea(g::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:47 zero ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:507 fpPolyRing ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Nemo/…es.jl:658 fpPolyRingElem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Nemo/…ly.jl:847 setcoeff! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @ParamPunPam/…:70 _direct_eea(g::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:185 div(x::fpPolyRi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:494 fpPolyRing 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Nemo/…es.jl:650 fpPolyRingElem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:186 div(x::fpPolyRi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @ParamPunPam/…:73 _direct_eea(g::… 3╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Nemo/…ly.jl:877 mul! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @ParamPunPam/…:74 _direct_eea(g::… 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:877 mul! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:76 _direct_eea(g::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…st.jl:893 materialize ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…st.jl:1123 copy ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…le.jl:65 ntuple ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…le.jl:68 macro expansion ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…st.jl:1123 #copy##0 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…st.jl:671 _broadcast_get… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…st.jl:698 _broadcast_get… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Nemo/…ly.jl:151 -(x::fpPolyRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @ParamPunPam/…:144 fastconstrainedE… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:12 matvec2by1(A::Tu… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:877 mul! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:13 matvec2by1(A::Tu… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:877 mul! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:16 matvec2by1(A::Tu… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:877 mul! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:17 matvec2by1(A::Tu… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:877 mul! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:18 matvec2by1(A::Tu… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:867 add! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @ParamPunPam/…:32 interpolate!(c::Par… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @Nemo/…ly.jl:161 divexact ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @Nemo/…ly.jl:164 divexact(x::fpPoly… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Nemo/…ly.jl:147 divexact ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Nemo/…ly.jl:150 divexact(x::fpPo… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Nemo/…ly.jl:494 fpPolyRing 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:650 fpPolyRingElem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:651 fpPolyRingElem ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:652 fpPolyRingElem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ls.jl:86 finalizer 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:151 divexact(x::fpPo… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:525 fpPolyRing ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:657 fpPolyRingElem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:650 fpPolyRingElem ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @ParamPunPam/…:193 interpolate!(vdhl::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:112 interpolate!(bot::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:160 Padé(f::fpPolyRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:143 fastconstrainedE… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:96 _fastgcd(r0::fpP… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:96 _fastgcd(r0::fp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:96 _fastgcd(r0::f… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:92 _fastgcd(r0::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @ParamPunPam/…:70 _direct_eea(g… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Nemo/…ly.jl:185 div(x::fpPolyR… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Nemo/…ly.jl:494 fpPolyRing 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Nemo/…es.jl:651 fpPolyRingElem ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @ParamPunPam/…:115 interpolate!(bot::… 2╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:442 roots(a::fpPolyRing… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @ParamPunPam/…:194 interpolate!(vdhl::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @ParamPunPam/…:112 interpolate!(bot::… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:268 ^(x::fpPolyRingElem… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:160 Padé(f::fpPolyRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:143 fastconstrainedE… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:96 _fastgcd(r0::fpP… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:96 _fastgcd(r0::fp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:97 _fastgcd(r0::f… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:14 matvec2by1(A:… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Nemo/…ly.jl:867 add! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:208 interpolate!(vdhl::… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:643 evaluate(a::fpMPolyR… ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x000073f84c623490 Total snapshots: 462. Utilization: 0% ╎462 @Base/task.jl:1139 wait_forever() 461╎ 462 @Base/task.jl:1217 wait() [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1217 wait_forever at ./task.jl:1139 jfptr_wait_forever_70160.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file) Allocations: 23516843 (Pool: 23516219; Big: 624); GC: 19 [55] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/identifiable_functions.jl:1077 _ZN4llvm17DominatorTreeBaseINS_10BasicBlockELb0EE5SplitIPS1_EEvNS_11GraphTraitsIT_E7NodeRefE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZL25UpdateAnalysisInformationPN4llvm10BasicBlockES1_NS_8ArrayRefIS1_EEPNS_14DomTreeUpdaterEPNS_13DominatorTreeEPNS_8LoopInfoEPNS_16MemorySSAUpdaterEbRb.constprop.0 at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZL26SplitBlockPredecessorsImplPN4llvm10BasicBlockENS_8ArrayRefIS1_EEPKcPNS_14DomTreeUpdaterEPNS_13DominatorTreeEPNS_8LoopInfoEPNS_16MemorySSAUpdaterEb at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm22SplitBlockPredecessorsEPNS_10BasicBlockENS_8ArrayRefIS1_EEPKcPNS_13DominatorTreeEPNS_8LoopInfoEPNS_16MemorySSAUpdaterEb at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm23formDedicatedExitBlocksEPNS_4LoopEPNS_13DominatorTreeEPNS_8LoopInfoEPNS_16MemorySSAUpdaterEb at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZL15simplifyOneLoopPN4llvm4LoopERNS_15SmallVectorImplIS1_EEPNS_13DominatorTreeEPNS_8LoopInfoEPNS_15ScalarEvolutionEPNS_15AssumptionCacheEPNS_16MemorySSAUpdaterEb at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm12simplifyLoopEPNS_4LoopEPNS_13DominatorTreeEPNS_8LoopInfoEPNS_15ScalarEvolutionEPNS_15AssumptionCacheEPNS_16MemorySSAUpdaterEb at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm15LoopConstrainer3runEv at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN12_GLOBAL__N_130InductiveRangeCheckElimination3runEPN4llvm4LoopENS1_12function_refIFvS3_bEEE.constprop.0 at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm8IRCEPass3runERNS_8FunctionERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm11PassManagerINS_8FunctionENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm27ModuleToFunctionPassAdaptor3runERNS_6ModuleERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm11PassManagerINS_6ModuleENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/src/pipeline.cpp:791 operator() at /source/src/jitlayers.cpp:1513 withModuleDo<(anonymous namespace)::sizedOptimizerT::operator()(llvm::orc::ThreadSafeModule) [with long unsigned int N = 4]:: > at /source/usr/include/llvm/ExecutionEngine/Orc/ThreadSafeModule.h:136 [inlined] operator() at /source/src/jitlayers.cpp:1474 [inlined] operator() at /source/src/jitlayers.cpp:1649 [inlined] addModule at /source/src/jitlayers.cpp:2106 jl_compile_codeinst_now at /source/src/jitlayers.cpp:682 jl_compile_codeinst_impl at /source/src/jitlayers.cpp:876 jl_compile_method_internal at /source/src/gf.c:3648 _jl_invoke at /source/src/gf.c:4108 [inlined] ijl_apply_generic at /source/src/gf.c:4313 sort_terms! at /home/pkgeval/.julia/packages/AbstractAlgebra/vdTzs/src/generic/MPoly.jl:0 MPolyRing at /home/pkgeval/.julia/packages/AbstractAlgebra/vdTzs/src/generic/MPoly.jl:4108 MPolyRing at /home/pkgeval/.julia/packages/AbstractAlgebra/vdTzs/src/MPoly.jl:1400 [inlined] rational_reconstruct_polynomial at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/state.jl:127 unknown function (ip: 0x7e972c9b51b4) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #polynomial_generators#340 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/normalforms.jl:98 polynomial_generators at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/normalforms.jl:98 unknown function (ip: 0x7e972c9626f0) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#328 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:720 unknown function (ip: 0x7e972c8f1f49) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #_find_identifiable_functions#389 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:86 [inlined] #387 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#385 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:49 unknown function (ip: 0x7e972c8f10f4) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2954 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3014 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x7e97067b1942) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:162 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:1954 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:160 [inlined] macro expansion at ./timing.jl:689 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:159 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2954 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3014 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_63216.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_57501.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2275 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7e9747c42249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 1277862079 (Pool: 1277857993; Big: 4086); GC: 543 PkgEval terminated after 2723.5s: test duration exceeded the time limit