Package evaluation of QuasiNewtonMethods on Julia 1.13.0-DEV.1244 (c841b5fe7d*) started at 2025-10-02T20:14:21.438 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.92s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.1 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 5.16s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 202.04s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_0cnfjB/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_0cnfjB/Manifest.toml` [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [-6.198153101877324e-12, -1.3122725128766888e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.3125984743567187e-9, 2.615960337237766e-9] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [-2.628630646483998e-11, -5.404066083514181e-11, 3.029221318229247e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-5.721956242155102e-11, -1.1509271313769887e-10, 7.128964085723055e-12] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [1.7763568394002505e-14, -7.105427357601002e-14, 3.552713678800501e-14, -1.567634910770721e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-1.8471890683713355e-11, 2.348210514924176e-11, -3.86468634872017e-11, 4.896905103635163e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [3.8549163861034685e-12, -3.433697770560684e-12, 6.866063273491818e-12, -7.571610005641105e-12, 8.783063165651583e-11] QuasiNewtonMethods.optimum(state) .- 1 = [4.3761216872439945e-11, 5.528710822488847e-11, 8.166378684393294e-11, 1.1502798713536322e-10, 2.4580337765200966e-13] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [-1.545608085962158e-11, 1.4281908988778014e-12, -4.5209391785761e-12, -3.018063576831764e-11, 2.0032864256336325e-12, -1.0240697179142444e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.1480927319951206e-11, 1.1707745883882126e-11, 6.300737709352688e-12, -2.6995183866063144e-11, 2.496891582381977e-11, 9.962697333776305e-12] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [-6.25621776606522e-12, -5.3755888629325455e-12, 1.2468692744960208e-11, -1.2335132915097802e-11, -1.1177836434228539e-11, 2.4713120438946135e-11, 1.0313971898767704e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-9.626743846524732e-12, 2.3266499837859556e-11, -8.562661690802997e-11, -1.7403967156326416e-11, 4.75237627028946e-11, -1.7362944415566517e-10, 4.32658353588522e-11] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-5.142108960853875e-12, 2.9793278955025926e-11, 5.0712545274222975e-11, 1.942712657410084e-11, -1.1925349596708656e-11, 6.01156902035882e-11, 9.973133430207781e-11, 3.9038550170289454e-11] QuasiNewtonMethods.optimum(state) .- 1 = [3.1750158058230227e-12, 6.632916438320535e-12, 8.438361120965965e-12, 1.7641443861293737e-12, 6.8551830878504916e-12, 1.354516498963676e-11, 1.5516921081371038e-11, 3.504085910321919e-12] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [-3.5940139753165568e-12, -4.47020198635073e-12, 2.01993977100301e-12, 8.916201110764632e-12, -6.1158855757526e-12, -8.72368843829463e-12, 4.981126622283227e-12, 1.864641774318443e-11, 3.3733016380210756e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-8.425338204887112e-11, -1.0869360966836439e-10, -7.949685354446956e-11, -2.8065327839499332e-11, -1.7186096989973976e-10, -2.2109036823536599e-10, -1.479641964508005e-10, -4.712918943994282e-11, -2.8874014290636296e-11] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [-2.7186031203996208e-11, -7.229961074273206e-11, -9.305445303198212e-11, 1.445228381413699e-10, 5.843614481193526e-11, -5.868494579175376e-11, -1.411125660766288e-10, -1.8405843515978404e-10, 2.9253310884769235e-10, 1.0896372693025569e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.0987988297017637e-11, 5.589795293303723e-11, 1.1196377158739779e-11, 4.0701442216573014e-11, -1.549049777338496e-11, -2.007860544495088e-11, 1.0774470204921727e-10, 2.599853665685714e-11, 7.78082043240147e-11, -3.0768942949066513e-11] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [3.907008050418881e-11, -4.4957704226078476e-11, -3.2685187889569534e-11, -1.0164258323897002e-10, -6.29928331719043e-11, 7.120415368433441e-11, -8.436840115422228e-11, -6.052358614283548e-11, -2.0321044846838276e-10, -1.3529133369161173e-10, 8.377742943821431e-13] QuasiNewtonMethods.optimum(state) .- 1 = [2.004993948645506e-10, -1.7301737820218932e-10, 2.4413493449060297e-10, 1.197115739870469e-10, -2.5630464417503163e-10, 4.048477109108717e-10, -3.4648584001928384e-10, 4.754305837906259e-10, 2.408184762714427e-10, -5.044920037278189e-10, 5.3226312246579255e-12] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [7.518985434273873e-11, 4.249356422292294e-11, 8.248690619439003e-11, -4.16895407084894e-11, 6.213696224222076e-12, -5.0461856915262615e-11, 1.5766810079753668e-10, 8.982303789650814e-11, 1.6996426488447014e-10, -8.202538648305335e-11, 2.0553336810280598e-11, -1.0372414038783973e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.1365752783376593e-10, -6.77776723634338e-11, 9.781420118315509e-11, -2.866584747351908e-11, 5.492029053755232e-11, -1.713573727357698e-11, -2.281590472108519e-10, -1.4927226121841386e-10, 2.0597545891121172e-10, -4.654265861603335e-11, 9.891132357608967e-11, -3.5965674882731946e-11] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [-1.4632406397652176e-11, -1.8223977882314557e-11, -7.769340726326845e-13, -1.997491061445089e-11, -3.566524853226838e-11, 2.8783864181036733e-11, -3.1522340293577145e-11, -3.927924652202819e-11, 1.509903313490213e-14, -3.902411727096933e-11, -7.039269167563589e-11, 6.035771882295649e-11, -4.03987954200602e-12] QuasiNewtonMethods.optimum(state) .- 1 = [3.2436719976658424e-11, 1.1722400827807178e-11, -6.13638029278718e-11, -1.375856095719996e-10, -8.428480136046801e-12, 7.124367762401107e-11, 6.396927432206212e-11, 2.8817170871775488e-11, -1.0999035016112657e-10, -2.569557899789743e-10, -2.2229773577464584e-11, 1.4210144172466244e-10, 1.1455281168082365e-12] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [5.1803006329009804e-12, 1.3512746477317705e-11, 7.820633030064528e-12, -1.992628284597231e-12, -7.952194458482609e-12, -1.4257373059933798e-11, 3.355093980417223e-12, 9.7497565576532e-12, 2.7257085477572218e-11, 1.5863088620449162e-11, -3.856803765245331e-12, -1.6528223234502093e-11, -2.8018365405557688e-11, 1.0444312081858698e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.2394862913822635e-11, -2.186278935667474e-10, -4.980571510770915e-12, -4.421936150578176e-10, -3.1161029312443134e-10, -1.8483381492018225e-10, 4.026512456789533e-11, -2.485145422781443e-11, -4.3577086383805863e-10, -1.1445511205465664e-11, -8.880421953350037e-10, -6.234546212624537e-10, -3.5671987586027853e-10, 7.099321130965563e-11] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [-5.688294280048467e-11, -1.2509326907661489e-11, -7.418621272847759e-12, 3.90265597616235e-11, 3.597167008706492e-11, -1.1460721260903028e-11, -4.335221071016804e-11, -1.1590328696797769e-10, -2.631850293255411e-11, -2.011701916160291e-11, 7.918665723138929e-11, 7.571920868088e-11, -2.3579138641594e-11, -8.668221695984357e-11, 1.2596590437397026e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-5.857403451159371e-11, 1.9876100765259253e-11, -8.727674138953034e-11, 6.762213011768381e-11, -1.1873702021603094e-10, 8.356981773260941e-11, -2.4137136733770603e-11, -1.19225518346866e-10, 2.6747271064664346e-11, -1.7568535515266603e-10, 1.2523937442665556e-10, -2.363704787455845e-10, 1.6881585018779788e-10, -4.5382253510695136e-11, -2.4173330004373383e-11] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [-1.1050438342152802e-10, -3.824895955517604e-11, -3.293565420392497e-11, 1.2541079286165768e-12, -1.710478425565043e-10, -6.13051831521716e-11, 1.8236456789111344e-10, 3.8546055236565735e-11, -2.1473234301794264e-10, -7.681599800690719e-11, -6.694478305036e-11, 8.670841822322473e-13, -3.3671576638028e-10, -1.2502632262823e-10, 3.700391104644041e-10, 8.888179081623093e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-5.0949466867677984e-11, -2.653383068818016e-10, 4.6459658342712373e-10, -2.2167545576934344e-10, -1.1566858582057193e-10, 1.458224652139961e-10, 2.0476287332371612e-11, 5.290834437232661e-11, -8.546763297090365e-11, -5.223096399831206e-10, 9.318652516299153e-10, -4.241416107220175e-10, -2.30024665981432e-10, 2.81382916966777e-10, 4.168354550415643e-11, 1.0379674897365021e-10] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [-8.974299081643267e-11, 6.709988120690014e-11, -3.8623215736777183e-11, -2.2538304556007915e-11, 7.982703387199308e-11, -9.949141510645632e-11, 3.841527096426489e-11, -1.2897583001603152e-10, -1.7298718013591952e-10, 1.2680922978347553e-10, -7.999345630338439e-11, -4.3127834636891293e-11, 1.603985833042998e-10, -2.0729018501697283e-10, 8.262990291996175e-11, -2.6342072967366903e-10, -7.446154803858462e-12] QuasiNewtonMethods.optimum(state) .- 1 = [2.7682078851398728e-11, -7.730283080320532e-11, 2.3870683207860566e-11, 1.0702727593070449e-10, -6.425493470629817e-11, -1.625790613246636e-10, -8.782530258599763e-12, -5.7271076769893625e-11, 6.779155015124161e-11, -1.6927648172071486e-10, 4.510347650921176e-11, 2.167568347033466e-10, -1.481131883807052e-10, -3.277529359024811e-10, -1.560218620966225e-11, -1.1665535204485877e-10, 9.50350909079134e-13] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [4.993383484475089e-11, 3.3358205087097303e-11, -6.061517954236706e-11, 6.066258606551855e-11, 7.694045400796767e-11, -5.419131809958344e-11, -2.2917778785824794e-11, -1.3666012765867208e-10, -1.7886225833763092e-10, 8.660516748193459e-11, 7.221889752884181e-11, -1.2660572590306174e-10, 1.29144694938077e-10, 1.652811221219963e-10, -9.772871401025895e-11, -4.457001434587937e-11, -2.759176220834547e-10, -3.5960023847536604e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.5900392114076567e-10, -6.905231941800594e-11, -6.252998119293807e-11, 2.2760127116328022e-10, -1.0251943738381897e-10, 3.22510906869411e-11, 2.9423175007536884e-10, -4.929154862054475e-10, 9.288303459698e-11, 3.1417957124801887e-10, -1.4217549360040493e-10, -1.289551798677735e-10, 4.5438497409122647e-10, -2.040121405144646e-10, 4.927058760983982e-11, 5.79686521007261e-10, -1.0007025208480513e-9, 1.8005485991068326e-10] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [4.833311528784634e-11, 4.4075854077618715e-13, -8.98391361303652e-11, -1.586445419476945e-10, -3.8158143311761705e-11, -1.2106182722959602e-10, -1.6910917111090384e-11, 1.688693629375848e-11, 1.9865731282209254e-10, 1.099369484336421e-10, -6.31450447485804e-12, -1.8214152408546624e-10, -3.3088609630027577e-10, -7.810352364856499e-11, -2.319872072220619e-10, -2.8509417049349395e-11, 2.908739915596925e-11, 3.913918078524148e-10, -1.7421619702417956e-11] QuasiNewtonMethods.optimum(state) .- 1 = [2.1417756457253745e-11, 1.9335644196871726e-12, -3.3794744780379915e-11, 1.0559775276419714e-11, 2.277289468111121e-12, -1.942401794963189e-11, 7.314704397742844e-11, -1.636613067290682e-11, -1.924316261892045e-11, 4.4621417671919517e-11, 9.452438831658583e-13, -6.66237065516384e-11, 2.2806645461059816e-11, 4.381828233590568e-12, -4.073164028284282e-11, 1.424629303414804e-10, -3.4428460082835954e-11, -3.879641052861871e-11, 3.7192471324942744e-13] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [-1.1815659561875691e-11, -3.925626490541845e-11, -5.215639031774799e-11, 1.3463363757182378e-10, -3.413824778419894e-11, -1.6164736216239817e-11, 4.7627235488789665e-11, 1.4228618283596006e-11, -7.100531274062405e-11, -5.883338261014615e-11, -1.9479751145468072e-11, -7.867795304150604e-11, -9.943079692931178e-11, 2.669720000625375e-10, -6.379508032949843e-11, -3.04100078452052e-11, 9.25415299946053e-11, 3.1888269802493596e-11, -1.3914169816331423e-10, -1.1323098014770494e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.4613421583931085e-11, 2.451010505666318e-10, -4.660896113506396e-10, -2.231081985826222e-11, -4.596367730869133e-11, -4.010014542643603e-11, 3.310820506641221e-10, -2.688516076432279e-12, 1.4303935813586577e-10, -5.3097082286512887e-11, -4.4447889813170605e-11, 4.951861143354108e-10, -9.136477130411436e-10, -4.047395751882732e-11, -9.33992883034307e-11, -7.207356933491837e-11, 6.714062639190388e-10, 1.4727330466257627e-11, 2.9517033262038694e-10, -1.1026979329642472e-10] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [2.650033525952722e-10, -1.5173795553380387e-10, -2.500019080642346e-10, 1.4014034377396456e-10, 2.757858386104317e-10, 1.2229217638548562e-10, -3.539779580563618e-11, -2.6914803719080282e-11, 3.176536811366759e-10, -1.8464108020310732e-10, 5.470834896215138e-10, -3.1248370557790395e-10, -4.980214018956985e-10, 2.8947444441485004e-10, 5.622426968443506e-10, 2.375009078292578e-10, -6.681755149173796e-11, -3.4387381830924824e-11, 6.375280303672071e-10, -3.5373259876791963e-10, 8.482547997346046e-12] QuasiNewtonMethods.optimum(state) .- 1 = [4.7755133181226483e-11, 1.2546608196828402e-10, -1.0744638512250049e-10, 1.0463607758026683e-10, -3.940203718855173e-11, -1.2446643715691152e-10, -1.6781165346202442e-10, -4.585110069399434e-11, 3.416933402888844e-11, 3.7591929569202875e-11, 9.720180216277186e-11, 2.597395631909194e-10, -2.1929535964915203e-10, 1.9657253602645142e-10, -7.642497745763421e-11, -2.497051454497523e-10, -3.216608090994555e-10, -9.169398573760645e-11, 6.889311343627469e-11, 8.636469317480078e-11, -5.38813438311081e-12] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [5.661093815945151e-11, 9.775580345205981e-11, -3.315849816942773e-10, 1.0580625264822174e-10, -4.6227355277039806e-11, -8.644995830309199e-11, -2.3425816841893266e-11, -6.086897652579637e-11, 3.885602950504108e-11, -8.244993576767001e-11, 2.332933846105334e-11, 1.168187768740836e-10, 1.999078680370303e-10, -6.626065252035573e-10, 2.0746049322895033e-10, -9.354095276137286e-11, -1.7741563773654434e-10, -4.4813819322087056e-11, -1.2301926144431263e-10, 7.729306084058862e-11, -1.6259760204917484e-10, 4.026889932617905e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-4.962179556144974e-10, 2.3292412443254307e-10, 3.303468609772153e-11, -2.2666057919451532e-10, 6.574962796435102e-11, -1.1828120705104084e-9, 7.564660009506952e-11, 9.215939122952932e-11, 2.5275159742932374e-10, 1.0974705588751021e-9, 3.131517267718209e-11, -9.918093013538964e-10, 4.692735089406597e-10, 8.210210289405495e-11, -4.5827597272563025e-10, 1.3648349117545422e-10, -2.35879527021865e-9, 1.6344681164071062e-10, 2.0218804408500546e-10, 5.222415833117111e-10, 2.206054450226702e-9, 6.082512271632368e-11] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [-1.040973973687187e-10, 1.5611267834003684e-10, 2.298117252053089e-11, 1.3876233495579982e-11, -5.561773264162184e-11, -1.0391132398979153e-10, 6.710143551913461e-11, 1.7624746107003375e-10, -2.980005131547614e-11, 9.076450702139027e-11, 4.3375525393685166e-11, -2.0191137650726887e-10, 3.1591107507722427e-10, 4.669309383587006e-11, 2.6700863742235015e-11, -1.1946821310004907e-10, -2.1310653242068156e-10, 1.2268652760383247e-10, 3.4873348653263747e-10, -6.657019380185147e-11, 1.8254842082399136e-10, 8.342571078401306e-11, -7.618350394977824e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.996025567052584e-11, -3.4304892260195174e-11, 3.2403191241314744e-11, 8.844125432005967e-11, -6.236033911477534e-11, -2.8670621432524968e-11, 1.89672721973011e-11, -1.9414692076225037e-11, -3.720368457749146e-11, -3.9122816097858504e-11, 8.366418668970255e-12, 4.281552890006424e-11, -6.901224036681697e-11, 6.085265624733438e-11, 1.7272516750210798e-10, -1.2541867544513252e-10, -5.669176239564422e-11, 3.73987507629181e-11, -3.877054233214494e-11, -7.448341943216974e-11, -7.917366762200118e-11, 9.210632256895224e-12, 5.329070518200751e-13] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [3.227718092801979e-10, -5.432418959117058e-10, -6.003830765877183e-11, -4.16051415541574e-10, -5.776434885973458e-11, 1.617834755052172e-10, -6.156408716151418e-11, 2.1610246925263255e-10, 3.8850411776536475e-10, 3.6473313258511553e-10, -3.687276040054144e-10, 8.001621587538921e-11, 6.418061637702976e-10, -1.1092214924346422e-9, -1.3187240188727856e-10, -8.501647164038673e-10, -1.3362810857842078e-10, 3.1949376477768965e-10, -1.2045275887828666e-10, 4.2132541899775333e-10, 7.77708786259268e-10, 7.115761313514213e-10, -7.430362991556194e-10, 1.5607737324785376e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-3.197664355525376e-12, 2.1862511800918583e-12, 1.7470025426291613e-11, -1.003441774116709e-11, -2.412336996826525e-11, 5.3086424145476485e-12, 2.5774937739697634e-11, 2.1546098238900413e-11, -6.036282584886976e-13, -1.3370304863258298e-11, -1.3988588065672047e-11, 2.4579005497571416e-11, -7.226663711890069e-12, 4.6636028372404326e-12, 3.803357628839876e-11, -2.0083934515469082e-11, -4.818845322773768e-11, 1.0587974941245193e-11, 5.240963218966499e-11, 4.228617456192296e-11, -1.045719066894435e-12, -2.0509371978505442e-11, -2.5830559913231355e-11, 5.1200599315848194e-11] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 4m08.3s Method ambiguity | 1 1 9.5s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 6.2s Compat bounds | 3 1 4 10.9s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.5s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.3s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 51.9s RNG of the outermost testset: Random.Xoshiro(0x2f02be9ea2a52357, 0x175bfa3c3dadc69b, 0x5ce0073765f57b47, 0xdbabdd123d377182, 0x4729dce805fdfa19) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 277.19s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2673 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2522 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:515 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:157 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:309 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [14] _start() @ Base ./client.jl:577 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 516.09s: package has test failures