Package evaluation of QuasiNewtonMethods on Julia 1.13.0-DEV.1277 (fa66b63fc3*) started at 2025-10-08T02:48:49.468 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.31s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.1 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 5.5s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 361.9s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_TzIG9U/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_TzIG9U/Manifest.toml` [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [-2.9101165921474603e-12, -3.59856588971752e-12] QuasiNewtonMethods.optimum(state) .- 1 = [2.340572180514755e-12, 7.785549982486373e-12] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [-1.7681411890180243e-12, -3.5466074521650626e-12, -1.6485368625751562e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.468469872951573e-10, -4.780226214862182e-10, -1.6823864523729526e-10] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [-8.516221061682927e-11, -6.212563796736958e-11, -1.476377908815607e-10, -1.1827261392483024e-10] QuasiNewtonMethods.optimum(state) .- 1 = [6.020739462542224e-12, -1.1913026121135317e-11, 1.2879697308676441e-11, -2.351829841984454e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [-2.178566216315403e-10, -1.69868452637445e-10, -4.527860308911613e-10, -3.6078695586638787e-10, -2.764829365453636e-9] QuasiNewtonMethods.optimum(state) .- 1 = [-7.421840919619171e-13, -6.010469899564441e-11, 5.614841924739267e-12, -1.1223866280829498e-10, 2.772715390619851e-11] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [1.52433621281034e-12, -8.39051050860462e-12, 2.897171391680331e-11, 2.9167779302952113e-12, -1.6290857551837234e-11, 5.822387016962693e-11] QuasiNewtonMethods.optimum(state) .- 1 = [3.119700053844099e-10, -1.4184527996619067e-9, -8.563819653417681e-10, 6.027705001798722e-10, -2.852207359183012e-9, -1.6995213014681099e-9] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [2.2093438190040615e-12, 1.1474599048710843e-11, 1.5299761457754357e-11, 7.507772181725159e-12, 2.4596102932150643e-11, 3.08442160701361e-11, 7.696066006701585e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-2.48245868306185e-13, -1.246169833990507e-11, -1.2776890656596152e-11, -3.965938688565984e-12, -2.9887314845211677e-11, -2.6846969092275685e-11, 2.573630197844068e-11] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-4.923783603061338e-11, -3.4880609511844796e-10, -9.41693389933107e-11, -1.2904899371335432e-11, -1.1244960518297376e-10, -7.232707766036128e-10, -1.7814216768385904e-10, -2.429756396082894e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.1000533817195901e-11, 2.8537616714174874e-11, -3.396760650531405e-11, 1.0117462423409052e-11, -2.0875301487421893e-11, 5.6602500464464356e-11, -6.716394107542101e-11, 1.5624834759364603e-11] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [1.7789991701988583e-11, -8.209433133288258e-12, -4.656686147797018e-11, -1.3269496612622333e-11, 3.7015945864027344e-11, -1.4896195388303113e-11, -9.089229369152463e-11, -2.6328272895170812e-11, -4.992672941739329e-13] QuasiNewtonMethods.optimum(state) .- 1 = [9.21707155043805e-12, -1.1957135281903675e-10, 1.4586176710906784e-10, 1.6479351216958094e-10, 1.4029444272978253e-11, -2.2478097161382493e-10, 3.016340510697546e-10, 3.440783213903842e-10, -1.9989121469166093e-11] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [5.0986548316700464e-11, -3.1626035124077134e-11, -1.7822632258912563e-11, -4.902522832139766e-12, 3.3340663563308226e-11, 1.0207834577613539e-10, -6.338973790320779e-11, -3.8478553676668525e-11, -9.280576307446609e-12, 7.060929618774026e-11] QuasiNewtonMethods.optimum(state) .- 1 = [9.206990725374453e-11, 3.726463582154338e-11, 1.2611600652689958e-10, -2.2899493412609218e-10, -5.912126344043145e-11, 1.7748424951946618e-10, 6.91415813491858e-11, 2.5120749924667507e-10, -4.543667664336226e-10, -1.0146117279674627e-10] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-1.0539902284278924e-11, 7.495071230323447e-11, -8.143552499007001e-11, -9.06791308707966e-11, -6.516842621095975e-11, -2.0608403872302006e-11, 1.4252465874164955e-10, -1.6557810678108353e-10, -1.7978274424734764e-10, -1.2449963282534782e-10, -2.330161619212845e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-3.824318639544799e-11, -6.7130745406984715e-12, 1.2846901320529014e-10, 9.077405493940205e-12, 3.0840885401062224e-11, -8.294032127764694e-11, -1.2054468534472562e-11, 2.5424484739744457e-10, -2.8227420401094605e-12, 4.284883559080299e-11, 2.6354474158551966e-12] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [-3.3259839327115515e-11, 1.2300627183492452e-10, 6.84727829991516e-11, -5.865918861758246e-11, -6.728284596135836e-11, -1.2605305688140334e-10, -6.190958856677753e-11, 2.396234322077362e-10, 1.2619261191559872e-10, -1.1996381665824174e-10, -1.3828238554225436e-10, -2.5371793554995747e-10] QuasiNewtonMethods.optimum(state) .- 1 = [4.573119660733482e-11, 3.577116380881762e-11, 6.020295373332374e-12, -1.7054024858964567e-11, -5.892186738520877e-11, 8.02777844199909e-11, 8.6923801490002e-11, 6.242495409480853e-11, 2.0266011091507607e-11, -3.476574583771708e-11, -1.1646295039469123e-10, 1.7184387246516053e-10] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [-3.8594571982741854e-10, -6.834610655204187e-11, -9.841238934882313e-12, 7.125922074635582e-11, 6.790878970264203e-11, -1.5974255251904879e-10, -7.848779404184825e-10, -1.2770784429960713e-10, -1.2697731754940378e-11, 1.3184786595843434e-10, 1.3450396352254756e-10, -3.272485615823939e-10, -2.7321478413000477e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-7.543610180960059e-11, 2.3007373783912044e-11, 3.402278458963792e-11, -6.030964616599022e-11, 8.620215652399565e-11, -2.7950397551990136e-10, -1.5280432474895633e-10, 5.714917428178978e-11, 7.993050665788815e-11, -1.0532308358790488e-10, 1.6268320024437344e-10, -5.79824299684617e-10, -4.936939745903146e-12] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [-2.146693933724464e-11, 3.01230151933396e-11, 1.8845813798407107e-11, -8.364198222921004e-12, 1.1052492254748358e-11, 3.1250557697148906e-12, -9.566902825497436e-12, -4.6126324981798916e-11, 5.852673901074468e-11, 3.9230174664339756e-11, -2.353417460909668e-11, 2.213917937865517e-11, 6.7907901524222325e-12, -1.9574453169468597e-11] QuasiNewtonMethods.optimum(state) .- 1 = [9.856671034924602e-11, -1.0020151375300657e-10, 3.271449777741964e-11, -3.925093583490025e-11, 6.028844090621988e-11, -7.44719841350161e-11, 1.3219425554211739e-11, 1.9737100842576183e-10, -2.04828376482169e-10, 6.624234494267967e-11, -7.924505496248457e-11, 1.1165801616641602e-10, -1.481655909074675e-10, 2.6494806348864586e-11] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [-3.782196777990521e-12, 5.802203162375008e-11, 1.0780043524505345e-10, 6.7552630156342275e-12, 2.5783819523894635e-12, 4.6834980338417154e-11, -4.763134331398078e-11, -6.726841306203823e-13, 1.1835976643226331e-10, 2.1606716416044947e-10, -4.942490861026272e-12, 9.559020242022598e-12, 8.367662118757835e-11, -9.038880754985712e-11, 3.4720670782917296e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.268252335431043e-11, -3.455935537743926e-11, 5.499534161401698e-11, 1.1852963055503096e-10, -2.4427238010105157e-11, -1.4873768883205685e-11, 2.2525337151080294e-10, -6.779143912893915e-11, -7.581357763797314e-11, 1.2424106188291262e-10, 2.265676535273542e-10, -5.364531041607279e-11, -4.827471755675106e-12, 4.4870240856198507e-10, -6.257871998371911e-11] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [-1.1531109400664263e-11, 8.615042013104812e-11, -9.631628827833083e-12, -9.105582954305191e-11, -9.393053002071383e-11, 8.861111844282732e-11, -5.450906392923116e-11, 1.4440471041154979e-10, -3.004552162622076e-11, 1.6960521875830636e-10, -1.4269252446297287e-11, -1.784598024912043e-10, -1.891339307391604e-10, 1.7238543925657268e-10, -1.0866541000353891e-10, 2.737285953458013e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.0152079177316864e-10, -6.864542267948082e-11, 4.6131543030014655e-11, 7.035927396259467e-12, -3.088396205441768e-11, 5.784372980599528e-11, -9.970657632862867e-11, -5.8185123386067517e-11, 2.055069447948199e-10, -1.4083867405645378e-10, 8.968847886592357e-11, 1.3491430195244902e-12, -6.591904799790882e-11, 1.178299680049122e-10, -1.9112655902375764e-10, -1.167557162062849e-10] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [-2.4990676195102424e-11, -1.1310052894231148e-10, -1.9592438782467525e-11, 1.0821343821021401e-10, 9.003220391434752e-11, 3.6386671453669805e-11, 7.526201883933936e-12, -1.2097545187828018e-10, -5.669786862227966e-11, -2.1735091504382353e-10, -3.554889715928766e-11, 2.3611113064703204e-10, 1.845055219718006e-10, 7.119504985553249e-11, 3.008482352129249e-12, -2.3047264097186826e-10, 1.1594725179975285e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.3162361745553426e-13, 6.139311281572191e-12, 2.6914026562963045e-12, 8.685496766247525e-12, -1.234123914173324e-12, -2.263300658000844e-12, 4.761746552617296e-12, -7.581713035165194e-12, -3.2216451728572792e-12, 1.2537082483277118e-11, 4.327427305383935e-12, 1.6258105972610792e-11, -4.160560784782774e-12, -4.480416038177282e-12, 6.38111785633555e-12, -1.4929835145949255e-11, 3.8613556796462944e-13] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [-3.293521011471512e-11, 4.70075089964439e-11, -1.2047651765101364e-10, -7.89858178862346e-11, -1.6831536164829686e-11, 2.6878721470779965e-11, 7.553069281129865e-12, 5.590283791434558e-11, 2.468025783741723e-12, -6.485145753742927e-11, 9.313505522356991e-11, -2.4262503117711276e-10, -1.5173040601723642e-10, -3.03922442768112e-11, 5.760858456937967e-11, 1.855426923214054e-11, 1.1129985821867194e-10, 7.228884157939319e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.2016165840122994e-11, -3.0372704351577795e-11, -2.0196511130166073e-11, 3.672573356539033e-11, -1.6952883541421215e-11, -1.3690193423343544e-10, -3.383060498407531e-11, 1.5431411704014408e-10, 7.046274674848974e-11, 2.188893510890466e-11, -5.873468378325697e-11, -3.772615553288006e-11, 6.584754963512296e-11, -3.1718294657423485e-11, -2.6667901220633894e-10, -7.28308524600152e-11, 3.17647463887738e-10, 1.4099166278924713e-10] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [-4.1408432238654314e-11, -4.177103107849689e-11, -5.70783420528187e-11, 1.830846585448853e-11, 1.0509859649232567e-10, -5.593925322955329e-11, 4.71467309637319e-11, 1.676991878696299e-11, -8.20865597717102e-12, -8.86215545392588e-11, -7.966660664493475e-11, -1.0969392061355165e-10, 3.690803218603378e-11, 2.0983992321532696e-10, -1.0866851862800786e-10, 9.379563792322188e-11, 3.085176558670355e-11, -1.414846018121807e-11, -1.6763257448815239e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-6.735922930545257e-11, 1.358313461707894e-10, 9.942224821202217e-11, -4.2739034533667564e-11, -8.131317841275632e-11, 5.570632843898693e-11, 2.2607693495046988e-11, -9.584599780509961e-11, -4.2543746303636e-11, -1.3006518084779373e-10, 2.7434454707986333e-10, 2.1055557297700034e-10, -8.205347512557637e-11, -1.5547707565843893e-10, 1.1439293956527763e-10, 4.7237547207146235e-11, -1.8993084882623634e-10, -8.659317707326863e-11, 5.877076603155729e-12] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [4.59279281272984e-11, -9.509681930808256e-11, 1.5183831969522998e-10, 1.3041812074732206e-10, -8.687361940928895e-11, -1.4964807171224948e-11, -1.888798006888237e-10, -3.767564038525961e-11, 2.6005153586083907e-10, 6.798139828845251e-11, 9.816569779275142e-11, -1.8513268695841134e-10, 3.015658833760426e-10, 2.6020408050442256e-10, -1.5570600364611664e-10, -3.779720980645607e-11, -3.729637709781741e-10, -9.513523302473459e-11, 5.324061191913643e-10, 1.292244089512451e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-6.482359093951118e-11, 4.0345282670273264e-11, -4.1919134829981886e-11, -1.956032003036512e-10, -1.3090029060691677e-10, 8.740563828268932e-12, -2.030675627651135e-11, 1.4600098907635584e-11, 2.4457302849612006e-10, 2.361399964456723e-11, -1.348228195752199e-10, 8.174461108012565e-11, -8.234390946881831e-11, -3.8813030567297346e-10, -2.628248729763527e-10, 1.514099956523296e-11, -4.100264572315382e-11, 2.8282043373906163e-11, 4.943199183315983e-10, 4.839173506354655e-11] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [2.12851958281135e-11, 2.0573542869328776e-11, -1.5276702125532893e-10, -1.9279022822615843e-12, 1.8933099532603137e-10, -5.331468599933942e-11, -1.0952083684401259e-10, 4.8912873751305597e-11, -1.1631218210794714e-10, -1.201265753536518e-10, 3.6774139289263985e-11, 3.344102772473434e-11, -3.016032978919725e-10, -1.7142065544817342e-11, 3.7230085681017044e-10, -9.964506997306444e-11, -2.2245350006500075e-10, 8.607470292076869e-11, -2.339808347073813e-10, -2.501487905703925e-10, 2.6620927684462004e-12] QuasiNewtonMethods.optimum(state) .- 1 = [6.817924003144071e-11, -5.7134186270957343e-11, 2.755329298054221e-11, 2.9302116288931757e-11, 1.9042101229160835e-11, 1.5369927552910667e-11, -6.200318036775343e-11, 2.4487967209552153e-11, -7.069789198510534e-12, -1.0169198816356584e-11, 1.3864487335979447e-10, -1.1573153546606818e-10, 5.501621380687993e-11, 5.153899529375394e-11, 3.454037056371817e-11, 3.4884761745956894e-11, -1.2971590468424665e-10, 4.630074101896753e-11, -1.3666623388530752e-11, -2.4846791291111003e-11, -1.155520124029863e-12] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-9.205303186377023e-12, -1.9101686898892467e-10, -6.054201584504426e-11, -1.5200152247984988e-10, 9.816480961433172e-11, 5.847877737608087e-11, -2.932953879764e-11, -1.3199408233077747e-10, 1.2866507859143894e-10, 3.733013897999626e-12, 1.7325274548340985e-10, -1.6747270237260636e-11, -3.892776101466211e-10, -1.2087464362764422e-10, -3.0721525323684773e-10, 2.0494073105226107e-10, 1.1534617705422079e-10, -3.4976133100883544e-11, -2.718247849031741e-10, 2.722517766784449e-10, 1.2630785306555481e-11, 3.5335401271652245e-10] QuasiNewtonMethods.optimum(state) .- 1 = [5.857736518066758e-11, -4.4447445723960755e-11, 1.1176548575519973e-10, -7.626232978452663e-12, -2.2956792022910122e-10, 3.5599745373815495e-11, 8.860800981835837e-11, -8.489065006500596e-11, 1.674793637107541e-11, -1.2559087103625188e-10, 1.0899281477350087e-10, 1.118645176489963e-10, -9.771594644547577e-11, 2.2319834869222177e-10, -1.791644610449339e-11, -4.5809767090787545e-10, 7.073697183557215e-11, 1.76110459548795e-10, -1.7196055690504863e-10, 3.473532572684235e-11, -2.5242452572626917e-10, 2.1769297475771054e-10] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [-5.962763616196298e-11, 9.30560073442166e-11, -6.456224443951442e-11, 3.5072389437118545e-11, 1.4719336860480325e-12, 3.3734348647840307e-11, 3.487987676464854e-11, 2.2654766951291094e-11, 2.479594307658317e-11, -8.748990421025837e-11, 3.944178317283331e-12, -1.2036094343415016e-10, 1.8587420491655848e-10, -1.2826706363711082e-10, 6.85995704685638e-11, 1.1077805339709812e-12, 6.660894058541089e-11, 6.743339220349753e-11, 4.498579286860149e-11, 4.80444573014438e-11, -1.792944681611175e-10, 9.591216709736727e-12, -3.774758283725532e-14] QuasiNewtonMethods.optimum(state) .- 1 = [-2.7127522450598462e-11, -3.224731592865737e-11, 4.310551915409633e-12, 1.0435230457517264e-10, 1.4978240869822912e-11, -4.3842041108632657e-11, -5.8729687779646156e-12, -7.381539823825278e-11, -4.850964074876174e-11, 1.0611178602459859e-10, 3.2767788482601645e-11, -5.9489857484607e-11, -6.516320816274401e-11, 2.771782803279166e-12, 2.0570323222557363e-10, 2.8977709121136286e-11, -8.91910989508915e-11, -1.5396350860896746e-11, -1.4468537479217503e-10, -1.0145739803846254e-10, 2.1107671166475939e-10, 6.157008236584716e-11, -3.339550858072471e-13] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [3.6036729156307956e-11, 3.6730485319935724e-10, 1.3965029133089502e-10, -4.1177616871834744e-11, -8.337586177020739e-11, -4.382139096037463e-11, -1.7350565428841946e-12, 2.480071703558906e-10, -3.1812918965812287e-10, 1.7831336407425624e-10, 8.223866032608385e-11, -6.70197231045222e-11, 8.246647809073693e-11, 7.572726890003878e-10, 2.7775293176546256e-10, -7.726030926136218e-11, -1.6443901795781812e-10, -8.883815905136316e-11, 1.95075067210837e-11, 4.942766196336379e-10, -6.304243793664455e-10, 3.5809821774535067e-10, 1.7679591124419858e-10, -1.3473089310878095e-10] QuasiNewtonMethods.optimum(state) .- 1 = [6.006315445006294e-10, 2.2987967085441596e-10, 4.046607493535248e-11, -8.945399976312274e-12, -3.077760268865859e-11, -1.9510149051882308e-10, 1.3906964468901606e-10, 2.7681634762188878e-11, 2.1124657578752704e-11, -6.726064150086586e-12, -3.043909568845038e-11, -3.933153802648803e-11, 1.202450361503793e-9, 4.805391640161361e-10, 8.589973177208776e-11, -2.8556601527895964e-11, -6.042233380298967e-11, -3.933604553196801e-10, 2.8130830997952216e-10, 4.974798351042864e-11, 4.2847281278568516e-11, -8.234857240552174e-12, -6.126010809737181e-11, -6.990297229947373e-11] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 8m34.8s Method ambiguity | 1 1 11.6s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 8.6s Compat bounds | 3 1 4 10.8s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.5s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 5m10.3s RNG of the outermost testset: Random.Xoshiro(0x906697bdca5610df, 0x52512ef2bfb457d5, 0xec2b82527268ad90, 0xf7871194cd19882d, 0xe8e52b43e1313569) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 547.03s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2673 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2522 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:515 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:157 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:309 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [14] _start() @ Base ./client.jl:577 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 1394.4s: package has test failures