Package evaluation of HighVoronoi on Julia 1.13.0-DEV.1265 (cd62cf9a08*) started at 2025-10-06T05:07:58.825 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.98s ################################################################################ # Installation # Installing HighVoronoi... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [1d30c219] + HighVoronoi v1.5.0 Updating `~/.julia/environments/v1.13/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [6e4b80f9] + BenchmarkTools v1.6.0 [d1d4a3ce] + BitFlags v0.1.9 [523fee87] + CodecBzip2 v0.8.5 [944b1d66] + CodecZlib v0.7.8 [35d6a980] + ColorSchemes v3.31.0 [3da002f7] + ColorTypes v0.12.1 [c3611d14] + ColorVectorSpace v0.11.0 [5ae59095] + Colors v0.13.1 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.18.1 [f0e56b4a] + ConcurrentUtilities v2.5.0 [187b0558] + ConstructionBase v1.6.0 [d38c429a] + Contour v0.6.3 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.1 [8bb1440f] + DelimitedFiles v1.9.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [b4f34e82] + Distances v0.10.12 [ffbed154] + DocStringExtensions v0.9.5 [497a8b3b] + DoubleFloats v1.4.3 [460bff9d] + ExceptionUnwrapping v0.1.11 [c87230d0] + FFMPEG v0.4.4 [5789e2e9] + FileIO v1.17.0 [53c48c17] + FixedPointNumbers v0.8.5 [1fa38f19] + Format v1.3.7 [f6369f11] + ForwardDiff v1.2.1 [60bf3e95] + GLPK v1.2.1 [28b8d3ca] + GR v0.73.17 [14197337] + GenericLinearAlgebra v0.3.18 [42e2da0e] + Grisu v1.0.2 [cd3eb016] + HTTP v1.10.19 [076d061b] + HashArrayMappedTries v0.2.0 [1d30c219] + HighVoronoi v1.5.0 [92d709cd] + IrrationalConstants v0.2.4 [42fd0dbc] + IterativeSolvers v0.9.4 ⌅ [033835bb] + JLD2 v0.5.15 [1019f520] + JLFzf v0.1.11 [692b3bcd] + JLLWrappers v1.7.1 ⌅ [682c06a0] + JSON v0.21.4 [0f8b85d8] + JSON3 v1.14.3 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.10 [2ab3a3ac] + LogExpFunctions v0.3.29 [e6f89c97] + LoggingExtras v1.2.0 [1914dd2f] + MacroTools v0.5.16 [b8f27783] + MathOptInterface v1.45.0 [739be429] + MbedTLS v1.1.9 [442fdcdd] + Measures v0.3.2 [e1d29d7a] + Missings v1.2.0 [d8a4904e] + MutableArithmetics v1.6.6 [77ba4419] + NaNMath v1.1.3 [b8a86587] + NearestNeighbors v0.4.22 [4d8831e6] + OpenSSL v1.5.0 [bac558e1] + OrderedCollections v1.8.1 [69de0a69] + Parsers v2.8.3 [ccf2f8ad] + PlotThemes v3.3.0 [995b91a9] + PlotUtils v1.4.3 [91a5bcdd] + Plots v1.41.1 [67491407] + Polyhedra v0.8.1 [f27b6e38] + Polynomials v4.1.0 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [be4d8f0f] + Quadmath v0.5.13 [3cdcf5f2] + RecipesBase v1.3.4 [01d81517] + RecipesPipeline v0.6.12 [189a3867] + Reexport v1.2.2 [05181044] + RelocatableFolders v1.0.1 [ae029012] + Requires v1.3.1 [7e506255] + ScopedValues v1.5.0 [6c6a2e73] + Scratch v1.3.0 [efcf1570] + Setfield v1.1.2 [992d4aef] + Showoff v1.0.3 [777ac1f9] + SimpleBufferStream v1.2.0 [a2af1166] + SortingAlgorithms v1.2.2 [276daf66] + SpecialFunctions v2.6.1 [860ef19b] + StableRNGs v1.0.3 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [856f2bd8] + StructTypes v1.11.0 [62fd8b95] + TensorCore v0.1.1 [3bb67fe8] + TranscodingStreams v0.11.3 [5c2747f8] + URIs v1.6.1 [1cfade01] + UnicodeFun v0.4.1 [41fe7b60] + Unzip v0.2.0 [6e34b625] + Bzip2_jll v1.0.9+0 [83423d85] + Cairo_jll v1.18.5+0 [ee1fde0b] + Dbus_jll v1.16.2+0 [2702e6a9] + EpollShim_jll v0.0.20230411+1 [2e619515] + Expat_jll v2.7.1+0 [b22a6f82] + FFMPEG_jll v7.1.1+0 [a3f928ae] + Fontconfig_jll v2.17.1+0 [d7e528f0] + FreeType2_jll v2.13.4+0 [559328eb] + FriBidi_jll v1.0.17+0 [0656b61e] + GLFW_jll v3.4.0+2 [e8aa6df9] + GLPK_jll v5.0.1+1 [d2c73de3] + GR_jll v0.73.17+0 [b0724c58] + GettextRuntime_jll v0.22.4+0 [61579ee1] + Ghostscript_jll v9.55.1+0 [7746bdde] + Glib_jll v2.86.0+0 [3b182d85] + Graphite2_jll v1.3.15+0 [2e76f6c2] + HarfBuzz_jll v8.5.1+0 [aacddb02] + JpegTurbo_jll v3.1.3+0 [c1c5ebd0] + LAME_jll v3.100.3+0 [88015f11] + LERC_jll v4.0.1+0 [1d63c593] + LLVMOpenMP_jll v18.1.8+0 [dd4b983a] + LZO_jll v2.10.3+0 [e9f186c6] + Libffi_jll v3.4.7+0 [7e76a0d4] + Libglvnd_jll v1.7.1+1 [94ce4f54] + Libiconv_jll v1.18.0+0 [4b2f31a3] + Libmount_jll v2.41.2+0 [89763e89] + Libtiff_jll v4.7.2+0 [38a345b3] + Libuuid_jll v2.41.2+0 [c8ffd9c3] + MbedTLS_jll v2.28.6+2 [e7412a2a] + Ogg_jll v1.3.6+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [91d4177d] + Opus_jll v1.5.2+0 [36c8627f] + Pango_jll v1.56.4+0 ⌅ [30392449] + Pixman_jll v0.44.2+0 [c0090381] + Qt6Base_jll v6.8.2+1 [629bc702] + Qt6Declarative_jll v6.8.2+1 [ce943373] + Qt6ShaderTools_jll v6.8.2+1 [e99dba38] + Qt6Wayland_jll v6.8.2+1 [a44049a8] + Vulkan_Loader_jll v1.3.243+0 [a2964d1f] + Wayland_jll v1.24.0+0 [ffd25f8a] + XZ_jll v5.8.1+0 [f67eecfb] + Xorg_libICE_jll v1.1.2+0 [c834827a] + Xorg_libSM_jll v1.2.6+0 [4f6342f7] + Xorg_libX11_jll v1.8.12+0 [0c0b7dd1] + Xorg_libXau_jll v1.0.13+0 [935fb764] + Xorg_libXcursor_jll v1.2.4+0 [a3789734] + Xorg_libXdmcp_jll v1.1.6+0 [1082639a] + Xorg_libXext_jll v1.3.7+0 [d091e8ba] + Xorg_libXfixes_jll v6.0.2+0 [a51aa0fd] + Xorg_libXi_jll v1.8.3+0 [d1454406] + Xorg_libXinerama_jll v1.1.6+0 [ec84b674] + Xorg_libXrandr_jll v1.5.5+0 [ea2f1a96] + Xorg_libXrender_jll v0.9.12+0 [c7cfdc94] + Xorg_libxcb_jll v1.17.1+0 [cc61e674] + Xorg_libxkbfile_jll v1.1.3+0 [e920d4aa] + Xorg_xcb_util_cursor_jll v0.1.6+0 [12413925] + Xorg_xcb_util_image_jll v0.4.1+0 [2def613f] + Xorg_xcb_util_jll v0.4.1+0 [975044d2] + Xorg_xcb_util_keysyms_jll v0.4.1+0 [0d47668e] + Xorg_xcb_util_renderutil_jll v0.3.10+0 [c22f9ab0] + Xorg_xcb_util_wm_jll v0.4.2+0 [35661453] + Xorg_xkbcomp_jll v1.4.7+0 [33bec58e] + Xorg_xkeyboard_config_jll v2.44.0+0 [c5fb5394] + Xorg_xtrans_jll v1.6.0+0 [35ca27e7] + eudev_jll v3.2.14+0 [214eeab7] + fzf_jll v0.61.1+0 [a4ae2306] + libaom_jll v3.12.1+0 [0ac62f75] + libass_jll v0.17.4+0 [1183f4f0] + libdecor_jll v0.2.2+0 [2db6ffa8] + libevdev_jll v1.13.4+0 [f638f0a6] + libfdk_aac_jll v2.0.4+0 [36db933b] + libinput_jll v1.28.1+0 [b53b4c65] + libpng_jll v1.6.50+0 [f27f6e37] + libvorbis_jll v1.3.8+0 [009596ad] + mtdev_jll v1.1.7+0 [1270edf5] + x264_jll v10164.0.1+0 [dfaa095f] + x265_jll v4.1.0+0 [d8fb68d0] + xkbcommon_jll v1.9.2+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9abbd945] + Profile v1.11.0 [3fa0cd96] + REPL v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.9.9 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.7+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.46.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.13.1+0 [8e850ede] + nghttp2_jll v1.67.1+0 [3f19e933] + p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 7.72s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 78.83s ################################################################################ # Testing # Testing HighVoronoi Status `/tmp/jl_efTajW/Project.toml` [a8cc5b0e] Crayons v4.1.1 [b4f34e82] Distances v0.10.12 [497a8b3b] DoubleFloats v1.4.3 [60bf3e95] GLPK v1.2.1 [1d30c219] HighVoronoi v1.5.0 [42fd0dbc] IterativeSolvers v0.9.4 ⌅ [033835bb] JLD2 v0.5.15 [b8a86587] NearestNeighbors v0.4.22 [91a5bcdd] Plots v1.41.1 [67491407] Polyhedra v0.8.1 [92933f4c] ProgressMeter v1.11.0 [276daf66] SpecialFunctions v2.6.1 [90137ffa] StaticArrays v1.9.15 [37e2e46d] LinearAlgebra v1.13.0 [de0858da] Printf v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_efTajW/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [6e4b80f9] BenchmarkTools v1.6.0 [d1d4a3ce] BitFlags v0.1.9 [523fee87] CodecBzip2 v0.8.5 [944b1d66] CodecZlib v0.7.8 [35d6a980] ColorSchemes v3.31.0 [3da002f7] ColorTypes v0.12.1 [c3611d14] ColorVectorSpace v0.11.0 [5ae59095] Colors v0.13.1 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.18.1 [f0e56b4a] ConcurrentUtilities v2.5.0 [187b0558] ConstructionBase v1.6.0 [d38c429a] Contour v0.6.3 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.1 [8bb1440f] DelimitedFiles v1.9.1 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [b4f34e82] Distances v0.10.12 [ffbed154] DocStringExtensions v0.9.5 [497a8b3b] DoubleFloats v1.4.3 [460bff9d] ExceptionUnwrapping v0.1.11 [c87230d0] FFMPEG v0.4.4 [5789e2e9] FileIO v1.17.0 [53c48c17] FixedPointNumbers v0.8.5 [1fa38f19] Format v1.3.7 [f6369f11] ForwardDiff v1.2.1 [60bf3e95] GLPK v1.2.1 [28b8d3ca] GR v0.73.17 [14197337] GenericLinearAlgebra v0.3.18 [42e2da0e] Grisu v1.0.2 [cd3eb016] HTTP v1.10.19 [076d061b] HashArrayMappedTries v0.2.0 [1d30c219] HighVoronoi v1.5.0 [92d709cd] IrrationalConstants v0.2.4 [42fd0dbc] IterativeSolvers v0.9.4 ⌅ [033835bb] JLD2 v0.5.15 [1019f520] JLFzf v0.1.11 [692b3bcd] JLLWrappers v1.7.1 ⌅ [682c06a0] JSON v0.21.4 [0f8b85d8] JSON3 v1.14.3 [b964fa9f] LaTeXStrings v1.4.0 [23fbe1c1] Latexify v0.16.10 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.2.0 [1914dd2f] MacroTools v0.5.16 [b8f27783] MathOptInterface v1.45.0 [739be429] MbedTLS v1.1.9 [442fdcdd] Measures v0.3.2 [e1d29d7a] Missings v1.2.0 [d8a4904e] MutableArithmetics v1.6.6 [77ba4419] NaNMath v1.1.3 [b8a86587] NearestNeighbors v0.4.22 [4d8831e6] OpenSSL v1.5.0 [bac558e1] OrderedCollections v1.8.1 [69de0a69] Parsers v2.8.3 [ccf2f8ad] PlotThemes v3.3.0 [995b91a9] PlotUtils v1.4.3 [91a5bcdd] Plots v1.41.1 [67491407] Polyhedra v0.8.1 [f27b6e38] Polynomials v4.1.0 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [be4d8f0f] Quadmath v0.5.13 [3cdcf5f2] RecipesBase v1.3.4 [01d81517] RecipesPipeline v0.6.12 [189a3867] Reexport v1.2.2 [05181044] RelocatableFolders v1.0.1 [ae029012] Requires v1.3.1 [7e506255] ScopedValues v1.5.0 [6c6a2e73] Scratch v1.3.0 [efcf1570] Setfield v1.1.2 [992d4aef] Showoff v1.0.3 [777ac1f9] SimpleBufferStream v1.2.0 [a2af1166] SortingAlgorithms v1.2.2 [276daf66] SpecialFunctions v2.6.1 [860ef19b] StableRNGs v1.0.3 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.6 [856f2bd8] StructTypes v1.11.0 [62fd8b95] TensorCore v0.1.1 [3bb67fe8] TranscodingStreams v0.11.3 [5c2747f8] URIs v1.6.1 [1cfade01] UnicodeFun v0.4.1 [41fe7b60] Unzip v0.2.0 [6e34b625] Bzip2_jll v1.0.9+0 [83423d85] Cairo_jll v1.18.5+0 [ee1fde0b] Dbus_jll v1.16.2+0 [2702e6a9] EpollShim_jll v0.0.20230411+1 [2e619515] Expat_jll v2.7.1+0 [b22a6f82] FFMPEG_jll v7.1.1+0 [a3f928ae] Fontconfig_jll v2.17.1+0 [d7e528f0] FreeType2_jll v2.13.4+0 [559328eb] FriBidi_jll v1.0.17+0 [0656b61e] GLFW_jll v3.4.0+2 [e8aa6df9] GLPK_jll v5.0.1+1 [d2c73de3] GR_jll v0.73.17+0 [b0724c58] GettextRuntime_jll v0.22.4+0 [61579ee1] Ghostscript_jll v9.55.1+0 [7746bdde] Glib_jll v2.86.0+0 [3b182d85] Graphite2_jll v1.3.15+0 [2e76f6c2] HarfBuzz_jll v8.5.1+0 [aacddb02] JpegTurbo_jll v3.1.3+0 [c1c5ebd0] LAME_jll v3.100.3+0 [88015f11] LERC_jll v4.0.1+0 [1d63c593] LLVMOpenMP_jll v18.1.8+0 [dd4b983a] LZO_jll v2.10.3+0 [e9f186c6] Libffi_jll v3.4.7+0 [7e76a0d4] Libglvnd_jll v1.7.1+1 [94ce4f54] Libiconv_jll v1.18.0+0 [4b2f31a3] Libmount_jll v2.41.2+0 [89763e89] Libtiff_jll v4.7.2+0 [38a345b3] Libuuid_jll v2.41.2+0 [c8ffd9c3] MbedTLS_jll v2.28.6+2 [e7412a2a] Ogg_jll v1.3.6+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [91d4177d] Opus_jll v1.5.2+0 [36c8627f] Pango_jll v1.56.4+0 ⌅ [30392449] Pixman_jll v0.44.2+0 [c0090381] Qt6Base_jll v6.8.2+1 [629bc702] Qt6Declarative_jll v6.8.2+1 [ce943373] Qt6ShaderTools_jll v6.8.2+1 [e99dba38] Qt6Wayland_jll v6.8.2+1 [a44049a8] Vulkan_Loader_jll v1.3.243+0 [a2964d1f] Wayland_jll v1.24.0+0 [ffd25f8a] XZ_jll v5.8.1+0 [f67eecfb] Xorg_libICE_jll v1.1.2+0 [c834827a] Xorg_libSM_jll v1.2.6+0 [4f6342f7] Xorg_libX11_jll v1.8.12+0 [0c0b7dd1] Xorg_libXau_jll v1.0.13+0 [935fb764] Xorg_libXcursor_jll v1.2.4+0 [a3789734] Xorg_libXdmcp_jll v1.1.6+0 [1082639a] Xorg_libXext_jll v1.3.7+0 [d091e8ba] Xorg_libXfixes_jll v6.0.2+0 [a51aa0fd] Xorg_libXi_jll v1.8.3+0 [d1454406] Xorg_libXinerama_jll v1.1.6+0 [ec84b674] Xorg_libXrandr_jll v1.5.5+0 [ea2f1a96] Xorg_libXrender_jll v0.9.12+0 [c7cfdc94] Xorg_libxcb_jll v1.17.1+0 [cc61e674] Xorg_libxkbfile_jll v1.1.3+0 [e920d4aa] Xorg_xcb_util_cursor_jll v0.1.6+0 [12413925] Xorg_xcb_util_image_jll v0.4.1+0 [2def613f] Xorg_xcb_util_jll v0.4.1+0 [975044d2] Xorg_xcb_util_keysyms_jll v0.4.1+0 [0d47668e] Xorg_xcb_util_renderutil_jll v0.3.10+0 [c22f9ab0] Xorg_xcb_util_wm_jll v0.4.2+0 [35661453] Xorg_xkbcomp_jll v1.4.7+0 [33bec58e] Xorg_xkeyboard_config_jll v2.44.0+0 [c5fb5394] Xorg_xtrans_jll v1.6.0+0 [35ca27e7] eudev_jll v3.2.14+0 [214eeab7] fzf_jll v0.61.1+0 [a4ae2306] libaom_jll v3.12.1+0 [0ac62f75] libass_jll v0.17.4+0 [1183f4f0] libdecor_jll v0.2.2+0 [2db6ffa8] libevdev_jll v1.13.4+0 [f638f0a6] libfdk_aac_jll v2.0.4+0 [36db933b] libinput_jll v1.28.1+0 [b53b4c65] libpng_jll v1.6.50+0 [f27f6e37] libvorbis_jll v1.3.8+0 [009596ad] mtdev_jll v1.1.7+0 [1270edf5] x264_jll v10164.0.1+0 [dfaa095f] x265_jll v4.1.0+0 [d8fb68d0] xkbcommon_jll v1.9.2+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9abbd945] Profile v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.46.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... [(0)CBOUNDARY in 2 dimensions with 4 planes: [(0)C 1: base=[1.0, 0.0], normal=[1.0, 0.0] ; Dirichlet [(0)C 2: base=[0.0, 0.0], normal=[-1.0, 0.0] ; Neumann [(0)C 3: base=[0.0, 1.0], normal=[0.0, 1.0] ; periodic with neighbor 4 [(0)C 4: base=[0.0, 0.0], normal=[-0.0, -1.0] ; periodic with neighbor 3 [(0)CBOUNDARY in 2 dimensions with 4 planes: [(0)C 1: base=[1.0, 0.0], normal=[1.0, 0.0] ; Dirichlet [(0)C 2: base=[0.0, 0.0], normal=[-1.0, 0.0] ; Neumann [(0)C 3: base=[0.0, 1.0], normal=[0.0, 1.0] ; periodic with neighbor 4 [(0)C 4: base=[0.0, 0.0], normal=[-0.0, -1.0] ; periodic with neighbor 3 HighVoronoi.EdgeHashTable{Vector{HighVoronoi.HashedEdge}, Nothing}(HighVoronoi.HashedEdge[HighVoronoi.HashedEdge(0x00007cec065b9dd000007cec065b9db0, 0x00007cec065b9df0, 137353162610704, 137354347941072), HighVoronoi.HashedEdge(0x00007cec065b407000007cec065b9650, 0x00007cec065b9e90, 137353160793776, 137353160793808), HighVoronoi.HashedEdge(0x00007cec065b9f3000007cec065b9f10, 0x00007cec065f71d0, 38458, 38475), HighVoronoi.HashedEdge(0x00007cec084136d000007cec08413690, 0x00007cec08413710, 137353192617808, 0)], UInt64[0x0000000000000003], Bool[0, 0, 0, 0], nothing) false false false true true false false false false false HighVoronoi.VertexHashTable{Vector{HighVoronoi.HashedVertex}}(HighVoronoi.HashedVertex[HighVoronoi.HashedVertex(0x00000000000000010000000000000000, 0x0000000000000001, 3), HighVoronoi.HashedVertex(0x00000000000000050000000000000004, 0x0000000000000006, 3), HighVoronoi.HashedVertex(0x00000000000000050000000000000006, 0x0000000000000004, 11), HighVoronoi.HashedVertex(0x00000000000000000000000000000000, 0x0000000000000000, 0)], UInt64[0x0000000000000003], Bool[0, 0, 0, 0]) true false true true extending... true true true true false true, true, true, true, false, QueueHashTable after insertions: Index 1: empty Index 2: empty Index 3: HighVoronoi.HashedQueue(0xa68baf1c308b5822836dbc78c5716b31, 0xd088661867101611) Index 4: HighVoronoi.HashedQueue(0xa68bd328cc8b5822836dbc78d42b86e3, 0xa072c218dcd5ca03) Index 5: empty Index 6: HighVoronoi.HashedQueue(0xa68c00fc148b5822836dbc78e70c6025, 0x6cd24a18bfb0fbf5) Index 7: empty Index 8: HighVoronoi.HashedQueue(0x29a2e85be122d608a0db6f1e2ff4c547, 0x2dac5686161df87b) Index 9: empty Index 10: HighVoronoi.HashedQueue(0xa68ba5df448b5822836dbc78c19f6369, 0xbf6bca185d6e4119) Index 11: HighVoronoi.HashedQueue(0x29a2f1766122d608a0db6f1e33b1a489, 0x2190d286337c9a21) Index 12: empty Index 13: empty Index 14: empty Index 15: HighVoronoi.HashedQueue(0x5345f9879e45ac1141b6de3c70a338bb, 0x296c890c587dcb53) Index 16: empty Index 17: HighVoronoi.HashedQueue(0x14d17f8c9e916b04506db78f1ca4fb09, 0x0c82f54317574967) Index 18: HighVoronoi.HashedQueue(0xa68bc9fa648b5822836dbc78d06245f1, 0x8fa0ca18d3734431) Index 19: empty Index 20: empty Index 21: empty Index 22: HighVoronoi.HashedQueue(0x5345cc20ae45ac1141b6de3c5e051175, 0x17ea110c4e858055) Index 23: empty Index 24: HighVoronoi.HashedQueue(0xa68b78a96c8b5822836dbc78af1f5cb7, 0xf342c2187ac17817) Index 25: empty Index 26: empty Index 27: HighVoronoi.HashedQueue(0x53462729ae45ac1141b6de3c8365ca09, 0x6a83990bec42d311) Index 28: HighVoronoi.HashedQueue(0xa68baf0d6c8b5822836dbc78c568559b, 0xd0aa6218672cf5ab) Index 29: empty Index 30: empty Index 31: empty Index 32: empty QueueHashTable after calling empty!: Index 1: empty Index 2: empty Index 3: empty Index 4: empty Index 5: empty Index 6: empty Index 7: empty Index 8: empty Index 9: empty Index 10: empty Index 11: empty Index 12: empty Index 13: empty Index 14: empty Index 15: empty Index 16: empty Index 17: empty Index 18: empty Index 19: empty Index 20: empty Index 21: empty Index 22: empty Index 23: empty Index 24: empty Index 25: empty Index 26: empty Index 27: empty Index 28: empty Index 29: empty Index 30: empty Index 31: empty Index 32: empty QueueHashTable after re-inserting keys: Index 1: empty Index 2: empty Index 3: empty Index 4: empty Index 5: empty Index 6: HighVoronoi.HashedQueue(0xa68c00fc148b5822836dbc78e70c6025, 0x6cd24a18bfb0fbf5) Index 7: empty Index 8: HighVoronoi.HashedQueue(0x29a2e85be122d608a0db6f1e2ff4c547, 0x2dac5686161df87b) Index 9: empty Index 10: HighVoronoi.HashedQueue(0xa68ba5df448b5822836dbc78c19f6369, 0xbf6bca185d6e4119) Index 11: empty Index 12: empty Index 13: empty Index 14: empty Index 15: HighVoronoi.HashedQueue(0x5345f9879e45ac1141b6de3c70a338bb, 0x296c890c587dcb53) Index 16: empty Index 17: HighVoronoi.HashedQueue(0x14d17f8c9e916b04506db78f1ca4fb09, 0x0c82f54317574967) Index 18: empty Index 19: empty Index 20: empty Index 21: empty Index 22: HighVoronoi.HashedQueue(0x5345cc20ae45ac1141b6de3c5e051175, 0x17ea110c4e858055) Index 23: empty Index 24: HighVoronoi.HashedQueue(0xa68b78a96c8b5822836dbc78af1f5cb7, 0xf342c2187ac17817) Index 25: empty Index 26: empty Index 27: empty Index 28: HighVoronoi.HashedQueue(0xa68baf0d6c8b5822836dbc78c568559b, 0xd0aa6218672cf5ab) Index 29: empty Index 30: empty Index 31: empty Index 32: empty 2 9 2 9 ----------------------------------------------------------------- testing integrators ----------------------------------------------------------------- ┌ Warning: `Progress(n::Integer, desc::AbstractString, offset::Integer = 0; kwargs...)` is deprecated, use `Progress(n; desc = desc, offset = offset, kwargs...)` instead. │ caller = ip:0x0 └ @ Core :-1 POLYGON-integration over 100 cells: 1%|▏ | ETA: 1:22:09 POLYGON-integration over 100 cells: 100%|████████████████| Time: 0:00:50 2: HighVoronoi.Call_POLYGON: Unknown vs. HighVoronoi.Call_POLYGON: Unknown vs. HighVoronoi.Call_POLYGON: Unknown MONTECARLO-integration over 100 cells: 1%|▏ | ETA: 0:10:10 MONTECARLO-integration over 100 cells: 100%|█████████████| Time: 0:00:06 3: HighVoronoi.Call_MC: Unknown vs. HighVoronoi.Call_MC: Unknown vs. HighVoronoi.Call_MC: Unknown 4: HighVoronoi.Call_GEO: Unknown vs. HighVoronoi.Call_GEO: Unknown vs. HighVoronoi.Call_GEO: Unknown 5: HighVoronoi.Call_HEURISTIC: Unknown vs. HighVoronoi.Call_HEURISTIC: Unknown vs. HighVoronoi.Call_HEURISTIC: Unknown HEURISTIC_MC-integration over 100 cells: 1%|▏ | ETA: 0:14:58 HEURISTIC_MC-integration over 100 cells: 100%|███████████| Time: 0:00:09 8: HighVoronoi.Call_HEURISTIC_MC: Unknown vs. HighVoronoi.Call_HEURISTIC_MC: Unknown vs. HighVoronoi.Call_HEURISTIC_MC: Unknown FAST_POLYGON-integration over 100 cells: 1%|▏ | ETA: 0:35:28 FAST_POLYGON-integration over 100 cells: 100%|███████████| Time: 0:00:21 9: HighVoronoi.Call_FAST_POLYGON: Unknown vs. HighVoronoi.Call_FAST_POLYGON: Unknown vs. HighVoronoi.Call_FAST_POLYGON: Unknown ----------------------------------------------------------------- testing Voronoi Data and related stuff ----------------------------------------------------------------- ----------------------------------------------------------------- testing Heuristic integrator in high dimensions ----------------------------------------------------------------- Initialize bulk mesh with 500 points 16%|████████ | ETA: 0:00:01 58%|█████████████████████████████▋ | ETA: 0:00:00 100%|███████████████████████████████████████████████████| Time: 0:00:00 New verteces: 11120  Calculating nodes on periodic boundary part: ... 217 new nodes to be included... Refine with 217 points: 1st Voronoi: 48%|████▊ | ETA: 0:00:00 Refine with 217 points: 1st Voronoi: 100%|██████████| Time: 0:00:00 New verteces: 7331 Identify affected old cells and clear broken vertices New verteces: 16 New verteces: 0 New verteces: 3874 Identify affected old cells and clear broken vertices New verteces: 141 New verteces: 0 82 new nodes included in grid 0 new nodes included in grid POLYGON-integration over 500 cells: 0%| | ETA: 7:19:27 POLYGON-integration over 500 cells: 2%|▎ | ETA: 0:57:56 POLYGON-integration over 500 cells: 4%|▋ | ETA: 0:23:01 POLYGON-integration over 500 cells: 6%|▉ | ETA: 0:15:14 POLYGON-integration over 500 cells: 7%|█▏ | ETA: 0:11:07 POLYGON-integration over 500 cells: 9%|█▌ | ETA: 0:08:41 POLYGON-integration over 500 cells: 11%|█▊ | ETA: 0:07:08 POLYGON-integration over 500 cells: 13%|██ | ETA: 0:06:14 POLYGON-integration over 500 cells: 16%|██▋ | ETA: 0:04:42 POLYGON-integration over 500 cells: 19%|███ | ETA: 0:04:00 POLYGON-integration over 500 cells: 21%|███▍ | ETA: 0:03:24 POLYGON-integration over 500 cells: 24%|███▉ | ETA: 0:02:51 POLYGON-integration over 500 cells: 28%|████▍ | ETA: 0:02:26 POLYGON-integration over 500 cells: 31%|████▉ | ETA: 0:02:05 POLYGON-integration over 500 cells: 35%|█████▌ | ETA: 0:01:45 POLYGON-integration over 500 cells: 39%|██████▏ | ETA: 0:01:29 POLYGON-integration over 500 cells: 43%|██████▉ | ETA: 0:01:14 POLYGON-integration over 500 cells: 48%|███████▋ | ETA: 0:01:01 POLYGON-integration over 500 cells: 100%|████████████████| Time: 0:00:55 Copy geometry ... mesh with 799 nodes copied BOUNDARY: 1: base=[1.0, 0.0, 0.0, 0.0], normal=[1.0, 0.0, 0.0, 0.0] ; periodic with neighbor 2 2: base=[0.0, 0.0, 0.0, 0.0], normal=[-1.0, -0.0, -0.0, -0.0] ; periodic with neighbor 1 3: base=[0.0, 1.0, 0.0, 0.0], normal=[0.0, 1.0, 0.0, 0.0] ; Dirichlet 4: base=[0.0, 0.0, 0.0, 0.0], normal=[-0.0, -1.0, -0.0, -0.0] ; Dirichlet 5: base=[0.0, 0.0, 1.0, 0.0], normal=[0.0, 0.0, 1.0, 0.0] ; Dirichlet 6: base=[0.0, 0.0, 0.0, 0.0], normal=[-0.0, -0.0, -1.0, -0.0] ; Dirichlet 7: base=[0.0, 0.0, 0.0, 1.0], normal=[0.0, 0.0, 0.0, 1.0] ; Dirichlet 8: base=[0.0, 0.0, 0.0, 0.0], normal=[-0.0, -0.0, -0.0, -1.0] ; Dirichlet Copy geometry ... mesh with 799 nodes copied BOUNDARY: 1: base=[1.0, 0.0, 0.0, 0.0], normal=[1.0, 0.0, 0.0, 0.0] ; periodic with neighbor 2 2: base=[0.0, 0.0, 0.0, 0.0], normal=[-1.0, -0.0, -0.0, -0.0] ; periodic with neighbor 1 3: base=[0.0, 1.0, 0.0, 0.0], normal=[0.0, 1.0, 0.0, 0.0] ; Dirichlet 4: base=[0.0, 0.0, 0.0, 0.0], normal=[-0.0, -1.0, -0.0, -0.0] ; Dirichlet 5: base=[0.0, 0.0, 1.0, 0.0], normal=[0.0, 0.0, 1.0, 0.0] ; Dirichlet 6: base=[0.0, 0.0, 0.0, 0.0], normal=[-0.0, -0.0, -1.0, -0.0] ; Dirichlet 7: base=[0.0, 0.0, 0.0, 1.0], normal=[0.0, 0.0, 0.0, 1.0] ; Dirichlet 8: base=[0.0, 0.0, 0.0, 0.0], normal=[-0.0, -0.0, -0.0, -1.0] ; Dirichlet [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], that means: 0 cases a mirror was activated 0 cases it was temporarily deactivated 0 irregular vertices calculated Initialize bulk mesh with 200 points New verteces: 1179  Calculating nodes on periodic boundary part: ... 72 new nodes to be included... New verteces: 637 Identify affected old cells and clear broken vertices New verteces: 2 New verteces: 0 New verteces: 265 Identify affected old cells and clear broken vertices New verteces: 57 New verteces: 0 20 new nodes included in grid 0 new nodes included in grid New verteces: 1686 New verteces: 1693 New verteces: 1680 New verteces: 1660 New verteces: 1663 FAST_POLYGON-integration over 200 cells: 0%| | ETA: 1:06:34 FAST_POLYGON-integration over 200 cells: 100%|███████████| Time: 0:00:20 POLYGON-integration over 200 cells: 0%|▏ | ETA: 2:09:34 POLYGON-integration over 200 cells: 100%|████████████████| Time: 0:00:39 New verteces: 1695 0 new nodes included in grid 0 new nodes included in grid ----------------------------------------------------------------- testing substitute ----------------------------------------------------------------- ([89, 262, 296, 554, 799, 987], [0.6200276203768039, 0.6959132959770831, -0.09483730313530926, -0.7818397194284956, 1.2365020006768372, 0.12964467322890064], [0.8494843727810484, -0.09099055173209109, 0.03853486941424711, -0.48502461539871955, 0.048109942043973786, 0.1762062418569641]) Initialize bulk mesh with 400 points [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801] and [1, 2, 5, 6, 8, 9, 10, 12, 13, 14, 17, 19, 22, 24, 28, 29, 31, 33, 34, 37, 38, 40, 43, 44, 46, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 62, 64, 66, 67, 69, 72, 73, 76, 78, 79, 80, 82, 84, 85, 86, 87, 89, 94, 95, 97, 98, 99, 100, 104, 105, 106, 107, 111, 113, 114, 116, 117, 118, 120, 121, 124, 125, 130, 132, 133, 134, 136, 138, 139, 143, 144, 145, 147, 148, 151, 152, 153, 155, 157, 158, 162, 168, 173, 174, 177, 178, 180, 181, 183, 185, 189, 190, 191, 192, 193, 194, 195, 196, 199, 200, 201, 203, 204, 205, 207, 208, 209, 215, 216, 217, 218, 220, 221, 223, 224, 225, 226, 227, 228, 231, 232, 236, 237, 238, 241, 242, 243, 245, 246, 247, 248, 250, 251, 253, 254, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 269, 270, 271, 274, 277, 278, 281, 283, 285, 288, 289, 293, 294, 297, 298, 300, 305, 310, 311, 312, 313, 314, 316, 320, 321, 322, 324, 325, 326, 328, 329, 330, 331, 333, 334, 335, 336, 339, 342, 344, 345, 346, 347, 348, 350, 352, 353, 355, 356, 357, 359, 360, 361, 362, 363, 365, 367, 369, 371, 372, 373, 375, 377, 378, 380, 382, 386, 387, 390, 392, 394, 400, 404, 407, 411, 415, 416, 418, 420, 423, 425, 427, 430, 432, 435, 436, 439, 441, 442, 445, 447, 451, 458, 461, 463, 465, 468, 470, 471, 474, 475, 477, 481, 488, 490, 491, 492, 493, 496, 501, 502, 503, 508, 509, 510, 512, 515, 519, 522, 523, 526, 527, 528, 529, 531, 535, 537, 540, 541, 546, 549, 550, 556, 559, 560, 561, 563, 564, 565, 566, 567, 569, 570, 571, 572, 575, 576, 579, 582, 584, 586, 587, 588, 597, 598, 606, 610, 611, 612, 613, 614, 619, 622, 629, 630, 633, 634, 635, 639, 640, 644, 649, 652, 655, 656, 662, 668, 672, 673, 675, 676, 680, 682, 684, 686, 687, 690, 691, 692, 696, 699, 701, 702, 703, 704, 706, 707, 708, 709, 715, 717, 718, 719, 727, 732, 737, 738, 740, 741, 743, 749, 751, 754, 758, 764, 766, 768, 770, 774, 779, 781, 783, 784, 785, 788, 789, 791, 793, 795, 796, 797, 799, 801] not identical in list with 801 entries! var_sig = 166.4690690872499, var_idx = 55.941715978062156 1(1.1096754261399573), 2(0.8988640538750302), 3(1.1136463428306005), 4(1.3619001511898245), 5(0.6505906851157187), 6(1.0201055419223655), 7(1.3541373941773456), 8(0.6408293780073142), 9(1.0103139321407308), 10(0.8203334039680087), 11(1.3637201411154156), 12(0.5190997686327758), 13(0.5044625146482826), 14(0.542215392861109), 15(1.1421627120759807), 16(1.445868206776108), 17(0.5232903910602467), 18(1.1419947908493873), 19(0.964209976187951), 20(1.4370564357405724), 21(1.1233828374716313), 22(0.6399685372561664), 23(1.1724450537089228), 24(0.8199320088173199), 25(1.342561947090831), 26(1.1166821340327486), 27(1.2466186758303797), 28(0.9557287899051915), 29(0.8997255652551829), 30(1.3811395347818176), 31(0.9430055351287012), 32(1.1980343263040039), 33(0.6177260980291126), 34(1.1032410044609322), 35(1.2744514377082599), 36(1.4847984782050918), 37(0.6427819386748194), 38(0.7147889123747058), 39(1.1680914280487433), 40(1.0650141935306388), 41(1.4898515717389231), 42(1.2569699950068969), 43(1.074580008086816), 44(0.6121354221652457), 45(1.1377668814280342), 46(1.0972266961334676), 47(1.316166931658677), 48(0.6186297121829171), 49(0.8266018584579817), 50(0.7969448718732849), 51(1.1354506131873252), 52(0.6975709136123691), 53(0.7434776015427769), 54(1.0085639053034985), 55(1.0856797472870603), 56(0.9176550177784486), 57(0.8510273054767027), 58(1.2638020747660406), 59(0.9152731050908982), 60(0.8596018761430164), 61(1.4051752790446679), 62(0.8997460583706729), 63(1.296167045862316), 64(1.0849782803490684), 65(1.1466709046942538), 66(0.5669703975228865), 67(0.5923649385354298), 68(1.202032872099665), 69(1.0657495313502323), 70(1.2928155516523032), 71(1.1404062719715338), 72(0.6103770391342799), 73(0.7317093325778583), 74(1.4834913139144708), 75(1.3218203147167678), 76(1.066656006345473), 77(1.4350043900977913), 78(0.5018679019736233), 79(0.8319067151135434), 80(0.8644603131524454), 81(1.282004122780411), 82(1.0034823865532978), 83(1.12583487420835), 84(0.905001011343582), 85(0.8644520610636207), 86(0.8026259039211425), 87(1.0318713465747438), 88(1.3286160897027641), 89(0.8960084530222493), 90(1.3067738092106158), 91(1.3709882266384104), 92(1.405938006648168), 93(1.2129580794077781), 94(1.0087363636923423), 95(0.9894604489595351), 96(1.174227512313436), 97(1.0587308749689512), 98(0.7703891400680485), 99(0.9191269864993497), 100(0.8843512633748597), 101(1.168205533321614), 102(1.467496661404866), 103(1.2652275449615897), 104(0.8363678893284143), 105(0.8121789291949012), 106(0.8041867858486554), 107(0.9913789143307788), 108(1.1845033407954726), 109(1.2467944173923955), 110(1.3506682699916561), 111(0.8603885549687332), 112(1.2172166874783257), 113(0.7134860566474939), 114(0.5606883957355532), 115(1.2990359608346604), 116(0.9994746133926853), 117(1.0515782198529668), 118(0.8594286749366625), 119(1.234670640958065), 120(0.9609007444857233), 121(0.6870228529895529), 122(1.1729376459196594), 123(1.2496170634304684), 124(0.7880506824082865), 125(0.8822701961345061), 126(1.2522294706192605), 127(1.44558931763383), 128(1.1538844916656965), 129(1.4133067232698733), 130(0.8592210877385649), 131(1.1320005852782944), 132(1.0228473501528206), 133(0.978708026969263), 134(1.1057060300470816), 135(1.2371692521116922), 136(0.9670682901019402), 137(1.4285219293870217), 138(0.7524084189874983), 139(0.7791139493206068), 140(1.3571191113749266), 141(1.2761646692411226), 142(1.114345881974806), 143(0.9569468238311147), 144(1.0994821674357664), 145(0.5545210035737059), 146(1.43146526206096), 147(0.71742026427779), 148(1.0299365160367275), 149(1.3468175239271332), 150(1.2850041480288892), 151(1.0651003480915096), 152(0.977300390528666), 153(1.028134358491367), 154(1.111655732182481), 155(0.8072948586399255), 156(1.4562788783280327), 157(0.7000648370581544), 158(0.7439668319311975), 159(1.3494116201859407), 160(1.1879552712759074), 161(1.409452344403257), 162(0.661727445260198), 163(1.2557136403644396), 164(1.4654624427731067), 165(1.1373818007560643), 166(1.4729253062284013), 167(1.4111752384997611), 168(0.5145143979199571), 169(1.2605197354380273), 170(1.3698701745550952), 171(1.334811100485639), 172(1.3732344388342947), 173(0.5136867256798286), 174(0.7074746406359961), 175(1.1450314002549469), 176(1.1609975505371024), 177(0.9567415332348624), 178(0.5284721161859184), 179(1.263129080471344), 180(0.5877417311051581), 181(1.049365389252005), 182(1.489639845490096), 183(0.8130019881062166), 184(1.3007995447115386), 185(0.846701111046878), 186(1.2862025075538155), 187(1.1737163479415773), 188(1.2337104857085532), 189(0.8153962183779117), 190(0.6649646026157942), 191(0.7835019459801834), 192(0.742949824052437), 193(1.0519752682277463), 194(0.8446628531266731), 195(1.0702140259959219), 196(0.9569315437171486), 197(1.3163108274183872), 198(1.2247515965434697), 199(0.7838787678763426), 200(0.9345899343690695), 201(0.892647983801385), 202(1.1207563468305295), 203(0.5018679019736233), 204(0.6383891347149179), 205(1.062196287336947), 206(1.2283335340004062), 207(0.803114052678463), 208(0.9627535117598971), 209(0.521722150372376), 210(1.4092189933406398), 211(1.3207043648489774), 212(1.2674806749623708), 213(1.1532508108576696), 214(1.3374450784481755), 215(0.9024085481835037), 216(1.0146433917808388), 217(0.5456128713676923), 218(0.6750330245869253), 219(1.1347429463987269), 220(0.7499847095254625), 221(0.9533945423798841), 222(1.4720340090098065), 223(0.957701217204434), 224(0.7606548556912598), 225(0.519621029792156), 226(0.9182135441713659), 227(1.0046925062610736), 228(0.7921880717095232), 229(1.2587250133493828), 230(1.1610749496505999), 231(0.8681799063401112), 232(1.0112749436956006), 233(1.2882723299449839), 234(1.2189443612505713), 235(1.172150552910091), 236(0.8294738337604766), 237(0.8879545886356394), 238(1.0791273042576097), 239(1.4772498110172771), 240(1.322064802713481), 241(0.6464482799837448), 242(0.9733082742690026), 243(0.9796320544823646), 244(1.3519538255357915), 245(0.9588887991844958), 246(0.943634577458522), 247(0.7374913441320378), 248(0.5598096879681226), 249(1.341735621621219), 250(0.7079325859719287), 251(0.6053365592934128), 252(1.3041038801177334), 253(1.0242670614744869), 254(0.7566561480689721), 255(1.4380404228284587), 256(1.3153499930741652), 257(0.9836352187038521), 258(0.6990805395339869), 259(1.0658232832450858), 260(1.0940912344901392), 261(0.7491529548388297), 262(1.2477877426479855), 263(0.9651147960891757), 264(0.7735058555017913), 265(0.5804255246203779), 266(1.0742736497524534), 267(0.8326292612374261), 268(1.384575609781777), 269(0.5434242330668886), 270(0.5018679019736234), 271(0.8914435815230194), 272(1.409008559590439), 273(1.4401527618439822), 274(0.8375679828710746), 275(1.271706390178017), 276(1.3423725255772476), 277(1.0540126858836336), 278(0.61783571891092), 279(1.1250720181206444), 280(1.3754398997027788), 281(0.9042391682688596), 282(1.437573193522038), 283(0.9547514435167762), 284(1.184261091010035), 285(0.9817173170495189), 286(1.2842951012847486), 287(1.2127308890295), 288(0.6292803190176848), 289(0.9532954081857252), 290(1.449256651743721), 291(1.2759561946632954), 292(1.3307436062911004), 293(0.8469447225191906), 294(0.7167260284239978), 295(1.1195680096022096), 296(1.379854669104153), 297(0.8073069146973688), 298(0.5488620580335205), 299(1.2787215983997813), 300(0.986282571381468), 301(1.4918848247153733), 302(1.188891958474545), 303(1.27850781072963), 304(1.2318125510020617), 305(0.6033596523337119), 306(1.3596342624598066), 307(1.4828761965981814), 308(1.2913182046933687), 309(1.301083464632037), 310(1.0005519585927831), 311(0.5848260947770851), 312(0.8070452915659689), 313(0.5656391016060509), 314(0.5745319106354809), 315(1.479497842004373), 316(0.6547170230290688), 317(1.15227219685195), 318(1.2291522589362784), 319(1.4237446282169215), 320(1.0303534338790747), 321(1.0510114005510767), 322(0.9296485351381356), 323(1.1217739791090906), 324(1.03458926566875), 325(0.8040797727661483), 326(0.9392815962745241), 327(1.1889010818291608), 328(0.8510635716223116), 329(1.093774253463586), 330(1.0271939399542989), 331(0.5947607848095), 332(1.2317826366344018), 333(0.5699013889123046), 334(0.5035554709786686), 335(1.0616881488260526), 336(0.754197340607491), 337(1.4164271605884784), 338(1.174985720636528), 339(0.9710057198217765), 340(1.405654521301474), 341(1.4136660771817662), 342(0.9797071387328219), 343(1.2764755224205317), 344(0.8870802005634795), 345(0.9735236559392262), 346(0.8098980700463644), 347(0.9073924620528216), 348(0.9918680063974347), 349(1.1452388966457994), 350(0.9480042813775034), 351(1.4821483564650266), 352(1.063621294173961), 353(0.5168643924983228), 354(1.3207171767829908), 355(0.5024335834887403), 356(0.9531154088384802), 357(0.5829572877399253), 358(1.3358434787501487), 359(0.6328705304776149), 360(0.8965814336437397), 361(0.7595083758051904), 362(0.6027066793817142), 363(0.7492027767028623), 364(1.4266693364218308), 365(0.959676598693543), 366(1.2553834318200967), 367(0.7736901305799638), 368(1.1373365779678013), 369(0.7754910322083707), 370(1.4029598245015764), 371(0.867552421119903), 372(1.0195583795870795), 373(0.6085248457742598), 374(1.4748415832101334), 375(0.551168287326214), 376(1.1229380015368564), 377(0.9043618277811459), 378(1.0803384273363443), 379(1.3430834218774954), 380(0.9094367971439367), 381(1.4621671650775687), 382(0.9354003920250767), 383(1.1519799707807028), 384(1.392410227363838), 385(1.2993067302174814), 386(0.950520466675603), 387(0.50813470752202), 388(1.49045406886511), 389(1.4344143247243633), 390(0.926043610033417), 391(1.3235288739401225), 392(0.7316017289192037), 393(1.297236002954563), 394(0.9526509986315814), 395(1.3710507832596939), 396(1.287022097185846), 397(1.4760178020041403), 398(1.122086988138675), 399(1.2232820257214012), 400(0.9440124194538795), 401(1.1279907937053018), 402(1.3022235578863408), 403(1.124070551683853), 404(0.8055872145534246), 405(1.4423850188155285), 406(1.209598059440445), 407(0.8185686896976945), 408(1.4467482470511488), 409(1.2177883808713021), 410(1.353069062685668), 411(0.8025024353726059), 412(1.4947502173501135), 413(1.4997534308604012), 414(1.486521190500588), 415(1.0950831572104711), 416(0.6428125004204999), 417(1.4932883005926305), 418(1.0952582707908107), 419(1.2546082671027017), 420(0.6622775721398206), 421(1.114340065930055), 422(1.4471292455703515), 423(1.0625984086644842), 424(1.3533123375553802), 425(0.8374187723513785), 426(1.1210547683297547), 427(0.9745176546034061), 428(1.2610809895518889), 429(1.3016284759058765), 430(0.7721375314835288), 431(1.270623210389077), 432(1.033661712099333), 433(1.4567625921462082), 434(1.1342848267251249), 435(0.9378253115512302), 436(0.5469152230306413), 437(1.4458817937079966), 438(1.4116726223912532), 439(1.0673824046619194), 440(1.170251062653265), 441(0.5329963191710372), 442(0.9611291347759543), 443(1.161473455694512), 444(1.4591206279788487), 445(1.0996496285582686), 446(1.1401036616706604), 447(0.8783207785718131), 448(1.4563790925673488), 449(1.3492487352807205), 450(1.3669753667340485), 451(1.1020411458177688), 452(1.4202596954588331), 453(1.3967762304918465), 454(1.2192381354689363), 455(1.1511048033926008), 456(1.2890508331360901), 457(1.3339772514536654), 458(0.9521276688973305), 459(1.2907431677758665), 460(1.3284680638217161), 461(0.7274786713193405), 462(1.3016143101968611), 463(0.9075757661393177), 464(1.1517659976026342), 465(1.0903616915457341), 466(1.4772566975294283), 467(1.4672581782551866), 468(1.029009113883178), 469(1.1695814287554214), 470(0.9123435380758519), 471(1.0969121737453738), 472(1.459857065661047), 473(1.4029769187984804), 474(0.5504510001836039), 475(0.8697895364195167), 476(1.1687547844564912), 477(0.6667122186242566), 478(1.5006236673568114), 479(1.3459843979080168), 480(1.3253117176902904), 481(0.9274741027310905), 482(1.2234238357740583), 483(1.1118626795063684), 484(1.297966082580707), 485(1.3253171002389093), 486(1.3636474765926792), 487(1.199576719589388), 488(0.859373066977171), 489(1.3041900299325586), 490(0.8922359517661176), 491(0.7900215595043463), 492(0.7260035148158647), 493(1.016108005904002), 494(1.2190954559129337), 495(1.2347918051265192), 496(1.060628366294723), 497(1.1759386533532656), 498(1.3821155360272979), 499(1.2880016943899715), 500(1.3121225647896246), 501(1.0672575199920475), 502(0.591773884882043), 503(0.9502326249573215), 504(1.3432168610329258), 505(1.3579794435243253), 506(1.3627275573383044), 507(1.233252054643794), 508(1.0491399419082172), 509(0.9742928013805554), 510(0.8242802960768623), 511(1.327958702875066), 512(1.0110026299605286), 513(1.4123315577556221), 514(1.4796524270754616), 515(0.9034646393308281), 516(1.2267001586558774), 517(1.1823392193417581), 518(1.3285801198119087), 519(0.9896116361578483), 520(1.2571445984092662), 521(1.425392009775875), 522(1.0620546411777794), 523(0.9706698598628813), 524(1.372122044141354), 525(1.3135227760018449), 526(0.9672973353501081), 527(0.6434394352274115), 528(1.0827249705978939), 529(0.7115524492424905), 530(1.3287143803121007), 531(1.1055846674915546), 532(1.2072804480932202), 533(1.24333156479225), 534(1.1318820420787388), 535(0.9864862004570614), 536(1.2524063654988833), 537(0.6804909105367934), 538(1.3919857589427937), 539(1.377216118129925), 540(0.8136156952786388), 541(0.9354926611382418), 542(1.1233770682137871), 543(1.2601569578518204), 544(1.1379287084670824), 545(1.4819747766606635), 546(0.6742773802935698), 547(1.4103371747445357), 548(1.2012383422938766), 549(0.8305572462543439), 550(0.9233131221916872), 551(1.1701726498932359), 552(1.2444383185740178), 553(1.2027811617049702), 554(1.1260392156442178), 555(1.3608886042863153), 556(0.6188655836273824), 557(1.4190320665783254), 558(1.3965157124247007), 559(0.826335925256773), 560(1.0452296663942322), 561(0.7191570558083787), 562(1.4373098379445628), 563(0.9627699805589596), 564(0.5967936082803602), 565(1.1000479177616331), 566(0.5781295912983379), 567(0.7157703740082819), 568(1.4963347608058424), 569(0.9564689114833052), 570(0.7919586396568989), 571(0.8497188406073685), 572(0.7861106525561602), 573(1.496619099812357), 574(1.415352399552769), 575(1.0920832726916976), 576(1.0750941678335257), 577(1.2603128265023005), 578(1.4914623711233181), 579(0.9530203083515214), 580(1.4691162103728639), 581(1.1843036189688863), 582(0.5335877742143795), 583(1.3574868505433682), 584(0.9009235963948697), 585(1.336727350889027), 586(0.921643039156207), 587(1.0611940051835478), 588(0.9908083666963955), 589(1.3560500688093393), 590(1.4358150505308238), 591(1.3747245115688012), 592(1.397057028543669), 593(1.1819859631569123), 594(1.338016235555728), 595(1.1654976278930866), 596(1.26016856122581), 597(0.87810511197916), 598(1.0018614219676467), 599(1.3745096796077791), 600(1.2768259226060659), 601(1.3064923876847256), 602(1.1169816440308673), 603(1.5006236673568114), 604(1.4478266798000206), 605(1.1728093746344368), 606(0.9974665464630307), 607(1.3633600406544075), 608(1.2557262670091756), 609(1.4938369321561293), 610(0.7196142097477002), 611(0.8714830822980282), 612(0.9472251689327864), 613(1.0833999027685672), 614(0.8455669365565133), 615(1.2997698235565227), 616(1.2141834991377074), 617(1.4852775419633581), 618(1.4311090796231574), 619(1.1027697981270383), 620(1.3932931197493297), 621(1.2628466370161757), 622(0.5803952604745578), 623(1.2595837251361892), 624(1.38749665678016), 625(1.4945690908956175), 626(1.288653044602414), 627(1.2224302638292521), 628(1.3697375081029066), 629(0.9588295588014634), 630(1.0750105782533816), 631(1.3228780867071952), 632(1.2169904561319584), 633(0.9187476182069456), 634(1.0089189393792988), 635(1.0629232631640821), 636(1.3474850430225596), 637(1.3096867681181348), 638(1.1572497756614677), 639(0.5669883401907233), 640(0.8694178739185072), 641(1.4442463097992913), 642(1.247563138803928), 643(1.242603645533633), 644(0.822170077102026), 645(1.258679884983203), 646(1.2701561188639332), 647(1.39994617732009), 648(1.4799850996952115), 649(0.8387420960793215), 650(1.4151233994892143), 651(1.4619543194113915), 652(0.8961338359445454), 653(1.2060761869970043), 654(1.389681350400961), 655(0.6601382615590167), 656(0.8795437327288544), 657(1.239437186221326), 658(1.419517235297861), 659(1.1695142200740778), 660(1.1431129221011616), 661(1.3937405182884879), 662(0.9730203139504631), 663(1.2539123623413886), 664(1.380373671716197), 665(1.4720220760681453), 666(1.1617568194378527), 667(1.3455375488606889), 668(0.7659589824920346), 669(1.486079703440726), 670(1.5006236673568116), 671(1.3073144698289791), 672(0.720026153041464), 673(0.655517203905407), 674(1.3424688659824078), 675(0.9415442842709045), 676(0.8377223792153187), 677(1.1801694963263465), 678(1.4567161036044873), 679(1.1126345923548995), 680(0.7822453990714312), 681(1.2984969420954573), 682(0.6611551219870133), 683(1.2618210899986753), 684(1.0494133839352986), 685(1.240956845127141), 686(0.9242991262999283), 687(1.0163791481807032), 688(1.4518088931260251), 689(1.2629214729328284), 690(0.6351361581892426), 691(0.9357769880495967), 692(0.8560749011495254), 693(1.3365730129924456), 694(1.4106901085080223), 695(1.1181727299206323), 696(0.774431323110243), 697(1.360881452421418), 698(1.4840799248403103), 699(0.9319945578428671), 700(1.237331593168126), 701(0.5272783438059947), 702(1.0441641121669398), 703(0.932287809620045), 704(0.9931669654477063), 705(1.4627713122694728), 706(0.8094056179741966), 707(0.5521059387702009), 708(0.9144616319399674), 709(0.9005135202338207), 710(1.225821585802338), 711(1.4702793003135821), 712(1.3610366194280052), 713(1.4777669602468153), 714(1.4743323457498843), 715(0.5610961749711154), 716(1.440516713481231), 717(1.0844406698500357), 718(0.9964574784779616), 719(0.6904303119694796), 720(1.2008807531792707), 721(1.1828431079287214), 722(1.280428203054873), 723(1.1159596416791113), 724(1.1972334080812352), 725(1.36279070333311), 726(1.2733785238344466), 727(1.0441537241652992), 728(1.3339541143233853), 729(1.1434162254065612), 730(1.203584393295284), 731(1.466288645156744), 732(0.9932040667198329), 733(1.4761284459621524), 734(1.5000582221068168), 735(1.1732693879519416), 736(1.391017308836738), 737(0.7053204100336768), 738(1.0597883460215403), 739(1.249356103813563), 740(0.7265522340530901), 741(0.7108382405922808), 742(1.2425444476471494), 743(0.9350684588435452), 744(1.3102791686625679), 745(1.2473950751023255), 746(1.3593409793712494), 747(1.296295376012941), 748(1.2328587266787674), 749(1.0918656747385753), 750(1.2668980482078012), 751(0.5540568847066459), 752(1.1715171892219598), 753(1.4955246510272415), 754(0.8714636659168179), 755(1.500434362524891), 756(1.263057322332391), 757(1.4710212720194509), 758(0.8480949135229578), 759(1.4502474525803506), 760(1.3037961937772902), 761(1.3881245654279644), 762(1.4630404781452495), 763(1.3937137372658466), 764(0.6843664125134326), 765(1.2580793329447892), 766(0.9632005093304351), 767(1.3802703952146373), 768(1.1000946734164767), 769(1.3792593813446437), 770(0.7317421081892983), 771(1.3232896805581937), 772(1.2100592930417011), 773(1.4606301017500039), 774(0.5732234176104818), 775(1.4832249664527297), 776(1.1147883327193662), 777(1.2984115166291301), 778(1.156119225894651), 779(0.8365821561213521), 780(1.2948619594626258), 781(0.6048222577186116), 782(1.2762323019976207), 783(1.0847510907959044), 784(0.7516226052982964), 785(0.9030751922594098), 786(1.2650113139784982), 787(1.4985132301966253), 788(0.5313091855654776), 789(0.6679807834723707), 790(1.2830378070731547), 791(0.8671874664163474), 792(1.403033033219548), 793(0.9060472033516144), 794(1.2634076368571876), 795(0.7899129900095285), 796(0.920498182191665), 797(0.5701878902867717), 798(1.115644913542248), 799(1.0036552533662932), 800(1.2698753222185417), 801(0.5018679019736233), sphere: Error During Test at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/test/sphere.jl:2 Got exception outside of a @test Stacktrace: [1] error() @ Base ./error.jl:45 [2] descent(xs::HighVoronoi.ExtendedNodes{Float64, SVector{3, Float64}, Vector{SVector{3, Float64}}}, searcher::HighVoronoi.RaycastIncircleSkip{HighVoronoi.ExtendedTree{SVector{3, Float64}, HighVoronoi.UnstructuredTree{SVector{3, Float64}, HighVoronoi.HVNearestNeighbors.HVKDTree{SVector{3, Float64}, Distances.Euclidean, Float64}, HighVoronoi.NNSearchData{SVector{3, Float64}, MVector{3, Float64}, HighVoronoi.HP_corrector_data{Double64}}}, HighVoronoi.ExtendedNodes{Float64, SVector{3, Float64}, Vector{SVector{3, Float64}}}}, HighVoronoi.FastEdgeIterator{Vector{HighVoronoi.FEIData{MVector{3, Float64}, MVector{3, Int64}, SVector{3, Int64}, Vector{MVector{3, Float64}}, Float64}}, Float64}, Vector{SVector{3, Float64}}, HighVoronoi.General_EdgeIterator{4, MMatrix{3, 3, Float64, 9}}, Dict{Vector{Int64}, HighVoronoi.FEIStorage{MVector{3, Int64}}}, HighVoronoi.NewRaycastParameter{Float64, HighVoronoi.HVKDTree, HighVoronoi.Raycast_Non_General_HP, SingleThread, HighVoronoi.StaticBool{true}, Nothing}, Float64, Float64, HighVoronoi.HP_corrector_data{Double64}, SVector{3, Float64}}, start::Int64, circle::Int64) @ HighVoronoi ~/.julia/packages/HighVoronoi/5m2O8/src/raycast.jl:121 [3] descent @ ~/.julia/packages/HighVoronoi/5m2O8/src/raycast.jl:46 [inlined] [4] systematic_explore_cell(xs::HighVoronoi.ExtendedNodes{Float64, SVector{3, Float64}, Vector{SVector{3, Float64}}}, _Cell::Int64, mesh::HighVoronoi.MeshView{SVector{3, Float64}, HighVoronoi.VertexDBCentral{SVector{3, Float64}}, HighVoronoi.SerialMesh{SVector{3, Float64}, HighVoronoi.VertexDBCentral{SVector{3, Float64}}, Vector{HighVoronoi.CompoundMesh{SVector{3, Float64}, HighVoronoi.VertexDBCentral{SVector{3, Float64}}, Voronoi_MESH{SVector{3, Float64}, HighVoronoi.VertexDBCentral{SVector{3, Float64}}, HighVoronoi.VDBVertexCentral{SVector{3, Float64}, Vector{Int64}, HighVoronoi.HeapDataBase{SVector{3, Float64}, Base.ReinterpretArray{Float64, 1, Int64, Vector{Int64}, false}, HighVoronoi.QueueHashTable{Vector{HighVoronoi.HashedQueue}, Nothing}}}, Vector{SVector{3, Float64}}, Vector{Int64}, HighVoronoi.HeapDataBase{SVector{3, Float64}, Base.ReinterpretArray{Float64, 1, Int64, Vector{Int64}, false}, HighVoronoi.QueueHashTable{Vector{HighVoronoi.HashedQueue}, Nothing}}}, Bool}}, Vector{HighVoronoi.CompoundData}, HighVoronoi.HeapDataBase{SVector{3, Float64}, Base.ReinterpretArray{Float64, 1, Int64, Vector{Int64}, false}, HighVoronoi.QueueHashTable{Vector{HighVoronoi.HashedQueue}, Nothing}}, Vector{Int64}}, HighVoronoi.CombinedView{Int64, HighVoronoi.SwitchView{Int64}, HighVoronoi.SortedView{Int64, Vector{HighVoronoi.ShiftData{Int64}}}}}, edgecount::HighVoronoi.EdgeHashTable{Vector{HighVoronoi.HashedEdge}, Nothing}, searcher::HighVoronoi.RaycastIncircleSkip{HighVoronoi.ExtendedTree{SVector{3, Float64}, HighVoronoi.UnstructuredTree{SVector{3, Float64}, HighVoronoi.HVNearestNeighbors.HVKDTree{SVector{3, Float64}, Distances.Euclidean, Float64}, HighVoronoi.NNSearchData{SVector{3, Float64}, MVector{3, Float64}, HighVoronoi.HP_corrector_data{Double64}}}, HighVoronoi.ExtendedNodes{Float64, SVector{3, Float64}, Vector{SVector{3, Float64}}}}, HighVoronoi.FastEdgeIterator{Vector{HighVoronoi.FEIData{MVector{3, Float64}, MVector{3, Int64}, SVector{3, Int64}, Vector{MVector{3, Float64}}, Float64}}, Float64}, Vector{SVector{3, Float64}}, HighVoronoi.General_EdgeIterator{4, MMatrix{3, 3, Float64, 9}}, Dict{Vector{Int64}, HighVoronoi.FEIStorage{MVector{3, Int64}}}, HighVoronoi.NewRaycastParameter{Float64, HighVoronoi.HVKDTree, HighVoronoi.Raycast_Non_General_HP, SingleThread, HighVoronoi.StaticBool{true}, Nothing}, Float64, Float64, HighVoronoi.HP_corrector_data{Double64}, SVector{3, Float64}}, queue::HighVoronoi.ThreadsafeQueue{Pair{Vector{Int64}, SVector{3, Float64}}, Vector{Pair{Vector{Int64}, SVector{3, Float64}}}, Nothing, HighVoronoi.EmptyQueueHashTable}, b_index::Vector{Int64}, ::Base.Threads.Atomic{Int64}, ::Nothing) @ HighVoronoi ~/.julia/packages/HighVoronoi/5m2O8/src/sysvoronoi.jl:416 [5] __voronoi(mesh::HighVoronoi.MeshView{SVector{3, Float64}, HighVoronoi.VertexDBCentral{SVector{3, Float64}}, HighVoronoi.SerialMesh{SVector{3, Float64}, HighVoronoi.VertexDBCentral{SVector{3, Float64}}, Vector{HighVoronoi.CompoundMesh{SVector{3, Float64}, HighVoronoi.VertexDBCentral{SVector{3, Float64}}, Voronoi_MESH{SVector{3, Float64}, HighVoronoi.VertexDBCentral{SVector{3, Float64}}, HighVoronoi.VDBVertexCentral{SVector{3, Float64}, Vector{Int64}, HighVoronoi.HeapDataBase{SVector{3, Float64}, Base.ReinterpretArray{Float64, 1, Int64, Vector{Int64}, false}, HighVoronoi.QueueHashTable{Vector{HighVoronoi.HashedQueue}, Nothing}}}, Vector{SVector{3, Float64}}, Vector{Int64}, HighVoronoi.HeapDataBase{SVector{3, Float64}, Base.ReinterpretArray{Float64, 1, Int64, Vector{Int64}, false}, HighVoronoi.QueueHashTable{Vector{HighVoronoi.HashedQueue}, Nothing}}}, Bool}}, Vector{HighVoronoi.CompoundData}, HighVoronoi.HeapDataBase{SVector{3, Float64}, Base.ReinterpretArray{Float64, 1, Int64, Vector{Int64}, false}, HighVoronoi.QueueHashTable{Vector{HighVoronoi.HashedQueue}, Nothing}}, Vector{Int64}}, HighVoronoi.CombinedView{Int64, HighVoronoi.SwitchView{Int64}, HighVoronoi.SortedView{Int64, Vector{HighVoronoi.ShiftData{Int64}}}}}, TODO::Vector{Int64}, compact::Bool, v_offset::Int64, silence::Bool, iteration_reset::Bool, printsearcher::Bool, searcher::HighVoronoi.RaycastIncircleSkip{HighVoronoi.ExtendedTree{SVector{3, Float64}, HighVoronoi.UnstructuredTree{SVector{3, Float64}, HighVoronoi.HVNearestNeighbors.HVKDTree{SVector{3, Float64}, Distances.Euclidean, Float64}, HighVoronoi.NNSearchData{SVector{3, Float64}, MVector{3, Float64}, HighVoronoi.HP_corrector_data{Double64}}}, HighVoronoi.ExtendedNodes{Float64, SVector{3, Float64}, Vector{SVector{3, Float64}}}}, HighVoronoi.FastEdgeIterator{Vector{HighVoronoi.FEIData{MVector{3, Float64}, MVector{3, Int64}, SVector{3, Int64}, Vector{MVector{3, Float64}}, Float64}}, Float64}, Vector{SVector{3, Float64}}, HighVoronoi.General_EdgeIterator{4, MMatrix{3, 3, Float64, 9}}, Dict{Vector{Int64}, HighVoronoi.FEIStorage{MVector{3, Int64}}}, HighVoronoi.NewRaycastParameter{Float64, HighVoronoi.HVKDTree, HighVoronoi.Raycast_Non_General_HP, SingleThread, HighVoronoi.StaticBool{true}, Nothing}, Float64, Float64, HighVoronoi.HP_corrector_data{Double64}, SVector{3, Float64}}, threading::SingleThread, queue::HighVoronoi.ThreadsafeQueue{Pair{Vector{Int64}, SVector{3, Float64}}, Vector{Pair{Vector{Int64}, SVector{3, Float64}}}, Nothing, HighVoronoi.EmptyQueueHashTable}, intro::String, new_vertices_atomic::Base.Threads.Atomic{Int64}, progress::HighVoronoi.ThreadsafeProgressMeter{Nothing}, globallock::Nothing) @ HighVoronoi ~/.julia/packages/HighVoronoi/5m2O8/src/sysvoronoi.jl:181 [6] __voronoi @ ~/.julia/packages/HighVoronoi/5m2O8/src/sysvoronoi.jl:153 [inlined] [7] _voronoi @ ~/.julia/packages/HighVoronoi/5m2O8/src/sysvoronoi.jl:46 [inlined] [8] voronoi(mesh::HighVoronoi.MeshView{SVector{3, Float64}, HighVoronoi.VertexDBCentral{SVector{3, Float64}}, HighVoronoi.SerialMesh{SVector{3, Float64}, HighVoronoi.VertexDBCentral{SVector{3, Float64}}, Vector{HighVoronoi.CompoundMesh{SVector{3, Float64}, HighVoronoi.VertexDBCentral{SVector{3, Float64}}, Voronoi_MESH{SVector{3, Float64}, HighVoronoi.VertexDBCentral{SVector{3, Float64}}, HighVoronoi.VDBVertexCentral{SVector{3, Float64}, Vector{Int64}, HighVoronoi.HeapDataBase{SVector{3, Float64}, Base.ReinterpretArray{Float64, 1, Int64, Vector{Int64}, false}, HighVoronoi.QueueHashTable{Vector{HighVoronoi.HashedQueue}, Nothing}}}, Vector{SVector{3, Float64}}, Vector{Int64}, HighVoronoi.HeapDataBase{SVector{3, Float64}, Base.ReinterpretArray{Float64, 1, Int64, Vector{Int64}, false}, HighVoronoi.QueueHashTable{Vector{HighVoronoi.HashedQueue}, Nothing}}}, Bool}}, Vector{HighVoronoi.CompoundData}, HighVoronoi.HeapDataBase{SVector{3, Float64}, Base.ReinterpretArray{Float64, 1, Int64, Vector{Int64}, false}, HighVoronoi.QueueHashTable{Vector{HighVoronoi.HashedQueue}, Nothing}}, Vector{Int64}}, HighVoronoi.CombinedView{Int64, HighVoronoi.SwitchView{Int64}, HighVoronoi.SortedView{Int64, Vector{HighVoronoi.ShiftData{Int64}}}}}; Iter::UnitRange{Int64}, searcher::HighVoronoi.RaycastIncircleSkip{HighVoronoi.ExtendedTree{SVector{3, Float64}, HighVoronoi.UnstructuredTree{SVector{3, Float64}, HighVoronoi.HVNearestNeighbors.HVKDTree{SVector{3, Float64}, Distances.Euclidean, Float64}, HighVoronoi.NNSearchData{SVector{3, Float64}, MVector{3, Float64}, HighVoronoi.HP_corrector_data{Double64}}}, HighVoronoi.ExtendedNodes{Float64, SVector{3, Float64}, Vector{SVector{3, Float64}}}}, HighVoronoi.FastEdgeIterator{Vector{HighVoronoi.FEIData{MVector{3, Float64}, MVector{3, Int64}, SVector{3, Int64}, Vector{MVector{3, Float64}}, Float64}}, Float64}, Vector{SVector{3, Float64}}, HighVoronoi.General_EdgeIterator{4, MMatrix{3, 3, Float64, 9}}, Dict{Vector{Int64}, HighVoronoi.FEIStorage{MVector{3, Int64}}}, HighVoronoi.NewRaycastParameter{Float64, HighVoronoi.HVKDTree, HighVoronoi.Raycast_Non_General_HP, SingleThread, HighVoronoi.StaticBool{true}, Nothing}, Float64, Float64, HighVoronoi.HP_corrector_data{Double64}, SVector{3, Float64}}, initialize::Int64, subroutine_offset::Int64, intro::String, iteration_reset::Bool, compact::Bool, printsearcher::Bool, silence::Bool) @ HighVoronoi ~/.julia/packages/HighVoronoi/5m2O8/src/sysvoronoi.jl:38 [9] voronoi @ ~/.julia/packages/HighVoronoi/5m2O8/src/sysvoronoi.jl:21 [inlined] [10] VoronoiSphere(xs::Vector{SVector{3, Float64}}, b::Boundary; total_area::Nothing, transformations::Tuple{var"#29#30"}, center::SVector{3, Float64}, systematic_error::Float64, improving::@NamedTuple{max_iterations::Int64, tolerance::Float64}, search_settings::@NamedTuple{}, integrator::HighVoronoi.Call_FAST_POLYGON, integrand::Function, mc_accurate::Tuple{Int64, Int64, Int64}, silence::Bool, printevents::Bool, integrate::Bool, kwargs::@Kwargs{}) @ HighVoronoi ~/.julia/packages/HighVoronoi/5m2O8/src/sphere.jl:144 [11] VoronoiSphere @ ~/.julia/packages/HighVoronoi/5m2O8/src/sphere.jl:125 [inlined] [12] kwcall(::@NamedTuple{transformations::Tuple{var"#29#30"}, integrate::Bool, integrand::var"#31#32", integrator::HighVoronoi.Call_FAST_POLYGON}, ::typeof(VoronoiSphere), xs::Vector{SVector{3, Float64}}) @ HighVoronoi ~/.julia/packages/HighVoronoi/5m2O8/src/sphere.jl:125 [13] top-level scope @ ~/.julia/packages/HighVoronoi/5m2O8/test/sphere.jl:4 [14] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [15] macro expansion @ ~/.julia/packages/HighVoronoi/5m2O8/test/sphere.jl:11 [inlined] [16] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [17] top-level scope @ ~/.julia/packages/HighVoronoi/5m2O8/test/runtests.jl:18 [18] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [19] macro expansion @ ~/.julia/packages/HighVoronoi/5m2O8/test/runtests.jl:27 [inlined] [20] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [21] top-level scope @ none:6 [22] eval(m::Module, e::Any) @ Core ./boot.jl:489 [23] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [24] _start() @ Base ./client.jl:577 Initialize bulk mesh with 100 points New verteces: 573  Calculating nodes on periodic boundary part: ... 43 new nodes to be included... New verteces: 377 Identify affected old cells and clear broken vertices New verteces: 2 New verteces: 0 New verteces: 157 Identify affected old cells and clear broken vertices New verteces: 37 New verteces: 0 13 new nodes included in grid 0 new nodes included in grid POLYGON-integration over 100 cells: 1%|▏ | ETA: 1:01:34 POLYGON-integration over 100 cells: 100%|████████████████| Time: 0:00:37 Initialize bulk mesh with 100 points New verteces: 571  Calculating nodes on periodic boundary part: ... 45 new nodes to be included... New verteces: 388 Identify affected old cells and clear broken vertices New verteces: 4 New verteces: 0 New verteces: 144 Identify affected old cells and clear broken vertices New verteces: 45 New verteces: 0 11 new nodes included in grid 0 new nodes included in grid POLYGON-integration over 100 cells: 1%|▏ | ETA: 1:01:14 POLYGON-integration over 100 cells: 100%|████████████████| Time: 0:00:37 1212111010000010011110101120111200110101211110021100001201211211102111200010010101021021000202100110 Initialize bulk mesh with 100 points New verteces: 573  Calculating nodes on periodic boundary part: ... 43 new nodes to be included... New verteces: 377 Identify affected old cells and clear broken vertices New verteces: 2 New verteces: 0 New verteces: 157 Identify affected old cells and clear broken vertices New verteces: 37 New verteces: 0 13 new nodes included in grid 0 new nodes included in grid POLYGON-integration over 100 cells: 1%|▏ | ETA: 1:01:49 POLYGON-integration over 100 cells: 100%|████████████████| Time: 0:00:37 [34, 38, 45, 52, 56, 80, 85, 89, 36, 106] (100, 9) 1326 1 -> (1, 1),34 of 34, data=[2.0, 0.0, 0.0, 0.0, 0.01575503525319208, 0.012263582502794197, -0.47287372428283864, -0.7527599711540413, 0.4579769281427229] ; (4, 1326)[2.0, 0.0, 0.0, 0.0]2.0 VoronoiStatistics in dim = 3 with 10 samples and generation method: random generator(100) New verteces: 1023 New verteces: 1083 New verteces: 1034 New verteces: 1030 New verteces: 1071 New verteces: 1040 New verteces: 1044 New verteces: 1059  Run number: 8 50%|██████████████████▏ | ETA: 0:00:01 Run number: 8 100%|████████████████████████████████████| Time: 0:00:01 New verteces: 1062 New verteces: 1091 VoronoiStatistics in dim = 3 with 10 samples and generation method: periodic(3) 81 39 New verteces: 54 81 39 New verteces: 56 81 39 New verteces: 44 81 39 New verteces: 60 81 39 New verteces: 59 81 39 New verteces: 62 81 39 New verteces: 63 81 39 New verteces: 42 81 39 New verteces: 54 81 39 New verteces: 54 --- Voronoi in dim 3: 100 nodes - 1New verteces: 557 -- 0.052483406 secs. 100 nodes in R^3: 0.052483406 secs, 0.0 verteces, 0.0 B-verteces, 545.0 walks, 0.0 nn-searches --- Voronoi in dim 3: 200 nodes - 1 - 2 -- 0.051145409 secs. 200 nodes in R^3: 0.0255727045 secs, 0.0 verteces, 0.0 B-verteces, 1140.0 walks, 0.0 nn-searches --- Voronoi in dim 3: 500 nodes - 1 - 2 -- 0.098514785 secs. 500 nodes in R^3: 0.0492573925 secs, 0.0 verteces, 0.0 B-verteces, 3025.5 walks, 0.0 nn-searches [200.0 500.0; 3.0 3.0; 0.0255727045 0.0492573925; 0.0 0.0; 0.0 0.0; 1140.0 3025.5; 0.0 0.0] --- Voronoi in dim 3: 16 nodes - 1 -- 0.0343431 secs. 16 nodes in R^3: 0.0343431 secs, 0.0 verteces, 0.0 B-verteces, 78.0 walks, 0.0 nn-searches --- Voronoi in dim 3: 24 nodes - 1 -- 0.007566977 secs. 24 nodes in R^3: 0.007566977 secs, 0.0 verteces, 0.0 B-verteces, 120.0 walks, 0.0 nn-searches --- Voronoi in dim 3: 36 nodes - 1 -- 0.008634177 secs. 36 nodes in R^3: 0.008634177 secs, 0.0 verteces, 0.0 B-verteces, 181.0 walks, 0.0 nn-searches --- Voronoi in dim 3: 54 nodes - 1 -- 0.009881526 secs. 54 nodes in R^3: 0.009881526 secs, 0.0 verteces, 0.0 B-verteces, 275.0 walks, 0.0 nn-searches [16.0 24.0 36.0 54.0; 3.0 3.0 3.0 3.0; 0.0343431 0.007566977 0.008634177 0.009881526; 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0; 78.0 120.0 181.0 275.0; 0.0 0.0 0.0 0.0] --- Fast periodic Voronoi in dim 3: 16 nodesCreate periodic mesh in 3-D from 2 points Periodicity: Any[], Unit cell size: [1.0, 1.0, 1.0], repeat=[2, 2, 2], i.e. 8 unit cells -- 81.167562161 secs. 16 nodes in R^3: 81.167562161 secs, 0.0 verteces, 0.0 B-verteces, 0.0 walks, NaN nn-searches --- Fast periodic Voronoi in dim 3: 24 nodesCreate periodic mesh in 3-D from 2 points Periodicity: Any[], Unit cell size: [1.0, 1.0, 1.0], repeat=[3, 2, 2], i.e. 12 unit cells -- 0.071884241 secs. 24 nodes in R^3: 0.071884241 secs, 0.0 verteces, 0.0 B-verteces, 0.0 walks, NaN nn-searches --- Fast periodic Voronoi in dim 3: 36 nodesCreate periodic mesh in 3-D from 2 points Periodicity: Any[], Unit cell size: [1.0, 1.0, 1.0], repeat=[3, 3, 2], i.e. 18 unit cells -- 0.104378558 secs. 36 nodes in R^3: 0.104378558 secs, 0.0 verteces, 0.0 B-verteces, 0.0 walks, NaN nn-searches --- Fast periodic Voronoi in dim 3: 54 nodesCreate periodic mesh in 3-D from 2 points Periodicity: Any[], Unit cell size: [1.0, 1.0, 1.0], repeat=[3, 3, 3], i.e. 27 unit cells -- 0.154164761 secs. 54 nodes in R^3: 0.154164761 secs, 0.0 verteces, 0.0 B-verteces, 0.0 walks, NaN nn-searches [16.0 24.0 36.0 54.0; 3.0 3.0 3.0 3.0; 81.167562161 0.071884241 0.104378558 0.154164761; 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0] total max resolution: 161051 Initialize bulk mesh with 1345 points 1%|▌ | ETA: 0:00:11 2%|█▎ | ETA: 0:00:09 4%|██▎ | ETA: 0:00:07 6%|███▏ | ETA: 0:00:07 8%|███▉ | ETA: 0:00:07 9%|████▋ | ETA: 0:00:07 11%|█████▌ | ETA: 0:00:07 12%|██████▎ | ETA: 0:00:06 14%|███████▍ | ETA: 0:00:06 16%|████████▏ | ETA: 0:00:06 17%|████████▉ | ETA: 0:00:06 19%|█████████▉ | ETA: 0:00:06 21%|██████████▉ | ETA: 0:00:05 23%|███████████▊ | ETA: 0:00:05 25%|████████████▋ | ETA: 0:00:05 26%|█████████████▍ | ETA: 0:00:05 28%|██████████████▎ | ETA: 0:00:05 30%|███████████████▏ | ETA: 0:00:06 32%|████████████████▍ | ETA: 0:00:05 34%|█████████████████▎ | ETA: 0:00:05 36%|██████████████████▎ | ETA: 0:00:05 38%|███████████████████▏ | ETA: 0:00:05 39%|████████████████████▏ | ETA: 0:00:05 41%|█████████████████████ | ETA: 0:00:04 43%|█████████████████████▉ | ETA: 0:00:04 45%|██████████████████████▉ | ETA: 0:00:04 47%|███████████████████████▉ | ETA: 0:00:04 49%|████████████████████████▉ | ETA: 0:00:04 51%|██████████████████████████▏ | ETA: 0:00:03 54%|███████████████████████████▋ | ETA: 0:00:03 57%|█████████████████████████████▏ | ETA: 0:00:03 60%|██████████████████████████████▍ | ETA: 0:00:03 62%|███████████████████████████████▋ | ETA: 0:00:02 65%|█████████████████████████████████ | ETA: 0:00:02 67%|██████████████████████████████████▎ | ETA: 0:00:02 69%|███████████████████████████████████▍ | ETA: 0:00:02 73%|█████████████████████████████████████▎ | ETA: 0:00:02 77%|███████████████████████████████████████▎ | ETA: 0:00:01 81%|█████████████████████████████████████████▌ | ETA: 0:00:01 90%|██████████████████████████████████████████████▏ | ETA: 0:00:01 100%|███████████████████████████████████████████████████| Time: 0:00:04 New verteces: 143374  No periodic boundaries.... testing fraud testing periodic/cubic 2D edge iterator Create periodic mesh in 2-D from 1 points Periodicity: Any[], Unit cell size: [0.25, 0.25], repeat=[4, 4], i.e. 16 unit cells Calculate first cell...Copy Data to cell: 2345678910111213141516Create periodic mesh in 5-D from 1 points Periodicity: Any[], Unit cell size: [0.25, 0.25, 0.25, 0.25, 0.25], repeat=[4, 4, 4, 4, 4], i.e. 1024 unit cells Calculate first cell...Copy Data to cell: 1223344556677889100111122133144155166177188199210221232243254265276287298309320331342353364375386397408419430441452463474485496507518529540551562573584595606617628639650661672683694705716727738749760771782793804815826837848859870881892903914925936947958969980991100210131024Create periodic mesh in 5-D from 1 points Periodicity: Any[], Unit cell size: [0.25, 0.25, 0.25, 0.25, 0.25], repeat=[4, 4, 4, 4, 4], i.e. 1024 unit cells Calculate first cell...Copy Data to cell: 1223344556677889100111122133144155166177188199210221232243254265276287298309320331342353364375386397408419430441452463474485496507518529540551562573584595606617628639650661672683694705716727738749760771782793804815826837848859870881892903914925936947958969980991100210131024Create periodic mesh in 5-D from 2 points Periodicity: Any[], Unit cell size: [0.25, 0.25, 0.25, 0.25, 0.25], repeat=[4, 4, 4, 4, 4], i.e. 1024 unit cells 0%| | ETA: 0:02:08 0%|▏ | ETA: 0:08:42 0%|▏ | ETA: 0:08:31 0%|▎ | ETA: 0:08:54 1%|▍ | ETA: 0:07:33 1%|▍ | ETA: 0:06:41 1%|▊ | ETA: 0:04:01 2%|▉ | ETA: 0:03:32 2%|▉ | ETA: 0:03:29 2%|█ | ETA: 0:03:26 2%|█▏ | ETA: 0:03:26 3%|█▍ | ETA: 0:02:57 3%|█▌ | ETA: 0:02:45 4%|█▉ | ETA: 0:02:14 7%|███▍ | ETA: 0:01:31 7%|███▌ | ETA: 0:01:33 7%|███▋ | ETA: 0:01:34 8%|███▉ | ETA: 0:01:28 8%|████▏ | ETA: 0:01:29 8%|████▎ | ETA: 0:01:30 8%|████▎ | ETA: 0:01:31 9%|████▍ | ETA: 0:01:32 9%|████▋ | ETA: 0:01:28 10%|████▉ | ETA: 0:01:25 12%|█████▉ | ETA: 0:01:13 12%|██████▏ | ETA: 0:01:11 12%|██████▎ | ETA: 0:01:09 14%|███████▎ | ETA: 0:00:59 17%|████████▉ | ETA: 0:00:47 20%|██████████▍ | ETA: 0:00:42 21%|██████████▌ | ETA: 0:00:42 21%|██████████▋ | ETA: 0:00:42 21%|██████████▊ | ETA: 0:00:42 21%|██████████▉ | ETA: 0:00:41 23%|███████████▋ | ETA: 0:00:39 24%|████████████▏ | ETA: 0:00:37 24%|████████████▌ | ETA: 0:00:36 25%|████████████▋ | ETA: 0:00:36 25%|████████████▊ | ETA: 0:00:36 25%|████████████▉ | ETA: 0:00:36 25%|█████████████ | ETA: 0:00:37 26%|█████████████ | ETA: 0:00:37 26%|█████████████▏ | ETA: 0:00:38 26%|█████████████▏ | ETA: 0:00:38 26%|█████████████▍ | ETA: 0:00:37 27%|█████████████▋ | ETA: 0:00:38 27%|█████████████▉ | ETA: 0:00:39 27%|█████████████▉ | ETA: 0:00:39 28%|██████████████▏ | ETA: 0:00:39 28%|██████████████▎ | ETA: 0:00:39 28%|██████████████▍ | ETA: 0:00:39 31%|███████████████▊ | ETA: 0:00:35 31%|████████████████ | ETA: 0:00:35 31%|████████████████ | ETA: 0:00:36 32%|████████████████▏ | ETA: 0:00:36 32%|████████████████▏ | ETA: 0:00:36 32%|████████████████▎ | ETA: 0:00:36 32%|████████████████▍ | ETA: 0:00:37 33%|████████████████▋ | ETA: 0:00:36 33%|████████████████▉ | ETA: 0:00:37 33%|█████████████████ | ETA: 0:00:37 33%|█████████████████ | ETA: 0:00:37 34%|█████████████████▎ | ETA: 0:00:37 34%|█████████████████▍ | ETA: 0:00:37 34%|█████████████████▌ | ETA: 0:00:37 35%|█████████████████▊ | ETA: 0:00:36 36%|██████████████████▍ | ETA: 0:00:35 37%|███████████████████ | ETA: 0:00:34 37%|███████████████████ | ETA: 0:00:34 39%|███████████████████▋ | ETA: 0:00:32 41%|█████████████████████ | ETA: 0:00:29 44%|██████████████████████▍ | ETA: 0:00:26 46%|███████████████████████▋ | ETA: 0:00:25 48%|████████████████████████▋ | ETA: 0:00:24 49%|█████████████████████████ | ETA: 0:00:23 49%|█████████████████████████▏ | ETA: 0:00:23 51%|██████████████████████████▏ | ETA: 0:00:22 55%|███████████████████████████▉ | ETA: 0:00:19 58%|█████████████████████████████▋ | ETA: 0:00:17 61%|███████████████████████████████▍ | ETA: 0:00:15 64%|████████████████████████████████▌ | ETA: 0:00:13 66%|█████████████████████████████████▊ | ETA: 0:00:12 69%|███████████████████████████████████▏ | ETA: 0:00:11 73%|█████████████████████████████████████▏ | ETA: 0:00:09 77%|███████████████████████████████████████▏ | ETA: 0:00:07 77%|███████████████████████████████████████▍ | ETA: 0:00:07 78%|███████████████████████████████████████▋ | ETA: 0:00:07 78%|███████████████████████████████████████▊ | ETA: 0:00:07 80%|████████████████████████████████████████▊ | ETA: 0:00:06 81%|█████████████████████████████████████████▍ | ETA: 0:00:06 82%|█████████████████████████████████████████▋ | ETA: 0:00:06 82%|█████████████████████████████████████████▋ | ETA: 0:00:06 82%|█████████████████████████████████████████▊ | ETA: 0:00:06 82%|█████████████████████████████████████████▉ | ETA: 0:00:06 84%|██████████████████████████████████████████▋ | ETA: 0:00:05 86%|███████████████████████████████████████████▋ | ETA: 0:00:05 86%|████████████████████████████████████████████ | ETA: 0:00:04 87%|████████████████████████████████████████████▎ | ETA: 0:00:04 89%|█████████████████████████████████████████████▎ | ETA: 0:00:04 93%|███████████████████████████████████████████████▎ | ETA: 0:00:02 96%|█████████████████████████████████████████████████▏ | ETA: 0:00:01 97%|█████████████████████████████████████████████████▍ | ETA: 0:00:01 99%|██████████████████████████████████████████████████▍| ETA: 0:00:00 99%|██████████████████████████████████████████████████▉| ETA: 0:00:00 100%|███████████████████████████████████████████████████| Time: 0:00:29 modified cells: 1505, trusted blocks: 781 Create periodic mesh in 5-D from 2 points Periodicity: Any[], Unit cell size: [0.25, 0.25, 0.25, 0.25, 0.25], repeat=[4, 4, 4, 4, 4], i.e. 1024 unit cells 0%| | ETA: 0:04:44 0%|▏ | ETA: 0:05:46 0%|▏ | ETA: 0:06:16 1%|▍ | ETA: 0:03:19 1%|▋ | ETA: 0:02:00 1%|▋ | ETA: 0:01:59 2%|▊ | ETA: 0:01:50 2%|▉ | ETA: 0:01:59 2%|▉ | ETA: 0:02:08 2%|█▏ | ETA: 0:02:07 3%|█▍ | ETA: 0:01:53 4%|█▉ | ETA: 0:01:30 6%|███▎ | ETA: 0:01:07 7%|███▍ | ETA: 0:01:09 7%|███▌ | ETA: 0:01:11 7%|███▊ | ETA: 0:01:08 8%|███▉ | ETA: 0:01:07 8%|████ | ETA: 0:01:08 8%|████▏ | ETA: 0:01:10 8%|████▎ | ETA: 0:01:14 9%|████▌ | ETA: 0:01:11 9%|████▊ | ETA: 0:01:10 11%|█████▌ | ETA: 0:01:01 12%|██████▏ | ETA: 0:00:58 13%|██████▊ | ETA: 0:00:53 17%|████████▋ | ETA: 0:00:40 19%|█████████▉ | ETA: 0:00:36 20%|██████████▏ | ETA: 0:00:36 20%|██████████▎ | ETA: 0:00:35 21%|██████████▌ | ETA: 0:00:36 21%|███████████ | ETA: 0:00:35 22%|███████████▏ | ETA: 0:00:35 24%|████████████ | ETA: 0:00:32 25%|████████████▋ | ETA: 0:00:31 25%|████████████▊ | ETA: 0:00:32 25%|████████████▉ | ETA: 0:00:32 26%|█████████████▏ | ETA: 0:00:33 26%|█████████████▎ | ETA: 0:00:33 27%|█████████████▊ | ETA: 0:00:34 27%|█████████████▊ | ETA: 0:00:34 27%|█████████████▉ | ETA: 0:00:35 27%|█████████████▉ | ETA: 0:00:35 28%|██████████████▏ | ETA: 0:00:35 28%|██████████████▎ | ETA: 0:00:34 29%|██████████████▋ | ETA: 0:00:34 31%|████████████████ | ETA: 0:00:32 32%|████████████████▏ | ETA: 0:00:32 32%|████████████████▏ | ETA: 0:00:33 32%|████████████████▎ | ETA: 0:00:33 32%|████████████████▍ | ETA: 0:00:33 33%|████████████████▉ | ETA: 0:00:33 33%|█████████████████ | ETA: 0:00:33 33%|█████████████████ | ETA: 0:00:34 33%|█████████████████ | ETA: 0:00:34 34%|█████████████████▎ | ETA: 0:00:34 34%|█████████████████▍ | ETA: 0:00:34 34%|█████████████████▌ | ETA: 0:00:33 35%|█████████████████▉ | ETA: 0:00:33 37%|███████████████████ | ETA: 0:00:31 38%|███████████████████▌ | ETA: 0:00:30 41%|█████████████████████ | ETA: 0:00:27 44%|██████████████████████▎ | ETA: 0:00:24 46%|███████████████████████▍ | ETA: 0:00:24 46%|███████████████████████▌ | ETA: 0:00:24 47%|███████████████████████▊ | ETA: 0:00:23 47%|████████████████████████ | ETA: 0:00:23 49%|█████████████████████████ | ETA: 0:00:22 50%|█████████████████████████▎ | ETA: 0:00:21 50%|█████████████████████████▌ | ETA: 0:00:21 53%|███████████████████████████ | ETA: 0:00:19 56%|████████████████████████████▋ | ETA: 0:00:17 59%|██████████████████████████████▏ | ETA: 0:00:15 62%|███████████████████████████████▌ | ETA: 0:00:13 65%|█████████████████████████████████ | ETA: 0:00:12 68%|██████████████████████████████████▌ | ETA: 0:00:10 71%|████████████████████████████████████▍ | ETA: 0:00:09 75%|██████████████████████████████████████▎ | ETA: 0:00:07 78%|████████████████████████████████████████ | ETA: 0:00:06 81%|█████████████████████████████████████████▎ | ETA: 0:00:06 81%|█████████████████████████████████████████▌ | ETA: 0:00:05 82%|█████████████████████████████████████████▊ | ETA: 0:00:05 82%|█████████████████████████████████████████▉ | ETA: 0:00:05 83%|██████████████████████████████████████████▋ | ETA: 0:00:05 84%|██████████████████████████████████████████▉ | ETA: 0:00:05 85%|███████████████████████████████████████████▏ | ETA: 0:00:05 87%|████████████████████████████████████████████▍ | ETA: 0:00:04 88%|████████████████████████████████████████████▋ | ETA: 0:00:04 92%|██████████████████████████████████████████████▊ | ETA: 0:00:02 96%|████████████████████████████████████████████████▊ | ETA: 0:00:01 96%|█████████████████████████████████████████████████ | ETA: 0:00:01 98%|██████████████████████████████████████████████████ | ETA: 0:00:01 99%|██████████████████████████████████████████████████▌| ETA: 0:00:00 99%|██████████████████████████████████████████████████▋| ETA: 0:00:00 100%|███████████████████████████████████████████████████| Time: 0:00:27 modified cells: 1463, trusted blocks: 781 Create periodic mesh in 5-D from 2 points Periodicity: Any[], Unit cell size: [0.25, 0.25, 0.25, 0.25, 0.25], repeat=[4, 4, 4, 4, 4], i.e. 1024 unit cells Slow Track.... Initialize bulk mesh with 2048 points 1%|▌ | ETA: 0:00:10 2%|█ | ETA: 0:00:10 3%|█▌ | ETA: 0:00:12 4%|██ | ETA: 0:00:12 5%|██▍ | ETA: 0:00:12 6%|██▉ | ETA: 0:00:12 6%|███▎ | ETA: 0:00:11 8%|███▉ | ETA: 0:00:11 9%|████▌ | ETA: 0:00:11 10%|█████ | ETA: 0:00:11 11%|█████▌ | ETA: 0:00:11 12%|██████▏ | ETA: 0:00:10 13%|██████▋ | ETA: 0:00:10 14%|███████▎ | ETA: 0:00:10 15%|███████▊ | ETA: 0:00:10 16%|████████▏ | ETA: 0:00:10 17%|████████▋ | ETA: 0:00:10 18%|█████████ | ETA: 0:00:10 19%|█████████▌ | ETA: 0:00:10 19%|█████████▉ | ETA: 0:00:10 21%|██████████▋ | ETA: 0:00:09 22%|███████████▏ | ETA: 0:00:09 23%|███████████▋ | ETA: 0:00:09 25%|████████████▋ | ETA: 0:00:09 26%|█████████████▌ | ETA: 0:00:08 28%|██████████████▏ | ETA: 0:00:08 29%|██████████████▋ | ETA: 0:00:08 29%|███████████████ | ETA: 0:00:08 30%|███████████████▌ | ETA: 0:00:08 31%|███████████████▉ | ETA: 0:00:08 32%|████████████████▌ | ETA: 0:00:08 34%|█████████████████▏ | ETA: 0:00:08 35%|█████████████████▋ | ETA: 0:00:07 35%|██████████████████▏ | ETA: 0:00:07 37%|██████████████████▋ | ETA: 0:00:07 38%|███████████████████▏ | ETA: 0:00:07 39%|███████████████████▊ | ETA: 0:00:07 40%|████████████████████▍ | ETA: 0:00:07 41%|████████████████████▉ | ETA: 0:00:07 42%|█████████████████████▎ | ETA: 0:00:07 43%|█████████████████████▉ | ETA: 0:00:07 44%|██████████████████████▎ | ETA: 0:00:06 46%|███████████████████████▎ | ETA: 0:00:06 47%|████████████████████████▏ | ETA: 0:00:06 49%|█████████████████████████▏ | ETA: 0:00:06 51%|██████████████████████████▏ | ETA: 0:00:05 53%|██████████████████████████▉ | ETA: 0:00:05 54%|███████████████████████████▍ | ETA: 0:00:05 54%|███████████████████████████▊ | ETA: 0:00:05 56%|████████████████████████████▍ | ETA: 0:00:05 57%|████████████████████████████▉ | ETA: 0:00:05 58%|█████████████████████████████▍ | ETA: 0:00:05 59%|█████████████████████████████▉ | ETA: 0:00:05 60%|██████████████████████████████▍ | ETA: 0:00:04 60%|██████████████████████████████▉ | ETA: 0:00:04 62%|███████████████████████████████▍ | ETA: 0:00:04 63%|███████████████████████████████▉ | ETA: 0:00:04 64%|████████████████████████████████▋ | ETA: 0:00:04 65%|█████████████████████████████████▏ | ETA: 0:00:04 66%|█████████████████████████████████▋ | ETA: 0:00:04 67%|██████████████████████████████████▏ | ETA: 0:00:04 68%|██████████████████████████████████▋ | ETA: 0:00:04 69%|███████████████████████████████████ | ETA: 0:00:03 71%|████████████████████████████████████▏ | ETA: 0:00:03 73%|█████████████████████████████████████ | ETA: 0:00:03 75%|██████████████████████████████████████▏ | ETA: 0:00:03 77%|███████████████████████████████████████▎ | ETA: 0:00:02 78%|███████████████████████████████████████▊ | ETA: 0:00:02 79%|████████████████████████████████████████▎ | ETA: 0:00:02 80%|█████████████████████████████████████████ | ETA: 0:00:02 82%|██████████████████████████████████████████ | ETA: 0:00:02 84%|███████████████████████████████████████████ | ETA: 0:00:02 86%|███████████████████████████████████████████▉ | ETA: 0:00:01 88%|█████████████████████████████████████████████▏ | ETA: 0:00:01 90%|██████████████████████████████████████████████▏ | ETA: 0:00:01 92%|██████████████████████████████████████████████▉ | ETA: 0:00:01 95%|████████████████████████████████████████████████▎ | ETA: 0:00:01 97%|█████████████████████████████████████████████████▊ | ETA: 0:00:00 100%|███████████████████████████████████████████████████| Time: 0:00:09 New verteces: 45565 Initialize mesh on boundary based on boundary conditions POLYGON-integration over 2048 cells: 0%| | ETA: 10:48:52 POLYGON-integration over 2048 cells: 0%| | ETA: 3:36:34 POLYGON-integration over 2048 cells: 0%|▏ | ETA: 2:10:09 POLYGON-integration over 2048 cells: 1%|▏ | ETA: 1:40:18 POLYGON-integration over 2048 cells: 1%|▏ | ETA: 1:21:38 POLYGON-integration over 2048 cells: 1%|▏ | ETA: 1:08:51 POLYGON-integration over 2048 cells: 1%|▏ | ETA: 0:59:37 POLYGON-integration over 2048 cells: 1%|▎ | ETA: 0:50:31 POLYGON-integration over 2048 cells: 1%|▎ | ETA: 0:43:52 POLYGON-integration over 2048 cells: 2%|▎ | ETA: 0:38:46 POLYGON-integration over 2048 cells: 2%|▎ | ETA: 0:35:41 POLYGON-integration over 2048 cells: 2%|▎ | ETA: 0:33:04 POLYGON-integration over 2048 cells: 2%|▎ | ETA: 0:31:37 POLYGON-integration over 2048 cells: 2%|▍ | ETA: 0:29:39 POLYGON-integration over 2048 cells: 2%|▍ | ETA: 0:29:07 POLYGON-integration over 2048 cells: 2%|▍ | ETA: 0:27:23 POLYGON-integration over 2048 cells: 2%|▍ | ETA: 0:26:25 POLYGON-integration over 2048 cells: 3%|▍ | ETA: 0:26:01 POLYGON-integration over 2048 cells: 3%|▍ | ETA: 0:24:55 POLYGON-integration over 2048 cells: 3%|▍ | ETA: 0:23:44 POLYGON-integration over 2048 cells: 3%|▌ | ETA: 0:21:41 POLYGON-integration over 2048 cells: 3%|▌ | ETA: 0:20:10 POLYGON-integration over 2048 cells: 4%|▌ | ETA: 0:19:21 POLYGON-integration over 2048 cells: 4%|▌ | ETA: 0:18:54 POLYGON-integration over 2048 cells: 4%|▋ | ETA: 0:18:14 POLYGON-integration over 2048 cells: 4%|▋ | ETA: 0:18:04 POLYGON-integration over 2048 cells: 4%|▋ | ETA: 0:17:25 POLYGON-integration over 2048 cells: 4%|▋ | ETA: 0:16:55 POLYGON-integration over 2048 cells: 4%|▋ | ETA: 0:16:24 POLYGON-integration over 2048 cells: 4%|▋ | ETA: 0:15:55 POLYGON-integration over 2048 cells: 5%|▊ | ETA: 0:15:02 POLYGON-integration over 2048 cells: 5%|▊ | ETA: 0:14:03 POLYGON-integration over 2048 cells: 5%|▊ | ETA: 0:13:42 POLYGON-integration over 2048 cells: 5%|▉ | ETA: 0:13:03 POLYGON-integration over 2048 cells: 6%|▉ | ETA: 0:12:20 POLYGON-integration over 2048 cells: 6%|█ | ETA: 0:11:30 POLYGON-integration over 2048 cells: 6%|█ | ETA: 0:11:15 POLYGON-integration over 2048 cells: 7%|█ | ETA: 0:10:56 POLYGON-integration over 2048 cells: 7%|█ | ETA: 0:10:43 POLYGON-integration over 2048 cells: 7%|█ | ETA: 0:10:34 POLYGON-integration over 2048 cells: 7%|█ | ETA: 0:10:22 POLYGON-integration over 2048 cells: 7%|█▏ | ETA: 0:10:10 POLYGON-integration over 2048 cells: 7%|█▏ | ETA: 0:10:03 POLYGON-integration over 2048 cells: 8%|█▏ | ETA: 0:09:48 POLYGON-integration over 2048 cells: 8%|█▏ | ETA: 0:09:33 POLYGON-integration over 2048 cells: 8%|█▏ | ETA: 0:09:20 POLYGON-integration over 2048 cells: 8%|█▎ | ETA: 0:09:10 POLYGON-integration over 2048 cells: 8%|█▎ | ETA: 0:09:04 POLYGON-integration over 2048 cells: 8%|█▎ | ETA: 0:08:53 POLYGON-integration over 2048 cells: 8%|█▎ | ETA: 0:08:52 POLYGON-integration over 2048 cells: 8%|█▎ | ETA: 0:08:47 POLYGON-integration over 2048 cells: 9%|█▎ | ETA: 0:08:42 POLYGON-integration over 2048 cells: 9%|█▎ | ETA: 0:08:37 POLYGON-integration over 2048 cells: 9%|█▍ | ETA: 0:08:33 POLYGON-integration over 2048 cells: 9%|█▍ | ETA: 0:08:29 POLYGON-integration over 2048 cells: 9%|█▍ | ETA: 0:08:24 POLYGON-integration over 2048 cells: 9%|█▍ | ETA: 0:08:20 POLYGON-integration over 2048 cells: 9%|█▍ | ETA: 0:08:10 POLYGON-integration over 2048 cells: 9%|█▍ | ETA: 0:08:03 POLYGON-integration over 2048 cells: 10%|█▍ | ETA: 0:07:58 POLYGON-integration over 2048 cells: 10%|█▌ | ETA: 0:07:54 POLYGON-integration over 2048 cells: 10%|█▌ | ETA: 0:07:47 POLYGON-integration over 2048 cells: 10%|█▌ | ETA: 0:07:43 POLYGON-integration over 2048 cells: 10%|█▌ | ETA: 0:07:40 POLYGON-integration over 2048 cells: 10%|█▌ | ETA: 0:07:36 POLYGON-integration over 2048 cells: 10%|█▌ | ETA: 0:07:33 POLYGON-integration over 2048 cells: 10%|█▌ | ETA: 0:07:30 POLYGON-integration over 2048 cells: 10%|█▋ | ETA: 0:07:27 POLYGON-integration over 2048 cells: 11%|█▋ | ETA: 0:07:23 POLYGON-integration over 2048 cells: 11%|█▋ | ETA: 0:07:20 POLYGON-integration over 2048 cells: 11%|█▋ | ETA: 0:07:12 POLYGON-integration over 2048 cells: 11%|█▋ | ETA: 0:07:07 POLYGON-integration over 2048 cells: 11%|█▋ | ETA: 0:07:02 POLYGON-integration over 2048 cells: 11%|█▊ | ETA: 0:06:56 POLYGON-integration over 2048 cells: 11%|█▊ | ETA: 0:06:52 POLYGON-integration over 2048 cells: 12%|█▊ | ETA: 0:06:51 POLYGON-integration over 2048 cells: 12%|█▊ | ETA: 0:06:44 POLYGON-integration over 2048 cells: 12%|█▊ | ETA: 0:06:41 POLYGON-integration over 2048 cells: 12%|█▊ | ETA: 0:06:40 POLYGON-integration over 2048 cells: 12%|█▉ | ETA: 0:06:33 POLYGON-integration over 2048 cells: 12%|█▉ | ETA: 0:06:31 POLYGON-integration over 2048 cells: 12%|█▉ | ETA: 0:06:30 POLYGON-integration over 2048 cells: 13%|█▉ | ETA: 0:06:19 POLYGON-integration over 2048 cells: 13%|█▉ | ETA: 0:06:15 POLYGON-integration over 2048 cells: 13%|██ | ETA: 0:06:10 POLYGON-integration over 2048 cells: 13%|██ | ETA: 0:06:06 POLYGON-integration over 2048 cells: 13%|██ | ETA: 0:06:01 POLYGON-integration over 2048 cells: 13%|██ | ETA: 0:05:59 POLYGON-integration over 2048 cells: 14%|██ | ETA: 0:05:56 POLYGON-integration over 2048 cells: 14%|██▏ | ETA: 0:05:51 POLYGON-integration over 2048 cells: 14%|██▏ | ETA: 0:05:47 POLYGON-integration over 2048 cells: 14%|██▏ | ETA: 0:05:42 POLYGON-integration over 2048 cells: 14%|██▏ | ETA: 0:05:39 POLYGON-integration over 2048 cells: 14%|██▏ | ETA: 0:05:37 POLYGON-integration over 2048 cells: 15%|██▎ | ETA: 0:05:33 POLYGON-integration over 2048 cells: 15%|██▎ | ETA: 0:05:32 POLYGON-integration over 2048 cells: 15%|██▎ | ETA: 0:05:31 POLYGON-integration over 2048 cells: 15%|██▎ | ETA: 0:05:29 POLYGON-integration over 2048 cells: 15%|██▎ | ETA: 0:05:28 POLYGON-integration over 2048 cells: 15%|██▎ | ETA: 0:05:27 POLYGON-integration over 2048 cells: 15%|██▎ | ETA: 0:05:25 POLYGON-integration over 2048 cells: 15%|██▎ | ETA: 0:05:23 POLYGON-integration over 2048 cells: 15%|██▎ | ETA: 0:05:22 POLYGON-integration over 2048 cells: 16%|██▍ | ETA: 0:05:18 POLYGON-integration over 2048 cells: 16%|██▍ | ETA: 0:05:15 POLYGON-integration over 2048 cells: 16%|██▍ | ETA: 0:05:14 POLYGON-integration over 2048 cells: 16%|██▍ | ETA: 0:05:12 POLYGON-integration over 2048 cells: 16%|██▍ | ETA: 0:05:09 POLYGON-integration over 2048 cells: 16%|██▍ | ETA: 0:05:08 POLYGON-integration over 2048 cells: 16%|██▌ | ETA: 0:05:06 POLYGON-integration over 2048 cells: 16%|██▌ | ETA: 0:05:05 POLYGON-integration over 2048 cells: 17%|██▌ | ETA: 0:05:04 POLYGON-integration over 2048 cells: 17%|██▌ | ETA: 0:05:03 POLYGON-integration over 2048 cells: 17%|██▌ | ETA: 0:05:01 POLYGON-integration over 2048 cells: 17%|██▌ | ETA: 0:05:00 POLYGON-integration over 2048 cells: 17%|██▌ | ETA: 0:04:59 POLYGON-integration over 2048 cells: 17%|██▋ | ETA: 0:04:55 POLYGON-integration over 2048 cells: 17%|██▋ | ETA: 0:04:53 POLYGON-integration over 2048 cells: 17%|██▋ | ETA: 0:04:50 POLYGON-integration over 2048 cells: 18%|██▋ | ETA: 0:04:47 POLYGON-integration over 2048 cells: 18%|██▋ | ETA: 0:04:46 POLYGON-integration over 2048 cells: 18%|██▊ | ETA: 0:04:42 POLYGON-integration over 2048 cells: 18%|██▊ | ETA: 0:04:42 POLYGON-integration over 2048 cells: 18%|██▊ | ETA: 0:04:41 POLYGON-integration over 2048 cells: 18%|██▊ | ETA: 0:04:38 POLYGON-integration over 2048 cells: 19%|██▊ | ETA: 0:04:37 POLYGON-integration over 2048 cells: 19%|██▊ | ETA: 0:04:37 POLYGON-integration over 2048 cells: 19%|██▉ | ETA: 0:04:31 POLYGON-integration over 2048 cells: 19%|██▉ | ETA: 0:04:29 POLYGON-integration over 2048 cells: 19%|██▉ | ETA: 0:04:26 POLYGON-integration over 2048 cells: 20%|██▉ | ETA: 0:04:23 POLYGON-integration over 2048 cells: 20%|███ | ETA: 0:04:20 POLYGON-integration over 2048 cells: 20%|███ | ETA: 0:04:18 POLYGON-integration over 2048 cells: 20%|███ | ETA: 0:04:15 POLYGON-integration over 2048 cells: 20%|███ | ETA: 0:04:11 POLYGON-integration over 2048 cells: 21%|███▏ | ETA: 0:04:08 POLYGON-integration over 2048 cells: 21%|███▏ | ETA: 0:04:06 POLYGON-integration over 2048 cells: 21%|███▏ | ETA: 0:04:04 POLYGON-integration over 2048 cells: 21%|███▏ | ETA: 0:04:03 POLYGON-integration over 2048 cells: 21%|███▏ | ETA: 0:04:01 POLYGON-integration over 2048 cells: 21%|███▎ | ETA: 0:03:59 POLYGON-integration over 2048 cells: 22%|███▎ | ETA: 0:03:57 POLYGON-integration over 2048 cells: 22%|███▎ | ETA: 0:03:55 POLYGON-integration over 2048 cells: 22%|███▎ | ETA: 0:03:52 POLYGON-integration over 2048 cells: 22%|███▍ | ETA: 0:03:50 POLYGON-integration over 2048 cells: 22%|███▍ | ETA: 0:03:48 POLYGON-integration over 2048 cells: 23%|███▍ | ETA: 0:03:46 POLYGON-integration over 2048 cells: 23%|███▍ | ETA: 0:03:44 POLYGON-integration over 2048 cells: 23%|███▍ | ETA: 0:03:43 POLYGON-integration over 2048 cells: 23%|███▌ | ETA: 0:03:42 POLYGON-integration over 2048 cells: 23%|███▌ | ETA: 0:03:40 POLYGON-integration over 2048 cells: 23%|███▌ | ETA: 0:03:38 POLYGON-integration over 2048 cells: 24%|███▌ | ETA: 0:03:35 POLYGON-integration over 2048 cells: 24%|███▋ | ETA: 0:03:33 POLYGON-integration over 2048 cells: 24%|███▋ | ETA: 0:03:31 POLYGON-integration over 2048 cells: 24%|███▋ | ETA: 0:03:28 POLYGON-integration over 2048 cells: 25%|███▋ | ETA: 0:03:27 POLYGON-integration over 2048 cells: 25%|███▊ | ETA: 0:03:25 POLYGON-integration over 2048 cells: 25%|███▊ | ETA: 0:03:24 POLYGON-integration over 2048 cells: 25%|███▊ | ETA: 0:03:21 POLYGON-integration over 2048 cells: 25%|███▊ | ETA: 0:03:20 POLYGON-integration over 2048 cells: 25%|███▉ | ETA: 0:03:19 POLYGON-integration over 2048 cells: 26%|███▉ | ETA: 0:03:18 POLYGON-integration over 2048 cells: 26%|███▉ | ETA: 0:03:17 POLYGON-integration over 2048 cells: 26%|███▉ | ETA: 0:03:16 POLYGON-integration over 2048 cells: 26%|███▉ | ETA: 0:03:15 POLYGON-integration over 2048 cells: 26%|███▉ | ETA: 0:03:14 POLYGON-integration over 2048 cells: 26%|████ | ETA: 0:03:13 POLYGON-integration over 2048 cells: 26%|████ | ETA: 0:03:11 POLYGON-integration over 2048 cells: 27%|████ | ETA: 0:03:10 POLYGON-integration over 2048 cells: 27%|████ | ETA: 0:03:09 POLYGON-integration over 2048 cells: 27%|████ | ETA: 0:03:09 POLYGON-integration over 2048 cells: 27%|████ | ETA: 0:03:08 POLYGON-integration over 2048 cells: 27%|████ | ETA: 0:03:07 POLYGON-integration over 2048 cells: 27%|████▏ | ETA: 0:03:07 POLYGON-integration over 2048 cells: 27%|████▏ | ETA: 0:03:07 POLYGON-integration over 2048 cells: 27%|████▏ | ETA: 0:03:06 POLYGON-integration over 2048 cells: 27%|████▏ | ETA: 0:03:06 POLYGON-integration over 2048 cells: 28%|████▏ | ETA: 0:03:05 POLYGON-integration over 2048 cells: 28%|████▏ | ETA: 0:03:05 POLYGON-integration over 2048 cells: 28%|████▏ | ETA: 0:03:04 POLYGON-integration over 2048 cells: 28%|████▏ | ETA: 0:03:04 POLYGON-integration over 2048 cells: 28%|████▎ | ETA: 0:03:03 POLYGON-integration over 2048 cells: 28%|████▎ | ETA: 0:03:02 POLYGON-integration over 2048 cells: 28%|████▎ | ETA: 0:03:01 POLYGON-integration over 2048 cells: 28%|████▎ | ETA: 0:03:01 POLYGON-integration over 2048 cells: 29%|████▎ | ETA: 0:03:00 POLYGON-integration over 2048 cells: 29%|████▎ | ETA: 0:02:59 POLYGON-integration over 2048 cells: 29%|████▍ | ETA: 0:02:59 POLYGON-integration over 2048 cells: 29%|████▍ | ETA: 0:02:58 POLYGON-integration over 2048 cells: 29%|████▍ | ETA: 0:02:58 POLYGON-integration over 2048 cells: 29%|████▍ | ETA: 0:02:58 POLYGON-integration over 2048 cells: 29%|████▍ | ETA: 0:02:57 POLYGON-integration over 2048 cells: 29%|████▍ | ETA: 0:02:57 POLYGON-integration over 2048 cells: 29%|████▍ | ETA: 0:02:56 POLYGON-integration over 2048 cells: 30%|████▌ | ETA: 0:02:56 POLYGON-integration over 2048 cells: 30%|████▌ | ETA: 0:02:54 POLYGON-integration over 2048 cells: 30%|████▌ | ETA: 0:02:53 POLYGON-integration over 2048 cells: 30%|████▌ | ETA: 0:02:52 POLYGON-integration over 2048 cells: 30%|████▌ | ETA: 0:02:52 POLYGON-integration over 2048 cells: 31%|████▋ | ETA: 0:02:51 POLYGON-integration over 2048 cells: 31%|████▋ | ETA: 0:02:50 POLYGON-integration over 2048 cells: 31%|████▋ | ETA: 0:02:50 POLYGON-integration over 2048 cells: 31%|████▋ | ETA: 0:02:49 POLYGON-integration over 2048 cells: 31%|████▋ | ETA: 0:02:49 POLYGON-integration over 2048 cells: 31%|████▋ | ETA: 0:02:48 POLYGON-integration over 2048 cells: 31%|████▊ | ETA: 0:02:46 POLYGON-integration over 2048 cells: 32%|████▊ | ETA: 0:02:46 POLYGON-integration over 2048 cells: 32%|████▊ | ETA: 0:02:45 POLYGON-integration over 2048 cells: 32%|████▊ | ETA: 0:02:45 POLYGON-integration over 2048 cells: 32%|████▊ | ETA: 0:02:44 POLYGON-integration over 2048 cells: 32%|████▊ | ETA: 0:02:44 POLYGON-integration over 2048 cells: 32%|████▉ | ETA: 0:02:43 POLYGON-integration over 2048 cells: 32%|████▉ | ETA: 0:02:42 POLYGON-integration over 2048 cells: 32%|████▉ | ETA: 0:02:42 POLYGON-integration over 2048 cells: 33%|████▉ | ETA: 0:02:41 POLYGON-integration over 2048 cells: 33%|████▉ | ETA: 0:02:40 POLYGON-integration over 2048 cells: 33%|████▉ | ETA: 0:02:39 POLYGON-integration over 2048 cells: 33%|█████ | ETA: 0:02:38 POLYGON-integration over 2048 cells: 33%|█████ | ETA: 0:02:38 POLYGON-integration over 2048 cells: 33%|█████ | ETA: 0:02:37 POLYGON-integration over 2048 cells: 33%|█████ | ETA: 0:02:37 POLYGON-integration over 2048 cells: 33%|█████ | ETA: 0:02:37 POLYGON-integration over 2048 cells: 34%|█████ | ETA: 0:02:36 POLYGON-integration over 2048 cells: 34%|█████ | ETA: 0:02:36 POLYGON-integration over 2048 cells: 34%|█████▏ | ETA: 0:02:36 POLYGON-integration over 2048 cells: 34%|█████▏ | ETA: 0:02:36 POLYGON-integration over 2048 cells: 34%|█████▏ | ETA: 0:02:35 POLYGON-integration over 2048 cells: 34%|█████▏ | ETA: 0:02:34 POLYGON-integration over 2048 cells: 34%|█████▏ | ETA: 0:02:34 POLYGON-integration over 2048 cells: 34%|█████▏ | ETA: 0:02:34 POLYGON-integration over 2048 cells: 35%|█████▏ | ETA: 0:02:33 POLYGON-integration over 2048 cells: 35%|█████▎ | ETA: 0:02:33 POLYGON-integration over 2048 cells: 35%|█████▎ | ETA: 0:02:32 POLYGON-integration over 2048 cells: 35%|█████▎ | ETA: 0:02:32 POLYGON-integration over 2048 cells: 35%|█████▎ | ETA: 0:02:32 POLYGON-integration over 2048 cells: 35%|█████▎ | ETA: 0:02:31 POLYGON-integration over 2048 cells: 35%|█████▎ | ETA: 0:02:31 POLYGON-integration over 2048 cells: 35%|█████▎ | ETA: 0:02:31 POLYGON-integration over 2048 cells: 35%|█████▎ | ETA: 0:02:30 POLYGON-integration over 2048 cells: 35%|█████▍ | ETA: 0:02:30 POLYGON-integration over 2048 cells: 36%|█████▍ | ETA: 0:02:30 POLYGON-integration over 2048 cells: 36%|█████▍ | ETA: 0:02:29 POLYGON-integration over 2048 cells: 36%|█████▍ | ETA: 0:02:29 POLYGON-integration over 2048 cells: 36%|█████▍ | ETA: 0:02:28 POLYGON-integration over 2048 cells: 36%|█████▍ | ETA: 0:02:27 POLYGON-integration over 2048 cells: 36%|█████▌ | ETA: 0:02:27 POLYGON-integration over 2048 cells: 36%|█████▌ | ETA: 0:02:26 POLYGON-integration over 2048 cells: 37%|█████▌ | ETA: 0:02:26 POLYGON-integration over 2048 cells: 37%|█████▌ | ETA: 0:02:26 POLYGON-integration over 2048 cells: 37%|█████▌ | ETA: 0:02:25 POLYGON-integration over 2048 cells: 37%|█████▌ | ETA: 0:02:24 POLYGON-integration over 2048 cells: 37%|█████▋ | ETA: 0:02:24 POLYGON-integration over 2048 cells: 37%|█████▋ | ETA: 0:02:23 POLYGON-integration over 2048 cells: 38%|█████▋ | ETA: 0:02:22 POLYGON-integration over 2048 cells: 38%|█████▋ | ETA: 0:02:22 POLYGON-integration over 2048 cells: 38%|█████▋ | ETA: 0:02:21 POLYGON-integration over 2048 cells: 38%|█████▋ | ETA: 0:02:21 POLYGON-integration over 2048 cells: 38%|█████▊ | ETA: 0:02:20 POLYGON-integration over 2048 cells: 38%|█████▊ | ETA: 0:02:20 POLYGON-integration over 2048 cells: 38%|█████▊ | ETA: 0:02:20 POLYGON-integration over 2048 cells: 38%|█████▊ | ETA: 0:02:19 POLYGON-integration over 2048 cells: 38%|█████▊ | ETA: 0:02:19 POLYGON-integration over 2048 cells: 39%|█████▊ | ETA: 0:02:18 POLYGON-integration over 2048 cells: 39%|█████▊ | ETA: 0:02:18 POLYGON-integration over 2048 cells: 39%|█████▉ | ETA: 0:02:17 POLYGON-integration over 2048 cells: 39%|█████▉ | ETA: 0:02:16 POLYGON-integration over 2048 cells: 39%|█████▉ | ETA: 0:02:16 POLYGON-integration over 2048 cells: 39%|█████▉ | ETA: 0:02:15 POLYGON-integration over 2048 cells: 39%|█████▉ | ETA: 0:02:15 POLYGON-integration over 2048 cells: 39%|█████▉ | ETA: 0:02:14 POLYGON-integration over 2048 cells: 40%|██████ | ETA: 0:02:14 POLYGON-integration over 2048 cells: 40%|██████ | ETA: 0:02:14 POLYGON-integration over 2048 cells: 40%|██████ | ETA: 0:02:14 POLYGON-integration over 2048 cells: 40%|██████ | ETA: 0:02:14 POLYGON-integration over 2048 cells: 40%|██████ | ETA: 0:02:13 POLYGON-integration over 2048 cells: 40%|██████ | ETA: 0:02:13 POLYGON-integration over 2048 cells: 40%|██████ | ETA: 0:02:13 POLYGON-integration over 2048 cells: 40%|██████ | ETA: 0:02:13 POLYGON-integration over 2048 cells: 40%|██████▏ | ETA: 0:02:12 POLYGON-integration over 2048 cells: 41%|██████▏ | ETA: 0:02:12 POLYGON-integration over 2048 cells: 41%|██████▏ | ETA: 0:02:11 POLYGON-integration over 2048 cells: 41%|██████▏ | ETA: 0:02:11 POLYGON-integration over 2048 cells: 41%|██████▏ | ETA: 0:02:10 POLYGON-integration over 2048 cells: 41%|██████▏ | ETA: 0:02:10 POLYGON-integration over 2048 cells: 41%|██████▏ | ETA: 0:02:10 POLYGON-integration over 2048 cells: 41%|██████▏ | ETA: 0:02:10 POLYGON-integration over 2048 cells: 41%|██████▎ | ETA: 0:02:09 POLYGON-integration over 2048 cells: 41%|██████▎ | ETA: 0:02:09 POLYGON-integration over 2048 cells: 42%|██████▎ | ETA: 0:02:09 POLYGON-integration over 2048 cells: 42%|██████▎ | ETA: 0:02:09 POLYGON-integration over 2048 cells: 42%|██████▎ | ETA: 0:02:08 POLYGON-integration over 2048 cells: 42%|██████▎ | ETA: 0:02:08 POLYGON-integration over 2048 cells: 42%|██████▎ | ETA: 0:02:07 POLYGON-integration over 2048 cells: 42%|██████▍ | ETA: 0:02:07 POLYGON-integration over 2048 cells: 42%|██████▍ | ETA: 0:02:06 POLYGON-integration over 2048 cells: 42%|██████▍ | ETA: 0:02:06 POLYGON-integration over 2048 cells: 43%|██████▍ | ETA: 0:02:05 POLYGON-integration over 2048 cells: 43%|██████▍ | ETA: 0:02:05 POLYGON-integration over 2048 cells: 43%|██████▍ | ETA: 0:02:05 POLYGON-integration over 2048 cells: 43%|██████▍ | ETA: 0:02:05 POLYGON-integration over 2048 cells: 43%|██████▌ | ETA: 0:02:04 POLYGON-integration over 2048 cells: 43%|██████▌ | ETA: 0:02:04 POLYGON-integration over 2048 cells: 43%|██████▌ | ETA: 0:02:03 POLYGON-integration over 2048 cells: 43%|██████▌ | ETA: 0:02:03 POLYGON-integration over 2048 cells: 44%|██████▌ | ETA: 0:02:03 POLYGON-integration over 2048 cells: 44%|██████▋ | ETA: 0:02:01 POLYGON-integration over 2048 cells: 44%|██████▋ | ETA: 0:02:01 POLYGON-integration over 2048 cells: 44%|██████▋ | ETA: 0:02:01 POLYGON-integration over 2048 cells: 44%|██████▋ | ETA: 0:02:00 POLYGON-integration over 2048 cells: 44%|██████▋ | ETA: 0:02:00 POLYGON-integration over 2048 cells: 44%|██████▋ | ETA: 0:02:00 POLYGON-integration over 2048 cells: 44%|██████▋ | ETA: 0:01:59 POLYGON-integration over 2048 cells: 45%|██████▊ | ETA: 0:01:59 POLYGON-integration over 2048 cells: 45%|██████▊ | ETA: 0:01:58 POLYGON-integration over 2048 cells: 45%|██████▊ | ETA: 0:01:58 POLYGON-integration over 2048 cells: 45%|██████▊ | ETA: 0:01:57 POLYGON-integration over 2048 cells: 45%|██████▊ | ETA: 0:01:56 POLYGON-integration over 2048 cells: 46%|██████▉ | ETA: 0:01:55 POLYGON-integration over 2048 cells: 46%|██████▉ | ETA: 0:01:55 POLYGON-integration over 2048 cells: 46%|██████▉ | ETA: 0:01:55 POLYGON-integration over 2048 cells: 46%|██████▉ | ETA: 0:01:54 POLYGON-integration over 2048 cells: 46%|██████▉ | ETA: 0:01:54 POLYGON-integration over 2048 cells: 46%|██████▉ | ETA: 0:01:54 POLYGON-integration over 2048 cells: 46%|██████▉ | ETA: 0:01:53 POLYGON-integration over 2048 cells: 46%|███████ | ETA: 0:01:53 POLYGON-integration over 2048 cells: 46%|███████ | ETA: 0:01:52 POLYGON-integration over 2048 cells: 47%|███████ | ETA: 0:01:52 POLYGON-integration over 2048 cells: 47%|███████ | ETA: 0:01:51 POLYGON-integration over 2048 cells: 47%|███████ | ETA: 0:01:50 POLYGON-integration over 2048 cells: 47%|███████▏ | ETA: 0:01:50 POLYGON-integration over 2048 cells: 47%|███████▏ | ETA: 0:01:49 POLYGON-integration over 2048 cells: 47%|███████▏ | ETA: 0:01:49 POLYGON-integration over 2048 cells: 48%|███████▏ | ETA: 0:01:49 POLYGON-integration over 2048 cells: 48%|███████▏ | ETA: 0:01:49 POLYGON-integration over 2048 cells: 48%|███████▏ | ETA: 0:01:48 POLYGON-integration over 2048 cells: 48%|███████▏ | ETA: 0:01:48 POLYGON-integration over 2048 cells: 48%|███████▎ | ETA: 0:01:47 POLYGON-integration over 2048 cells: 48%|███████▎ | ETA: 0:01:47 POLYGON-integration over 2048 cells: 48%|███████▎ | ETA: 0:01:46 POLYGON-integration over 2048 cells: 49%|███████▎ | ETA: 0:01:45 POLYGON-integration over 2048 cells: 49%|███████▍ | ETA: 0:01:45 POLYGON-integration over 2048 cells: 49%|███████▍ | ETA: 0:01:44 POLYGON-integration over 2048 cells: 49%|███████▍ | ETA: 0:01:43 POLYGON-integration over 2048 cells: 49%|███████▍ | ETA: 0:01:43 POLYGON-integration over 2048 cells: 49%|███████▍ | ETA: 0:01:42 POLYGON-integration over 2048 cells: 50%|███████▌ | ETA: 0:01:42 POLYGON-integration over 2048 cells: 50%|███████▌ | ETA: 0:01:41 POLYGON-integration over 2048 cells: 50%|███████▌ | ETA: 0:01:40 POLYGON-integration over 2048 cells: 50%|███████▌ | ETA: 0:01:40 POLYGON-integration over 2048 cells: 50%|███████▌ | ETA: 0:01:39 POLYGON-integration over 2048 cells: 51%|███████▋ | ETA: 0:01:39 POLYGON-integration over 2048 cells: 51%|███████▋ | ETA: 0:01:39 POLYGON-integration over 2048 cells: 51%|███████▋ | ETA: 0:01:38 POLYGON-integration over 2048 cells: 51%|███████▋ | ETA: 0:01:38 POLYGON-integration over 2048 cells: 51%|███████▋ | ETA: 0:01:38 POLYGON-integration over 2048 cells: 51%|███████▋ | ETA: 0:01:37 POLYGON-integration over 2048 cells: 51%|███████▊ | ETA: 0:01:37 POLYGON-integration over 2048 cells: 51%|███████▊ | ETA: 0:01:36 POLYGON-integration over 2048 cells: 52%|███████▊ | ETA: 0:01:35 POLYGON-integration over 2048 cells: 52%|███████▊ | ETA: 0:01:35 POLYGON-integration over 2048 cells: 52%|███████▊ | ETA: 0:01:35 POLYGON-integration over 2048 cells: 52%|███████▊ | ETA: 0:01:34 POLYGON-integration over 2048 cells: 52%|███████▉ | ETA: 0:01:34 POLYGON-integration over 2048 cells: 52%|███████▉ | ETA: 0:01:34 POLYGON-integration over 2048 cells: 52%|███████▉ | ETA: 0:01:34 POLYGON-integration over 2048 cells: 52%|███████▉ | ETA: 0:01:34 POLYGON-integration over 2048 cells: 53%|███████▉ | ETA: 0:01:34 POLYGON-integration over 2048 cells: 53%|███████▉ | ETA: 0:01:33 POLYGON-integration over 2048 cells: 53%|███████▉ | ETA: 0:01:33 POLYGON-integration over 2048 cells: 53%|███████▉ | ETA: 0:01:33 POLYGON-integration over 2048 cells: 53%|████████ | ETA: 0:01:33 POLYGON-integration over 2048 cells: 53%|████████ | ETA: 0:01:32 POLYGON-integration over 2048 cells: 53%|████████ | ETA: 0:01:32 POLYGON-integration over 2048 cells: 53%|████████ | ETA: 0:01:31 POLYGON-integration over 2048 cells: 54%|████████ | ETA: 0:01:31 POLYGON-integration over 2048 cells: 54%|████████ | ETA: 0:01:31 POLYGON-integration over 2048 cells: 54%|████████▏ | ETA: 0:01:31 POLYGON-integration over 2048 cells: 54%|████████▏ | ETA: 0:01:30 POLYGON-integration over 2048 cells: 54%|████████▏ | ETA: 0:01:30 POLYGON-integration over 2048 cells: 54%|████████▏ | ETA: 0:01:30 POLYGON-integration over 2048 cells: 54%|████████▏ | ETA: 0:01:30 POLYGON-integration over 2048 cells: 54%|████████▏ | ETA: 0:01:30 POLYGON-integration over 2048 cells: 54%|████████▏ | ETA: 0:01:29 POLYGON-integration over 2048 cells: 55%|████████▎ | ETA: 0:01:29 POLYGON-integration over 2048 cells: 55%|████████▎ | ETA: 0:01:28 POLYGON-integration over 2048 cells: 55%|████████▎ | ETA: 0:01:28 POLYGON-integration over 2048 cells: 55%|████████▎ | ETA: 0:01:27 POLYGON-integration over 2048 cells: 55%|████████▎ | ETA: 0:01:27 POLYGON-integration over 2048 cells: 55%|████████▍ | ETA: 0:01:27 POLYGON-integration over 2048 cells: 56%|████████▍ | ETA: 0:01:26 POLYGON-integration over 2048 cells: 56%|████████▍ | ETA: 0:01:26 POLYGON-integration over 2048 cells: 56%|████████▍ | ETA: 0:01:25 POLYGON-integration over 2048 cells: 56%|████████▍ | ETA: 0:01:25 POLYGON-integration over 2048 cells: 57%|████████▌ | ETA: 0:01:24 POLYGON-integration over 2048 cells: 57%|████████▌ | ETA: 0:01:24 POLYGON-integration over 2048 cells: 57%|████████▌ | ETA: 0:01:24 POLYGON-integration over 2048 cells: 57%|████████▌ | ETA: 0:01:24 POLYGON-integration over 2048 cells: 57%|████████▌ | ETA: 0:01:23 POLYGON-integration over 2048 cells: 57%|████████▋ | ETA: 0:01:23 POLYGON-integration over 2048 cells: 57%|████████▋ | ETA: 0:01:23 POLYGON-integration over 2048 cells: 57%|████████▋ | ETA: 0:01:22 POLYGON-integration over 2048 cells: 58%|████████▋ | ETA: 0:01:22 POLYGON-integration over 2048 cells: 58%|████████▋ | ETA: 0:01:21 POLYGON-integration over 2048 cells: 58%|████████▋ | ETA: 0:01:21 POLYGON-integration over 2048 cells: 58%|████████▊ | ETA: 0:01:21 POLYGON-integration over 2048 cells: 58%|████████▊ | ETA: 0:01:20 POLYGON-integration over 2048 cells: 58%|████████▊ | ETA: 0:01:20 POLYGON-integration over 2048 cells: 58%|████████▊ | ETA: 0:01:20 POLYGON-integration over 2048 cells: 58%|████████▊ | ETA: 0:01:20 POLYGON-integration over 2048 cells: 59%|████████▊ | ETA: 0:01:19 POLYGON-integration over 2048 cells: 59%|████████▊ | ETA: 0:01:19 POLYGON-integration over 2048 cells: 59%|████████▉ | ETA: 0:01:19 POLYGON-integration over 2048 cells: 59%|████████▉ | ETA: 0:01:19 POLYGON-integration over 2048 cells: 59%|████████▉ | ETA: 0:01:19 POLYGON-integration over 2048 cells: 59%|████████▉ | ETA: 0:01:18 POLYGON-integration over 2048 cells: 59%|████████▉ | ETA: 0:01:18 POLYGON-integration over 2048 cells: 59%|████████▉ | ETA: 0:01:18 POLYGON-integration over 2048 cells: 60%|████████▉ | ETA: 0:01:18 POLYGON-integration over 2048 cells: 60%|█████████ | ETA: 0:01:17 POLYGON-integration over 2048 cells: 60%|█████████ | ETA: 0:01:17 POLYGON-integration over 2048 cells: 60%|█████████ | ETA: 0:01:17 POLYGON-integration over 2048 cells: 60%|█████████ | ETA: 0:01:17 POLYGON-integration over 2048 cells: 60%|█████████ | ETA: 0:01:17 POLYGON-integration over 2048 cells: 60%|█████████ | ETA: 0:01:16 POLYGON-integration over 2048 cells: 60%|█████████ | ETA: 0:01:16 POLYGON-integration over 2048 cells: 60%|█████████ | ETA: 0:01:16 POLYGON-integration over 2048 cells: 60%|█████████▏ | ETA: 0:01:16 POLYGON-integration over 2048 cells: 61%|█████████▏ | ETA: 0:01:16 POLYGON-integration over 2048 cells: 61%|█████████▏ | ETA: 0:01:15 POLYGON-integration over 2048 cells: 61%|█████████▏ | ETA: 0:01:15 POLYGON-integration over 2048 cells: 61%|█████████▏ | ETA: 0:01:14 POLYGON-integration over 2048 cells: 61%|█████████▏ | ETA: 0:01:14 POLYGON-integration over 2048 cells: 61%|█████████▎ | ETA: 0:01:14 POLYGON-integration over 2048 cells: 61%|█████████▎ | ETA: 0:01:14 POLYGON-integration over 2048 cells: 62%|█████████▎ | ETA: 0:01:13 POLYGON-integration over 2048 cells: 62%|█████████▎ | ETA: 0:01:13 POLYGON-integration over 2048 cells: 62%|█████████▎ | ETA: 0:01:13 POLYGON-integration over 2048 cells: 62%|█████████▎ | ETA: 0:01:12 POLYGON-integration over 2048 cells: 62%|█████████▎ | ETA: 0:01:12 POLYGON-integration over 2048 cells: 62%|█████████▍ | ETA: 0:01:12 POLYGON-integration over 2048 cells: 62%|█████████▍ | ETA: 0:01:12 POLYGON-integration over 2048 cells: 63%|█████████▍ | ETA: 0:01:11 POLYGON-integration over 2048 cells: 63%|█████████▍ | ETA: 0:01:11 POLYGON-integration over 2048 cells: 63%|█████████▍ | ETA: 0:01:11 POLYGON-integration over 2048 cells: 63%|█████████▍ | ETA: 0:01:10 POLYGON-integration over 2048 cells: 63%|█████████▌ | ETA: 0:01:10 POLYGON-integration over 2048 cells: 63%|█████████▌ | ETA: 0:01:10 POLYGON-integration over 2048 cells: 63%|█████████▌ | ETA: 0:01:10 POLYGON-integration over 2048 cells: 63%|█████████▌ | ETA: 0:01:09 POLYGON-integration over 2048 cells: 64%|█████████▌ | ETA: 0:01:09 POLYGON-integration over 2048 cells: 64%|█████████▌ | ETA: 0:01:09 POLYGON-integration over 2048 cells: 64%|█████████▋ | ETA: 0:01:08 POLYGON-integration over 2048 cells: 64%|█████████▋ | ETA: 0:01:08 POLYGON-integration over 2048 cells: 64%|█████████▋ | ETA: 0:01:07 POLYGON-integration over 2048 cells: 64%|█████████▋ | ETA: 0:01:07 POLYGON-integration over 2048 cells: 64%|█████████▋ | ETA: 0:01:07 POLYGON-integration over 2048 cells: 65%|█████████▊ | ETA: 0:01:06 POLYGON-integration over 2048 cells: 65%|█████████▊ | ETA: 0:01:06 POLYGON-integration over 2048 cells: 65%|█████████▊ | ETA: 0:01:06 POLYGON-integration over 2048 cells: 65%|█████████▊ | ETA: 0:01:06 POLYGON-integration over 2048 cells: 65%|█████████▊ | ETA: 0:01:06 POLYGON-integration over 2048 cells: 65%|█████████▊ | ETA: 0:01:06 POLYGON-integration over 2048 cells: 65%|█████████▊ | ETA: 0:01:06 POLYGON-integration over 2048 cells: 65%|█████████▊ | ETA: 0:01:05 POLYGON-integration over 2048 cells: 65%|█████████▉ | ETA: 0:01:05 POLYGON-integration over 2048 cells: 66%|█████████▉ | ETA: 0:01:05 POLYGON-integration over 2048 cells: 66%|█████████▉ | ETA: 0:01:04 POLYGON-integration over 2048 cells: 66%|█████████▉ | ETA: 0:01:04 POLYGON-integration over 2048 cells: 66%|█████████▉ | ETA: 0:01:04 POLYGON-integration over 2048 cells: 66%|█████████▉ | ETA: 0:01:04 POLYGON-integration over 2048 cells: 66%|█████████▉ | ETA: 0:01:03 POLYGON-integration over 2048 cells: 66%|█████████▉ | ETA: 0:01:03 POLYGON-integration over 2048 cells: 66%|██████████ | ETA: 0:01:03 POLYGON-integration over 2048 cells: 66%|██████████ | ETA: 0:01:03 POLYGON-integration over 2048 cells: 67%|██████████ | ETA: 0:01:03 POLYGON-integration over 2048 cells: 67%|██████████ | ETA: 0:01:03 POLYGON-integration over 2048 cells: 67%|██████████ | ETA: 0:01:03 POLYGON-integration over 2048 cells: 67%|██████████ | ETA: 0:01:02 POLYGON-integration over 2048 cells: 67%|██████████ | ETA: 0:01:02 POLYGON-integration over 2048 cells: 67%|██████████▏ | ETA: 0:01:02 POLYGON-integration over 2048 cells: 67%|██████████▏ | ETA: 0:01:01 POLYGON-integration over 2048 cells: 67%|██████████▏ | ETA: 0:01:01 POLYGON-integration over 2048 cells: 68%|██████████▏ | ETA: 0:01:01 POLYGON-integration over 2048 cells: 68%|██████████▏ | ETA: 0:01:00 POLYGON-integration over 2048 cells: 68%|██████████▏ | ETA: 0:01:00 POLYGON-integration over 2048 cells: 68%|██████████▏ | ETA: 0:01:00 POLYGON-integration over 2048 cells: 68%|██████████▎ | ETA: 0:01:00 POLYGON-integration over 2048 cells: 68%|██████████▎ | ETA: 0:00:59 POLYGON-integration over 2048 cells: 68%|██████████▎ | ETA: 0:00:59 POLYGON-integration over 2048 cells: 69%|██████████▎ | ETA: 0:00:58 POLYGON-integration over 2048 cells: 69%|██████████▍ | ETA: 0:00:58 POLYGON-integration over 2048 cells: 69%|██████████▍ | ETA: 0:00:58 POLYGON-integration over 2048 cells: 69%|██████████▍ | ETA: 0:00:57 POLYGON-integration over 2048 cells: 69%|██████████▍ | ETA: 0:00:57 POLYGON-integration over 2048 cells: 69%|██████████▍ | ETA: 0:00:57 POLYGON-integration over 2048 cells: 69%|██████████▍ | ETA: 0:00:57 POLYGON-integration over 2048 cells: 70%|██████████▌ | ETA: 0:00:56 POLYGON-integration over 2048 cells: 70%|██████████▌ | ETA: 0:00:56 POLYGON-integration over 2048 cells: 70%|██████████▌ | ETA: 0:00:56 POLYGON-integration over 2048 cells: 70%|██████████▌ | ETA: 0:00:55 POLYGON-integration over 2048 cells: 70%|██████████▌ | ETA: 0:00:55 POLYGON-integration over 2048 cells: 71%|██████████▋ | ETA: 0:00:54 POLYGON-integration over 2048 cells: 71%|██████████▋ | ETA: 0:00:54 POLYGON-integration over 2048 cells: 71%|██████████▋ | ETA: 0:00:54 POLYGON-integration over 2048 cells: 71%|██████████▋ | ETA: 0:00:54 POLYGON-integration over 2048 cells: 71%|██████████▋ | ETA: 0:00:53 POLYGON-integration over 2048 cells: 71%|██████████▋ | ETA: 0:00:53 POLYGON-integration over 2048 cells: 71%|██████████▋ | ETA: 0:00:53 POLYGON-integration over 2048 cells: 71%|██████████▊ | ETA: 0:00:53 POLYGON-integration over 2048 cells: 71%|██████████▊ | ETA: 0:00:52 POLYGON-integration over 2048 cells: 72%|██████████▊ | ETA: 0:00:52 POLYGON-integration over 2048 cells: 72%|██████████▊ | ETA: 0:00:52 POLYGON-integration over 2048 cells: 72%|██████████▊ | ETA: 0:00:51 POLYGON-integration over 2048 cells: 72%|██████████▉ | ETA: 0:00:51 POLYGON-integration over 2048 cells: 72%|██████████▉ | ETA: 0:00:50 POLYGON-integration over 2048 cells: 72%|██████████▉ | ETA: 0:00:50 POLYGON-integration over 2048 cells: 73%|██████████▉ | ETA: 0:00:50 POLYGON-integration over 2048 cells: 73%|██████████▉ | ETA: 0:00:50 POLYGON-integration over 2048 cells: 73%|██████████▉ | ETA: 0:00:49 POLYGON-integration over 2048 cells: 73%|██████████▉ | ETA: 0:00:49 POLYGON-integration over 2048 cells: 73%|███████████ | ETA: 0:00:49 POLYGON-integration over 2048 cells: 73%|███████████ | ETA: 0:00:49 POLYGON-integration over 2048 cells: 73%|███████████ | ETA: 0:00:48 POLYGON-integration over 2048 cells: 74%|███████████ | ETA: 0:00:48 POLYGON-integration over 2048 cells: 74%|███████████▏ | ETA: 0:00:47 POLYGON-integration over 2048 cells: 74%|███████████▏ | ETA: 0:00:47 POLYGON-integration over 2048 cells: 74%|███████████▏ | ETA: 0:00:46 POLYGON-integration over 2048 cells: 74%|███████████▏ | ETA: 0:00:46 POLYGON-integration over 2048 cells: 75%|███████████▏ | ETA: 0:00:46 POLYGON-integration over 2048 cells: 75%|███████████▎ | ETA: 0:00:45 POLYGON-integration over 2048 cells: 75%|███████████▎ | ETA: 0:00:45 POLYGON-integration over 2048 cells: 75%|███████████▎ | ETA: 0:00:44 POLYGON-integration over 2048 cells: 75%|███████████▎ | ETA: 0:00:44 POLYGON-integration over 2048 cells: 76%|███████████▍ | ETA: 0:00:43 POLYGON-integration over 2048 cells: 76%|███████████▍ | ETA: 0:00:43 POLYGON-integration over 2048 cells: 76%|███████████▍ | ETA: 0:00:43 POLYGON-integration over 2048 cells: 76%|███████████▍ | ETA: 0:00:42 POLYGON-integration over 2048 cells: 76%|███████████▌ | ETA: 0:00:42 POLYGON-integration over 2048 cells: 77%|███████████▌ | ETA: 0:00:41 POLYGON-integration over 2048 cells: 77%|███████████▌ | ETA: 0:00:41 POLYGON-integration over 2048 cells: 77%|███████████▌ | ETA: 0:00:40 POLYGON-integration over 2048 cells: 77%|███████████▋ | ETA: 0:00:40 POLYGON-integration over 2048 cells: 77%|███████████▋ | ETA: 0:00:40 POLYGON-integration over 2048 cells: 77%|███████████▋ | ETA: 0:00:39 POLYGON-integration over 2048 cells: 78%|███████████▋ | ETA: 0:00:39 POLYGON-integration over 2048 cells: 78%|███████████▋ | ETA: 0:00:39 POLYGON-integration over 2048 cells: 78%|███████████▊ | ETA: 0:00:38 POLYGON-integration over 2048 cells: 78%|███████████▊ | ETA: 0:00:38 POLYGON-integration over 2048 cells: 78%|███████████▊ | ETA: 0:00:37 POLYGON-integration over 2048 cells: 79%|███████████▊ | ETA: 0:00:37 POLYGON-integration over 2048 cells: 79%|███████████▉ | ETA: 0:00:37 POLYGON-integration over 2048 cells: 79%|███████████▉ | ETA: 0:00:37 POLYGON-integration over 2048 cells: 79%|███████████▉ | ETA: 0:00:36 POLYGON-integration over 2048 cells: 79%|███████████▉ | ETA: 0:00:36 POLYGON-integration over 2048 cells: 79%|███████████▉ | ETA: 0:00:36 POLYGON-integration over 2048 cells: 80%|███████████▉ | ETA: 0:00:35 POLYGON-integration over 2048 cells: 80%|████████████ | ETA: 0:00:35 POLYGON-integration over 2048 cells: 80%|████████████ | ETA: 0:00:34 POLYGON-integration over 2048 cells: 80%|████████████ | ETA: 0:00:34 POLYGON-integration over 2048 cells: 80%|████████████▏ | ETA: 0:00:33 POLYGON-integration over 2048 cells: 81%|████████████▏ | ETA: 0:00:33 POLYGON-integration over 2048 cells: 81%|████████████▏ | ETA: 0:00:33 POLYGON-integration over 2048 cells: 81%|████████████▏ | ETA: 0:00:32 POLYGON-integration over 2048 cells: 81%|████████████▎ | ETA: 0:00:32 POLYGON-integration over 2048 cells: 81%|████████████▎ | ETA: 0:00:31 POLYGON-integration over 2048 cells: 82%|████████████▎ | ETA: 0:00:31 POLYGON-integration over 2048 cells: 82%|████████████▎ | ETA: 0:00:31 POLYGON-integration over 2048 cells: 82%|████████████▎ | ETA: 0:00:31 POLYGON-integration over 2048 cells: 82%|████████████▎ | ETA: 0:00:30 POLYGON-integration over 2048 cells: 82%|████████████▍ | ETA: 0:00:30 POLYGON-integration over 2048 cells: 82%|████████████▍ | ETA: 0:00:30 POLYGON-integration over 2048 cells: 83%|████████████▍ | ETA: 0:00:29 POLYGON-integration over 2048 cells: 83%|████████████▍ | ETA: 0:00:29 POLYGON-integration over 2048 cells: 83%|████████████▌ | ETA: 0:00:28 POLYGON-integration over 2048 cells: 83%|████████████▌ | ETA: 0:00:28 POLYGON-integration over 2048 cells: 83%|████████████▌ | ETA: 0:00:28 POLYGON-integration over 2048 cells: 83%|████████████▌ | ETA: 0:00:28 POLYGON-integration over 2048 cells: 84%|████████████▌ | ETA: 0:00:28 POLYGON-integration over 2048 cells: 84%|████████████▌ | ETA: 0:00:27 POLYGON-integration over 2048 cells: 84%|████████████▋ | ETA: 0:00:27 POLYGON-integration over 2048 cells: 84%|████████████▋ | ETA: 0:00:27 POLYGON-integration over 2048 cells: 84%|████████████▋ | ETA: 0:00:26 POLYGON-integration over 2048 cells: 84%|████████████▋ | ETA: 0:00:26 POLYGON-integration over 2048 cells: 85%|████████████▋ | ETA: 0:00:26 POLYGON-integration over 2048 cells: 85%|████████████▊ | ETA: 0:00:26 POLYGON-integration over 2048 cells: 85%|████████████▊ | ETA: 0:00:25 POLYGON-integration over 2048 cells: 85%|████████████▊ | ETA: 0:00:25 POLYGON-integration over 2048 cells: 85%|████████████▊ | ETA: 0:00:25 POLYGON-integration over 2048 cells: 85%|████████████▊ | ETA: 0:00:25 POLYGON-integration over 2048 cells: 85%|████████████▊ | ETA: 0:00:25 POLYGON-integration over 2048 cells: 85%|████████████▊ | ETA: 0:00:24 POLYGON-integration over 2048 cells: 85%|████████████▉ | ETA: 0:00:24 POLYGON-integration over 2048 cells: 86%|████████████▉ | ETA: 0:00:24 POLYGON-integration over 2048 cells: 86%|████████████▉ | ETA: 0:00:23 POLYGON-integration over 2048 cells: 86%|████████████▉ | ETA: 0:00:23 POLYGON-integration over 2048 cells: 86%|█████████████ | ETA: 0:00:23 POLYGON-integration over 2048 cells: 87%|█████████████ | ETA: 0:00:22 POLYGON-integration over 2048 cells: 87%|█████████████ | ETA: 0:00:22 POLYGON-integration over 2048 cells: 87%|█████████████ | ETA: 0:00:22 POLYGON-integration over 2048 cells: 87%|█████████████▏ | ETA: 0:00:21 POLYGON-integration over 2048 cells: 87%|█████████████▏ | ETA: 0:00:21 POLYGON-integration over 2048 cells: 88%|█████████████▏ | ETA: 0:00:20 POLYGON-integration over 2048 cells: 88%|█████████████▏ | ETA: 0:00:20 POLYGON-integration over 2048 cells: 88%|█████████████▏ | ETA: 0:00:20 POLYGON-integration over 2048 cells: 88%|█████████████▎ | ETA: 0:00:20 POLYGON-integration over 2048 cells: 88%|█████████████▎ | ETA: 0:00:19 POLYGON-integration over 2048 cells: 88%|█████████████▎ | ETA: 0:00:19 POLYGON-integration over 2048 cells: 88%|█████████████▎ | ETA: 0:00:19 POLYGON-integration over 2048 cells: 89%|█████████████▎ | ETA: 0:00:19 POLYGON-integration over 2048 cells: 89%|█████████████▎ | ETA: 0:00:18 POLYGON-integration over 2048 cells: 89%|█████████████▍ | ETA: 0:00:18 POLYGON-integration over 2048 cells: 89%|█████████████▍ | ETA: 0:00:18 POLYGON-integration over 2048 cells: 89%|█████████████▍ | ETA: 0:00:17 POLYGON-integration over 2048 cells: 89%|█████████████▍ | ETA: 0:00:17 POLYGON-integration over 2048 cells: 90%|█████████████▌ | ETA: 0:00:17 POLYGON-integration over 2048 cells: 90%|█████████████▌ | ETA: 0:00:17 POLYGON-integration over 2048 cells: 90%|█████████████▌ | ETA: 0:00:17 POLYGON-integration over 2048 cells: 90%|█████████████▌ | ETA: 0:00:16 POLYGON-integration over 2048 cells: 90%|█████████████▌ | ETA: 0:00:16 POLYGON-integration over 2048 cells: 90%|█████████████▌ | ETA: 0:00:16 POLYGON-integration over 2048 cells: 90%|█████████████▋ | ETA: 0:00:15 POLYGON-integration over 2048 cells: 91%|█████████████▋ | ETA: 0:00:15 POLYGON-integration over 2048 cells: 91%|█████████████▋ | ETA: 0:00:15 POLYGON-integration over 2048 cells: 91%|█████████████▋ | ETA: 0:00:15 POLYGON-integration over 2048 cells: 91%|█████████████▋ | ETA: 0:00:15 POLYGON-integration over 2048 cells: 91%|█████████████▋ | ETA: 0:00:14 POLYGON-integration over 2048 cells: 91%|█████████████▊ | ETA: 0:00:14 POLYGON-integration over 2048 cells: 91%|█████████████▊ | ETA: 0:00:14 POLYGON-integration over 2048 cells: 92%|█████████████▊ | ETA: 0:00:14 POLYGON-integration over 2048 cells: 92%|█████████████▊ | ETA: 0:00:13 POLYGON-integration over 2048 cells: 92%|█████████████▊ | ETA: 0:00:13 POLYGON-integration over 2048 cells: 92%|█████████████▊ | ETA: 0:00:13 POLYGON-integration over 2048 cells: 92%|█████████████▉ | ETA: 0:00:13 POLYGON-integration over 2048 cells: 92%|█████████████▉ | ETA: 0:00:12 POLYGON-integration over 2048 cells: 93%|█████████████▉ | ETA: 0:00:12 POLYGON-integration over 2048 cells: 93%|█████████████▉ | ETA: 0:00:11 POLYGON-integration over 2048 cells: 93%|██████████████ | ETA: 0:00:11 POLYGON-integration over 2048 cells: 93%|██████████████ | ETA: 0:00:11 POLYGON-integration over 2048 cells: 93%|██████████████ | ETA: 0:00:10 POLYGON-integration over 2048 cells: 94%|██████████████ | ETA: 0:00:10 POLYGON-integration over 2048 cells: 94%|██████████████▏| ETA: 0:00:10 POLYGON-integration over 2048 cells: 94%|██████████████▏| ETA: 0:00:10 POLYGON-integration over 2048 cells: 94%|██████████████▏| ETA: 0:00:09 POLYGON-integration over 2048 cells: 94%|██████████████▏| ETA: 0:00:09 POLYGON-integration over 2048 cells: 94%|██████████████▏| ETA: 0:00:09 POLYGON-integration over 2048 cells: 95%|██████████████▏| ETA: 0:00:09 POLYGON-integration over 2048 cells: 95%|██████████████▎| ETA: 0:00:08 POLYGON-integration over 2048 cells: 95%|██████████████▎| ETA: 0:00:07 POLYGON-integration over 2048 cells: 95%|██████████████▍| ETA: 0:00:07 POLYGON-integration over 2048 cells: 96%|██████████████▍| ETA: 0:00:07 POLYGON-integration over 2048 cells: 96%|██████████████▍| ETA: 0:00:07 POLYGON-integration over 2048 cells: 96%|██████████████▍| ETA: 0:00:06 POLYGON-integration over 2048 cells: 96%|██████████████▍| ETA: 0:00:06 POLYGON-integration over 2048 cells: 97%|██████████████▌| ETA: 0:00:05 POLYGON-integration over 2048 cells: 97%|██████████████▌| ETA: 0:00:05 POLYGON-integration over 2048 cells: 97%|██████████████▌| ETA: 0:00:05 POLYGON-integration over 2048 cells: 97%|██████████████▋| ETA: 0:00:04 POLYGON-integration over 2048 cells: 97%|██████████████▋| ETA: 0:00:04 POLYGON-integration over 2048 cells: 97%|██████████████▋| ETA: 0:00:04 POLYGON-integration over 2048 cells: 98%|██████████████▋| ETA: 0:00:04 POLYGON-integration over 2048 cells: 98%|██████████████▋| ETA: 0:00:04 POLYGON-integration over 2048 cells: 98%|██████████████▋| ETA: 0:00:03 POLYGON-integration over 2048 cells: 98%|██████████████▊| ETA: 0:00:03 POLYGON-integration over 2048 cells: 98%|██████████████▊| ETA: 0:00:02 POLYGON-integration over 2048 cells: 99%|██████████████▉| ETA: 0:00:02 POLYGON-integration over 2048 cells: 99%|██████████████▉| ETA: 0:00:01 POLYGON-integration over 2048 cells: 99%|██████████████▉| ETA: 0:00:01 POLYGON-integration over 2048 cells: 99%|███████████████| ETA: 0:00:01 POLYGON-integration over 2048 cells: 100%|███████████████| Time: 0:02:33 Create periodic mesh in 5-D from 2 points Periodicity: Any[], Unit cell size: [0.25, 0.25, 0.25, 0.25, 0.25], repeat=[4, 4, 4, 4, 4], i.e. 1024 unit cells Slow Track.... Initialize bulk mesh with 2048 points 1%|▎ | ETA: 0:00:19 1%|▌ | ETA: 0:00:20 3%|█▋ | ETA: 0:00:15 4%|██ | ETA: 0:00:15 5%|██▌ | ETA: 0:00:14 6%|███▎ | ETA: 0:00:12 8%|████ | ETA: 0:00:12 9%|████▍ | ETA: 0:00:12 10%|████▉ | ETA: 0:00:12 10%|█████▎ | ETA: 0:00:12 11%|█████▉ | ETA: 0:00:12 13%|██████▉ | ETA: 0:00:11 14%|███████▍ | ETA: 0:00:11 15%|███████▋ | ETA: 0:00:11 16%|████████▎ | ETA: 0:00:11 17%|████████▋ | ETA: 0:00:11 18%|█████████▍ | ETA: 0:00:10 20%|██████████▍ | ETA: 0:00:10 22%|███████████▌ | ETA: 0:00:09 25%|████████████▊ | ETA: 0:00:08 27%|█████████████▉ | ETA: 0:00:08 28%|██████████████▍ | ETA: 0:00:08 29%|██████████████▉ | ETA: 0:00:08 31%|████████████████ | ETA: 0:00:08 33%|█████████████████ | ETA: 0:00:07 34%|█████████████████▍ | ETA: 0:00:07 35%|█████████████████▉ | ETA: 0:00:07 36%|██████████████████▎ | ETA: 0:00:07 38%|███████████████████▎ | ETA: 0:00:07 39%|████████████████████ | ETA: 0:00:07 40%|████████████████████▌ | ETA: 0:00:07 42%|█████████████████████▎ | ETA: 0:00:07 43%|█████████████████████▉ | ETA: 0:00:06 45%|███████████████████████ | ETA: 0:00:06 47%|███████████████████████▉ | ETA: 0:00:06 49%|████████████████████████▊ | ETA: 0:00:05 50%|█████████████████████████▊ | ETA: 0:00:05 52%|██████████████████████████▋ | ETA: 0:00:05 53%|███████████████████████████ | ETA: 0:00:05 54%|███████████████████████████▍ | ETA: 0:00:05 55%|███████████████████████████▉ | ETA: 0:00:05 56%|████████████████████████████▊ | ETA: 0:00:05 58%|█████████████████████████████▋ | ETA: 0:00:04 59%|██████████████████████████████ | ETA: 0:00:04 60%|██████████████████████████████▍ | ETA: 0:00:04 60%|██████████████████████████████▊ | ETA: 0:00:04 62%|███████████████████████████████▋ | ETA: 0:00:04 64%|████████████████████████████████▍ | ETA: 0:00:04 64%|████████████████████████████████▉ | ETA: 0:00:04 65%|█████████████████████████████████▍ | ETA: 0:00:04 66%|█████████████████████████████████▉ | ETA: 0:00:04 67%|██████████████████████████████████▍ | ETA: 0:00:03 70%|███████████████████████████████████▌ | ETA: 0:00:03 71%|████████████████████████████████████▍ | ETA: 0:00:03 73%|█████████████████████████████████████▎ | ETA: 0:00:03 76%|██████████████████████████████████████▊ | ETA: 0:00:02 79%|████████████████████████████████████████▏ | ETA: 0:00:02 83%|██████████████████████████████████████████▏ | ETA: 0:00:02 86%|███████████████████████████████████████████▋ | ETA: 0:00:01 90%|██████████████████████████████████████████████ | ETA: 0:00:01 93%|███████████████████████████████████████████████▎ | ETA: 0:00:01 97%|█████████████████████████████████████████████████▍ | ETA: 0:00:00 100%|███████████████████████████████████████████████████| Time: 0:00:08 New verteces: 44640 Initialize mesh on boundary based on boundary conditions POLYGON-integration over 2048 cells: 0%| | ETA: 11:06:12 POLYGON-integration over 2048 cells: 0%|▏ | ETA: 2:15:26 POLYGON-integration over 2048 cells: 1%|▏ | ETA: 1:25:34 POLYGON-integration over 2048 cells: 1%|▏ | ETA: 0:58:00 POLYGON-integration over 2048 cells: 2%|▎ | ETA: 0:45:01 POLYGON-integration over 2048 cells: 2%|▎ | ETA: 0:41:15 POLYGON-integration over 2048 cells: 2%|▎ | ETA: 0:35:27 POLYGON-integration over 2048 cells: 2%|▍ | ETA: 0:31:26 POLYGON-integration over 2048 cells: 2%|▍ | ETA: 0:29:05 POLYGON-integration over 2048 cells: 3%|▍ | ETA: 0:27:10 POLYGON-integration over 2048 cells: 3%|▍ | ETA: 0:25:21 POLYGON-integration over 2048 cells: 3%|▌ | ETA: 0:24:07 POLYGON-integration over 2048 cells: 3%|▌ | ETA: 0:23:00 POLYGON-integration over 2048 cells: 3%|▌ | ETA: 0:22:25 POLYGON-integration over 2048 cells: 4%|▌ | ETA: 0:20:44 POLYGON-integration over 2048 cells: 4%|▋ | ETA: 0:19:23 POLYGON-integration over 2048 cells: 4%|▋ | ETA: 0:18:18 POLYGON-integration over 2048 cells: 4%|▋ | ETA: 0:18:09 POLYGON-integration over 2048 cells: 4%|▋ | ETA: 0:17:49 POLYGON-integration over 2048 cells: 4%|▋ | ETA: 0:16:51 POLYGON-integration over 2048 cells: 5%|▊ | ETA: 0:16:20 POLYGON-integration over 2048 cells: 5%|▊ | ETA: 0:15:31 POLYGON-integration over 2048 cells: 5%|▊ | ETA: 0:14:56 POLYGON-integration over 2048 cells: 5%|▊ | ETA: 0:14:16 POLYGON-integration over 2048 cells: 5%|▉ | ETA: 0:13:53 POLYGON-integration over 2048 cells: 6%|▉ | ETA: 0:13:32 POLYGON-integration over 2048 cells: 6%|▉ | ETA: 0:13:12 POLYGON-integration over 2048 cells: 6%|▉ | ETA: 0:12:53 POLYGON-integration over 2048 cells: 6%|▉ | ETA: 0:12:21 POLYGON-integration over 2048 cells: 6%|█ | ETA: 0:11:55 POLYGON-integration over 2048 cells: 6%|█ | ETA: 0:11:47 POLYGON-integration over 2048 cells: 7%|█ | ETA: 0:11:22 POLYGON-integration over 2048 cells: 7%|█ | ETA: 0:11:03 POLYGON-integration over 2048 cells: 7%|█▏ | ETA: 0:10:52 POLYGON-integration over 2048 cells: 7%|█▏ | ETA: 0:10:35 POLYGON-integration over 2048 cells: 8%|█▏ | ETA: 0:10:23 POLYGON-integration over 2048 cells: 8%|█▏ | ETA: 0:10:08 POLYGON-integration over 2048 cells: 8%|█▎ | ETA: 0:09:51 POLYGON-integration over 2048 cells: 8%|█▎ | ETA: 0:09:46 POLYGON-integration over 2048 cells: 8%|█▎ | ETA: 0:09:45 POLYGON-integration over 2048 cells: 8%|█▎ | ETA: 0:09:30 POLYGON-integration over 2048 cells: 8%|█▎ | ETA: 0:09:29 POLYGON-integration over 2048 cells: 9%|█▎ | ETA: 0:09:21 POLYGON-integration over 2048 cells: 9%|█▎ | ETA: 0:09:14 POLYGON-integration over 2048 cells: 9%|█▍ | ETA: 0:09:06 POLYGON-integration over 2048 cells: 9%|█▍ | ETA: 0:09:05 POLYGON-integration over 2048 cells: 9%|█▍ | ETA: 0:08:57 POLYGON-integration over 2048 cells: 9%|█▍ | ETA: 0:08:49 POLYGON-integration over 2048 cells: 9%|█▍ | ETA: 0:08:41 POLYGON-integration over 2048 cells: 10%|█▌ | ETA: 0:08:28 POLYGON-integration over 2048 cells: 10%|█▌ | ETA: 0:08:27 POLYGON-integration over 2048 cells: 10%|█▌ | ETA: 0:08:17 POLYGON-integration over 2048 cells: 10%|█▌ | ETA: 0:08:16 POLYGON-integration over 2048 cells: 10%|█▌ | ETA: 0:08:10 POLYGON-integration over 2048 cells: 10%|█▌ | ETA: 0:08:05 POLYGON-integration over 2048 cells: 10%|█▌ | ETA: 0:08:00 POLYGON-integration over 2048 cells: 10%|█▋ | ETA: 0:07:59 POLYGON-integration over 2048 cells: 11%|█▋ | ETA: 0:07:53 POLYGON-integration over 2048 cells: 11%|█▋ | ETA: 0:07:47 POLYGON-integration over 2048 cells: 11%|█▋ | ETA: 0:07:41 POLYGON-integration over 2048 cells: 11%|█▋ | ETA: 0:07:29 POLYGON-integration over 2048 cells: 11%|█▊ | ETA: 0:07:24 POLYGON-integration over 2048 cells: 11%|█▊ | ETA: 0:07:18 POLYGON-integration over 2048 cells: 12%|█▊ | ETA: 0:07:13 POLYGON-integration over 2048 cells: 12%|█▊ | ETA: 0:07:06 POLYGON-integration over 2048 cells: 12%|█▊ | ETA: 0:07:01 POLYGON-integration over 2048 cells: 12%|█▉ | ETA: 0:06:56 POLYGON-integration over 2048 cells: 12%|█▉ | ETA: 0:06:48 POLYGON-integration over 2048 cells: 13%|█▉ | ETA: 0:06:41 POLYGON-integration over 2048 cells: 13%|█▉ | ETA: 0:06:34 POLYGON-integration over 2048 cells: 13%|██ | ETA: 0:06:29 POLYGON-integration over 2048 cells: 13%|██ | ETA: 0:06:23 POLYGON-integration over 2048 cells: 13%|██ | ETA: 0:06:23 POLYGON-integration over 2048 cells: 14%|██ | ETA: 0:06:17 POLYGON-integration over 2048 cells: 14%|██▏ | ETA: 0:06:13 POLYGON-integration over 2048 cells: 14%|██▏ | ETA: 0:06:06 POLYGON-integration over 2048 cells: 14%|██▏ | ETA: 0:06:03 POLYGON-integration over 2048 cells: 14%|██▏ | ETA: 0:06:03 POLYGON-integration over 2048 cells: 15%|██▎ | ETA: 0:05:58 POLYGON-integration over 2048 cells: 15%|██▎ | ETA: 0:05:58 POLYGON-integration over 2048 cells: 15%|██▎ | ETA: 0:05:56 POLYGON-integration over 2048 cells: 15%|██▎ | ETA: 0:05:53 POLYGON-integration over 2048 cells: 15%|██▎ | ETA: 0:05:51 POLYGON-integration over 2048 cells: 15%|██▎ | ETA: 0:05:51 POLYGON-integration over 2048 cells: 15%|██▎ | ETA: 0:05:47 POLYGON-integration over 2048 cells: 15%|██▍ | ETA: 0:05:44 POLYGON-integration over 2048 cells: 16%|██▍ | ETA: 0:05:41 POLYGON-integration over 2048 cells: 16%|██▍ | ETA: 0:05:36 POLYGON-integration over 2048 cells: 16%|██▍ | ETA: 0:05:36 POLYGON-integration over 2048 cells: 16%|██▍ | ETA: 0:05:33 POLYGON-integration over 2048 cells: 16%|██▌ | ETA: 0:05:31 POLYGON-integration over 2048 cells: 16%|██▌ | ETA: 0:05:31 POLYGON-integration over 2048 cells: 16%|██▌ | ETA: 0:05:28 POLYGON-integration over 2048 cells: 17%|██▌ | ETA: 0:05:27 POLYGON-integration over 2048 cells: 17%|██▌ | ETA: 0:05:25 POLYGON-integration over 2048 cells: 17%|██▌ | ETA: 0:05:22 POLYGON-integration over 2048 cells: 17%|██▌ | ETA: 0:05:20 POLYGON-integration over 2048 cells: 17%|██▋ | ETA: 0:05:17 POLYGON-integration over 2048 cells: 17%|██▋ | ETA: 0:05:15 POLYGON-integration over 2048 cells: 17%|██▋ | ETA: 0:05:12 POLYGON-integration over 2048 cells: 18%|██▋ | ETA: 0:05:10 POLYGON-integration over 2048 cells: 18%|██▋ | ETA: 0:05:07 POLYGON-integration over 2048 cells: 18%|██▋ | ETA: 0:05:05 POLYGON-integration over 2048 cells: 18%|██▊ | ETA: 0:05:02 POLYGON-integration over 2048 cells: 18%|██▊ | ETA: 0:04:59 POLYGON-integration over 2048 cells: 18%|██▊ | ETA: 0:04:58 POLYGON-integration over 2048 cells: 19%|██▊ | ETA: 0:04:54 POLYGON-integration over 2048 cells: 19%|██▊ | ETA: 0:04:51 POLYGON-integration over 2048 cells: 19%|██▉ | ETA: 0:04:48 POLYGON-integration over 2048 cells: 19%|██▉ | ETA: 0:04:46 POLYGON-integration over 2048 cells: 19%|██▉ | ETA: 0:04:42 POLYGON-integration over 2048 cells: 19%|██▉ | ETA: 0:04:40 POLYGON-integration over 2048 cells: 20%|███ | ETA: 0:04:37 POLYGON-integration over 2048 cells: 20%|███ | ETA: 0:04:35 POLYGON-integration over 2048 cells: 20%|███ | ETA: 0:04:33 POLYGON-integration over 2048 cells: 20%|███ | ETA: 0:04:30 POLYGON-integration over 2048 cells: 20%|███ | ETA: 0:04:26 POLYGON-integration over 2048 cells: 21%|███▏ | ETA: 0:04:24 POLYGON-integration over 2048 cells: 21%|███▏ | ETA: 0:04:22 POLYGON-integration over 2048 cells: 21%|███▏ | ETA: 0:04:21 POLYGON-integration over 2048 cells: 21%|███▏ | ETA: 0:04:19 POLYGON-integration over 2048 cells: 21%|███▏ | ETA: 0:04:18 POLYGON-integration over 2048 cells: 21%|███▏ | ETA: 0:04:16 POLYGON-integration over 2048 cells: 21%|███▎ | ETA: 0:04:14 POLYGON-integration over 2048 cells: 22%|███▎ | ETA: 0:04:11 POLYGON-integration over 2048 cells: 22%|███▎ | ETA: 0:04:08 POLYGON-integration over 2048 cells: 22%|███▎ | ETA: 0:04:05 POLYGON-integration over 2048 cells: 22%|███▍ | ETA: 0:04:02 POLYGON-integration over 2048 cells: 23%|███▍ | ETA: 0:04:00 POLYGON-integration over 2048 cells: 23%|███▍ | ETA: 0:03:58 POLYGON-integration over 2048 cells: 23%|███▍ | ETA: 0:03:56 POLYGON-integration over 2048 cells: 23%|███▌ | ETA: 0:03:54 POLYGON-integration over 2048 cells: 23%|███▌ | ETA: 0:03:51 POLYGON-integration over 2048 cells: 24%|███▌ | ETA: 0:03:49 POLYGON-integration over 2048 cells: 24%|███▋ | ETA: 0:03:45 POLYGON-integration over 2048 cells: 24%|███▋ | ETA: 0:03:42 POLYGON-integration over 2048 cells: 24%|███▋ | ETA: 0:03:39 POLYGON-integration over 2048 cells: 25%|███▊ | ETA: 0:03:35 POLYGON-integration over 2048 cells: 25%|███▊ | ETA: 0:03:32 POLYGON-integration over 2048 cells: 25%|███▊ | ETA: 0:03:31 POLYGON-integration over 2048 cells: 25%|███▊ | ETA: 0:03:30 POLYGON-integration over 2048 cells: 26%|███▉ | ETA: 0:03:29 POLYGON-integration over 2048 cells: 26%|███▉ | ETA: 0:03:28 POLYGON-integration over 2048 cells: 26%|███▉ | ETA: 0:03:28 POLYGON-integration over 2048 cells: 26%|███▉ | ETA: 0:03:26 POLYGON-integration over 2048 cells: 26%|███▉ | ETA: 0:03:25 POLYGON-integration over 2048 cells: 26%|████ | ETA: 0:03:24 POLYGON-integration over 2048 cells: 26%|████ | ETA: 0:03:22 POLYGON-integration over 2048 cells: 27%|████ | ETA: 0:03:21 POLYGON-integration over 2048 cells: 27%|████ | ETA: 0:03:20 POLYGON-integration over 2048 cells: 27%|████ | ETA: 0:03:20 POLYGON-integration over 2048 cells: 27%|████▏ | ETA: 0:03:19 POLYGON-integration over 2048 cells: 27%|████▏ | ETA: 0:03:18 POLYGON-integration over 2048 cells: 27%|████▏ | ETA: 0:03:18 POLYGON-integration over 2048 cells: 27%|████▏ | ETA: 0:03:16 POLYGON-integration over 2048 cells: 28%|████▏ | ETA: 0:03:16 POLYGON-integration over 2048 cells: 28%|████▏ | ETA: 0:03:16 POLYGON-integration over 2048 cells: 28%|████▏ | ETA: 0:03:14 POLYGON-integration over 2048 cells: 28%|████▎ | ETA: 0:03:12 POLYGON-integration over 2048 cells: 28%|████▎ | ETA: 0:03:11 POLYGON-integration over 2048 cells: 28%|████▎ | ETA: 0:03:10 POLYGON-integration over 2048 cells: 28%|████▎ | ETA: 0:03:10 POLYGON-integration over 2048 cells: 29%|████▍ | ETA: 0:03:08 POLYGON-integration over 2048 cells: 29%|████▍ | ETA: 0:03:07 POLYGON-integration over 2048 cells: 29%|████▍ | ETA: 0:03:06 POLYGON-integration over 2048 cells: 29%|████▍ | ETA: 0:03:06 POLYGON-integration over 2048 cells: 29%|████▍ | ETA: 0:03:04 POLYGON-integration over 2048 cells: 30%|████▍ | ETA: 0:03:03 POLYGON-integration over 2048 cells: 30%|████▌ | ETA: 0:03:01 POLYGON-integration over 2048 cells: 30%|████▌ | ETA: 0:03:00 POLYGON-integration over 2048 cells: 30%|████▌ | ETA: 0:02:57 POLYGON-integration over 2048 cells: 31%|████▋ | ETA: 0:02:55 POLYGON-integration over 2048 cells: 31%|████▋ | ETA: 0:02:54 POLYGON-integration over 2048 cells: 31%|████▋ | ETA: 0:02:52 POLYGON-integration over 2048 cells: 31%|████▊ | ETA: 0:02:50 POLYGON-integration over 2048 cells: 31%|████▊ | ETA: 0:02:49 POLYGON-integration over 2048 cells: 32%|████▊ | ETA: 0:02:49 POLYGON-integration over 2048 cells: 32%|████▊ | ETA: 0:02:48 POLYGON-integration over 2048 cells: 32%|████▊ | ETA: 0:02:48 POLYGON-integration over 2048 cells: 32%|████▊ | ETA: 0:02:47 POLYGON-integration over 2048 cells: 32%|████▉ | ETA: 0:02:46 POLYGON-integration over 2048 cells: 32%|████▉ | ETA: 0:02:45 POLYGON-integration over 2048 cells: 33%|████▉ | ETA: 0:02:44 POLYGON-integration over 2048 cells: 33%|████▉ | ETA: 0:02:43 POLYGON-integration over 2048 cells: 33%|████▉ | ETA: 0:02:42 POLYGON-integration over 2048 cells: 33%|█████ | ETA: 0:02:42 POLYGON-integration over 2048 cells: 33%|█████ | ETA: 0:02:41 POLYGON-integration over 2048 cells: 33%|█████ | ETA: 0:02:41 POLYGON-integration over 2048 cells: 33%|█████ | ETA: 0:02:41 POLYGON-integration over 2048 cells: 33%|█████ | ETA: 0:02:40 POLYGON-integration over 2048 cells: 34%|█████ | ETA: 0:02:39 POLYGON-integration over 2048 cells: 34%|█████ | ETA: 0:02:39 POLYGON-integration over 2048 cells: 34%|█████▏ | ETA: 0:02:39 POLYGON-integration over 2048 cells: 34%|█████▏ | ETA: 0:02:39 POLYGON-integration over 2048 cells: 34%|█████▏ | ETA: 0:02:38 POLYGON-integration over 2048 cells: 34%|█████▏ | ETA: 0:02:37 POLYGON-integration over 2048 cells: 34%|█████▏ | ETA: 0:02:37 POLYGON-integration over 2048 cells: 35%|█████▏ | ETA: 0:02:36 POLYGON-integration over 2048 cells: 35%|█████▎ | ETA: 0:02:35 POLYGON-integration over 2048 cells: 35%|█████▎ | ETA: 0:02:35 POLYGON-integration over 2048 cells: 35%|█████▎ | ETA: 0:02:35 POLYGON-integration over 2048 cells: 35%|█████▎ | ETA: 0:02:34 POLYGON-integration over 2048 cells: 35%|█████▎ | ETA: 0:02:34 POLYGON-integration over 2048 cells: 35%|█████▎ | ETA: 0:02:33 POLYGON-integration over 2048 cells: 35%|█████▎ | ETA: 0:02:33 POLYGON-integration over 2048 cells: 35%|█████▍ | ETA: 0:02:33 POLYGON-integration over 2048 cells: 36%|█████▍ | ETA: 0:02:32 POLYGON-integration over 2048 cells: 36%|█████▍ | ETA: 0:02:32 POLYGON-integration over 2048 cells: 36%|█████▍ | ETA: 0:02:31 POLYGON-integration over 2048 cells: 36%|█████▍ | ETA: 0:02:30 POLYGON-integration over 2048 cells: 36%|█████▍ | ETA: 0:02:29 POLYGON-integration over 2048 cells: 36%|█████▌ | ETA: 0:02:29 POLYGON-integration over 2048 cells: 36%|█████▌ | ETA: 0:02:28 POLYGON-integration over 2048 cells: 37%|█████▌ | ETA: 0:02:28 POLYGON-integration over 2048 cells: 37%|█████▌ | ETA: 0:02:27 POLYGON-integration over 2048 cells: 37%|█████▌ | ETA: 0:02:26 POLYGON-integration over 2048 cells: 37%|█████▌ | ETA: 0:02:26 POLYGON-integration over 2048 cells: 37%|█████▌ | ETA: 0:02:25 POLYGON-integration over 2048 cells: 37%|█████▋ | ETA: 0:02:24 POLYGON-integration over 2048 cells: 37%|█████▋ | ETA: 0:02:23 POLYGON-integration over 2048 cells: 38%|█████▋ | ETA: 0:02:22 POLYGON-integration over 2048 cells: 38%|█████▊ | ETA: 0:02:22 POLYGON-integration over 2048 cells: 38%|█████▊ | ETA: 0:02:21 POLYGON-integration over 2048 cells: 38%|█████▊ | ETA: 0:02:21 POLYGON-integration over 2048 cells: 38%|█████▊ | ETA: 0:02:21 POLYGON-integration over 2048 cells: 39%|█████▊ | ETA: 0:02:20 POLYGON-integration over 2048 cells: 39%|█████▊ | ETA: 0:02:20 POLYGON-integration over 2048 cells: 39%|█████▊ | ETA: 0:02:20 POLYGON-integration over 2048 cells: 39%|█████▉ | ETA: 0:02:19 POLYGON-integration over 2048 cells: 39%|█████▉ | ETA: 0:02:18 POLYGON-integration over 2048 cells: 39%|█████▉ | ETA: 0:02:18 POLYGON-integration over 2048 cells: 39%|█████▉ | ETA: 0:02:17 POLYGON-integration over 2048 cells: 39%|█████▉ | ETA: 0:02:17 POLYGON-integration over 2048 cells: 40%|█████▉ | ETA: 0:02:17 POLYGON-integration over 2048 cells: 40%|██████ | ETA: 0:02:16 POLYGON-integration over 2048 cells: 40%|██████ | ETA: 0:02:16 POLYGON-integration over 2048 cells: 40%|██████ | ETA: 0:02:16 POLYGON-integration over 2048 cells: 40%|██████ | ETA: 0:02:15 POLYGON-integration over 2048 cells: 40%|██████ | ETA: 0:02:15 POLYGON-integration over 2048 cells: 40%|██████ | ETA: 0:02:15 POLYGON-integration over 2048 cells: 40%|██████ | ETA: 0:02:15 POLYGON-integration over 2048 cells: 40%|██████▏ | ETA: 0:02:14 POLYGON-integration over 2048 cells: 41%|██████▏ | ETA: 0:02:14 POLYGON-integration over 2048 cells: 41%|██████▏ | ETA: 0:02:13 POLYGON-integration over 2048 cells: 41%|██████▏ | ETA: 0:02:13 POLYGON-integration over 2048 cells: 41%|██████▏ | ETA: 0:02:13 POLYGON-integration over 2048 cells: 41%|██████▏ | ETA: 0:02:12 POLYGON-integration over 2048 cells: 41%|██████▏ | ETA: 0:02:12 POLYGON-integration over 2048 cells: 41%|██████▎ | ETA: 0:02:12 POLYGON-integration over 2048 cells: 41%|██████▎ | ETA: 0:02:11 POLYGON-integration over 2048 cells: 42%|██████▎ | ETA: 0:02:11 POLYGON-integration over 2048 cells: 42%|██████▎ | ETA: 0:02:11 POLYGON-integration over 2048 cells: 42%|██████▎ | ETA: 0:02:11 POLYGON-integration over 2048 cells: 42%|██████▎ | ETA: 0:02:10 POLYGON-integration over 2048 cells: 42%|██████▎ | ETA: 0:02:10 POLYGON-integration over 2048 cells: 42%|██████▎ | ETA: 0:02:09 POLYGON-integration over 2048 cells: 42%|██████▍ | ETA: 0:02:09 POLYGON-integration over 2048 cells: 42%|██████▍ | ETA: 0:02:08 POLYGON-integration over 2048 cells: 43%|██████▍ | ETA: 0:02:07 POLYGON-integration over 2048 cells: 43%|██████▍ | ETA: 0:02:07 POLYGON-integration over 2048 cells: 43%|██████▍ | ETA: 0:02:06 POLYGON-integration over 2048 cells: 43%|██████▌ | ETA: 0:02:06 POLYGON-integration over 2048 cells: 43%|██████▌ | ETA: 0:02:05 POLYGON-integration over 2048 cells: 43%|██████▌ | ETA: 0:02:05 POLYGON-integration over 2048 cells: 43%|██████▌ | ETA: 0:02:04 POLYGON-integration over 2048 cells: 44%|██████▌ | ETA: 0:02:03 POLYGON-integration over 2048 cells: 44%|██████▋ | ETA: 0:02:02 POLYGON-integration over 2048 cells: 44%|██████▋ | ETA: 0:02:02 POLYGON-integration over 2048 cells: 44%|██████▋ | ETA: 0:02:01 POLYGON-integration over 2048 cells: 44%|██████▋ | ETA: 0:02:00 POLYGON-integration over 2048 cells: 44%|██████▋ | ETA: 0:02:00 POLYGON-integration over 2048 cells: 44%|██████▋ | ETA: 0:02:00 POLYGON-integration over 2048 cells: 45%|██████▊ | ETA: 0:01:59 POLYGON-integration over 2048 cells: 45%|██████▊ | ETA: 0:01:59 POLYGON-integration over 2048 cells: 45%|██████▊ | ETA: 0:01:58 POLYGON-integration over 2048 cells: 45%|██████▊ | ETA: 0:01:57 POLYGON-integration over 2048 cells: 45%|██████▉ | ETA: 0:01:56 POLYGON-integration over 2048 cells: 46%|██████▉ | ETA: 0:01:56 POLYGON-integration over 2048 cells: 46%|██████▉ | ETA: 0:01:55 POLYGON-integration over 2048 cells: 46%|██████▉ | ETA: 0:01:54 POLYGON-integration over 2048 cells: 46%|██████▉ | ETA: 0:01:54 POLYGON-integration over 2048 cells: 46%|██████▉ | ETA: 0:01:53 POLYGON-integration over 2048 cells: 46%|███████ | ETA: 0:01:53 POLYGON-integration over 2048 cells: 46%|███████ | ETA: 0:01:53 POLYGON-integration over 2048 cells: 47%|███████ | ETA: 0:01:52 POLYGON-integration over 2048 cells: 47%|███████ | ETA: 0:01:52 POLYGON-integration over 2048 cells: 47%|███████ | ETA: 0:01:51 POLYGON-integration over 2048 cells: 47%|███████▏ | ETA: 0:01:50 POLYGON-integration over 2048 cells: 47%|███████▏ | ETA: 0:01:50 POLYGON-integration over 2048 cells: 47%|███████▏ | ETA: 0:01:49 POLYGON-integration over 2048 cells: 47%|███████▏ | ETA: 0:01:49 POLYGON-integration over 2048 cells: 48%|███████▏ | ETA: 0:01:49 POLYGON-integration over 2048 cells: 48%|███████▏ | ETA: 0:01:48 POLYGON-integration over 2048 cells: 48%|███████▏ | ETA: 0:01:48 POLYGON-integration over 2048 cells: 48%|███████▎ | ETA: 0:01:48 POLYGON-integration over 2048 cells: 48%|███████▎ | ETA: 0:01:47 POLYGON-integration over 2048 cells: 48%|███████▎ | ETA: 0:01:47 POLYGON-integration over 2048 cells: 48%|███████▎ | ETA: 0:01:46 POLYGON-integration over 2048 cells: 49%|███████▎ | ETA: 0:01:45 POLYGON-integration over 2048 cells: 49%|███████▍ | ETA: 0:01:44 POLYGON-integration over 2048 cells: 49%|███████▍ | ETA: 0:01:44 POLYGON-integration over 2048 cells: 49%|███████▍ | ETA: 0:01:43 POLYGON-integration over 2048 cells: 49%|███████▍ | ETA: 0:01:43 POLYGON-integration over 2048 cells: 50%|███████▍ | ETA: 0:01:42 POLYGON-integration over 2048 cells: 50%|███████▌ | ETA: 0:01:41 POLYGON-integration over 2048 cells: 50%|███████▌ | ETA: 0:01:41 POLYGON-integration over 2048 cells: 50%|███████▌ | ETA: 0:01:40 POLYGON-integration over 2048 cells: 50%|███████▌ | ETA: 0:01:40 POLYGON-integration over 2048 cells: 50%|███████▌ | ETA: 0:01:40 POLYGON-integration over 2048 cells: 51%|███████▋ | ETA: 0:01:39 POLYGON-integration over 2048 cells: 51%|███████▋ | ETA: 0:01:39 POLYGON-integration over 2048 cells: 51%|███████▋ | ETA: 0:01:38 POLYGON-integration over 2048 cells: 51%|███████▋ | ETA: 0:01:38 POLYGON-integration over 2048 cells: 51%|███████▊ | ETA: 0:01:38 POLYGON-integration over 2048 cells: 51%|███████▊ | ETA: 0:01:37 POLYGON-integration over 2048 cells: 52%|███████▊ | ETA: 0:01:36 POLYGON-integration over 2048 cells: 52%|███████▊ | ETA: 0:01:36 POLYGON-integration over 2048 cells: 52%|███████▊ | ETA: 0:01:36 POLYGON-integration over 2048 cells: 52%|███████▉ | ETA: 0:01:36 POLYGON-integration over 2048 cells: 52%|███████▉ | ETA: 0:01:36 POLYGON-integration over 2048 cells: 52%|███████▉ | ETA: 0:01:35 POLYGON-integration over 2048 cells: 52%|███████▉ | ETA: 0:01:35 POLYGON-integration over 2048 cells: 53%|███████▉ | ETA: 0:01:35 POLYGON-integration over 2048 cells: 53%|███████▉ | ETA: 0:01:35 POLYGON-integration over 2048 cells: 53%|███████▉ | ETA: 0:01:34 POLYGON-integration over 2048 cells: 53%|████████ | ETA: 0:01:34 POLYGON-integration over 2048 cells: 53%|████████ | ETA: 0:01:33 POLYGON-integration over 2048 cells: 53%|████████ | ETA: 0:01:33 POLYGON-integration over 2048 cells: 54%|████████ | ETA: 0:01:32 POLYGON-integration over 2048 cells: 54%|████████ | ETA: 0:01:32 POLYGON-integration over 2048 cells: 54%|████████ | ETA: 0:01:32 POLYGON-integration over 2048 cells: 54%|████████▏ | ETA: 0:01:32 POLYGON-integration over 2048 cells: 54%|████████▏ | ETA: 0:01:31 POLYGON-integration over 2048 cells: 54%|████████▏ | ETA: 0:01:30 POLYGON-integration over 2048 cells: 55%|████████▏ | ETA: 0:01:30 POLYGON-integration over 2048 cells: 55%|████████▎ | ETA: 0:01:30 POLYGON-integration over 2048 cells: 55%|████████▎ | ETA: 0:01:29 POLYGON-integration over 2048 cells: 55%|████████▎ | ETA: 0:01:29 POLYGON-integration over 2048 cells: 55%|████████▎ | ETA: 0:01:28 POLYGON-integration over 2048 cells: 55%|████████▎ | ETA: 0:01:28 POLYGON-integration over 2048 cells: 56%|████████▍ | ETA: 0:01:27 POLYGON-integration over 2048 cells: 56%|████████▍ | ETA: 0:01:27 POLYGON-integration over 2048 cells: 56%|████████▍ | ETA: 0:01:26 POLYGON-integration over 2048 cells: 56%|████████▍ | ETA: 0:01:26 POLYGON-integration over 2048 cells: 56%|████████▌ | ETA: 0:01:25 POLYGON-integration over 2048 cells: 56%|████████▌ | ETA: 0:01:25 POLYGON-integration over 2048 cells: 57%|████████▌ | ETA: 0:01:25 POLYGON-integration over 2048 cells: 57%|████████▌ | ETA: 0:01:24 POLYGON-integration over 2048 cells: 57%|████████▌ | ETA: 0:01:24 POLYGON-integration over 2048 cells: 57%|████████▌ | ETA: 0:01:24 POLYGON-integration over 2048 cells: 57%|████████▋ | ETA: 0:01:23 POLYGON-integration over 2048 cells: 57%|████████▋ | ETA: 0:01:23 POLYGON-integration over 2048 cells: 57%|████████▋ | ETA: 0:01:23 POLYGON-integration over 2048 cells: 58%|████████▋ | ETA: 0:01:22 POLYGON-integration over 2048 cells: 58%|████████▋ | ETA: 0:01:22 POLYGON-integration over 2048 cells: 58%|████████▋ | ETA: 0:01:22 POLYGON-integration over 2048 cells: 58%|████████▋ | ETA: 0:01:21 POLYGON-integration over 2048 cells: 58%|████████▊ | ETA: 0:01:21 POLYGON-integration over 2048 cells: 58%|████████▊ | ETA: 0:01:21 POLYGON-integration over 2048 cells: 58%|████████▊ | ETA: 0:01:21 POLYGON-integration over 2048 cells: 58%|████████▊ | ETA: 0:01:20 POLYGON-integration over 2048 cells: 58%|████████▊ | ETA: 0:01:20 POLYGON-integration over 2048 cells: 59%|████████▊ | ETA: 0:01:20 POLYGON-integration over 2048 cells: 59%|████████▊ | ETA: 0:01:20 POLYGON-integration over 2048 cells: 59%|████████▉ | ETA: 0:01:20 POLYGON-integration over 2048 cells: 59%|████████▉ | ETA: 0:01:20 POLYGON-integration over 2048 cells: 59%|████████▉ | ETA: 0:01:19 POLYGON-integration over 2048 cells: 59%|████████▉ | ETA: 0:01:19 POLYGON-integration over 2048 cells: 59%|████████▉ | ETA: 0:01:19 POLYGON-integration over 2048 cells: 59%|████████▉ | ETA: 0:01:18 POLYGON-integration over 2048 cells: 60%|████████▉ | ETA: 0:01:18 POLYGON-integration over 2048 cells: 60%|█████████ | ETA: 0:01:18 POLYGON-integration over 2048 cells: 60%|█████████ | ETA: 0:01:17 POLYGON-integration over 2048 cells: 60%|█████████ | ETA: 0:01:17 POLYGON-integration over 2048 cells: 60%|█████████ | ETA: 0:01:17 POLYGON-integration over 2048 cells: 60%|█████████ | ETA: 0:01:17 POLYGON-integration over 2048 cells: 60%|█████████ | ETA: 0:01:17 POLYGON-integration over 2048 cells: 60%|█████████ | ETA: 0:01:17 POLYGON-integration over 2048 cells: 60%|█████████▏ | ETA: 0:01:16 POLYGON-integration over 2048 cells: 61%|█████████▏ | ETA: 0:01:16 POLYGON-integration over 2048 cells: 61%|█████████▏ | ETA: 0:01:16 POLYGON-integration over 2048 cells: 61%|█████████▏ | ETA: 0:01:15 POLYGON-integration over 2048 cells: 61%|█████████▏ | ETA: 0:01:15 POLYGON-integration over 2048 cells: 61%|█████████▏ | ETA: 0:01:14 POLYGON-integration over 2048 cells: 61%|█████████▎ | ETA: 0:01:14 POLYGON-integration over 2048 cells: 61%|█████████▎ | ETA: 0:01:14 POLYGON-integration over 2048 cells: 62%|█████████▎ | ETA: 0:01:14 POLYGON-integration over 2048 cells: 62%|█████████▎ | ETA: 0:01:13 POLYGON-integration over 2048 cells: 62%|█████████▎ | ETA: 0:01:13 POLYGON-integration over 2048 cells: 62%|█████████▎ | ETA: 0:01:13 POLYGON-integration over 2048 cells: 62%|█████████▎ | ETA: 0:01:12 POLYGON-integration over 2048 cells: 62%|█████████▍ | ETA: 0:01:12 POLYGON-integration over 2048 cells: 62%|█████████▍ | ETA: 0:01:11 POLYGON-integration over 2048 cells: 63%|█████████▍ | ETA: 0:01:11 POLYGON-integration over 2048 cells: 63%|█████████▌ | ETA: 0:01:10 POLYGON-integration over 2048 cells: 63%|█████████▌ | ETA: 0:01:10 POLYGON-integration over 2048 cells: 63%|█████████▌ | ETA: 0:01:10 POLYGON-integration over 2048 cells: 63%|█████████▌ | ETA: 0:01:10 POLYGON-integration over 2048 cells: 63%|█████████▌ | ETA: 0:01:09 POLYGON-integration over 2048 cells: 64%|█████████▌ | ETA: 0:01:09 POLYGON-integration over 2048 cells: 64%|█████████▋ | ETA: 0:01:09 POLYGON-integration over 2048 cells: 64%|█████████▋ | ETA: 0:01:08 POLYGON-integration over 2048 cells: 64%|█████████▋ | ETA: 0:01:08 POLYGON-integration over 2048 cells: 64%|█████████▋ | ETA: 0:01:08 POLYGON-integration over 2048 cells: 64%|█████████▋ | ETA: 0:01:07 POLYGON-integration over 2048 cells: 64%|█████████▋ | ETA: 0:01:07 POLYGON-integration over 2048 cells: 65%|█████████▋ | ETA: 0:01:07 POLYGON-integration over 2048 cells: 65%|█████████▊ | ETA: 0:01:07 POLYGON-integration over 2048 cells: 65%|█████████▊ | ETA: 0:01:07 POLYGON-integration over 2048 cells: 65%|█████████▊ | ETA: 0:01:07 POLYGON-integration over 2048 cells: 65%|█████████▊ | ETA: 0:01:07 POLYGON-integration over 2048 cells: 65%|█████████▊ | ETA: 0:01:06 POLYGON-integration over 2048 cells: 65%|█████████▊ | ETA: 0:01:06 POLYGON-integration over 2048 cells: 65%|█████████▊ | ETA: 0:01:06 POLYGON-integration over 2048 cells: 65%|█████████▊ | ETA: 0:01:06 POLYGON-integration over 2048 cells: 65%|█████████▊ | ETA: 0:01:05 POLYGON-integration over 2048 cells: 65%|█████████▉ | ETA: 0:01:05 POLYGON-integration over 2048 cells: 66%|█████████▉ | ETA: 0:01:05 POLYGON-integration over 2048 cells: 66%|█████████▉ | ETA: 0:01:05 POLYGON-integration over 2048 cells: 66%|█████████▉ | ETA: 0:01:04 POLYGON-integration over 2048 cells: 66%|█████████▉ | ETA: 0:01:04 POLYGON-integration over 2048 cells: 66%|█████████▉ | ETA: 0:01:04 POLYGON-integration over 2048 cells: 66%|█████████▉ | ETA: 0:01:04 POLYGON-integration over 2048 cells: 66%|██████████ | ETA: 0:01:04 POLYGON-integration over 2048 cells: 66%|██████████ | ETA: 0:01:03 POLYGON-integration over 2048 cells: 67%|██████████ | ETA: 0:01:03 POLYGON-integration over 2048 cells: 67%|██████████ | ETA: 0:01:03 POLYGON-integration over 2048 cells: 67%|██████████ | ETA: 0:01:03 POLYGON-integration over 2048 cells: 67%|██████████ | ETA: 0:01:03 POLYGON-integration over 2048 cells: 67%|██████████ | ETA: 0:01:02 POLYGON-integration over 2048 cells: 67%|██████████▏ | ETA: 0:01:02 POLYGON-integration over 2048 cells: 67%|██████████▏ | ETA: 0:01:02 POLYGON-integration over 2048 cells: 67%|██████████▏ | ETA: 0:01:01 POLYGON-integration over 2048 cells: 68%|██████████▏ | ETA: 0:01:01 POLYGON-integration over 2048 cells: 68%|██████████▏ | ETA: 0:01:01 POLYGON-integration over 2048 cells: 68%|██████████▏ | ETA: 0:01:00 POLYGON-integration over 2048 cells: 68%|██████████▎ | ETA: 0:01:00 POLYGON-integration over 2048 cells: 68%|██████████▎ | ETA: 0:01:00 POLYGON-integration over 2048 cells: 68%|██████████▎ | ETA: 0:01:00 POLYGON-integration over 2048 cells: 68%|██████████▎ | ETA: 0:00:59 POLYGON-integration over 2048 cells: 68%|██████████▎ | ETA: 0:00:59 POLYGON-integration over 2048 cells: 69%|██████████▎ | ETA: 0:00:58 POLYGON-integration over 2048 cells: 69%|██████████▍ | ETA: 0:00:58 POLYGON-integration over 2048 cells: 69%|██████████▍ | ETA: 0:00:58 POLYGON-integration over 2048 cells: 69%|██████████▍ | ETA: 0:00:57 POLYGON-integration over 2048 cells: 69%|██████████▍ | ETA: 0:00:57 POLYGON-integration over 2048 cells: 69%|██████████▍ | ETA: 0:00:57 POLYGON-integration over 2048 cells: 70%|██████████▍ | ETA: 0:00:56 POLYGON-integration over 2048 cells: 70%|██████████▌ | ETA: 0:00:56 POLYGON-integration over 2048 cells: 70%|██████████▌ | ETA: 0:00:56 POLYGON-integration over 2048 cells: 70%|██████████▌ | ETA: 0:00:56 POLYGON-integration over 2048 cells: 70%|██████████▌ | ETA: 0:00:55 POLYGON-integration over 2048 cells: 70%|██████████▌ | ETA: 0:00:55 POLYGON-integration over 2048 cells: 70%|██████████▋ | ETA: 0:00:54 POLYGON-integration over 2048 cells: 71%|██████████▋ | ETA: 0:00:54 POLYGON-integration over 2048 cells: 71%|██████████▋ | ETA: 0:00:53 POLYGON-integration over 2048 cells: 71%|██████████▋ | ETA: 0:00:53 POLYGON-integration over 2048 cells: 71%|██████████▋ | ETA: 0:00:53 POLYGON-integration over 2048 cells: 71%|██████████▋ | ETA: 0:00:52 POLYGON-integration over 2048 cells: 71%|██████████▊ | ETA: 0:00:52 POLYGON-integration over 2048 cells: 71%|██████████▊ | ETA: 0:00:52 POLYGON-integration over 2048 cells: 72%|██████████▊ | ETA: 0:00:52 POLYGON-integration over 2048 cells: 72%|██████████▊ | ETA: 0:00:51 POLYGON-integration over 2048 cells: 72%|██████████▉ | ETA: 0:00:50 POLYGON-integration over 2048 cells: 72%|██████████▉ | ETA: 0:00:50 POLYGON-integration over 2048 cells: 73%|██████████▉ | ETA: 0:00:50 POLYGON-integration over 2048 cells: 73%|██████████▉ | ETA: 0:00:50 POLYGON-integration over 2048 cells: 73%|██████████▉ | ETA: 0:00:49 POLYGON-integration over 2048 cells: 73%|██████████▉ | ETA: 0:00:49 POLYGON-integration over 2048 cells: 73%|███████████ | ETA: 0:00:49 POLYGON-integration over 2048 cells: 73%|███████████ | ETA: 0:00:48 POLYGON-integration over 2048 cells: 73%|███████████ | ETA: 0:00:48 POLYGON-integration over 2048 cells: 74%|███████████ | ETA: 0:00:47 POLYGON-integration over 2048 cells: 74%|███████████▏ | ETA: 0:00:46 POLYGON-integration over 2048 cells: 74%|███████████▏ | ETA: 0:00:46 POLYGON-integration over 2048 cells: 74%|███████████▏ | ETA: 0:00:46 POLYGON-integration over 2048 cells: 75%|███████████▏ | ETA: 0:00:45 POLYGON-integration over 2048 cells: 75%|███████████▎ | ETA: 0:00:45 POLYGON-integration over 2048 cells: 75%|███████████▎ | ETA: 0:00:44 POLYGON-integration over 2048 cells: 75%|███████████▎ | ETA: 0:00:44 POLYGON-integration over 2048 cells: 76%|███████████▍ | ETA: 0:00:43 POLYGON-integration over 2048 cells: 76%|███████████▍ | ETA: 0:00:42 POLYGON-integration over 2048 cells: 76%|███████████▍ | ETA: 0:00:42 POLYGON-integration over 2048 cells: 76%|███████████▌ | ETA: 0:00:41 POLYGON-integration over 2048 cells: 77%|███████████▌ | ETA: 0:00:40 POLYGON-integration over 2048 cells: 77%|███████████▌ | ETA: 0:00:40 POLYGON-integration over 2048 cells: 77%|███████████▋ | ETA: 0:00:40 POLYGON-integration over 2048 cells: 77%|███████████▋ | ETA: 0:00:39 POLYGON-integration over 2048 cells: 78%|███████████▋ | ETA: 0:00:39 POLYGON-integration over 2048 cells: 78%|███████████▋ | ETA: 0:00:39 POLYGON-integration over 2048 cells: 78%|███████████▊ | ETA: 0:00:38 POLYGON-integration over 2048 cells: 78%|███████████▊ | ETA: 0:00:38 POLYGON-integration over 2048 cells: 78%|███████████▊ | ETA: 0:00:37 POLYGON-integration over 2048 cells: 79%|███████████▊ | ETA: 0:00:37 POLYGON-integration over 2048 cells: 79%|███████████▊ | ETA: 0:00:37 POLYGON-integration over 2048 cells: 79%|███████████▉ | ETA: 0:00:36 POLYGON-integration over 2048 cells: 79%|███████████▉ | ETA: 0:00:36 POLYGON-integration over 2048 cells: 79%|███████████▉ | ETA: 0:00:36 POLYGON-integration over 2048 cells: 79%|███████████▉ | ETA: 0:00:35 POLYGON-integration over 2048 cells: 80%|███████████▉ | ETA: 0:00:35 POLYGON-integration over 2048 cells: 80%|████████████ | ETA: 0:00:34 POLYGON-integration over 2048 cells: 80%|████████████ | ETA: 0:00:34 POLYGON-integration over 2048 cells: 80%|████████████ | ETA: 0:00:33 POLYGON-integration over 2048 cells: 81%|████████████▏ | ETA: 0:00:33 POLYGON-integration over 2048 cells: 81%|████████████▏ | ETA: 0:00:33 POLYGON-integration over 2048 cells: 81%|████████████▏ | ETA: 0:00:32 POLYGON-integration over 2048 cells: 81%|████████████▏ | ETA: 0:00:32 POLYGON-integration over 2048 cells: 81%|████████████▎ | ETA: 0:00:31 POLYGON-integration over 2048 cells: 82%|████████████▎ | ETA: 0:00:31 POLYGON-integration over 2048 cells: 82%|████████████▎ | ETA: 0:00:30 POLYGON-integration over 2048 cells: 82%|████████████▎ | ETA: 0:00:30 POLYGON-integration over 2048 cells: 82%|████████████▍ | ETA: 0:00:30 POLYGON-integration over 2048 cells: 82%|████████████▍ | ETA: 0:00:30 POLYGON-integration over 2048 cells: 82%|████████████▍ | ETA: 0:00:29 POLYGON-integration over 2048 cells: 83%|████████████▍ | ETA: 0:00:29 POLYGON-integration over 2048 cells: 83%|████████████▍ | ETA: 0:00:28 POLYGON-integration over 2048 cells: 83%|████████████▌ | ETA: 0:00:28 POLYGON-integration over 2048 cells: 83%|████████████▌ | ETA: 0:00:28 POLYGON-integration over 2048 cells: 83%|████████████▌ | ETA: 0:00:28 POLYGON-integration over 2048 cells: 83%|████████████▌ | ETA: 0:00:27 POLYGON-integration over 2048 cells: 84%|████████████▌ | ETA: 0:00:27 POLYGON-integration over 2048 cells: 84%|████████████▌ | ETA: 0:00:27 POLYGON-integration over 2048 cells: 84%|████████████▋ | ETA: 0:00:27 POLYGON-integration over 2048 cells: 84%|████████████▋ | ETA: 0:00:27 POLYGON-integration over 2048 cells: 84%|████████████▋ | ETA: 0:00:26 POLYGON-integration over 2048 cells: 84%|████████████▋ | ETA: 0:00:26 POLYGON-integration over 2048 cells: 85%|████████████▋ | ETA: 0:00:25 POLYGON-integration over 2048 cells: 85%|████████████▊ | ETA: 0:00:25 POLYGON-integration over 2048 cells: 85%|████████████▊ | ETA: 0:00:25 POLYGON-integration over 2048 cells: 85%|████████████▊ | ETA: 0:00:25 POLYGON-integration over 2048 cells: 85%|████████████▊ | ETA: 0:00:24 POLYGON-integration over 2048 cells: 85%|████████████▊ | ETA: 0:00:24 POLYGON-integration over 2048 cells: 85%|████████████▊ | ETA: 0:00:24 POLYGON-integration over 2048 cells: 85%|████████████▉ | ETA: 0:00:24 POLYGON-integration over 2048 cells: 86%|████████████▉ | ETA: 0:00:23 POLYGON-integration over 2048 cells: 86%|████████████▉ | ETA: 0:00:23 POLYGON-integration over 2048 cells: 86%|████████████▉ | ETA: 0:00:23 POLYGON-integration over 2048 cells: 86%|█████████████ | ETA: 0:00:22 POLYGON-integration over 2048 cells: 87%|█████████████ | ETA: 0:00:22 POLYGON-integration over 2048 cells: 87%|█████████████ | ETA: 0:00:21 POLYGON-integration over 2048 cells: 87%|█████████████ | ETA: 0:00:21 POLYGON-integration over 2048 cells: 87%|█████████████▏ | ETA: 0:00:21 POLYGON-integration over 2048 cells: 87%|█████████████▏ | ETA: 0:00:20 POLYGON-integration over 2048 cells: 88%|█████████████▏ | ETA: 0:00:20 POLYGON-integration over 2048 cells: 88%|█████████████▏ | ETA: 0:00:20 POLYGON-integration over 2048 cells: 88%|█████████████▏ | ETA: 0:00:19 POLYGON-integration over 2048 cells: 88%|█████████████▎ | ETA: 0:00:19 POLYGON-integration over 2048 cells: 88%|█████████████▎ | ETA: 0:00:19 POLYGON-integration over 2048 cells: 88%|█████████████▎ | ETA: 0:00:19 POLYGON-integration over 2048 cells: 89%|█████████████▎ | ETA: 0:00:18 POLYGON-integration over 2048 cells: 89%|█████████████▎ | ETA: 0:00:18 POLYGON-integration over 2048 cells: 89%|█████████████▍ | ETA: 0:00:18 POLYGON-integration over 2048 cells: 89%|█████████████▍ | ETA: 0:00:17 POLYGON-integration over 2048 cells: 89%|█████████████▍ | ETA: 0:00:17 POLYGON-integration over 2048 cells: 89%|█████████████▍ | ETA: 0:00:17 POLYGON-integration over 2048 cells: 90%|█████████████▌ | ETA: 0:00:17 POLYGON-integration over 2048 cells: 90%|█████████████▌ | ETA: 0:00:16 POLYGON-integration over 2048 cells: 90%|█████████████▌ | ETA: 0:00:16 POLYGON-integration over 2048 cells: 90%|█████████████▌ | ETA: 0:00:16 POLYGON-integration over 2048 cells: 90%|█████████████▌ | ETA: 0:00:16 POLYGON-integration over 2048 cells: 90%|█████████████▌ | ETA: 0:00:16 POLYGON-integration over 2048 cells: 90%|█████████████▌ | ETA: 0:00:15 POLYGON-integration over 2048 cells: 91%|█████████████▋ | ETA: 0:00:15 POLYGON-integration over 2048 cells: 91%|█████████████▋ | ETA: 0:00:15 POLYGON-integration over 2048 cells: 91%|█████████████▋ | ETA: 0:00:14 POLYGON-integration over 2048 cells: 91%|█████████████▋ | ETA: 0:00:14 POLYGON-integration over 2048 cells: 91%|█████████████▊ | ETA: 0:00:14 POLYGON-integration over 2048 cells: 91%|█████████████▊ | ETA: 0:00:14 POLYGON-integration over 2048 cells: 92%|█████████████▊ | ETA: 0:00:13 POLYGON-integration over 2048 cells: 92%|█████████████▊ | ETA: 0:00:13 POLYGON-integration over 2048 cells: 92%|█████████████▊ | ETA: 0:00:13 POLYGON-integration over 2048 cells: 92%|█████████████▊ | ETA: 0:00:13 POLYGON-integration over 2048 cells: 92%|█████████████▉ | ETA: 0:00:12 POLYGON-integration over 2048 cells: 92%|█████████████▉ | ETA: 0:00:12 POLYGON-integration over 2048 cells: 93%|█████████████▉ | ETA: 0:00:11 POLYGON-integration over 2048 cells: 93%|██████████████ | ETA: 0:00:11 POLYGON-integration over 2048 cells: 93%|██████████████ | ETA: 0:00:11 POLYGON-integration over 2048 cells: 93%|██████████████ | ETA: 0:00:10 POLYGON-integration over 2048 cells: 94%|██████████████ | ETA: 0:00:10 POLYGON-integration over 2048 cells: 94%|██████████████▏| ETA: 0:00:10 POLYGON-integration over 2048 cells: 94%|██████████████▏| ETA: 0:00:09 POLYGON-integration over 2048 cells: 94%|██████████████▏| ETA: 0:00:09 POLYGON-integration over 2048 cells: 95%|██████████████▏| ETA: 0:00:08 POLYGON-integration over 2048 cells: 95%|██████████████▎| ETA: 0:00:08 POLYGON-integration over 2048 cells: 95%|██████████████▎| ETA: 0:00:08 POLYGON-integration over 2048 cells: 95%|██████████████▎| ETA: 0:00:07 POLYGON-integration over 2048 cells: 96%|██████████████▍| ETA: 0:00:07 POLYGON-integration over 2048 cells: 96%|██████████████▍| ETA: 0:00:07 POLYGON-integration over 2048 cells: 96%|██████████████▍| ETA: 0:00:06 POLYGON-integration over 2048 cells: 96%|██████████████▍| ETA: 0:00:06 POLYGON-integration over 2048 cells: 96%|██████████████▍| ETA: 0:00:06 POLYGON-integration over 2048 cells: 96%|██████████████▌| ETA: 0:00:06 POLYGON-integration over 2048 cells: 97%|██████████████▌| ETA: 0:00:05 POLYGON-integration over 2048 cells: 97%|██████████████▌| ETA: 0:00:05 POLYGON-integration over 2048 cells: 97%|██████████████▌| ETA: 0:00:05 POLYGON-integration over 2048 cells: 97%|██████████████▋| ETA: 0:00:04 POLYGON-integration over 2048 cells: 97%|██████████████▋| ETA: 0:00:04 POLYGON-integration over 2048 cells: 98%|██████████████▋| ETA: 0:00:04 POLYGON-integration over 2048 cells: 98%|██████████████▋| ETA: 0:00:03 POLYGON-integration over 2048 cells: 98%|██████████████▋| ETA: 0:00:03 POLYGON-integration over 2048 cells: 98%|██████████████▊| ETA: 0:00:03 POLYGON-integration over 2048 cells: 98%|██████████████▊| ETA: 0:00:03 POLYGON-integration over 2048 cells: 98%|██████████████▊| ETA: 0:00:02 POLYGON-integration over 2048 cells: 99%|██████████████▊| ETA: 0:00:02 POLYGON-integration over 2048 cells: 99%|██████████████▉| ETA: 0:00:02 POLYGON-integration over 2048 cells: 99%|██████████████▉| ETA: 0:00:01 POLYGON-integration over 2048 cells: 99%|██████████████▉| ETA: 0:00:01 POLYGON-integration over 2048 cells: 99%|███████████████| ETA: 0:00:00 POLYGON-integration over 2048 cells: 99%|███████████████| ETA: 0:00:00 POLYGON-integration over 2048 cells: 100%|███████████████| Time: 0:02:29 Create periodic mesh in 3-D from 1 points Periodicity: [1], Unit cell size: [0.25, 0.25, 0.25], repeat=[4, 4, 4], i.e. 64 unit cells Calculate first cell...Copy Data to cell: 357911131517192123252729313335373941434547495153555759616365676971737577798183858789919395Create periodic mesh in 3-D from 1 points Periodicity: [1], Unit cell size: [0.25, 0.25, 0.25], repeat=[4, 4, 4], i.e. 64 unit cells Calculate first cell...Copy Data to cell: 357911131517192123252729313335373941434547495153555759616365676971737577798183858789919395Create periodic mesh in 3-D from 2 points Periodicity: [1], Unit cell size: [0.25, 0.25, 0.25], repeat=[4, 4, 4], i.e. 64 unit cells Slow Track.... Initialize bulk mesh with 192 points New verteces: 972 Initialize mesh on boundary based on boundary conditions POLYGON-integration over 128 cells: 2%|▎ | ETA: 0:41:35 POLYGON-integration over 128 cells: 100%|████████████████| Time: 0:00:39 Create periodic mesh in 3-D from 2 points Periodicity: [1], Unit cell size: [0.25, 0.25, 0.25], repeat=[4, 4, 4], i.e. 64 unit cells Slow Track.... Initialize bulk mesh with 192 points New verteces: 1015 Initialize mesh on boundary based on boundary conditions POLYGON-integration over 128 cells: 2%|▎ | ETA: 0:40:41 POLYGON-integration over 128 cells: 100%|████████████████| Time: 0:00:38 Create periodic mesh in 3-D from 2 points Periodicity: [1], Unit cell size: [0.25, 0.25, 0.25], repeat=[4, 4, 4], i.e. 64 unit cells Slow Track.... Initialize bulk mesh with 192 points New verteces: 976 Initialize mesh on boundary based on boundary conditions Create periodic mesh in 3-D from 2 points Periodicity: [1], Unit cell size: [0.25, 0.25, 0.25], repeat=[4, 4, 4], i.e. 64 unit cells Slow Track.... Initialize bulk mesh with 192 points New verteces: 952 Initialize mesh on boundary based on boundary conditions Initialize bulk mesh with 1000 points 8%|████▍ | ETA: 0:00:01 22%|███████████▎ | ETA: 0:00:01 48%|████████████████████████▌ | ETA: 0:00:00 100%|███████████████████████████████████████████████████| Time: 0:00:00 New verteces: 23616  No periodic boundaries.... FAST_POLYGON-integration over 1000 cells: 0%| | ETA: 8:12:09 FAST_POLYGON-integration over 1000 cells: 3%|▎ | ETA: 0:16:33 FAST_POLYGON-integration over 1000 cells: 6%|▋ | ETA: 0:07:38 FAST_POLYGON-integration over 1000 cells: 10%|█ | ETA: 0:04:38 FAST_POLYGON-integration over 1000 cells: 13%|█▍ | ETA: 0:03:14 FAST_POLYGON-integration over 1000 cells: 17%|█▊ | ETA: 0:02:25 FAST_POLYGON-integration over 1000 cells: 22%|██▏ | ETA: 0:01:50 FAST_POLYGON-integration over 1000 cells: 26%|██▋ | ETA: 0:01:25 FAST_POLYGON-integration over 1000 cells: 31%|███▏ | ETA: 0:01:08 FAST_POLYGON-integration over 1000 cells: 38%|███▊ | ETA: 0:00:50 FAST_POLYGON-integration over 1000 cells: 46%|████▋ | ETA: 0:00:36 FAST_POLYGON-integration over 1000 cells: 100%|██████████| Time: 0:00:30 Integral: 1.0000000000000004 Initialize bulk mesh with 1000 points 15%|███████▋ | ETA: 0:00:01 45%|███████████████████████ | ETA: 0:00:00 100%|███████████████████████████████████████████████████| Time: 0:00:00 New verteces: 23450  No periodic boundaries.... FAST_POLYGON-integration over 1000 cells: 4%|▍ | ETA: 0:00:02 FAST_POLYGON-integration over 1000 cells: 9%|▉ | ETA: 0:00:02 FAST_POLYGON-integration over 1000 cells: 14%|█▌ | ETA: 0:00:02 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 19 running 1 of 1 signal (10): User defined signal 1 + at ./int.jl:87 [inlined] * at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/src/hvview.jl:181 [inlined] * at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/src/hvview.jl:213 [inlined] _broadcast_getindex_evalf at ./broadcast.jl:701 [inlined] _broadcast_getindex at ./broadcast.jl:674 [inlined] _getindex at ./broadcast.jl:622 [inlined] getindex at ./broadcast.jl:618 [inlined] macro expansion at ./broadcast.jl:997 [inlined] macro expansion at ./simdloop.jl:77 [inlined] copyto! at ./broadcast.jl:996 [inlined] copyto! at ./broadcast.jl:949 [inlined] materialize! at ./broadcast.jl:907 [inlined] materialize! at ./broadcast.jl:904 [inlined] external_index at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/src/meshview.jl:51 [inlined] external_sig at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/src/meshview.jl:70 [inlined] HVImodify at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/src/abstractmesh.jl:592 [inlined] iterate at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/src/abstractmesh.jl:606 [inlined] reset at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/src/neighbors.jl:315 [inlined] iterative_volume_fast at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/src/fastpolyintegrator.jl:304 iterative_volume_fast at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/src/fastpolyintegrator.jl:274 [inlined] integrate at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/src/fastpolyintegrator.jl:264 integrate_cell at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/src/integrate.jl:374 #_integrate#489 at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/src/integrate.jl:289 _integrate at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/src/integrate.jl:253 unknown function (ip: 0x7cec23f33932) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 integrate at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/src/fastpolyintegrator.jl:48 [inlined] integrate_geo at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/src/geometry.jl:303 [inlined] #VoronoiGeometry#325 at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/src/geometry.jl:232 VoronoiGeometry at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/src/geometry.jl:203 unknown function (ip: 0x7cec23fe5fa1) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 test at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/test/rcmethods.jl:35 unknown function (ip: 0x7cec23f7b6af) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2271 [inlined] jl_f__apply_iterate at /source/src/builtins.c:876 eval_test_function at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:394 unknown function (ip: 0x7cec5a199d8e) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2271 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2954 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3014 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x7cec5a18f9e2) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2271 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2954 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3014 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_56488.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2271 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_42565.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2271 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7cec5bb31249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) FAST_POLYGON-integration over 1000 cells: 20%|██ | ETA: 0:00:02 FAST_POLYGON-integration over 1000 cells: 25%|██▌ | ETA: 0:00:02 FAST_POLYGON-integration over 1000 cells: 31%|███ | ETA: 0:00:01 FAST_POLYGON-integration over 1000 cells: 38%|███▊ | ETA: 0:00:01 FAST_POLYGON-integration over 1000 cells: 47%|████▋ | ETA: 0:00:01 FAST_POLYGON-integration over 1000 cells: 100%|██████████| Time: 0:00:00 #= 214.2 ms =# precompile(Tuple{Type{HighVoronoi.VoronoiData{A, B, C, D, E, F, G, H, J, K, L, M, N} where N where M where L where K where J where H where G where F where E where D where C where B where A}, HighVoronoi.VoronoiGeometry{HighVoronoi.Call_FAST_POLYGON, Main.var"#test##1#test##2", HighVoronoi.NewRaycastParameter{Float64, HighVoronoi.HVKDTree, HighVoronoi.Raycast_Original, HighVoronoi.SingleThread, HighVoronoi.StaticBool{true}, Nothing}, HighVoronoi.Serial_Domain{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.ExplicitMeshContainer{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.MeshView{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.SerialMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, Array{HighVoronoi.CompoundMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.Voronoi_MESH{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.VDBVertexCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Array{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, 1}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Bool}, 1}, Array{HighVoronoi.CompoundData, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}, Array{Int64, 1}}, HighVoronoi.SortedView{Int64, Array{HighVoronoi.ShiftData{Int64}, 1}}}}, HighVoronoi.ExplicitMeshContainer{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.SerialMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, Array{HighVoronoi.CompoundMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.Voronoi_MESH{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.VDBVertexCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Array{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, 1}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Bool}, 1}, Array{HighVoronoi.CompoundData, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}, Array{Int64, 1}}}, HighVoronoi.ExplicitIntegralContainer{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.IntegralView{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.SerialIntegral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.SerialMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, Array{HighVoronoi.CompoundMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.Voronoi_MESH{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.VDBVertexCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Array{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, 1}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Bool}, 1}, Array{HighVoronoi.CompoundData, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}, Array{Int64, 1}}, Array{HighVoronoi.CompoundIntegral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.Voronoi_Integral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.Voronoi_MESH{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.VDBVertexCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Array{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, 1}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}}, Bool}, 1}, Array{HighVoronoi.CompoundData, 1}, Nothing, HighVoronoi.SerialVector{Array{Int64, 1}, Array{HighVoronoi.CompoundVector{Array{Int64, 1}, Array{Array{Int64, 1}, 1}}, 1}}, HighVoronoi.SerialVector{Float64, Array{HighVoronoi.CompoundVector{Float64, Array{Float64, 1}}, 1}}, HighVoronoi.SerialVector{Array{Float64, 1}, Array{HighVoronoi.CompoundVector{Array{Float64, 1}, Array{Array{Float64, 1}, 1}}, 1}}, HighVoronoi.SerialVector{Array{Float64, 1}, Array{HighVoronoi.CompoundVector{Array{Float64, 1}, Array{Array{Float64, 1}, 1}}, 1}}, HighVoronoi.SerialVector{Array{Array{Float64, 1}, 1}, Array{HighVoronoi.CompoundVector{Array{Array{Float64, 1}, 1}, Array{Array{Array{Float64, 1}, 1}, 1}}, 1}}}, HighVoronoi.SortedView{Int64, Array{HighVoronoi.ShiftData{Int64}, 1}}, HighVoronoi.MeshView{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.SerialMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, Array{HighVoronoi.CompoundMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.Voronoi_MESH{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.VDBVertexCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Array{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, 1}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Bool}, 1}, Array{HighVoronoi.CompoundData, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}, Array{Int64, 1}}, HighVoronoi.SortedView{Int64, Array{HighVoronoi.ShiftData{Int64}, 1}}}, HighVoronoi.MeshViewVector{Array{Int64, 1}, HighVoronoi.SerialVector{Array{Int64, 1}, Array{HighVoronoi.CompoundVector{Array{Int64, 1}, Array{Array{Int64, 1}, 1}}, 1}}, HighVoronoi.MeshView{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.SerialMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, Array{HighVoronoi.CompoundMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.Voronoi_MESH{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.VDBVertexCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Array{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, 1}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Bool}, 1}, Array{HighVoronoi.CompoundData, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}, Array{Int64, 1}}, HighVoronoi.SortedView{Int64, Array{HighVoronoi.ShiftData{Int64}, 1}}}}, HighVoronoi.MeshViewVector{Float64, HighVoronoi.SerialVector{Float64, Array{HighVoronoi.CompoundVector{Float64, Array{Float64, 1}}, 1}}, HighVoronoi.MeshView{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.SerialMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, Array{HighVoronoi.CompoundMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.Voronoi_MESH{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.VDBVertexCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Array{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, 1}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Bool}, 1}, Array{HighVoronoi.CompoundData, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}, Array{Int64, 1}}, HighVoronoi.SortedView{Int64, Array{HighVoronoi.ShiftData{Int64}, 1}}}}, HighVoronoi.MeshViewVector{Array{Float64, 1}, HighVoronoi.SerialVector{Array{Float64, 1}, Array{HighVoronoi.CompoundVector{Array{Float64, 1}, Array{Array{Float64, 1}, 1}}, 1}}, HighVoronoi.MeshView{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.SerialMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, Array{HighVoronoi.CompoundMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.Voronoi_MESH{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.VDBVertexCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Array{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, 1}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Bool}, 1}, Array{HighVoronoi.CompoundData, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}, Array{Int64, 1}}, HighVoronoi.SortedView{Int64, Array{HighVoronoi.ShiftData{Int64}, 1}}}}, HighVoronoi.MeshViewVector{Array{Array{Float64, 1}, 1}, HighVoronoi.SerialVector{Array{Array{Float64, 1}, 1}, Array{HighVoronoi.CompoundVector{Array{Array{Float64, 1}, 1}, Array{Array{Array{Float64, 1}, 1}, 1}}, 1}}, HighVoronoi.MeshView{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.SerialMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, Array{HighVoronoi.CompoundMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.Voronoi_MESH{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.VDBVertexCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Array{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, 1}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Bool}, 1}, Array{HighVoronoi.CompoundData, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}, Array{Int64, 1}}, HighVoronoi.SortedView{Int64, Array{HighVoronoi.ShiftData{Int64}, 1}}}}, HighVoronoi.MeshViewVector{Array{Float64, 1}, HighVoronoi.SerialVector{Array{Float64, 1}, Array{HighVoronoi.CompoundVector{Array{Float64, 1}, Array{Array{Float64, 1}, 1}}, 1}}, HighVoronoi.MeshView{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.SerialMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, Array{HighVoronoi.CompoundMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.Voronoi_MESH{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.VDBVertexCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Array{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, 1}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Bool}, 1}, Array{HighVoronoi.CompoundData, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}, Array{Int64, 1}}, HighVoronoi.SortedView{Int64, Array{HighVoronoi.ShiftData{Int64}, 1}}}}}}, HighVoronoi.ExplicitIntegralContainer{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.SerialIntegral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.SerialMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, Array{HighVoronoi.CompoundMesh{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.Voronoi_MESH{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.VDBVertexCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Array{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, 1}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Bool}, 1}, Array{HighVoronoi.CompoundData, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}, Array{Int64, 1}}, Array{HighVoronoi.CompoundIntegral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.Voronoi_Integral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.Voronoi_MESH{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, HighVoronoi.VertexDBCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}}, HighVoronoi.VDBVertexCentral{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}, Array{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, 1}, Array{Int64, 1}, HighVoronoi.HeapDataBase{StaticArraysCore.SArray{Tuple{4}, Float64, 1, 4}, Base.ReinterpretArray{Float64, 1, Int64, Array{Int64, 1}, false}, HighVoronoi.QueueHashTable{Array{HighVoronoi.HashedQueue, 1}, Nothing}}}}, Bool}, 1}, Array{HighVoronoi.CompoundData, 1}, Nothing, HighVoronoi.SerialVector{Array{Int64, 1}, Array{HighVoronoi.CompoundVector{Array{Int64, 1}, Array{Array{Int64, 1}, 1}}, 1}}, HighVoronoi.SerialVector{Float64, Array{HighVoronoi.CompoundVector{Float64, Array{Float64, 1}}, 1}}, HighVoronoi.SerialVector{Array{Float64, 1}, Array{HighVoronoi.CompoundVector{Array{Float64, 1}, Array{Array{Float64, 1}, 1}}, 1}}, HighVoronoi.SerialVector{Array{Float64, 1}, Array{HighVoronoi.CompoundVector{Array{Float64, 1}, Array{Array{Float64, 1}, 1}}, 1}}, HighVoronoi.SerialVector{Array{Array{Float64, 1}, 1}, Array{HighVoronoi.CompoundVector{Array{Array{Float64, 1}, 1}, Array{Array{Array{Float64, 1}, 1}, 1}}, 1}}}}}, Tuple{Int64, Int64, Int64}, Nothing}}) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== Integral: 1.0000000000000007 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1217 wait_forever at ./task.jl:1139 jfptr_wait_forever_63711.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2271 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007a3c03167760 Total snapshots: 446. Utilization: 0% ╎446 @Base/task.jl:1139 wait_forever() 445╎ 446 @Base/task.jl:1217 wait() [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1217 wait_forever at ./task.jl:1139 jfptr_wait_forever_63711.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2271 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file) Allocations: 27357668 (Pool: 27356971; Big: 697); GC: 19 [19] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/HighVoronoi/5m2O8/test/rcmethods.jl:2 _ZN4llvm12TBAAVerifier18verifyTBAABaseNodeERNS_11InstructionEPKNS_6MDNodeEb at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) unknown function (ip: 0x2f5ad347) at (unknown file) unknown function (ip: 0xb) at (unknown file) unknown function (ip: 0x2424933f) at (unknown file) unknown function (ip: 0x238ff34f) at (unknown file) unknown function (ip: (nil)) at (unknown file) Allocations: 784042967 (Pool: 784036784; Big: 6183); GC: 308 PkgEval terminated after 2727.68s: test duration exceeded the time limit