Package evaluation of QuasiNewtonMethods on Julia 1.13.0-DEV.1222 (39e1473f3b*) started at 2025-09-30T17:17:45.277 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.66s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 4.53s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 191.73s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_LomRdh/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_LomRdh/Manifest.toml` [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [8.566702902612633e-12, 1.656785819648121e-11] QuasiNewtonMethods.optimum(state) .- 1 = [4.947575682479055e-11, 1.0044409748388716e-10] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [-1.4561019057168778e-11, -2.5759061550445495e-11, -6.003419983358071e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.35187433364581e-12, -7.031597526463429e-12, -7.105427357601002e-15] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [-7.193134976546389e-13, -2.7159385851405204e-12, -1.0503820035978606e-12, -5.0184301159106326e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.7958967646336532e-12, 1.241495795056835e-11, 4.091837979558477e-12, 2.6431745681065877e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [-2.914418706367883e-10, -2.605415883039086e-11, -6.080241865547009e-10, -3.499189826783322e-11, -1.784461467480014e-11] QuasiNewtonMethods.optimum(state) .- 1 = [4.050981772252271e-11, -2.684082955894951e-10, 9.04596397788282e-11, -5.248748102815171e-10, -3.8712477667957046e-11] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [2.8828051057416815e-12, -4.262823427580997e-11, 5.6035398543485826e-11, 8.111067373306469e-12, -8.361644709964366e-11, 1.1617862227808473e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-3.3757219242147585e-11, -1.2656875547634172e-11, -2.3964275008836466e-11, -6.399047958183246e-11, -2.232847240435376e-11, -5.157252402909762e-11] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [5.3258952803503234e-11, 2.594946479916871e-11, -1.919853165333052e-11, 8.339351431629893e-11, 5.38822320095278e-11, -3.698574779775754e-11, 8.226175296499605e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.1171398795493133e-10, -1.8942170054714325e-10, 8.823541897129417e-11, -6.362120830161189e-10, -3.979492291250608e-10, 2.015798639121158e-10, 1.227506984946558e-11] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [1.7356338588569997e-11, -3.8464342821953323e-11, -5.763167720829188e-12, -1.5590861934811073e-12, 2.9704017023846063e-11, -7.853440120442201e-11, -7.432721105260498e-12, 1.1668443988810395e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-4.73632244535338e-12, 1.735123156265672e-11, 4.52076154289216e-11, 3.447375718224066e-11, -1.312105979422995e-11, 2.7761348775356964e-11, 9.410938694998094e-11, 7.027645132495763e-11] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [-2.518942832097082e-10, 2.5873747588889273e-11, -3.205913312598341e-11, -1.5076917492251596e-10, -5.165834426890115e-10, 4.1853631671529e-11, -7.101486065863583e-11, -2.9852964544829774e-10, -2.472533289221701e-11] QuasiNewtonMethods.optimum(state) .- 1 = [6.413514164194112e-11, 8.806710916076099e-11, 3.211964028082548e-11, 1.089017764854816e-10, 1.2330270138249944e-10, 1.7626611281684745e-10, 6.164913024520047e-11, 2.15733875208457e-10, 5.8053561957649435e-12] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [4.3258951976099524e-11, 1.2668333049248304e-10, 7.731437712266143e-11, -6.22091267388214e-12, 6.813527519966556e-11, 9.458833716280424e-11, 2.5942958892244405e-10, 1.6468559849158737e-10, -9.631739850135546e-12, 1.4404077930407766e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.777966662785957e-11, 3.2721381160172314e-11, -4.871658632055187e-13, -2.915701013961325e-11, -3.1386893084572876e-11, -3.169020601490047e-11, 6.430544985391862e-11, 1.192379528447418e-13, -5.915001821676924e-11, -6.201550384332677e-11] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-6.324452073158682e-11, -1.4743650744719616e-11, -7.15539849593938e-11, 2.252229513999282e-10, 3.7166936195376366e-11, -1.0238232484027776e-10, -2.1399548799649892e-11, -1.3182743785478124e-10, 4.5633008483036974e-10, 8.29452062589553e-11, -2.417799294107681e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.0798029137504273e-11, -1.4280576721148464e-11, -1.6305845562669674e-12, 1.0170975173195984e-11, 2.9460878181453154e-12, 2.2355672868457077e-11, -2.8431368370718246e-11, -2.553735001242785e-12, 2.0203616557523674e-11, 4.865885472327136e-12, -5.087041898832467e-13] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [-6.534961460857858e-11, -6.290346021842197e-11, 6.659561790911539e-12, 1.876769850639448e-10, -6.013745057487085e-10, 1.7216761349914123e-10, -1.233125823674186e-10, -1.1433887170397838e-10, -9.551026636245297e-12, 3.8375569388904296e-10, -1.2088440248803067e-9, 3.505857826269221e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.995403842158794e-11, -1.4954482097095934e-11, 1.3767209594561791e-11, -3.1545321910186885e-11, 4.844968870543198e-11, 5.46025447079046e-11, -3.8843483984862814e-11, -2.7993940499015935e-11, 3.18962634082709e-11, -6.675815455992051e-11, 8.592637712467877e-11, 1.044628827884253e-10] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [3.575006957134974e-11, -1.0265011063381735e-10, -5.929412516536559e-11, 6.702882693332413e-11, 1.7261991835937351e-10, 3.504863066439157e-11, 8.914202709320307e-11, -2.138750287983271e-10, -1.1850742609453846e-10, 1.362598922582947e-10, 3.503599632637133e-10, 6.199152302599487e-11, 1.0396572491799816e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.15301101999421e-11, -1.2521095271722515e-11, -2.0691892643753818e-11, 1.3952394795069267e-11, 1.6411760839218914e-11, 1.2066125876231126e-11, 2.4556356947869062e-11, -2.5847324280903194e-11, -3.9810044150101476e-11, 3.12230241661382e-11, 3.7692071686024065e-11, 2.2739143901162606e-11, 3.426148253993233e-13] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [9.991563132416559e-12, -2.8855029476915206e-11, -2.0486945473408014e-11, 2.2096102725299716e-11, -1.0487255508451199e-10, 3.2488900458815806e-11, -9.163891867558505e-12, 2.071187665819707e-11, -5.618527865181022e-11, -4.038835932362872e-11, 4.421951693700521e-11, -2.2607293814758123e-10, 6.801759155905529e-11, -1.5622392268710428e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-8.027400966170717e-11, 1.0359069158027978e-10, -1.0861234134296183e-10, 2.120188469234563e-10, -8.482881064253434e-11, -6.54354348483821e-11, 1.2943512928131895e-10, -1.6243939526816575e-10, 2.017048750246886e-10, -2.2064861049386764e-10, 4.273077447436435e-10, -1.6547108128150967e-10, -1.3837098133961945e-10, 2.7037239114235945e-10] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [-4.512322737681984e-10, -9.369349740495636e-11, 1.2388268189056362e-10, 1.7980927857763618e-10, 4.2671643996072817e-11, -8.263104644967711e-10, 6.636438065754646e-10, -8.912552917905714e-10, -1.6874812658329574e-10, 2.241522523149797e-10, 3.4724134678754126e-10, 8.893907832430159e-11, -1.6550362191836143e-9, 1.3344327864928118e-9, 3.969538031611819e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-2.814637412029697e-12, 1.5691892230051963e-12, 2.844613433694576e-12, 4.053268831682999e-11, 4.520606111668712e-12, 1.946554029075287e-11, -1.5478729409323932e-11, -6.130540519677652e-12, 5.2520210402917655e-12, 5.898614929833457e-12, 7.969269688601344e-11, 1.0399681116268766e-11, 4.1107561798980896e-11, -2.6739610525794433e-11, 8.923972671937008e-13] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [1.0885004009253407e-10, -2.0137780332163402e-11, 1.96866967172582e-11, 4.3357761825291163e-11, -3.1931457478151515e-11, 6.038303190791794e-11, -8.839595722065496e-12, -5.811717773696046e-11, 1.9660317818193107e-10, -4.340094950094908e-11, 3.4466429710278135e-11, 8.292677655674652e-11, -6.850053857476723e-11, 1.2072054467182625e-10, -1.4368839451606163e-11, -1.1883449779759303e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.8764989562214396e-12, -4.703393230442998e-11, 5.708145067728765e-11, 3.65285579562169e-12, -1.5731860258938468e-13, 9.114931032172535e-12, 3.339106768862621e-12, -1.734901111660747e-11, 8.919531779838508e-13, -9.107969933808135e-11, 1.1320344661669424e-10, 5.157430038593702e-12, 5.238032230181489e-13, 1.729638654524024e-11, 6.275424624391235e-12, -3.4806268978115895e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [3.1113134291160804e-10, 1.58247637216391e-10, -2.1697421637156822e-11, -8.720413280371986e-11, 6.019273968149719e-11, -1.830402496239003e-11, -1.1144085654279934e-11, -4.815925436219004e-12, 6.318758849488404e-10, 3.156044314778228e-10, -3.9803826901163575e-11, -1.706628172115643e-10, 1.145186168116652e-10, -4.2463699223560525e-11, -1.4154011296341196e-11, -1.1868728222452773e-11, -1.2135292770665274e-11] QuasiNewtonMethods.optimum(state) .- 1 = [4.504396855509185e-12, 1.5419665544413874e-11, 3.170308460198612e-11, 3.115530056163607e-11, 1.7503554161635293e-11, 1.688693629375848e-11, -1.446265329718699e-11, -2.3621216094227293e-11, 9.591216709736727e-12, 2.911337837474548e-11, 6.570544108797094e-11, 6.017408793468348e-11, 3.307776275107699e-11, 3.2733371568838265e-11, -2.98910896034954e-11, -4.5755066402364264e-11, -4.780176254826074e-12] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [5.281819426272705e-11, -2.0452850524321775e-10, 2.6383117912587295e-11, -2.0303536629739938e-11, -2.4817459198800407e-10, -7.724509920592482e-11, 9.008682688715908e-11, -2.767996942765194e-11, -6.079159398098e-11, 9.686673685393998e-11, -4.0887115915211325e-10, 5.055333929249173e-11, -2.89880341952653e-11, -4.881375303966706e-10, -1.5114742790700575e-10, 1.7143952923959205e-10, -5.567990513100085e-11, -1.2671608207170948e-10] QuasiNewtonMethods.optimum(state) .- 1 = [3.170308460198612e-11, -2.4565349754368526e-11, -1.7979506772292098e-11, -5.4932947080033045e-11, -3.520939095835729e-11, 2.4390045538780214e-11, 2.634670259737959e-11, 8.262901474154205e-11, -6.2032601277906e-12, 5.767963884295568e-11, -4.808697884328694e-11, -3.2781000136594685e-11, -1.246125425069522e-10, -7.22805149067085e-11, 4.4919179487123984e-11, 4.8646642270000484e-11, 1.660298565298035e-10, -1.2790657422101503e-11] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [1.5442758183326077e-11, 3.107825108372708e-11, 4.125788599651514e-11, 1.0112577442100701e-11, 1.8062218387626672e-11, 2.2462032234216167e-12, -9.872547224176742e-12, 6.285971743125174e-11, -1.1069589689327586e-11, 3.1026736735384475e-11, 6.044809097716097e-11, 8.050804467529815e-11, 2.2802648658171165e-11, 3.286015903825046e-11, 5.451417095514444e-12, -2.2089330364849502e-11, 1.2576628627414266e-10, -1.9258816763567665e-11, 1.2398970739013748e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-3.779743185106099e-11, 6.466271962324299e-11, -8.403933104972339e-11, 2.5685453763912847e-11, -1.6507806233079236e-10, 3.2353519863193014e-10, 5.910094635908081e-11, -2.7920110667878362e-11, 1.1268364019656474e-10, -6.518341422179219e-11, 1.394000470611445e-10, -1.6217116538541632e-10, 5.469225072829431e-11, -3.287176086885779e-10, 6.484202064171996e-10, 1.277440375702099e-10, -5.709999140179889e-11, 2.084323824647072e-10, -1.85383930428884e-11] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [-1.6777490507990933e-10, -4.471423231677818e-11, 6.291744902853225e-11, 1.5856649326906336e-11, 1.580513497856373e-11, -1.1431744439960312e-11, -7.465772444703589e-11, -6.790545903356815e-11, -1.0093281765932716e-10, -4.3816839045973666e-11, -3.4559610728734924e-10, -8.89781581747684e-11, 1.2173728691777796e-10, 2.1601831434736596e-11, 2.6458168989051956e-11, -2.6841306954850097e-11, -1.5369217010174907e-10, -1.4149059701651368e-10, -1.9541357421104522e-10, -9.668965628151227e-11] QuasiNewtonMethods.optimum(state) .- 1 = [5.2652993076662824e-11, -6.459166534966698e-12, 1.5738410574783757e-10, -1.7407431052163247e-10, 1.3738565840526462e-11, -3.5230707240430092e-12, 1.2615020139605804e-11, 9.45481470893128e-11, -2.8397839635374567e-11, 8.733014311701481e-12, 9.623302155148394e-11, -1.2152945316756814e-11, 3.126414682697032e-10, -3.3507263630383477e-10, 2.7545077330159984e-11, -7.48667794425728e-12, 2.53523868565253e-11, 1.9658252803367304e-10, -6.072531366640987e-11, 1.605626742673394e-11] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [1.1358913809544902e-11, -3.1992852811413286e-11, -2.187916514628796e-12, -5.903055821931957e-12, -1.2307599384087098e-11, -2.75616196532269e-11, -5.7728266611434265e-12, 2.8674840280018543e-11, 2.5517143953379673e-11, -5.5385696029475184e-12, 2.1794344107206598e-11, -6.430200816254228e-11, -4.243827511629661e-12, -1.2140177751973624e-11, -2.449884739519348e-11, -5.38893374368854e-11, -1.0501155500719506e-11, 5.847478057319222e-11, 4.7695181137896725e-11, -9.988232463342683e-12, -1.3011813848606835e-13] QuasiNewtonMethods.optimum(state) .- 1 = [1.1299250424201546e-10, -6.389111462112851e-12, -1.8632662079909323e-10, 7.2666317407765746e-12, 6.283684683694446e-11, -1.7446588618241776e-10, 1.0092393587513016e-10, 3.4681790772594923e-10, -3.737643528012313e-11, 9.354539365347136e-11, 2.3011703653708082e-10, 5.650147016922347e-12, -3.773050760713659e-10, 8.846923194028022e-12, 1.249718106777209e-10, -3.6087055566014214e-10, 2.0194468319800762e-10, 6.988480905079086e-10, -8.089973135838591e-11, 1.8029955306531065e-10, 9.279244039817058e-12] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [6.513323214107913e-11, -1.664324233985326e-11, -8.111178395608931e-12, 5.710987238671805e-13, 1.457256537662488e-11, 5.542233338928781e-13, 1.4698908756827223e-11, -2.4694246647527507e-11, -5.461464613887301e-11, 5.154388027506229e-11, -2.050348779647493e-11, 1.322315590357448e-10, -3.925870739607262e-11, -1.6227463817131138e-11, 2.802647003363745e-12, 2.9257929412551675e-11, 1.7084111902931909e-12, 3.01274560854381e-11, -4.918765394990032e-11, -1.1010259370891617e-10, 1.0071543599110555e-10, -3.889666366774236e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.3851142455223453e-12, 6.195577384460194e-11, 2.4834845291366037e-10, -8.429923425978814e-11, 5.266032054862535e-11, -9.45893363635264e-11, -2.3205992683017485e-11, -4.249534057976234e-11, -1.3054590741745642e-10, -1.1430745239238149e-10, -1.228531720798287e-10, 4.50595116774366e-12, 1.2332224130773284e-10, 4.94679186502367e-10, -1.672886273951235e-10, 1.0897172053603299e-10, -1.8774437560153956e-10, -4.544609133461108e-11, -7.564848747421138e-11, -2.800050191709147e-10, -2.3321888864558105e-10, -2.397128051612185e-10] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [4.027134181683323e-11, -3.1931457478151515e-11, 2.7719826434235983e-11, -1.1332157434651435e-11, 1.0736966871149889e-11, -4.6769255135359344e-11, -3.676503546046206e-12, -2.4278357102502923e-12, 4.9107828914429774e-11, -2.628230966195133e-12, 3.568656481434118e-11, 8.452394339997227e-11, -6.383227280082338e-11, 5.910694156341378e-11, -1.8692714043311298e-11, 1.9212853530348184e-11, -9.364975461778613e-11, -5.693223670277803e-12, -6.9925176759966234e-12, 9.80084902124645e-11, -4.275468867831478e-12, 6.752598480375127e-11, 8.29336599394992e-12] QuasiNewtonMethods.optimum(state) .- 1 = [3.8582337325010485e-10, 7.403722079857289e-11, -7.660394540920379e-11, 1.29511956714623e-10, -2.5979329798531126e-11, 1.1034329006065491e-10, -2.28179475314505e-10, 9.133582778986238e-11, -1.599741450419856e-10, -1.1930922916292275e-10, -3.2896041446406343e-10, 7.827838377494345e-10, 1.6858159312960197e-10, -1.4652934421377495e-10, 2.5404700565445637e-10, -6.090272730574497e-11, 2.2542012700910163e-10, -4.759389549136017e-10, 1.7157852916227512e-10, -3.138322934859161e-10, -2.329628712161025e-10, -6.591149848134137e-10, -3.339151177783606e-11] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [-1.7520407347149103e-10, 4.4009684785351055e-11, -2.385314168407149e-12, -5.477207576376486e-11, 1.0635980984829985e-10, 2.010414057451726e-11, -4.523292851388305e-11, 6.187694800985355e-11, 7.102540777736976e-11, 1.6653345369377348e-13, -7.585199135462517e-11, -3.902911327458014e-11, -3.5431724221268723e-10, 9.34596844359703e-11, 3.539391002504999e-12, -1.0908340897231028e-10, 2.1376322933974734e-10, 3.287126126849671e-11, -8.394340778039577e-11, 1.2224665724147599e-10, 1.428861473584675e-10, -1.6570078642530461e-12, -1.524478321357492e-10, -6.248068729064471e-11] QuasiNewtonMethods.optimum(state) .- 1 = [4.0419001479108374e-11, -2.9294122683154455e-11, 4.3713477282381064e-11, -6.887046488657234e-11, -3.342526255778466e-11, 2.1058044197275194e-11, 3.5289549060735226e-12, -1.8494428211113245e-11, 3.672484538697063e-11, 5.465849994834571e-12, 2.791700204340941e-11, 5.296585392500219e-11, 7.759837217236054e-11, -5.867561991834691e-11, 8.263678630271443e-11, -1.3708501001019613e-10, -6.509259797837785e-11, 3.2627456292289025e-11, 9.415801471845953e-12, -3.111555457735449e-11, 6.85747014728122e-11, 8.650191674064445e-12, 5.735589780897499e-11, 1.0619771728670457e-10] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 4m09.5s Method ambiguity | 1 1 10.3s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 7.1s Compat bounds | 3 1 4 10.6s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.5s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 9.9s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 50.3s RNG of the outermost testset: Random.Xoshiro(0x15c503bafa9a7950, 0x4c10237fd386233b, 0x29f4e17a06bdeda5, 0xc416f51b2816bcc4, 0x285e895aaf81b096) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 277.29s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2673 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2522 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:515 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:157 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:309 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [14] _start() @ Base ./client.jl:577 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 505.75s: package has test failures