Package evaluation of StructuralIdentifiability on Julia 1.13.0-DEV.1265 (cd62cf9a08*) started at 2025-10-05T15:31:46.526 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 10.27s ################################################################################ # Installation # Installing StructuralIdentifiability... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [220ca800] + StructuralIdentifiability v0.5.16 Updating `~/.julia/environments/v1.13/Manifest.toml` ⌅ [c3fe647b] + AbstractAlgebra v0.46.5 [a9b6321e] + Atomix v1.1.2 [861a8166] + Combinatorics v1.0.3 [864edb3b] + DataStructures v0.19.1 [e2ba6199] + ExprTools v0.1.10 [0b43b601] + Groebner v0.9.5 [18e54dd8] + IntegerMathUtils v0.1.3 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [1914dd2f] + MacroTools v0.5.16 ⌅ [2edaba10] + Nemo v0.51.1 [bac558e1] + OrderedCollections v1.8.1 [3e851597] + ParamPunPam v0.5.3 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.11.0 [fb686558] + RandomExtensions v0.4.4 [220ca800] + StructuralIdentifiability v0.5.16 [a759f4b9] + TimerOutputs v0.5.29 [013be700] + UnsafeAtomics v0.3.0 [e134572f] + FLINT_jll v301.300.102+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.68s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 233.7s ################################################################################ # Testing # Testing StructuralIdentifiability Status `/tmp/jl_Hf8uUh/Project.toml` ⌅ [c3fe647b] AbstractAlgebra v0.46.5 [4c88cf16] Aqua v0.8.14 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [864edb3b] DataStructures v0.19.1 [0b43b601] Groebner v0.9.5 [c8e1da08] IterTools v1.10.0 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.51.1 [3e851597] ParamPunPam v0.5.3 [aea7be01] PrecompileTools v1.3.3 [27ebfcd6] Primes v0.5.7 [276daf66] SpecialFunctions v2.6.1 [220ca800] StructuralIdentifiability v0.5.16 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_Hf8uUh/Manifest.toml` ⌅ [c3fe647b] AbstractAlgebra v0.46.5 [4c88cf16] Aqua v0.8.14 [a9b6321e] Atomix v1.1.2 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [864edb3b] DataStructures v0.19.1 [ab62b9b5] DeepDiffs v1.2.0 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 [0b43b601] Groebner v0.9.5 [615f187c] IfElse v0.1.1 [18e54dd8] IntegerMathUtils v0.1.3 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.51.1 [bac558e1] OrderedCollections v1.8.1 [3e851597] ParamPunPam v0.5.3 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.11.0 [fb686558] RandomExtensions v0.4.4 [431bcebd] SciMLPublic v1.0.0 [276daf66] SpecialFunctions v2.6.1 [aedffcd0] Static v1.3.0 [220ca800] StructuralIdentifiability v0.5.16 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [013be700] UnsafeAtomics v0.3.0 [e134572f] FLINT_jll v301.300.102+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.2+0 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.46.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Resolving package versions... Updating `/tmp/jl_Hf8uUh/Project.toml` ⌅ [c3fe647b] ↓ AbstractAlgebra v0.46.5 ⇒ v0.44.13 [loaded: v0.46.5] ⌅ [864edb3b] ↓ DataStructures v0.19.1 ⇒ v0.18.22 [loaded: v0.19.1] [961ee093] + ModelingToolkit v10.24.0 ⌅ [2edaba10] ↓ Nemo v0.51.1 ⇒ v0.49.5 [loaded: v0.51.1] Updating `/tmp/jl_Hf8uUh/Manifest.toml` [47edcb42] + ADTypes v1.18.0 ⌅ [c3fe647b] ↓ AbstractAlgebra v0.46.5 ⇒ v0.44.13 [loaded: v0.46.5] [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.4.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.20.0 [4c555306] + ArrayLayouts v1.11.2 [e2ed5e7c] + Bijections v0.2.2 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] + BlockArrays v1.7.2 [70df07ce] + BracketingNonlinearSolve v1.5.0 [d360d2e6] + ChainRulesCore v1.26.0 [fb6a15b2] + CloseOpenIntervals v0.1.13 [a80b9123] + CommonMark v0.9.1 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 [187b0558] + ConstructionBase v1.6.0 [9a962f9c] + DataAPI v1.16.0 ⌅ [864edb3b] ↓ DataStructures v0.19.1 ⇒ v0.18.22 [loaded: v0.19.1] [2b5f629d] + DiffEqBase v6.190.2 [459566f4] + DiffEqCallbacks v4.9.0 [77a26b50] + DiffEqNoiseProcess v5.24.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.8 [8d63f2c5] + DispatchDoctor v0.4.26 [31c24e10] + Distributions v0.25.122 [5b8099bc] + DomainSets v0.7.16 ⌃ [7c1d4256] + DynamicPolynomials v0.6.3 [06fc5a27] + DynamicQuantities v1.10.0 [4e289a0a] + EnumX v1.0.5 [f151be2c] + EnzymeCore v0.8.14 [55351af7] + ExproniconLite v0.10.14 [7034ab61] + FastBroadcast v0.3.5 [9aa1b823] + FastClosures v0.3.2 [a4df4552] + FastPower v1.1.3 [1a297f60] + FillArrays v1.14.0 [64ca27bc] + FindFirstFunctions v1.4.2 [6a86dc24] + FiniteDiff v2.28.1 [1fa38f19] + Format v1.3.7 ⌃ [f6369f11] + ForwardDiff v0.10.39 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [d9f16b24] + Functors v0.5.2 [46192b85] + GPUArraysCore v0.2.0 [c27321d9] + Glob v1.3.1 [86223c79] + Graphs v1.13.1 [34004b35] + HypergeometricFunctions v0.3.28 [3263718b] + ImplicitDiscreteSolve v1.2.0 [d25df0c9] + Inflate v0.1.5 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [82899510] + IteratorInterfaceExtensions v1.0.0 [ae98c720] + Jieko v0.2.1 [98e50ef6] + JuliaFormatter v2.1.6 ⌅ [70703baa] + JuliaSyntax v0.4.10 [ccbc3e58] + JumpProcesses v9.19.1 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.10 [10f19ff3] + LayoutPointers v0.1.17 [87fe0de2] + LineSearch v0.1.4 [d3d80556] + LineSearches v7.4.0 [d8e11817] + MLStyle v0.4.17 [d125e4d3] + ManualMemory v0.1.8 [bb5d69b7] + MaybeInplace v0.1.4 [e1d29d7a] + Missings v1.2.0 [961ee093] + ModelingToolkit v10.24.0 [2e0e35c7] + Moshi v0.3.7 [46d2c3a1] + MuladdMacro v0.2.4 ⌃ [102ac46a] + MultivariatePolynomials v0.5.9 [d8a4904e] + MutableArithmetics v1.6.6 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 ⌅ [2edaba10] ↓ Nemo v0.51.1 ⇒ v0.49.5 [loaded: v0.51.1] [be0214bd] + NonlinearSolveBase v2.0.0 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.13.2 [bbf590c4] + OrdinaryDiffEqCore v1.34.0 [90014a1f] + PDMats v0.11.35 [d96e819e] + Parameters v0.12.3 [e409e4f3] + PoissonRandom v0.4.7 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [85a6dd25] + PositiveFactorizations v0.2.4 [d236fae5] + PreallocationTools v0.4.34 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.37.1 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [ae5879a3] + ResettableStacks v1.1.1 [79098fc4] + Rmath v0.8.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.15 [9dfe8606] + SCCNonlinearSolve v1.6.0 [94e857df] + SIMDTypes v0.1.0 [0bca4576] + SciMLBase v2.120.0 [19f34311] + SciMLJacobianOperators v0.1.11 [c0aeaf25] + SciMLOperators v1.7.2 [53ae85a6] + SciMLStructures v1.7.0 [efcf1570] + Setfield v1.1.2 [727e6d20] + SimpleNonlinearSolve v2.9.0 [699a6c99] + SimpleTraits v0.9.5 [ce78b400] + SimpleUnPack v1.1.0 [a2af1166] + SortingAlgorithms v1.2.2 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [4c63d2b9] + StatsFuns v1.5.0 [7792a7ef] + StrideArraysCore v0.5.8 [2efcf032] + SymbolicIndexingInterface v0.3.45 ⌃ [19f23fe9] + SymbolicLimits v0.2.3 ⌅ [d1185830] + SymbolicUtils v3.31.0 [0c5d862f] + Symbolics v6.55.0 [ed4db957] + TaskLocalValues v0.1.3 [8ea1fca8] + TermInterface v2.0.0 [1c621080] + TestItems v1.0.0 [8290d209] + ThreadingUtilities v0.5.5 [410a4b4d] + Tricks v0.1.12 [781d530d] + TruncatedStacktraces v1.4.0 [5c2747f8] + URIs v1.6.1 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.25.0 [a7c27f48] + Unityper v0.1.6 ⌅ [e134572f] ↓ FLINT_jll v301.300.102+0 ⇒ v300.200.201+0 [loaded: v301.300.102+0] [61579ee1] + Ghostscript_jll v9.55.1+0 [aacddb02] + JpegTurbo_jll v3.1.3+0 [f50d1b31] + Rmath_jll v0.5.1+0 [9fa8497b] + Future v1.11.0 [a63ad114] + Mmap v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [4607b0f0] + SuiteSparse Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Resolving package versions... Updating `/tmp/jl_Hf8uUh/Project.toml` [0c5d862f] + Symbolics v6.55.0 Manifest No packages added to or removed from `/tmp/jl_Hf8uUh/Manifest.toml` [ Info: Testing started [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y ┌ Warning: New variable c, treating as a scalar parameter └ @ StructuralIdentifiability ~/.julia/packages/StructuralIdentifiability/0tPYp/src/pb_representation.jl:94 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: a [ Info: Parameters: b [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: a, b [ Info: Parameters: k1, k2 [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y 2.095331 seconds (933.63 k allocations: 49.981 MiB, 99.48% compilation time) 0.001935 seconds (7.33 k allocations: 341.266 KiB) 0.001730 seconds (10.80 k allocations: 487.859 KiB) 0.001804 seconds (10.76 k allocations: 482.125 KiB) 0.002283 seconds (14.53 k allocations: 637.844 KiB) 0.001348 seconds (7.95 k allocations: 362.320 KiB) 0.000958 seconds (7.45 k allocations: 302.023 KiB) 15.250860 seconds (6.78 M allocations: 364.915 MiB, 0.81% gc time, 99.77% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.343565 seconds (111.93 k allocations: 6.274 MiB, 98.18% compilation time) [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.011787 seconds (9.74 k allocations: 541.383 KiB, 90.64% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b [ Info: Inputs: u [ Info: Outputs: y Coefficient extraction for rational functions: Test Failed at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/extract_coefficients.jl:27 Expression: Set(C) == Set([x // 1, (y + 3) // 1, y ^ 2 // 1, one(R) // 1, 3 * one(R) // 1, -((x ^ 2 + y ^ 2)) // 1]) Evaluated: Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[1//3, -1//3*x^2 - 1//3*y^2, 1//3*y^2, 1//3*x, 1, 1//3*y + 1]) == Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[y^2, 3, y + 3, 1, x, -x^2 - y^2]) Stacktrace: [1] top-level scope @ ~/.julia/packages/StructuralIdentifiability/0tPYp/test/extract_coefficients.jl:2 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [3] macro expansion @ ~/.julia/packages/StructuralIdentifiability/0tPYp/test/extract_coefficients.jl:27 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 IOEQS: Dict{QQMPolyRingElem, QQMPolyRingElem}(y2(t)_1 => -a*y2(t)_0 + a*u(t)_0 + y2(t)_1 - u(t)_1, y1(t)_2 => -y1(t)_0 + y1(t)_2) [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a, b, c, d [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, I, W, R [ Info: Parameters: a, bi, bw, gam, k, mu, xi [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a01, a12, a13, a21, a31 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, In [ Info: Parameters: N, a, b, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003733815 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 6.582682922 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.070712817 seconds [ Info: Global identifiability assessed in 47.687811687 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001882092 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Global identifiability assessed in 0.605739386 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Global identifiability assessed in 5.082e-5 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.025957027 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.398030142 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.478e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:12 ✓ # Computing specializations.. Time: 0:00:15 [ Info: Search for polynomial generators concluded in 13.550148128 [ Info: Selecting generators in 0.012310835 [ Info: Inclusion checked with probability 0.9955 in 0.065573277 seconds [ Info: Global identifiability assessed in 98.035844179 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.746744945 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 1.71200696 seconds [ Info: Dimensions of the Wronskians [676] [ Info: Ranks of the Wronskians computed in 0.09727152 seconds [ Info: Global identifiability assessed in 37.302656499 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.016241718 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.034436419 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000299097 seconds [ Info: Global identifiability assessed in 0.084281132 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Note: the input model has nontrivial submodels. If the computation for the full model will be too heavy, you may want to try to first analyze one of the submodels. They can be produced using function `find_submodels` [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 16.458421925 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004066982 seconds [ Info: Dimensions of the Wronskians [2, 3, 2] [ Info: Ranks of the Wronskians computed in 4.293e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.951289891 [ Info: Selecting generators in 0.000395266 [ Info: Inclusion checked with probability 0.9955 in 0.002793184 seconds [ Info: Global identifiability assessed in 18.918846225 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002585525 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001966141 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.6909e-5 seconds [ Info: Global identifiability assessed in 0.007777247 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0031886 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002273199 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.173e-5 seconds [ Info: Global identifiability assessed in 0.009138405 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005906415 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004386339 seconds [ Info: Dimensions of the Wronskians [6] [ Info: Ranks of the Wronskians computed in 2.7069e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.191293749 [ Info: Selecting generators in 0.018957173 [ Info: Inclusion checked with probability 0.9955 in 0.005845775 seconds [ Info: Global identifiability assessed in 2.4445767 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009048786 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004552618 seconds [ Info: Dimensions of the Wronskians [2, 5] [ Info: Ranks of the Wronskians computed in 3.795e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008346682 [ Info: Selecting generators in 0.004425828 [ Info: Inclusion checked with probability 0.9955 in 0.003983993 seconds [ Info: Global identifiability assessed in 0.056887799 seconds [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: V_m, c, k01, k_m [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k1, k2, k3, k4 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: s, i, r, x1, x2 [ Info: Parameters: M, b0, b1, g, mu, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, E, I, R, Q [ Info: Parameters: beta, gamma, psi, v [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: k01, k12, k13, k14, k21, k31, k41 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x5, x7, x4, x6 [ Info: Parameters: k10, k5, k6, k7, k8, k9 [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, In, L, Q [ Info: Parameters: Ninv, a, b, e, g, s [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, R, W [ Info: Parameters: Dd, T, a, d, dr, e, g, r, rR [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: P3, P0, P5, P4, P1, P2 [ Info: Parameters: Ks, M, Mar, alpa, beta, beta_SA, beta_SI, phi, siga1, siga2 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: C, α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR [ Info: Parameters: EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1 [ Info: Inputs: pro_EGFR [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio [ Info: Parameters: kOHbeta10, kbeta, kbeta10, kcryOH, kcrybeta, kzea [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: EpoR_A, k1, k2, k3, k5, k6, k7 [ Info: Inputs: [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, U, I [ Info: Parameters: N, a, b, d, g [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: alpha [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k01, k02, k12, k21, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: K_M, V_M, b1, c, k02, k12, k21 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: k02, k03, k12, k13, k21, k31, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: a03, a04, a13, a24, a31, a42, a43 [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, I [ Info: Parameters: N, beta, k, mu, nu [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4, p5 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: beta, c, d, k1, k2, mu1, mu2, q1, q2, s [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001762694 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001502916 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.4079e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000136229 [ Info: Selecting generators in 1.277182929 [ Info: Inclusion checked with probability 0.995 in 0.001558845 seconds [ Info: The search for identifiable functions concluded in 2.715293884 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001929962 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001718934 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.658e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.0739e-5 [ Info: Selecting generators in 0.000716383 [ Info: Inclusion checked with probability 0.995 in 0.001312098 seconds [ Info: The search for identifiable functions concluded in 0.012143267 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001250968 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001113859 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.662e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.351e-5 [ Info: Selecting generators in 0.000703313 [ Info: Inclusion checked with probability 0.995 in 0.001192239 seconds [ Info: The search for identifiable functions concluded in 0.009597491 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001239809 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00107045 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.4079e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000520715 [ Info: Selecting generators in 0.000676274 [ Info: Inclusion checked with probability 0.995 in 0.001215039 seconds [ Info: The search for identifiable functions concluded in 0.009914458 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001362617 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00105364 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.997e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000477496 [ Info: Selecting generators in 0.000500695 [ Info: Inclusion checked with probability 0.995 in 0.000904341 seconds [ Info: The search for identifiable functions concluded in 0.00852367 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000924602 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000822882 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.732e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000373977 [ Info: Selecting generators in 0.000502416 [ Info: Inclusion checked with probability 0.995 in 0.000913932 seconds [ Info: The search for identifiable functions concluded in 0.006598629 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001384447 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000909772 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.5069e-5 seconds [ Info: The search for identifiable functions concluded in 0.019176101 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001462646 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000957531 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.644e-5 seconds [ Info: The search for identifiable functions concluded in 0.003026332 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001169699 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000931381 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.667e-5 seconds [ Info: The search for identifiable functions concluded in 0.002664005 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00112447 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000841092 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.537e-5 seconds [ Info: The search for identifiable functions concluded in 0.002481786 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00107159 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000838042 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.38e-5 seconds [ Info: The search for identifiable functions concluded in 0.002450127 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00104884 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000954791 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.5769e-5 seconds [ Info: The search for identifiable functions concluded in 0.002566456 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001612725 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00106636 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.582e-5 seconds [ Info: The search for identifiable functions concluded in 0.003424328 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001263598 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0010058 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.739e-5 seconds [ Info: The search for identifiable functions concluded in 0.002900413 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001244558 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000921442 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.557e-5 seconds [ Info: The search for identifiable functions concluded in 0.002768994 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001188988 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000951742 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.45e-5 seconds [ Info: The search for identifiable functions concluded in 0.002706525 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001174819 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001052931 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.612e-5 seconds [ Info: The search for identifiable functions concluded in 0.002803064 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001283738 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000948521 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.5539e-5 seconds [ Info: The search for identifiable functions concluded in 0.002805824 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.261664216 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001429736 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.649e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.2809e-5 [ Info: Selecting generators in 0.000491295 [ Info: Inclusion checked with probability 0.995 in 0.000963101 seconds [ Info: The search for identifiable functions concluded in 0.269722621 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001859333 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001244639 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.742e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 6.314e-5 [ Info: Selecting generators in 0.000487836 [ Info: Inclusion checked with probability 0.995 in 0.000898352 seconds [ Info: The search for identifiable functions concluded in 0.007955116 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001794014 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001232539 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.758e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 6.4679e-5 [ Info: Selecting generators in 0.000458775 [ Info: Inclusion checked with probability 0.995 in 0.000912472 seconds [ Info: The search for identifiable functions concluded in 0.007793268 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001790313 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001214169 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.669e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000361807 [ Info: Selecting generators in 0.000506045 [ Info: Inclusion checked with probability 0.995 in 0.000890982 seconds [ Info: The search for identifiable functions concluded in 0.008129894 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001893602 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001255078 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.084e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000378826 [ Info: Selecting generators in 0.000476145 [ Info: Inclusion checked with probability 0.995 in 0.000914471 seconds [ Info: The search for identifiable functions concluded in 0.00849651 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001856133 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001276008 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.6559e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000436275 [ Info: Selecting generators in 0.000534665 [ Info: Inclusion checked with probability 0.995 in 0.00103915 seconds [ Info: The search for identifiable functions concluded in 0.008745378 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001316248 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002033121 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.288e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000110279 [ Info: Selecting generators in 0.001925142 [ Info: Inclusion checked with probability 0.995 in 0.002741544 seconds [ Info: The search for identifiable functions concluded in 0.016491596 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001294868 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001301758 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.222e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.5149e-5 [ Info: Selecting generators in 0.001688784 [ Info: Inclusion checked with probability 0.995 in 0.002460467 seconds [ Info: The search for identifiable functions concluded in 0.014335426 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00113646 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00106725 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.087e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.00010473 [ Info: Selecting generators in 0.001665164 [ Info: Inclusion checked with probability 0.995 in 0.002419718 seconds [ Info: The search for identifiable functions concluded in 0.013455685 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001194439 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001177049 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 4.112e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.212919751 [ Info: Selecting generators in 0.003676176 [ Info: Inclusion checked with probability 0.995 in 0.002481627 seconds [ Info: The search for identifiable functions concluded in 0.228770543 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001280378 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001122239 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.186e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.011269855 [ Info: Selecting generators in 0.003738685 [ Info: Inclusion checked with probability 0.995 in 0.00312527 seconds [ Info: The search for identifiable functions concluded in 0.028099928 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001467566 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001360348 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.5569e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.015229258 [ Info: Selecting generators in 0.003547367 [ Info: Inclusion checked with probability 0.995 in 0.002904983 seconds [ Info: The search for identifiable functions concluded in 0.034490718 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001295267 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001133999 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.2889e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.8979e-5 [ Info: Selecting generators in 0.001558326 [ Info: Inclusion checked with probability 0.995 in 0.001743264 seconds [ Info: The search for identifiable functions concluded in 0.8906801 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00105598 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000937831 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.067e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.7779e-5 [ Info: Selecting generators in 0.002001031 [ Info: Inclusion checked with probability 0.995 in 0.002385868 seconds [ Info: The search for identifiable functions concluded in 0.011737961 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00106274 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000948632 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.691e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.3199e-5 [ Info: Selecting generators in 0.001536506 [ Info: Inclusion checked with probability 0.995 in 0.001872353 seconds [ Info: The search for identifiable functions concluded in 0.010513872 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00112829 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000978741 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 3.578e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.198546606 [ Info: Selecting generators in 0.002441057 [ Info: Inclusion checked with probability 0.995 in 0.001762173 seconds [ Info: The search for identifiable functions concluded in 0.210084688 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001396837 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001266778 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.976e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004045352 [ Info: Selecting generators in 0.0020703 [ Info: Inclusion checked with probability 0.995 in 0.001956642 seconds [ Info: The search for identifiable functions concluded in 0.016381747 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00108386 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000933951 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.917e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004878304 [ Info: Selecting generators in 0.001838873 [ Info: Inclusion checked with probability 0.995 in 0.001754293 seconds [ Info: The search for identifiable functions concluded in 0.015678713 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002159319 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001617235 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.178e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.6499e-5 [ Info: Selecting generators in 0.000499366 [ Info: Inclusion checked with probability 0.995 in 0.002213639 seconds [ Info: The search for identifiable functions concluded in 0.016256648 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002205719 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001630785 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.677e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000101909 [ Info: Selecting generators in 0.000551805 [ Info: Inclusion checked with probability 0.995 in 0.018700566 seconds [ Info: The search for identifiable functions concluded in 0.032952912 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002115791 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001824473 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.132e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000114389 [ Info: Selecting generators in 0.000455516 [ Info: Inclusion checked with probability 0.995 in 0.001915282 seconds [ Info: The search for identifiable functions concluded in 0.014651423 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001838852 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001421926 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.597e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006033033 [ Info: Selecting generators in 0.000703974 [ Info: Inclusion checked with probability 0.995 in 0.00220669 seconds [ Info: The search for identifiable functions concluded in 0.02029419 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001639655 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001288378 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.661e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004906034 [ Info: Selecting generators in 0.000569745 [ Info: Inclusion checked with probability 0.995 in 0.001842203 seconds [ Info: The search for identifiable functions concluded in 0.01721404 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001641964 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001253068 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.78e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004825875 [ Info: Selecting generators in 0.000564705 [ Info: Inclusion checked with probability 0.995 in 0.001878663 seconds [ Info: The search for identifiable functions concluded in 0.01719056 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002113431 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001613545 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.005e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.3819e-5 [ Info: Selecting generators in 0.002361538 [ Info: Inclusion checked with probability 0.995 in 0.002302379 seconds [ Info: The search for identifiable functions concluded in 0.016322397 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002019651 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001525315 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.9359e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.172e-5 [ Info: Selecting generators in 0.002404268 [ Info: Inclusion checked with probability 0.995 in 0.002365268 seconds [ Info: The search for identifiable functions concluded in 0.016252098 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002216259 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001652014 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.9909e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.0689e-5 [ Info: Selecting generators in 0.002474197 [ Info: Inclusion checked with probability 0.995 in 0.002457507 seconds [ Info: The search for identifiable functions concluded in 0.016893683 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002273269 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001574485 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.968e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009851508 [ Info: Selecting generators in 0.002518386 [ Info: Inclusion checked with probability 0.995 in 0.002258409 seconds [ Info: The search for identifiable functions concluded in 0.026572961 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002066021 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001611245 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.852e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00956613 [ Info: Selecting generators in 0.002525066 [ Info: Inclusion checked with probability 0.995 in 0.002435868 seconds [ Info: The search for identifiable functions concluded in 0.025814489 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001935882 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001615155 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.9639e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.279723427 [ Info: Selecting generators in 0.002561386 [ Info: Inclusion checked with probability 0.995 in 0.002253889 seconds [ Info: The search for identifiable functions concluded in 0.295920586 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012413684 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003596647 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.228e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000122389 [ Info: Selecting generators in 0.006897356 [ Info: Inclusion checked with probability 0.995 in 0.003945723 seconds [ Info: The search for identifiable functions concluded in 0.243867103 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004990683 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003725166 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.1189e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000103599 [ Info: Selecting generators in 0.006544329 [ Info: Inclusion checked with probability 0.995 in 0.003792135 seconds [ Info: The search for identifiable functions concluded in 0.031953931 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005200211 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004053202 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.275e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000127679 [ Info: Selecting generators in 0.007329581 [ Info: Inclusion checked with probability 0.995 in 0.0043403 seconds [ Info: The search for identifiable functions concluded in 0.035422889 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005421239 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003984603 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.0219e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001982932 [ Info: Selecting generators in 0.00748416 [ Info: Inclusion checked with probability 0.995 in 0.0042202 seconds [ Info: The search for identifiable functions concluded in 0.037620189 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005191472 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004007533 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.145e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001668985 [ Info: Selecting generators in 0.007448111 [ Info: Inclusion checked with probability 0.995 in 0.00424558 seconds [ Info: The search for identifiable functions concluded in 0.036810266 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00543696 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004098852 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.262e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001653704 [ Info: Selecting generators in 0.007803987 [ Info: Inclusion checked with probability 0.995 in 0.00424893 seconds [ Info: The search for identifiable functions concluded in 0.037749967 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003653566 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002425327 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.427e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.9899e-5 [ Info: Selecting generators in 0.001391227 [ Info: Inclusion checked with probability 0.995 in 0.002598006 seconds [ Info: The search for identifiable functions concluded in 0.017916702 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003926584 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002552406 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.377e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.5539e-5 [ Info: Selecting generators in 0.001489266 [ Info: Inclusion checked with probability 0.995 in 0.002594486 seconds [ Info: The search for identifiable functions concluded in 0.018303549 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003590306 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002459777 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.484e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.5179e-5 [ Info: Selecting generators in 0.001406507 [ Info: Inclusion checked with probability 0.995 in 0.002559056 seconds [ Info: The search for identifiable functions concluded in 0.017816233 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003906283 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002546827 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.5e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000903771 [ Info: Selecting generators in 0.001484816 [ Info: Inclusion checked with probability 0.995 in 0.002610076 seconds [ Info: The search for identifiable functions concluded in 0.019433218 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004148801 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002546127 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.38e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000875722 [ Info: Selecting generators in 0.001556615 [ Info: Inclusion checked with probability 0.995 in 0.002582486 seconds [ Info: The search for identifiable functions concluded in 0.019600387 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003923824 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002595696 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.47e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00104083 [ Info: Selecting generators in 0.001658134 [ Info: Inclusion checked with probability 0.995 in 0.002613385 seconds [ Info: The search for identifiable functions concluded in 0.020335361 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003859694 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002509907 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.9639e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.7009e-5 [ Info: Selecting generators in 0.00221762 [ Info: Inclusion checked with probability 0.995 in 0.002557376 seconds [ Info: The search for identifiable functions concluded in 0.023088444 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004083542 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002540026 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.0389e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.6709e-5 [ Info: Selecting generators in 0.001962502 [ Info: Inclusion checked with probability 0.995 in 0.002626415 seconds [ Info: The search for identifiable functions concluded in 0.022698198 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003861324 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002599966 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.848e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.9569e-5 [ Info: Selecting generators in 0.001891863 [ Info: Inclusion checked with probability 0.995 in 0.002538086 seconds [ Info: The search for identifiable functions concluded in 0.022009624 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004027672 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002669405 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.888e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.25047752 [ Info: Selecting generators in 0.002591126 [ Info: Inclusion checked with probability 0.995 in 0.00219009 seconds [ Info: The search for identifiable functions concluded in 0.273462726 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003246969 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0020888 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.757e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.011036927 [ Info: Selecting generators in 0.002520196 [ Info: Inclusion checked with probability 0.995 in 0.00215042 seconds [ Info: The search for identifiable functions concluded in 0.030237638 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00317962 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002043781 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.788e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.011432093 [ Info: Selecting generators in 0.002526946 [ Info: Inclusion checked with probability 0.995 in 0.00223803 seconds [ Info: The search for identifiable functions concluded in 0.030663964 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001690864 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001378857 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.467e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000110349 [ Info: Selecting generators in 0.001159259 [ Info: Inclusion checked with probability 0.995 in 0.001911902 seconds [ Info: The search for identifiable functions concluded in 0.012246646 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001720373 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001372707 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.695e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.1649e-5 [ Info: Selecting generators in 0.00108606 [ Info: Inclusion checked with probability 0.995 in 0.001921092 seconds [ Info: The search for identifiable functions concluded in 0.011969029 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001818313 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001417386 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.727e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.2609e-5 [ Info: Selecting generators in 0.00115313 [ Info: Inclusion checked with probability 0.995 in 0.001948842 seconds [ Info: The search for identifiable functions concluded in 0.012668111 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001746013 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001369767 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.707e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007862617 [ Info: Selecting generators in 0.002016121 [ Info: Inclusion checked with probability 0.995 in 0.001962611 seconds [ Info: The search for identifiable functions concluded in 0.021070633 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001764763 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001332358 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.6759e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007535759 [ Info: Selecting generators in 0.002021711 [ Info: Inclusion checked with probability 0.995 in 0.001880102 seconds [ Info: The search for identifiable functions concluded in 0.020629738 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001664984 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001303618 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.452e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007310252 [ Info: Selecting generators in 0.001921702 [ Info: Inclusion checked with probability 0.995 in 0.001858093 seconds [ Info: The search for identifiable functions concluded in 0.019850085 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009366523 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01923726 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000280557 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 [ Info: Search for polynomial generators concluded in 0.000241838 [ Info: Selecting generators in 0.020168542 [ Info: Inclusion checked with probability 0.995 in 0.03318619 seconds [ Info: The search for identifiable functions concluded in 9.432632351 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.016266658 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.034372509 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000293417 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000165878 [ Info: Selecting generators in 0.019514487 [ Info: Inclusion checked with probability 0.995 in 0.031389467 seconds [ Info: The search for identifiable functions concluded in 0.183016241 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.016133529 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.034033872 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000280907 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000207318 [ Info: Selecting generators in 0.019818765 [ Info: Inclusion checked with probability 0.995 in 0.027845569 seconds [ Info: The search for identifiable functions concluded in 0.582059484 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015371317 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.032576855 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000360196 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.214922014 [ Info: Selecting generators in 0.017998612 [ Info: Inclusion checked with probability 0.995 in 0.027743531 seconds [ Info: The search for identifiable functions concluded in 1.37920903 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014963121 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.03099956 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000337107 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.049115301 [ Info: Selecting generators in 0.017362188 [ Info: Inclusion checked with probability 0.995 in 0.027932399 seconds [ Info: The search for identifiable functions concluded in 0.213193639 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015014259 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031405247 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000283247 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.04815907 [ Info: Selecting generators in 0.017893543 [ Info: Inclusion checked with probability 0.995 in 0.028115337 seconds [ Info: The search for identifiable functions concluded in 0.211266667 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.851780396 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.205624076 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.206854779 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000245848 [ Info: Selecting generators in 0.883113835 [ Info: Inclusion checked with probability 0.995 in 3.040085666 seconds [ Info: The search for identifiable functions concluded in 18.478603236 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.540187111 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.628660528 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.194367066 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000152458 [ Info: Selecting generators in 1.100034532 [ Info: Inclusion checked with probability 0.995 in 2.402151738 seconds [ Info: The search for identifiable functions concluded in 18.31936951 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.755457235 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.752180518 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.212582926 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 4   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000160558 [ Info: Selecting generators in 0.637313443 [ Info: Inclusion checked with probability 0.995 in 3.366223609 seconds [ Info: The search for identifiable functions concluded in 19.113678315 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.658509275 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.85614144 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.142620399 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.040451973 [ Info: Selecting generators in 0.55954066 [ Info: Inclusion checked with probability 0.995 in 2.467471981 seconds [ Info: The search for identifiable functions concluded in 17.874949861 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.585761348 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.753273759 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.184482149 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.030708814 [ Info: Selecting generators in 1.306120678 [ Info: Inclusion checked with probability 0.995 in 2.765568307 seconds [ Info: The search for identifiable functions concluded in 17.861274422 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.514168299 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.575458966 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.224940053 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.043281807 [ Info: Selecting generators in 1.533130466 [ Info: Inclusion checked with probability 0.995 in 2.094284984 seconds [ Info: The search for identifiable functions concluded in 19.335076485 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015464576 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012488103 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.115e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000148549 [ Info: Selecting generators in 0.009950187 [ Info: Inclusion checked with probability 0.995 in 0.009773059 seconds [ Info: The search for identifiable functions concluded in 0.089970192 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.025265634 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014748693 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.898e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000170798 [ Info: Selecting generators in 0.013277156 [ Info: Inclusion checked with probability 0.995 in 0.011403324 seconds [ Info: The search for identifiable functions concluded in 0.124664208 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015820513 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01393891 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.8329e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000156169 [ Info: Selecting generators in 0.011404494 [ Info: Inclusion checked with probability 0.995 in 0.010633731 seconds [ Info: The search for identifiable functions concluded in 0.114813349 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015242928 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012755761 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.2049e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.037960676 [ Info: Selecting generators in 0.015107839 [ Info: Inclusion checked with probability 0.995 in 0.00965906 seconds [ Info: The search for identifiable functions concluded in 0.13412666 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014436206 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012157876 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.449e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.037923807 [ Info: Selecting generators in 0.013669092 [ Info: Inclusion checked with probability 0.995 in 0.00973642 seconds [ Info: The search for identifiable functions concluded in 0.12983036 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012791931 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011324114 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.943e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.032681716 [ Info: Selecting generators in 0.01185189 [ Info: Inclusion checked with probability 0.995 in 0.008297162 seconds [ Info: The search for identifiable functions concluded in 0.115519213 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.021156962 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016550536 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 0.000110999 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000150819 [ Info: Selecting generators in 0.010288924 [ Info: Inclusion checked with probability 0.995 in 0.014852701 seconds [ Info: The search for identifiable functions concluded in 0.395585422 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.022635689 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015972891 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.0559e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000154058 [ Info: Selecting generators in 0.010226855 [ Info: Inclusion checked with probability 0.995 in 0.014343667 seconds [ Info: The search for identifiable functions concluded in 0.108867145 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.020968554 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017201879 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 0.000121179 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000161668 [ Info: Selecting generators in 0.011474073 [ Info: Inclusion checked with probability 0.995 in 0.016450646 seconds [ Info: The search for identifiable functions concluded in 0.113581971 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.024466802 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.018394019 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.2069e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.053403532 [ Info: Selecting generators in 0.017599796 [ Info: Inclusion checked with probability 0.995 in 0.015017889 seconds [ Info: The search for identifiable functions concluded in 0.179023891 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.022285942 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017564196 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 0.000137029 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.050951875 [ Info: Selecting generators in 0.017345728 [ Info: Inclusion checked with probability 0.995 in 0.014901262 seconds [ Info: The search for identifiable functions concluded in 0.169941125 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.022969635 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017855973 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.8279e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.054073426 [ Info: Selecting generators in 0.019535078 [ Info: Inclusion checked with probability 0.995 in 0.016024241 seconds [ Info: The search for identifiable functions concluded in 0.17695789 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013471364 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017620465 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.2819e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000196278 [ Info: Selecting generators in 0.099943998 [ Info: Inclusion checked with probability 0.995 in 0.018288639 seconds [ Info: The search for identifiable functions concluded in 1.472075466 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012275696 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016317568 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.2579e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000194259 [ Info: Selecting generators in 0.070577712 [ Info: Inclusion checked with probability 0.995 in 0.016234398 seconds [ Info: The search for identifiable functions concluded in 0.487925171 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010611351 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014357906 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 8.1019e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000180458 [ Info: Selecting generators in 0.082470481 [ Info: Inclusion checked with probability 0.995 in 0.017571676 seconds [ Info: The search for identifiable functions concluded in 0.499146137 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011007227 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01614833 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.212e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.089913991 [ Info: Selecting generators in 0.066627379 [ Info: Inclusion checked with probability 0.995 in 0.013167067 seconds [ Info: The search for identifiable functions concluded in 0.61681105 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009804618 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012959619 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.3349e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 2.382955456 [ Info: Selecting generators in 0.092709266 [ Info: Inclusion checked with probability 0.995 in 0.016293319 seconds [ Info: The search for identifiable functions concluded in 3.679264331 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013465654 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0171364 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.2019e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.302088332 [ Info: Selecting generators in 0.08906445 [ Info: Inclusion checked with probability 0.995 in 0.016658825 seconds [ Info: The search for identifiable functions concluded in 1.847128042 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.987352793 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.068740399 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 9.1709e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 18   ⌟ # Computing specializations.. Time: 0:00:01 Points: 28   ⌞ # Computing specializations.. Time: 0:00:01 Points: 36   ⌜ # Computing specializations.. Time: 0:00:01 Points: 46   ⌝ # Computing specializations.. Time: 0:00:02 Points: 55   ⌟ # Computing specializations.. Time: 0:00:02 Points: 65   ⌞ # Computing specializations.. Time: 0:00:02 Points: 75   ⌜ # Computing specializations.. Time: 0:00:03 Points: 86   ⌝ # Computing specializations.. Time: 0:00:03 Points: 96   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 9   ⌝ # Computing specializations.. Time: 0:00:01 Points: 17   ⌟ # Computing specializations.. Time: 0:00:01 Points: 28   ⌞ # Computing specializations.. Time: 0:00:01 Points: 37   ⌜ # Computing specializations.. Time: 0:00:01 Points: 46   ⌝ # Computing specializations.. Time: 0:00:02 Points: 55   ⌟ # Computing specializations.. Time: 0:00:02 Points: 65   ⌞ # Computing specializations.. Time: 0:00:03 Points: 74   ⌜ # Computing specializations.. Time: 0:00:03 Points: 81   ⌝ # Computing specializations.. Time: 0:00:03 Points: 91   ⌟ # Computing specializations.. Time: 0:00:04 Points: 100   ⌞ # Computing specializations.. Time: 0:00:04 Points: 109   ⌜ # Computing specializations.. Time: 0:00:04 Points: 119   ⌝ # Computing specializations.. Time: 0:00:05 Points: 127   ⌟ # Computing specializations.. Time: 0:00:05 Points: 137   ⌞ # Computing specializations.. Time: 0:00:06 Points: 146   ⌜ # Computing specializations.. Time: 0:00:06 Points: 155   ⌝ # Computing specializations.. Time: 0:00:06 Points: 164   ⌟ # Computing specializations.. Time: 0:00:07 Points: 172   ⌞ # Computing specializations.. Time: 0:00:07 Points: 182   ⌜ # Computing specializations.. Time: 0:00:07 Points: 192   ⌝ # Computing specializations.. Time: 0:00:08 Points: 202   ⌟ # Computing specializations.. Time: 0:00:08 Points: 211   ⌞ # Computing specializations.. Time: 0:00:08 Points: 221   ⌜ # Computing specializations.. Time: 0:00:09 Points: 229   ⌝ # Computing specializations.. Time: 0:00:09 Points: 239   ⌟ # Computing specializations.. Time: 0:00:10 Points: 248   ⌞ # Computing specializations.. Time: 0:00:10 Points: 258   ⌜ # Computing specializations.. Time: 0:00:10 Points: 266   ⌝ # Computing specializations.. Time: 0:00:11 Points: 276   ⌟ # Computing specializations.. Time: 0:00:11 Points: 285   ⌞ # Computing specializations.. Time: 0:00:11 Points: 294   ⌜ # Computing specializations.. Time: 0:00:12 Points: 303   ⌝ # Computing specializations.. Time: 0:00:12 Points: 313   ⌟ # Computing specializations.. Time: 0:00:13 Points: 323   ⌞ # Computing specializations.. Time: 0:00:13 Points: 333   ⌜ # Computing specializations.. Time: 0:00:13 Points: 343   ⌝ # Computing specializations.. Time: 0:00:14 Points: 353   ⌟ # Computing specializations.. Time: 0:00:14 Points: 363   ⌞ # Computing specializations.. Time: 0:00:15 Points: 373   ⌜ # Computing specializations.. Time: 0:00:15 Points: 383   ⌝ # Computing specializations.. Time: 0:00:15 Points: 393   ⌟ # Computing specializations.. Time: 0:00:16 Points: 403   ⌞ # Computing specializations.. Time: 0:00:16 Points: 413   ⌜ # Computing specializations.. Time: 0:00:17 Points: 422   ⌝ # Computing specializations.. Time: 0:00:17 Points: 432   ⌟ # Computing specializations.. Time: 0:00:17 Points: 442   ⌞ # Computing specializations.. Time: 0:00:18 Points: 452   ⌜ # Computing specializations.. Time: 0:00:18 Points: 462   ⌝ # Computing specializations.. Time: 0:00:18 Points: 472   ⌟ # Computing specializations.. Time: 0:00:19 Points: 481   ⌞ # Computing specializations.. Time: 0:00:19 Points: 490   ⌜ # Computing specializations.. Time: 0:00:20 Points: 501   ⌝ # Computing specializations.. Time: 0:00:20 Points: 512   ⌟ # Computing specializations.. Time: 0:00:20 Points: 521   ⌞ # Computing specializations.. Time: 0:00:21 Points: 530   ⌜ # Computing specializations.. Time: 0:00:21 Points: 540   ⌝ # Computing specializations.. Time: 0:00:21 Points: 548   ⌟ # Computing specializations.. Time: 0:00:22 Points: 558   ⌞ # Computing specializations.. Time: 0:00:22 Points: 567   ⌜ # Computing specializations.. Time: 0:00:23 Points: 578   ⌝ # Computing specializations.. Time: 0:00:23 Points: 588   ⌟ # Computing specializations.. Time: 0:00:23 Points: 598   ⌞ # Computing specializations.. Time: 0:00:24 Points: 607   ⌜ # Computing specializations.. Time: 0:00:24 Points: 618   ⌝ # Computing specializations.. Time: 0:00:24 Points: 628   ⌟ # Computing specializations.. Time: 0:00:25 Points: 637   ✓ # Computing specializations.. Time: 0:00:25 [ Info: Search for polynomial generators concluded in 0.000437106 [ Info: Selecting generators in 0.050845856 [ Info: Inclusion checked with probability 0.995 in 9.827964324 seconds [ Info: The search for identifiable functions concluded in 63.496370547 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.9260434 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.111000927 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000130839 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ⌝ # Computing specializations.. Time: 0:00:00 Points: 16   ⌟ # Computing specializations.. Time: 0:00:01 Points: 25   ⌞ # Computing specializations.. Time: 0:00:01 Points: 35   ⌜ # Computing specializations.. Time: 0:00:01 Points: 45   ⌝ # Computing specializations.. Time: 0:00:02 Points: 55   ⌟ # Computing specializations.. Time: 0:00:02 Points: 65   ⌞ # Computing specializations.. Time: 0:00:02 Points: 75   ⌜ # Computing specializations.. Time: 0:00:03 Points: 85   ⌝ # Computing specializations.. Time: 0:00:03 Points: 95   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ⌝ # Computing specializations.. Time: 0:00:00 Points: 16   ⌟ # Computing specializations.. Time: 0:00:01 Points: 25   ⌞ # Computing specializations.. Time: 0:00:01 Points: 35   ⌜ # Computing specializations.. Time: 0:00:01 Points: 45   ⌝ # Computing specializations.. Time: 0:00:02 Points: 55   ⌟ # Computing specializations.. Time: 0:00:02 Points: 65   ⌞ # Computing specializations.. Time: 0:00:02 Points: 74   ⌜ # Computing specializations.. Time: 0:00:03 Points: 83   ⌝ # Computing specializations.. Time: 0:00:03 Points: 92   ⌟ # Computing specializations.. Time: 0:00:03 Points: 101   ⌞ # Computing specializations.. Time: 0:00:04 Points: 110   ⌜ # Computing specializations.. Time: 0:00:04 Points: 120   ⌝ # Computing specializations.. Time: 0:00:05 Points: 129   ⌟ # Computing specializations.. Time: 0:00:05 Points: 139   ⌞ # Computing specializations.. Time: 0:00:05 Points: 148   ⌜ # Computing specializations.. Time: 0:00:06 Points: 157   ⌝ # Computing specializations.. Time: 0:00:06 Points: 166   ⌟ # Computing specializations.. Time: 0:00:06 Points: 175   ⌞ # Computing specializations.. Time: 0:00:07 Points: 185   ⌜ # Computing specializations.. Time: 0:00:07 Points: 194   ⌝ # Computing specializations.. Time: 0:00:08 Points: 204   ⌟ # Computing specializations.. Time: 0:00:08 Points: 213   ⌞ # Computing specializations.. Time: 0:00:08 Points: 222   ⌜ # Computing specializations.. Time: 0:00:09 Points: 232   ⌝ # Computing specializations.. Time: 0:00:09 Points: 241   ⌟ # Computing specializations.. Time: 0:00:09 Points: 251   ⌞ # Computing specializations.. Time: 0:00:10 Points: 260   ⌜ # Computing specializations.. Time: 0:00:10 Points: 270   ⌝ # Computing specializations.. Time: 0:00:11 Points: 280   ⌟ # Computing specializations.. Time: 0:00:11 Points: 289   ⌞ # Computing specializations.. Time: 0:00:11 Points: 299   ⌜ # Computing specializations.. Time: 0:00:12 Points: 307   ⌝ # Computing specializations.. Time: 0:00:12 Points: 317   ⌟ # Computing specializations.. Time: 0:00:12 Points: 327   ⌞ # Computing specializations.. Time: 0:00:13 Points: 335   ⌜ # Computing specializations.. Time: 0:00:13 Points: 345   ⌝ # Computing specializations.. Time: 0:00:14 Points: 353   ⌟ # Computing specializations.. Time: 0:00:14 Points: 363   ⌞ # Computing specializations.. Time: 0:00:14 Points: 372   ⌜ # Computing specializations.. Time: 0:00:15 Points: 381   ⌝ # Computing specializations.. Time: 0:00:15 Points: 390   ⌟ # Computing specializations.. Time: 0:00:15 Points: 398   ⌞ # Computing specializations.. Time: 0:00:16 Points: 408   ⌜ # Computing specializations.. Time: 0:00:16 Points: 418   ⌝ # Computing specializations.. Time: 0:00:16 Points: 429   ⌟ # Computing specializations.. Time: 0:00:17 Points: 439   ⌞ # Computing specializations.. Time: 0:00:17 Points: 448   ⌜ # Computing specializations.. Time: 0:00:18 Points: 457   ⌝ # Computing specializations.. Time: 0:00:18 Points: 466   ⌟ # Computing specializations.. Time: 0:00:18 Points: 476   ⌞ # Computing specializations.. Time: 0:00:19 Points: 486   ⌜ # Computing specializations.. Time: 0:00:19 Points: 496   ⌝ # Computing specializations.. Time: 0:00:19 Points: 506   ⌟ # Computing specializations.. Time: 0:00:20 Points: 515   ⌞ # Computing specializations.. Time: 0:00:20 Points: 524   ⌜ # Computing specializations.. Time: 0:00:21 Points: 533   ⌝ # Computing specializations.. Time: 0:00:21 Points: 543   ⌟ # Computing specializations.. Time: 0:00:21 Points: 553   ⌞ # Computing specializations.. Time: 0:00:22 Points: 562   ⌜ # Computing specializations.. Time: 0:00:22 Points: 571   ⌝ # Computing specializations.. Time: 0:00:22 Points: 580   ⌟ # Computing specializations.. Time: 0:00:23 Points: 590   ⌞ # Computing specializations.. Time: 0:00:23 Points: 599   ⌜ # Computing specializations.. Time: 0:00:24 Points: 608   ⌝ # Computing specializations.. Time: 0:00:24 Points: 617   ⌟ # Computing specializations.. Time: 0:00:24 Points: 626   ⌞ # Computing specializations.. Time: 0:00:25 Points: 636   ✓ # Computing specializations.. Time: 0:00:25 [ Info: Search for polynomial generators concluded in 0.000523485 [ Info: Selecting generators in 0.040135697 [ Info: Inclusion checked with probability 0.995 in 9.344652878 seconds [ Info: The search for identifiable functions concluded in 57.894432194 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.743944567 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.110859189 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000137319 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:01 Points: 27   ⌞ # Computing specializations.. Time: 0:00:01 Points: 35   ⌜ # Computing specializations.. Time: 0:00:01 Points: 44   ⌝ # Computing specializations.. Time: 0:00:02 Points: 53   ⌟ # Computing specializations.. Time: 0:00:02 Points: 60   ⌞ # Computing specializations.. Time: 0:00:02 Points: 70   ⌜ # Computing specializations.. Time: 0:00:03 Points: 78   ⌝ # Computing specializations.. Time: 0:00:03 Points: 87   ⌟ # Computing specializations.. Time: 0:00:04 Points: 96   ✓ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 9   ⌝ # Computing specializations.. Time: 0:00:00 Points: 15   ⌟ # Computing specializations.. Time: 0:00:00 Points: 24   ⌞ # Computing specializations.. Time: 0:00:01 Points: 31   ⌜ # Computing specializations.. Time: 0:00:01 Points: 40   ⌝ # Computing specializations.. Time: 0:00:02 Points: 49   ⌟ # Computing specializations.. Time: 0:00:02 Points: 58   ⌞ # Computing specializations.. Time: 0:00:02 Points: 65   ⌜ # Computing specializations.. Time: 0:00:03 Points: 74   ⌝ # Computing specializations.. Time: 0:00:03 Points: 83   ⌟ # Computing specializations.. Time: 0:00:03 Points: 92   ⌞ # Computing specializations.. Time: 0:00:04 Points: 99   ⌜ # Computing specializations.. Time: 0:00:04 Points: 108   ⌝ # Computing specializations.. Time: 0:00:04 Points: 116   ⌟ # Computing specializations.. Time: 0:00:05 Points: 125   ⌞ # Computing specializations.. Time: 0:00:05 Points: 133   ⌜ # Computing specializations.. Time: 0:00:06 Points: 142   ⌝ # Computing specializations.. Time: 0:00:06 Points: 151   ⌟ # Computing specializations.. Time: 0:00:06 Points: 160   ⌞ # Computing specializations.. Time: 0:00:07 Points: 169   ⌜ # Computing specializations.. Time: 0:00:07 Points: 178   ⌝ # Computing specializations.. Time: 0:00:08 Points: 186   ⌟ # Computing specializations.. Time: 0:00:08 Points: 196   ⌞ # Computing specializations.. Time: 0:00:08 Points: 204   ⌜ # Computing specializations.. Time: 0:00:09 Points: 214   ⌝ # Computing specializations.. Time: 0:00:09 Points: 222   ⌟ # Computing specializations.. Time: 0:00:09 Points: 232   ⌞ # Computing specializations.. Time: 0:00:10 Points: 241   ⌜ # Computing specializations.. Time: 0:00:10 Points: 250   ⌝ # Computing specializations.. Time: 0:00:11 Points: 259   ⌟ # Computing specializations.. Time: 0:00:11 Points: 269   ⌞ # Computing specializations.. Time: 0:00:11 Points: 277   ⌜ # Computing specializations.. Time: 0:00:12 Points: 287   ⌝ # Computing specializations.. Time: 0:00:12 Points: 296   ⌟ # Computing specializations.. Time: 0:00:12 Points: 306   ⌞ # Computing specializations.. Time: 0:00:13 Points: 315   ⌜ # Computing specializations.. Time: 0:00:13 Points: 324   ⌝ # Computing specializations.. Time: 0:00:14 Points: 332   ⌟ # Computing specializations.. Time: 0:00:14 Points: 340   ⌞ # Computing specializations.. Time: 0:00:14 Points: 349   ⌜ # Computing specializations.. Time: 0:00:15 Points: 356   ⌝ # Computing specializations.. Time: 0:00:15 Points: 365   ⌟ # Computing specializations.. Time: 0:00:15 Points: 373   ⌞ # Computing specializations.. Time: 0:00:16 Points: 382   ⌜ # Computing specializations.. Time: 0:00:16 Points: 391   ⌝ # Computing specializations.. Time: 0:00:17 Points: 401   ⌟ # Computing specializations.. Time: 0:00:17 Points: 409   ⌞ # Computing specializations.. Time: 0:00:17 Points: 417   ⌜ # Computing specializations.. Time: 0:00:18 Points: 426   ⌝ # Computing specializations.. Time: 0:00:18 Points: 433   ⌟ # Computing specializations.. Time: 0:00:18 Points: 442   ⌞ # Computing specializations.. Time: 0:00:19 Points: 450   ⌜ # Computing specializations.. Time: 0:00:19 Points: 460   ⌝ # Computing specializations.. Time: 0:00:19 Points: 469   ⌟ # Computing specializations.. Time: 0:00:20 Points: 476   ⌞ # Computing specializations.. Time: 0:00:20 Points: 485   ⌜ # Computing specializations.. Time: 0:00:20 Points: 492   ⌝ # Computing specializations.. Time: 0:00:21 Points: 501   ⌟ # Computing specializations.. Time: 0:00:21 Points: 510   ⌞ # Computing specializations.. Time: 0:00:22 Points: 520   ⌜ # Computing specializations.. Time: 0:00:22 Points: 529   ⌝ # Computing specializations.. Time: 0:00:22 Points: 539   ⌟ # Computing specializations.. Time: 0:00:23 Points: 548   ⌞ # Computing specializations.. Time: 0:00:23 Points: 556   ⌜ # Computing specializations.. Time: 0:00:23 Points: 565   ⌝ # Computing specializations.. Time: 0:00:24 Points: 572   ⌟ # Computing specializations.. Time: 0:00:24 Points: 582   ⌞ # Computing specializations.. Time: 0:00:25 Points: 591   ⌜ # Computing specializations.. Time: 0:00:25 Points: 601   ⌝ # Computing specializations.. Time: 0:00:25 Points: 610   ⌟ # Computing specializations.. Time: 0:00:26 Points: 620   ⌞ # Computing specializations.. Time: 0:00:26 Points: 629   ⌜ # Computing specializations.. Time: 0:00:26 Points: 637   ✓ # Computing specializations.. Time: 0:00:27 [ Info: Search for polynomial generators concluded in 0.000341387 [ Info: Selecting generators in 0.055085008 [ Info: Inclusion checked with probability 0.995 in 8.746019019 seconds [ Info: The search for identifiable functions concluded in 66.91833289 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.720634768 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.078977596 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000126288 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 18   ⌟ # Computing specializations.. Time: 0:00:01 Points: 28   ⌞ # Computing specializations.. Time: 0:00:01 Points: 38   ⌜ # Computing specializations.. Time: 0:00:01 Points: 48   ⌝ # Computing specializations.. Time: 0:00:02 Points: 58   ⌟ # Computing specializations.. Time: 0:00:02 Points: 66   ⌞ # Computing specializations.. Time: 0:00:03 Points: 76   ⌜ # Computing specializations.. Time: 0:00:03 Points: 85   ⌝ # Computing specializations.. Time: 0:00:03 Points: 95   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:01 Points: 27   ⌞ # Computing specializations.. Time: 0:00:01 Points: 38   ⌜ # Computing specializations.. Time: 0:00:01 Points: 48   ⌝ # Computing specializations.. Time: 0:00:02 Points: 58   ⌟ # Computing specializations.. Time: 0:00:02 Points: 66   ⌞ # Computing specializations.. Time: 0:00:03 Points: 76   ⌜ # Computing specializations.. Time: 0:00:03 Points: 85   ⌝ # Computing specializations.. Time: 0:00:03 Points: 95   ⌟ # Computing specializations.. Time: 0:00:04 Points: 104   ⌞ # Computing specializations.. Time: 0:00:04 Points: 114   ⌜ # Computing specializations.. Time: 0:00:05 Points: 123   ⌝ # Computing specializations.. Time: 0:00:05 Points: 133  ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 51 running 1 of 1 signal (10): User defined signal 1 __madvise at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) jl_gc_free_page at /source/src/gc-pages.c:201 gc_free_pages at /source/src/gc-stock.c:1325 gc_sweep_pool at /source/src/gc-stock.c:1458 [inlined] _jl_gc_collect at /source/src/gc-stock.c:3198 ijl_gc_collect at /source/src/gc-stock.c:3491 maybe_collect at /source/src/gc-stock.c:349 [inlined] jl_gc_small_alloc_inner at /source/src/gc-stock.c:725 ijl_gc_small_alloc at /source/src/gc-stock.c:774 Array at ./boot.jl:649 [inlined] exponent_vector at /home/pkgeval/.julia/packages/Nemo/sUaag/src/flint/mpoly.jl:23 exponent_vector at /home/pkgeval/.julia/packages/Nemo/sUaag/src/flint/mpoly.jl:39 [inlined] iterate at /home/pkgeval/.julia/packages/AbstractAlgebra/vdTzs/src/generic/MPoly.jl:838 [inlined] copyto! at ./abstractarray.jl:953 _collect at ./array.jl:765 [inlined] collect at ./array.jl:759 [inlined] io_extract_monoms_ir at /home/pkgeval/.julia/packages/Groebner/k40dp/src/input_output/AbstractAlgebra.jl:181 unknown function (ip: 0x79e70428023e) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 io_convert_polynomials_to_ir at /home/pkgeval/.julia/packages/Groebner/k40dp/src/input_output/AbstractAlgebra.jl:23 groebner_apply0! at /home/pkgeval/.julia/packages/Groebner/k40dp/src/groebner/learn_apply.jl:128 #groebner_apply!#177 at /home/pkgeval/.julia/packages/Groebner/k40dp/src/interface.jl:405 [inlined] groebner_apply! at /home/pkgeval/.julia/packages/Groebner/k40dp/src/interface.jl:403 unknown function (ip: 0x79e7042a6974) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 interpolate_exponents! at /home/pkgeval/.julia/packages/ParamPunPam/Aq83Q/src/groebner/paramgb.jl:432 _paramgb at /home/pkgeval/.julia/packages/ParamPunPam/Aq83Q/src/groebner/paramgb.jl:138 #paramgb#56 at /home/pkgeval/.julia/packages/ParamPunPam/Aq83Q/src/groebner/paramgb.jl:103 paramgb at /home/pkgeval/.julia/packages/ParamPunPam/Aq83Q/src/groebner/paramgb.jl:60 [inlined] #groebner_basis_coeffs#326 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:548 groebner_basis_coeffs at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:548 unknown function (ip: 0x79e70421e314) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#328 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:720 unknown function (ip: 0x79e6feae8c99) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #_find_identifiable_functions#389 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:86 [inlined] #387 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#385 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:49 unknown function (ip: 0x79e6feae81a4) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2271 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2954 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3014 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x79e6d89b5a82) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:162 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:160 [inlined] macro expansion at ./timing.jl:689 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:159 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2954 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3014 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_56488.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2271 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_42565.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2271 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x79e719e2a249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file)  ⌟ # Computing specializations.. Time: 0:00:05 Points: 141   ⌞ # Computing specializations.. Time: 0:00:06 Points: 147   ⌜ # Computing specializations.. Time: 0:00:06 Points: 153  ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ==============================================================  ⌝ # Computing specializations.. Time: 0:00:06 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1217 wait_forever at ./task.jl:1139 jfptr_wait_forever_63711.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2271 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x000079e6ffdfc010 Total snapshots: 206. Utilization: 100% ╎206 @Base/client.jl:577 _start() ╎ 206 @Base/client.jl:310 exec_options(opts::Base.JLOptions) ╎ 206 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ 206 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ 206 @Base/Base.jl:310 include(mapexpr::Function, mod::Module, _path::St… ╎ 206 @Base/loading.jl:3014 _include(mapexpr::Function, mod::Module, _pa… ╎ ╎ 206 @Base/loading.jl:2954 include_string(mapexpr::typeof(identity), m… ╎ ╎ 206 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ 206 @StructuralIdentifiability/…:159 top-level scope ╎ ╎ 206 @Base/timing.jl:689 macro expansion ╎ ╎ 206 @StructuralIdentifiability/…:160 macro expansion ╎ ╎ ╎ 206 @Test/src/Test.jl:1952 macro expansion ╎ ╎ ╎ 206 @StructuralIdentifiability/…:162 macro expansion ╎ ╎ ╎ 206 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ ╎ ╎ 206 @Base/Base.jl:310 include(mapexpr::Function, mod::Module,… ╎ ╎ ╎ 206 @Base/loading.jl:3014 _include(mapexpr::Function, mod::M… ╎ ╎ ╎ ╎ 206 @Base/loading.jl:2954 include_string(mapexpr::typeof(id… ╎ ╎ ╎ ╎ 206 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ ╎ ╎ 206 @StructuralIdentifiability/…:49 kwcall(::@NamedTuple{… ╎ ╎ ╎ ╎ 206 @StructuralIdentifiability/…:61 #find_identifiable_f… ╎ ╎ ╎ ╎ 206 @Base/…ogging.jl:651 with_logger ╎ ╎ ╎ ╎ ╎ 206 @Base/…gging.jl:540 with_logstate(f::StructuralIde… ╎ ╎ ╎ ╎ ╎ 206 @StructuralIdentifiability/…:63 (::StructuralIden… ╎ ╎ ╎ ╎ ╎ 206 @StructuralIdentifiability/…:86 _find_identifiab… ╎ ╎ ╎ ╎ ╎ 206 @StructuralIdentifiability/…:120 _find_identifi… ╎ ╎ ╎ ╎ ╎ 206 @StructuralIdentifiability/…:720 kwcall(::@Nam… ╎ ╎ ╎ ╎ ╎ ╎ 206 @StructuralIdentifiability/…:720 simplified_g… ╎ ╎ ╎ ╎ ╎ ╎ 206 @StructuralIdentifiability/…:548 kwcall(::@N… ╎ ╎ ╎ ╎ ╎ ╎ 206 @StructuralIdentifiability/…:548 groebner_b… ╎ ╎ ╎ ╎ ╎ ╎ 206 @ParamPunPam/…:60 paramgb ╎ ╎ ╎ ╎ ╎ ╎ 206 @ParamPunPam/…:103 paramgb(blackbox::Stru… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 206 @ParamPunPam/…:138 _paramgb(blackbox::St… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 29 @ParamPunPam/…:431 interpolate_exponent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 29 @StructuralIdentifiability/…:305 speci… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 23 @StructuralIdentifiability/…:270 frac… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 23 @Base/…ay.jl:3392 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 23 @Base/…ay.jl:763 collect_similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @Base/…ay.jl:848 _collect(c::Vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @StructuralIdentifiability/…:270 … 6╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @Nemo/…ly.jl:548 evaluate(a::fp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 17 @Base/…ay.jl:858 _collect(c::Vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 17 @Base/…ay.jl:864 collect_to_with_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 17 @Base/…ay.jl:886 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 17 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 17 @StructuralIdentifiability/…:270… 17╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 17 @Nemo/…ly.jl:548 evaluate(a::fp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @StructuralIdentifiability/…:276 frac… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Nemo/…ly.jl:313 * 3╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Nemo/…ly.jl:307 *(a::fpMPolyRingEl… 3╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Nemo/…ly.jl:251 -(a::fpMPolyRingEle… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 176 @ParamPunPam/…:432 interpolate_exponent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 176 @Groebner/…l:403 groebner_apply!(trace… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 176 @Groebner/…l:405 #groebner_apply!#177 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 59 @Groebner/…l:128 groebner_apply0!(wr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 11 @Groebner/…l:22 io_convert_polynomi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 11 @Groebner/…l:108 io_extract_coeffs… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 11 @Groebner/…l:128 io_extract_coeff… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 11 @Base/…ay.jl:3422 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 11 @Base/…ay.jl:838 collect(itr::B… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 11 @Base/…ay.jl:864 collect_to_wit… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 11 @Base/…ay.jl:886 collect_to!(de… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 3 @Base/…or.jl:45 iterate 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 3 @AbstractAlgebra/…:821 iterate 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Nemo/…ly.jl:114 coeff(a::fpMPo… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Nemo/…ly.jl:118 coeff(a::fpMPo… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Nemo/…em.jl:405 fpField ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 8 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 8 @Groebner/…l:116 io_lift_coeff_… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Nemo/…pz.jl:2936 UInt64(a::ZZR… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…rs.jl:424 > ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Nemo/…pz.jl:887 < ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…rs.jl:424 > 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/int.jl:83 < 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Nemo/…pz.jl:2937 UInt64(a::ZZR… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 4 @Nemo/…em.jl:46 lift ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 4 @Nemo/…em.jl:45 lift 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 2 @Nemo/…es.jl:71 ZZRingElem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Nemo/…es.jl:72 ZZRingElem ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Nemo/…es.jl:73 ZZRingElem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ls.jl:86 finalizer ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 48 @Groebner/…l:23 io_convert_polynomi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 48 @Groebner/…l:181 io_extract_monoms… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 48 @Base/…ay.jl:759 collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 48 @Base/…ay.jl:765 _collect 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:949 copyto!(dest::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:952 copyto!(dest::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ge.jl:925 iterate 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…on.jl:637 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 44 @Base/…ay.jl:953 copyto!(dest::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 44 @AbstractAlgebra/…:838 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 44 @Nemo/…ly.jl:39 exponent_vector 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Nemo/…ly.jl:18 exponent_vector… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 3 @Nemo/…ly.jl:19 exponent_vector… 3╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 3 @Nemo/…ly.jl:726 exponent_vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 26 @Nemo/…ly.jl:23 exponent_vector… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 4 @Base/…ot.jl:648 Array 4╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 4 @Base/…ot.jl:588 GenericMemory 20╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 22 @Base/…ot.jl:649 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Nemo/…es.jl:5080 _fmpz_clear_f… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 13 @Nemo/…ly.jl:24 exponent_vector… 13╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 13 @Nemo/…ly.jl:736 exponent_vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:693 _similar_for ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 2 @Base/…ay.jl:827 similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Base/…ay.jl:838 similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Base/…ot.jl:661 Array ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Base/…ot.jl:648 Array 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Base/…ot.jl:588 GenericMemory ╎ ╎ ╎ ╎ ╎ ╎ ╎ 117 @Groebner/…l:129 groebner_apply0!(wr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 17 @Groebner/…l:218 __groebner_apply1!… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 17 @Groebner/…l:61 wrapped_trace_chec… 3╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 14 @Base/…rs.jl:320 != ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:3051 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…rs.jl:320 != ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 2 @Base/…le.jl:538 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Base/…le.jl:542 _eq ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Base/…ge.jl:1142 == 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Base/…on.jl:637 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ay.jl:3055 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…rs.jl:415 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 3 @Base/…rs.jl:425 _zip_iterate_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Base/…rs.jl:433 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Base/…ay.jl:1245 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Base/…ay.jl:1245 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Base/…ay.jl:1253 _iterate_abst… 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 2 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…rs.jl:435 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…rs.jl:433 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1245 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ay.jl:1245 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ay.jl:1253 _iterate_abst… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:3056 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/int.jl:564 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…on.jl:487 == 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…on.jl:637 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 8 @Base/…ay.jl:3062 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 8 @Base/…rs.jl:416 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 8 @Base/…rs.jl:425 _zip_iterate_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 3 @Base/…rs.jl:433 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 3 @Base/…ay.jl:1245 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Base/…ay.jl:1252 _iterate_abst… 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Base/…ls.jl:381 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1253 _iterate_abst… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 5 @Base/…rs.jl:435 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 5 @Base/…rs.jl:433 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 5 @Base/…ay.jl:1245 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 5 @Base/…ay.jl:1253 _iterate_abst… 3╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 3 @Base/…ls.jl:965 getindex 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 2 @Base/int.jl:87 + ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 71 @Groebner/…l:234 __groebner_apply1!… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Groebner/…l:212 ir_extract_coeffs… 3╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ls.jl:965 getindex 67╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 68 @Groebner/…l:213 ir_extract_coeffs… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:0 setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 28 @Groebner/…l:237 __groebner_apply1!… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 28 @Groebner/…l:253 groebner_apply2!(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 28 @Groebner/…l:266 _groebner_apply2… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:490 f4_apply!(trace… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:393 basis_make_mon… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 18 @Groebner/…l:502 f4_apply!(trace… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 8 @Groebner/…l:323 f4_symbolic_pr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:303 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ay.jl:402 similar 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ot.jl:649 Array ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 7 @Groebner/…l:306 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:476 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:499 monom_product! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Groebner/…l:37 monom_overflow_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Groebner/…l:32 monom_overflow_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…rs.jl:479 >= 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/int.jl:561 <= ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:517 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…al.jl:774 setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ay.jl:1025 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 4 @Groebner/…l:519 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 4 @Groebner/…l:708 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Base/…ay.jl:1363 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Base/…ls.jl:964 getindex 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 2 @Base/…ls.jl:385 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Base/…rs.jl:479 >= ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Base/…on.jl:489 <= 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 2 @Base/int.jl:561 <= 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:676 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:340 f4_symbolic_pr… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 9 @Groebner/…l:342 f4_symbolic_pr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:303 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ay.jl:402 similar 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ot.jl:649 Array ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 8 @Groebner/…l:306 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:478 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:1363 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:482 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:1363 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:487 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1024 _setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:493 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:518 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…al.jl:774 setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ay.jl:1024 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 3 @Groebner/…l:519 hashtable_inse… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/int.jl:0 monom_create_div… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:676 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:712 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ge.jl:925 iterate 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…on.jl:637 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 9 @Groebner/…l:504 f4_apply!(trace… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @Groebner/…l:271 f4_reduction_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 5 @Groebner/…l:23 linalg_main! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 5 @Groebner/…l:56 #linalg_main!#83 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 5 @Groebner/…l:210 _linalg_main_w… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 4 @Groebner/…l:39 linalg_apply_sp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 4 @Groebner/…l:125 linalg_apply_r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 4 @Groebner/…l:369 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 4 @Groebner/…l:369 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Groebner/…l:395 linalg_reduce_… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…ay.jl:241 isassigned ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 3 @Groebner/…l:415 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Groebner/…l:749 linalg_vector_… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…ls.jl:0 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Groebner/…l:751 linalg_vector_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…ay.jl:1363 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Groebner/…l:752 linalg_vector_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Groebner/…l:124 mod_p 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Base/int.jl:1043 * ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Groebner/…l:44 linalg_apply_sp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Groebner/…l:183 linalg_apply_i… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Groebner/…l:190 #linalg_apply_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Groebner/…l:127 linalg_interre… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Groebner/…l:170 linalg_interre… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Groebner/…l:369 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Groebner/…l:369 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Groebner/…l:421 linalg_reduce_… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 1 @Base/…on.jl:637 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Groebner/…l:274 f4_reduction_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 4 @Groebner/…l:189 matrix_convert… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 4 @Groebner/…l:239 matrix_convert… 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Groebner/…l:0 matrix_insert_in… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Groebner/…l:390 matrix_insert_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Base/…ay.jl:1363 getindex 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Base/…ls.jl:965 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:249 __groebner_apply1!… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:444 interpolate_exponent… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:114 coeff(a::fpMPolyRingE… Points: 160 ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007fe9f13ff940 Total snapshots: 407. Utilization: 0% ╎407 @Base/task.jl:1139 wait_forever() 406╎ 407 @Base/task.jl:1217 wait() [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1217 wait_forever at ./task.jl:1139 jfptr_wait_forever_63711.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2271 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file) Allocations: 23578425 (Pool: 23577792; Big: 633); GC: 19 [51] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/identifiable_functions.jl:1077 jl_gc_run_finalizers_in_list at /source/src/gc-common.c:270 run_finalizers at /source/src/gc-common.c:316 ijl_gc_collect at /source/src/gc-stock.c:3513 maybe_collect at /source/src/gc-stock.c:349 [inlined] jl_gc_small_alloc_inner at /source/src/gc-stock.c:725 ijl_gc_small_alloc at /source/src/gc-stock.c:774 fpMPolyRingElem at /home/pkgeval/.julia/packages/Nemo/sUaag/src/flint/FlintTypes.jl:1465 [inlined] fpMPolyRing at /home/pkgeval/.julia/packages/Nemo/sUaag/src/flint/nmod_mpoly.jl:909 [inlined] * at /home/pkgeval/.julia/packages/Nemo/sUaag/src/flint/nmod_mpoly.jl:306 * at /home/pkgeval/.julia/packages/Nemo/sUaag/src/flint/nmod_mpoly.jl:313 [inlined] fractions_to_mqs_specialized at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/IdealMQS.jl:276 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 specialize_mod_p at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/IdealMQS.jl:305 interpolate_exponents! at /home/pkgeval/.julia/packages/ParamPunPam/Aq83Q/src/groebner/paramgb.jl:431 _paramgb at /home/pkgeval/.julia/packages/ParamPunPam/Aq83Q/src/groebner/paramgb.jl:138 #paramgb#56 at /home/pkgeval/.julia/packages/ParamPunPam/Aq83Q/src/groebner/paramgb.jl:103 paramgb at /home/pkgeval/.julia/packages/ParamPunPam/Aq83Q/src/groebner/paramgb.jl:60 [inlined] #groebner_basis_coeffs#326 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:548 groebner_basis_coeffs at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:548 unknown function (ip: 0x79e70421e314) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#328 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:720 unknown function (ip: 0x79e6feae8c99) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #_find_identifiable_functions#389 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:86 [inlined] #387 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#385 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:49 unknown function (ip: 0x79e6feae81a4) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2271 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2954 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3014 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x79e6d89b5a82) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:162 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:160 [inlined] macro expansion at ./timing.jl:689 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:159 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2954 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3014 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_56488.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2271 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_42565.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2271 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x79e719e2a249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 1076965366 (Pool: 1076961300; Big: 4066); GC: 479 PkgEval terminated after 2723.49s: test duration exceeded the time limit