Package evaluation to test QuasiNewtonMethods on Julia 1.13.0-DEV.1290 (92af0d8cdf*) started at 2025-10-09T16:46:50.753 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.19s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.1 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.173 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 4.57s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 195.64s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_jZkn8G/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_jZkn8G/Manifest.toml` [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.173 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:753 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1954 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [-3.552491634195576e-12, -8.338107981842313e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-2.0190071836623247e-11, -5.456246565671563e-11] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [-5.599531949229686e-11, -1.1211187533888278e-10, 3.381783741929212e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-4.884981308350689e-14, 1.4876988529977098e-14, 7.936540313835394e-12] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [-6.5569771834361745e-12, 1.724398401847793e-11, -1.6388779222609173e-11, 3.519651237127164e-11] QuasiNewtonMethods.optimum(state) .- 1 = [2.9687363678476686e-13, -1.4604983888943934e-12, 5.166977956605479e-13, -2.766453732760965e-12] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [-9.869105532800404e-12, -7.868483642425872e-12, -2.0709878256752745e-11, -1.5663248476016634e-11, -3.0819791163594346e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-1.801803151124659e-11, 2.5403457115658057e-11, -3.559064154501357e-11, 5.466693764333286e-11, -1.8937074131031295e-12] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [-3.6103231515483e-11, 3.066280562791235e-11, 3.4355629452420544e-11, -7.174238980667269e-11, 5.932809798991912e-11, 7.224842946129684e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.1396996114096964e-11, -3.197442310920451e-13, -9.40686417649772e-11, -6.271627661647017e-11, 6.414868636284154e-13, -1.9021895170112657e-10] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [1.0314882281647897e-10, 6.618305903316468e-11, 2.2601365223806624e-10, 2.0656476529268275e-10, 1.3020851064027283e-10, 4.668476716318537e-10, -1.5537016118116753e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.4350742816304773e-11, 9.098055642198233e-12, -5.885847365050267e-12, 2.798361542488692e-11, 1.684408168500795e-11, -1.1550871370502591e-11, 5.329070518200751e-15] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-2.1784973824878762e-10, 1.2154477424530796e-10, -3.585095553759743e-10, -1.777054059459715e-10, -4.2940517808176537e-10, 2.451143732429273e-10, -7.029776760703044e-10, -3.645522772544041e-10] QuasiNewtonMethods.optimum(state) .- 1 = [9.62334656406938e-11, -1.734756782667546e-11, 5.049471951679152e-11, 2.0937029887591052e-11, 1.980005048807243e-10, -3.32566196803441e-11, 1.0070300149322975e-10, 4.346345505723548e-11] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [4.511946372076636e-12, 2.077005234468743e-12, -3.7372993588746795e-11, -3.8583580774798065e-12, 1.0077272349917621e-11, -2.0339285811132868e-13, -7.366351972848406e-11, -7.593592421528683e-12, 1.5913936834976994e-12] QuasiNewtonMethods.optimum(state) .- 1 = [4.7692960691847475e-12, 1.9811041696016218e-11, -7.814426883356873e-11, 3.913536161803677e-12, 6.213030090407301e-12, 5.1175064186281816e-11, -1.6352452725243438e-10, 6.459277557269161e-12, 4.829692201724356e-12] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [-2.0103918529912335e-11, 2.3658230929868296e-10, 4.0188297134591267e-11, 2.1219159762608797e-10, 9.813927448476534e-11, -5.7581384105276356e-11, 4.665128283676268e-10, 8.347167401723254e-11, 4.2849146453249887e-10, 1.9283397101332866e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-8.827494291097082e-12, 1.4315659768726618e-11, 4.8357984283597943e-11, 1.9450663302222893e-11, 6.747935543671701e-13, -1.588773557159584e-11, 3.077094135051084e-11, 9.537992617936197e-11, 3.784594859723711e-11, -3.5205172110863714e-13] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [1.2122969295091934e-10, 1.686828454694478e-11, -5.657707635720044e-11, -1.0103717862364192e-10, 2.0269097511516065e-10, 2.3136825788583337e-10, 3.734457187931639e-11, -1.16094911462028e-10, -2.0987500626290512e-10, 3.97427424303487e-10, -1.4630185951602925e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.2153611450571589e-11, -1.1965983759409937e-11, -4.662170649538666e-11, -2.577293933825331e-11, -7.702283255639486e-12, -2.392785969362876e-11, -2.6071589331877476e-11, -9.828360347796661e-11, -4.908351503019048e-11, -1.50659484887683e-11, -6.694644838489694e-14] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [6.677991493120317e-11, -4.770850381419223e-12, 6.718603451361105e-11, -6.845968236746103e-11, -2.4223734129691366e-11, 3.703037876334747e-11, 1.354809597842177e-10, -1.1298628699307756e-11, 1.3851364499828378e-10, -1.367294055754087e-10, -5.306999284471203e-11, 7.585687633593352e-11] QuasiNewtonMethods.optimum(state) .- 1 = [6.377187666828377e-11, 7.202904939163091e-12, 4.045674906194563e-11, -2.2307378166885883e-11, -1.1865397553378898e-11, -7.012945779649726e-12, 1.3086887129531988e-10, 1.4559686789539228e-11, 8.151723740468242e-11, -3.972722151246444e-11, -2.3151258687903464e-11, -1.5362267014040754e-11] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [-5.5507931584486414e-11, -9.803191591828408e-11, 5.83246784202629e-11, 1.744115962765136e-10, -1.6558021620483032e-10, 1.5254686402954576e-11, -1.0250111870391265e-10, -1.8983392635618657e-10, 1.3439382939850475e-10, 3.29183791336618e-10, -3.5167435630256705e-10, 4.107936213415542e-11, -2.73092659597296e-12] QuasiNewtonMethods.optimum(state) .- 1 = [2.1249202397655154e-10, -1.6815315806439912e-10, 4.897777738932518e-10, -1.9314616572785326e-10, 3.9887115832470954e-10, -8.811462670621495e-11, 4.1002623518693326e-10, -3.544633475627279e-10, 9.951799384566584e-10, -3.9138248197900793e-10, 7.858436124053014e-10, -1.5940082587206916e-10, 1.733302390505287e-11] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [-6.531730711856198e-11, -3.874300880113424e-11, -8.114187100005665e-11, 2.1518342663284784e-10, -2.366150608779094e-10, 9.014100577076078e-11, -3.2021940654658465e-11, -1.3925349762189398e-10, -7.73535679954307e-11, -1.5537682251931528e-10, 4.268863040834958e-10, -4.82306083959827e-10, 1.8035906101943056e-10, -6.379263783884426e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.690358963912786e-11, 6.524536466656627e-11, -4.994804569946609e-11, -4.1145864493330464e-11, -2.0390356070265625e-11, -1.0350720280882797e-11, 7.649392230746344e-11, -2.7459146068053997e-11, 1.2948220273756306e-10, -9.982947801745468e-11, -8.586009681010864e-11, -3.9282244124194676e-11, -2.6755597737349035e-11, 1.6137424729834038e-10] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [-1.0763967495108773e-10, -4.8820947284866634e-11, 5.860578689009799e-11, 2.934119613939856e-11, -1.5026324629019427e-10, -1.6093548715900852e-10, -4.8076431724553004e-11, -2.152961142698473e-10, -1.0179623810557814e-10, 1.1744805128444114e-10, 5.450062623424401e-11, -3.046124463779165e-10, -3.2043889763855304e-10, -8.524958516886727e-11, 1.2956791195506412e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.1990164416886273e-10, 1.164222052096875e-10, -5.1619819529946653e-11, 4.5487169586522214e-11, -5.602960317929728e-10, 5.646016987270741e-11, -1.8432022574899065e-10, -2.218574213230795e-10, 2.4090485162275854e-10, -1.1400991262178195e-10, 9.589262717213387e-11, -1.0991996202136534e-9, 1.2034084839740444e-10, -3.860090025398222e-10, 1.3953349586870445e-10] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [1.655009462808721e-11, 7.779821231679307e-11, -9.317679960929581e-11, -3.452793606584237e-14, -3.152356153890423e-11, -8.420808494946641e-11, -2.8097080218003612e-11, 8.396683348621536e-11, 3.472977461171922e-11, 1.5635648331624452e-10, -1.7863110990390396e-10, -1.882605182856878e-12, -6.229228244336582e-11, -1.7052292911046152e-10, -6.049083456360904e-11, 1.7626544668303268e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.1958323220540024e-11, 3.224820410707707e-11, -6.294909038473406e-11, -2.4973023649010884e-11, -3.012712301853071e-11, -7.690170722440826e-11, -2.7997826279602123e-11, 8.445932841993908e-11, -2.4706015011588534e-11, 6.897105109260337e-11, -1.2228651424806003e-10, -3.519295965759284e-11, -6.753075876275716e-11, -1.6136658675947047e-10, -5.536082703372358e-11, 1.723758913385609e-10] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [-1.8283818903341853e-11, -5.6710192097853e-12, -2.7431723559345755e-11, -9.235501252646827e-12, -2.3336110821503553e-11, 1.5516476992161188e-12, -3.191302777594274e-11, 4.6976644796359324e-11, -3.770384005008509e-11, -9.87110393424473e-12, -5.530476077098001e-11, -1.7338241953268607e-11, -4.3264725135827575e-11, 2.346567384847731e-12, -6.600009427870646e-11, 9.248579679876912e-11, -1.1362022434013852e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.1966816426678406e-10, 1.6195933483231784e-10, -4.5692716277301315e-10, 4.3722536702262005e-10, -4.6329773351061476e-10, 1.6849210915381718e-10, -2.2116364295499125e-10, 5.690115045808852e-12, -2.4606761073187045e-10, 3.045197427553603e-10, -9.109357712588917e-10, 8.69226246535959e-10, -9.357774555240894e-10, 3.39381411862405e-10, -4.555630317426562e-10, 9.492406860545088e-12, 1.3814505095410823e-11] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [3.0788038785090066e-11, 4.335487524542714e-11, 4.60875781982395e-11, 1.0792033933171297e-10, -3.75717235101547e-11, 2.0471846440273112e-10, -4.793554442272807e-11, -6.6346927951599355e-12, 4.759970195777896e-12, 6.961631271451552e-11, 8.98572327656666e-11, 9.572476145081055e-11, 2.1160317942303664e-10, -7.599088025500578e-11, 4.1924197446974176e-10, -9.434164560673253e-11, -4.760081218080359e-12, 7.282840996936102e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-3.820155303202455e-11, -2.7622681919581282e-11, -9.401479594828288e-12, 6.162848009694244e-12, -1.3920864461169913e-11, -1.2884027178472479e-11, -2.2802204568961315e-11, -2.5623947408348613e-12, 1.0796918914479647e-11, -6.990497070091806e-11, -5.7329807567896296e-11, -1.8736678875086454e-11, 1.1862066884305023e-11, -2.6715851753067454e-11, -2.427336109889211e-11, -4.686717680613128e-11, -4.550693155636054e-12, 1.6957324433519716e-11] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [3.9533265550062424e-11, -7.377665145469336e-11, -4.184874669022065e-11, 2.2678015021426745e-10, -2.718614222629867e-11, -2.7344904118820068e-11, 9.172951287439446e-11, 1.5239609574280166e-10, 1.0242096060153472e-10, 7.237921373359768e-11, -1.485381817545317e-10, -8.258560502127921e-11, 4.4458170478378634e-10, -4.1234127223788164e-11, -5.170530670284279e-11, 1.7907009208784075e-10, 3.0813684936958907e-10, 1.9929169425836335e-10, -7.623679465496025e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.6316614726008538e-11, 2.2469137661573768e-11, -2.4253266062146395e-11, 3.7121417051366734e-11, -2.6356250515391366e-11, 1.3719247959897984e-11, -2.10035322467661e-11, 1.5867973601757512e-11, -1.1785239451000962e-11, -3.241262813702406e-11, 4.2614134443397234e-11, -4.9189541329042186e-11, 7.122857859087617e-11, -5.24164045501152e-11, 2.674171994954122e-11, -4.2327363836136556e-11, 3.287659033901491e-11, -2.3643864643929646e-11, -5.550004900101158e-13] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [-2.8481106362221453e-11, 1.5859069613100019e-10, 1.2930279069678363e-10, -3.627298461594819e-11, 5.458411500569582e-11, -4.0682901492061774e-11, 2.051299130556572e-10, 1.3082335215131025e-10, -2.0491108809750358e-10, -1.340492161716611e-10, -4.51033654869093e-11, 3.013094218573542e-10, 2.420559308546899e-10, -5.592493135253562e-11, 1.0449974219284286e-10, -6.95944413209304e-11, 4.264824049471372e-10, 2.6159474586506803e-10, -4.193621006010062e-10, -2.579526592327852e-10] QuasiNewtonMethods.optimum(state) .- 1 = [4.366507155850741e-12, 1.3678014276763406e-10, 6.890688020178004e-11, 1.2463718945809887e-10, -1.7211132519179273e-10, -3.854171426453945e-10, -1.501077040444443e-10, -5.733893360115871e-10, -3.1958136137433257e-10, 2.6742918990407816e-10, 8.492762049172597e-12, 2.794351416923746e-10, 1.4568590778196722e-10, 2.585207603544859e-10, -3.4662228642901027e-10, -7.758288456116702e-10, -2.9163593762149276e-10, -1.1355550944003312e-9, -6.246537731513513e-10, 5.38585176457218e-10] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [-1.516087255737375e-10, -6.440870059520876e-11, -1.4744983012349167e-11, 8.221356928572732e-11, -9.538425604915801e-11, 1.0861689325736279e-10, -1.7976731214730535e-11, 7.738165663795371e-11, -2.73030487107917e-11, -5.5458970749100445e-11, -2.9577873483788153e-10, -1.26487931240149e-10, -3.8250735912015443e-11, 1.7125789675276337e-10, -1.7959345122164905e-10, 2.2315460590505154e-10, -3.399169834494842e-11, 1.5475309922408087e-10, -5.6026072670078975e-11, -1.1173428848820777e-10, 2.2248869413488137e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-1.1325385074201222e-11, 1.499000923388394e-11, -3.2535085736640212e-12, 5.468736574698596e-12, 8.595790745857812e-12, -1.547073580354663e-11, 1.247890679678676e-11, -1.2859269205023338e-11, -7.53741513648265e-12, -2.0467072481267223e-11, -2.3574475704890574e-11, 3.0880631385343804e-11, -4.792499730399413e-12, 1.2250422898318902e-11, 1.546318628697918e-11, -2.8314794953132605e-11, 2.5344615295352924e-11, -2.5271562620332588e-11, -1.4238721313120095e-11, -4.253708496548825e-11, -1.3397616349664077e-11] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-6.635592075809882e-11, 6.34456931436489e-11, 8.424327901934703e-11, -3.791311709022693e-11, 8.306311194417049e-11, 3.854672137038051e-11, -2.338318427774766e-11, 3.923505964564811e-11, -2.334912263535216e-10, 1.634803403760543e-11, -1.594246956670986e-11, -1.2661871551244985e-10, 1.2473022614756246e-10, 1.700632967782667e-10, -7.49532658161911e-11, 1.6962808935261364e-10, 8.289768871350134e-11, -3.4932057246805925e-11, 9.312195459187933e-11, -4.6085280036578524e-10, 2.105515761741117e-11, -3.080669053190377e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.739203780992682e-9, -4.234568251604287e-11, -2.6112323414650973e-10, -6.343771064010184e-10, 1.4915322310571355e-9, -1.2018149808668e-9, -1.627852297403365e-10, -2.0859691751695664e-10, 2.390630360338264e-9, -4.966078659407458e-10, 3.649174296072033e-10, -3.49327955451173e-9, -8.290701458690819e-11, -5.158786731129794e-10, -1.2897065637673677e-9, 3.0024749353430025e-9, -2.4058406378202335e-9, -3.18041371016875e-10, -4.389996144382735e-10, 4.787064966649268e-9, -9.997679351059219e-10, 7.445810634720829e-10] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [1.176898578592045e-10, 1.0044853837598566e-11, 2.6156854460168688e-11, 6.307798727789304e-11, -1.067257393572163e-12, 5.563483007620107e-11, 3.2276181727297626e-11, 6.836087251826939e-11, -1.4528822589454649e-11, 5.745848241645035e-12, 2.7138291613937326e-11, 2.381166375187149e-10, 2.3845370122899112e-11, 4.485589677472035e-11, 1.2942025229278897e-10, -4.4327874704208625e-12, 1.1532019783544456e-10, 6.552802744863584e-11, 1.402302718389592e-10, -2.8213764657891716e-11, 1.1778356068248286e-11, 6.22260021287957e-11, 3.317501828803415e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.276878768332381e-11, -1.4738321674201416e-10, -7.749556552028025e-11, 8.04587507730048e-11, -4.58165727579285e-11, -1.9948898088983924e-10, 2.3413115890491554e-10, 2.7718938255816283e-11, 7.183142969324763e-11, -1.546188732604037e-10, -3.7446712397581905e-12, -6.127343077366731e-11, -2.907633023241374e-10, -1.5954204624080148e-10, 1.6446355388666234e-10, -8.047396082844216e-11, -4.133063891131883e-10, 4.706208756033448e-10, 4.9961812464971445e-11, 1.4496914779726922e-10, -3.1426727886696426e-10, -2.206235194535111e-11, -1.6152634785271403e-12] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [-8.508704851806215e-11, -6.430822541148018e-11, -2.6184499013481854e-11, 3.363598288785852e-11, -2.995237391445471e-11, 1.4844347973053118e-11, 1.476063715699638e-11, 4.224620653303646e-12, 2.1111334902457202e-11, -2.4802382370125997e-13, 1.195874510528938e-10, -2.7028379534499436e-12, -1.693273299352427e-10, -1.2853362818532332e-10, -4.9909743005116525e-11, 7.646527855342811e-11, -5.914524425776335e-11, 2.7595925544687816e-11, 3.059397180038559e-11, 9.00257646208047e-12, 4.3414827288756896e-11, 2.0887735985297695e-12, 2.3937096749193643e-10, -2.9449775951206902e-12] QuasiNewtonMethods.optimum(state) .- 1 = [4.888489613108504e-11, -9.887646257311644e-13, -3.1885938334141883e-11, -1.064680565932008e-10, 7.57423013197922e-11, -1.885169798043762e-11, -4.7126746949288645e-12, -6.946243580330247e-11, 8.426415121220998e-11, 1.832689555669731e-11, 9.399148126476575e-11, 1.2549739025757845e-11, 1.0332401600976482e-10, 3.801847725526386e-12, -6.806399888148462e-11, -2.17491691323346e-10, 1.5148526877339918e-10, -3.989242269852866e-11, -1.0502376746046593e-11, -1.3693057798747077e-10, 1.755453560292608e-10, 4.0208947282849294e-11, 1.8009838065324857e-10, 2.728017811648442e-11] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 4m04.7s Method ambiguity | 1 1 9.2s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 6.5s Compat bounds | 3 1 4 10.6s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.5s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.0s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 52.7s RNG of the outermost testset: Random.Xoshiro(0xd2d747e127d4f3ee, 0x75ef6a8af55c5425, 0xe64315c00ccaffc2, 0x158c7a37cd992a99, 0x4acc4bc8e7111956) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 272.82s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2674 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2523 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:548 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:525 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:172 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:161 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:160 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:160 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:159 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:309 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [14] _start() @ Base ./client.jl:577 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 500.43s: package has test failures