Package evaluation of ClusteredLowRankSolver on Julia 1.13.0-DEV.1222 (39e1473f3b*) started at 2025-09-30T16:46:44.819 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 10.1s ################################################################################ # Installation # Installing ClusteredLowRankSolver... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [cadeb640] + ClusteredLowRankSolver v1.1.0 Updating `~/.julia/environments/v1.13/Manifest.toml` ⌅ [c3fe647b] + AbstractAlgebra v0.46.5 [fb37089c] + Arblib v1.6.0 [0a1fb500] + BlockDiagonals v0.2.0 [cadeb640] + ClusteredLowRankSolver v1.1.0 [861a8166] + Combinatorics v1.0.3 [ffbed154] + DocStringExtensions v0.9.5 [1a297f60] + FillArrays v1.14.0 [14197337] + GenericLinearAlgebra v0.3.18 [076d061b] + HashArrayMappedTries v0.2.0 [92d709cd] + IrrationalConstants v0.2.4 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 ⌅ [0b1a1467] + KrylovKit v0.9.5 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 ⌅ [2edaba10] + Nemo v0.51.1 [65ce6f38] + PackageExtensionCompat v1.0.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [fb686558] + RandomExtensions v0.4.4 [af85af4c] + RowEchelon v0.2.1 [7e506255] + ScopedValues v1.5.0 [276daf66] + SpecialFunctions v2.5.1 [409d34a3] + VectorInterface v0.5.0 [e134572f] + FLINT_jll v301.300.102+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.7+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.64s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 102.53s ################################################################################ # Testing # Testing ClusteredLowRankSolver Status `/tmp/jl_3mg5xU/Project.toml` ⌅ [c3fe647b] AbstractAlgebra v0.46.5 [cadeb640] ClusteredLowRankSolver v1.1.0 ⌅ [2edaba10] Nemo v0.51.1 [1fd47b50] QuadGK v2.11.2 [276daf66] SpecialFunctions v2.5.1 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_3mg5xU/Manifest.toml` ⌅ [c3fe647b] AbstractAlgebra v0.46.5 [fb37089c] Arblib v1.6.0 [0a1fb500] BlockDiagonals v0.2.0 [cadeb640] ClusteredLowRankSolver v1.1.0 [861a8166] Combinatorics v1.0.3 [864edb3b] DataStructures v0.19.1 [ffbed154] DocStringExtensions v0.9.5 [1a297f60] FillArrays v1.14.0 [14197337] GenericLinearAlgebra v0.3.18 [076d061b] HashArrayMappedTries v0.2.0 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 ⌅ [0b1a1467] KrylovKit v0.9.5 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.51.1 [bac558e1] OrderedCollections v1.8.1 [65ce6f38] PackageExtensionCompat v1.0.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [1fd47b50] QuadGK v2.11.2 [fb686558] RandomExtensions v0.4.4 [af85af4c] RowEchelon v0.2.1 [7e506255] ScopedValues v1.5.0 [276daf66] SpecialFunctions v2.5.1 [409d34a3] VectorInterface v0.5.0 [e134572f] FLINT_jll v301.300.102+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [8dfed614] Test v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [3a97d323] MPFR_jll v4.2.2+0 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [8e850b90] libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Precompiling packages... 9628.1 ms ✓ AbstractAlgebra → TestExt 1 dependency successfully precompiled in 10 seconds. 18 already precompiled. iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 28.8 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 1.95e+10 7.42e-01 7.10e-01 3.00e-01 2 31.6 3.995e+19 1.999e+11 -2.907e+09 1.03e+00 2.58e+09 2.58e-01 5.65e+09 7.46e-01 7.17e-01 3.00e-01 3 31.6 1.576e+19 3.079e+11 -4.779e+09 1.03e+00 6.53e+08 6.53e-02 1.60e+09 7.32e-01 7.31e-01 3.00e-01 4 31.6 6.100e+18 4.277e+11 -6.725e+09 1.03e+00 1.75e+08 1.75e-02 4.31e+08 7.20e-01 7.22e-01 3.00e-01 5 31.6 2.433e+18 5.963e+11 -9.362e+09 1.03e+00 4.92e+07 4.92e-03 1.20e+08 7.11e-01 7.14e-01 3.00e-01 6 31.6 9.953e+17 8.401e+11 -1.309e+10 1.03e+00 1.42e+07 1.42e-03 3.42e+07 7.07e-01 7.10e-01 3.00e-01 7 31.6 4.128e+17 1.191e+12 -1.842e+10 1.03e+00 4.16e+06 4.16e-04 9.93e+06 7.05e-01 7.07e-01 3.00e-01 8 31.6 1.725e+17 1.693e+12 -2.598e+10 1.03e+00 1.23e+06 1.23e-04 2.91e+06 7.04e-01 7.06e-01 3.00e-01 9 31.6 7.238e+16 2.410e+12 -3.671e+10 1.03e+00 3.64e+05 3.64e-05 8.56e+05 7.03e-01 7.05e-01 3.00e-01 10 31.7 3.044e+16 3.431e+12 -5.194e+10 1.03e+00 1.08e+05 1.08e-05 2.53e+05 7.03e-01 7.04e-01 3.00e-01 11 31.7 1.281e+16 4.886e+12 -7.353e+10 1.03e+00 3.20e+04 3.20e-06 7.48e+04 7.03e-01 7.04e-01 3.00e-01 12 31.7 5.398e+15 6.956e+12 -1.042e+11 1.03e+00 9.51e+03 9.51e-07 2.21e+04 7.03e-01 7.04e-01 3.00e-01 13 31.7 2.275e+15 9.899e+12 -1.476e+11 1.03e+00 2.82e+03 2.82e-07 6.55e+03 7.03e-01 7.04e-01 3.00e-01 14 31.7 9.587e+14 1.407e+13 -2.094e+11 1.03e+00 8.38e+02 8.38e-08 1.94e+03 7.04e-01 7.05e-01 3.00e-01 15 31.7 4.036e+14 1.993e+13 -2.971e+11 1.03e+00 2.48e+02 2.48e-08 5.71e+02 7.06e-01 7.09e-01 3.00e-01 16 31.7 1.692e+14 2.789e+13 -4.222e+11 1.03e+00 7.31e+01 7.31e-09 1.66e+02 7.12e-01 7.22e-01 3.00e-01 17 31.7 7.003e+13 3.756e+13 -6.021e+11 1.03e+00 2.10e+01 2.10e-09 4.62e+01 7.31e-01 7.65e-01 3.00e-01 18 31.7 2.773e+13 4.485e+13 -8.676e+11 1.04e+00 5.66e+00 5.66e-10 1.08e+01 7.79e-01 9.17e-01 3.00e-01 19 31.7 9.540e+12 3.941e+13 -1.292e+12 1.07e+00 1.25e+00 1.25e-10 8.99e-01 9.22e-01 1.00e+00 3.00e-01 20 31.7 2.995e+12 1.720e+13 -1.811e+12 1.24e+00 9.79e-02 9.79e-12 2.75e-52 1.00e+00 1.00e+00 3.00e-01 21 31.7 8.988e+11 4.388e+12 -1.903e+12 2.53e+00 4.12e-65 1.90e-65 5.34e-52 1.00e+00 1.00e+00 3.00e-01 22 31.8 2.696e+11 1.339e+12 -5.487e+11 2.39e+00 4.99e-66 2.37e-66 3.73e-52 8.90e-01 8.90e-01 1.00e-01 23 31.8 5.361e+10 2.688e+11 -1.065e+11 2.31e+00 6.83e-66 2.67e-66 4.78e-53 8.70e-01 8.70e-01 1.00e-01 24 31.8 1.161e+10 5.819e+10 -2.310e+10 2.32e+00 5.93e-67 7.42e-67 7.14e-54 8.52e-01 8.52e-01 1.00e-01 25 31.8 2.713e+09 1.355e+10 -5.443e+09 2.34e+00 1.48e-67 1.11e-67 1.02e-54 8.36e-01 8.36e-01 1.00e-01 26 31.8 6.711e+08 3.370e+09 -1.328e+09 2.30e+00 8.69e-68 9.27e-69 1.71e-55 8.30e-01 8.30e-01 1.00e-01 27 31.8 1.696e+08 8.422e+08 -3.452e+08 2.39e+00 1.64e-68 1.16e-69 2.87e-56 8.10e-01 8.10e-01 1.00e-01 28 31.8 4.599e+07 2.340e+08 -8.791e+07 2.20e+00 4.30e-69 8.69e-70 5.48e-57 8.18e-01 8.18e-01 1.00e-01 29 31.8 1.213e+07 5.873e+07 -2.619e+07 2.61e+00 1.14e-69 2.17e-70 9.94e-58 7.63e-01 7.63e-01 1.00e-01 30 31.8 3.798e+06 2.001e+07 -6.576e+06 1.98e+00 3.16e-70 1.09e-70 2.35e-58 8.24e-01 8.24e-01 1.00e-01 31 31.8 9.800e+05 4.616e+06 -2.245e+06 2.89e+00 4.64e-71 2.26e-71 4.13e-59 7.75e-01 7.75e-01 1.00e-01 32 31.8 2.963e+05 1.559e+06 -5.151e+05 1.99e+00 1.27e-71 1.81e-71 9.29e-60 8.39e-01 8.39e-01 1.00e-01 33 31.8 7.263e+04 3.436e+05 -1.649e+05 2.85e+00 3.40e-72 4.81e-72 1.50e-60 7.97e-01 7.97e-01 1.00e-01 34 31.9 2.051e+04 1.063e+05 -3.733e+04 2.08e+00 1.39e-72 1.84e-72 3.04e-61 8.41e-01 8.41e-01 1.00e-01 35 31.9 4.988e+03 2.366e+04 -1.125e+04 2.81e+00 4.30e-73 2.48e-73 4.83e-62 8.01e-01 8.01e-01 1.00e-01 36 31.9 1.393e+03 7.141e+03 -2.612e+03 2.15e+00 1.11e-73 1.77e-74 9.63e-63 8.38e-01 8.38e-01 1.00e-01 37 31.9 3.422e+02 1.603e+03 -7.929e+02 2.96e+00 1.77e-74 4.42e-75 1.56e-63 7.97e-01 7.97e-01 1.00e-01 38 31.9 9.665e+01 4.860e+02 -1.905e+02 2.29e+00 4.42e-75 4.42e-75 3.16e-64 8.39e-01 8.39e-01 1.00e-01 39 31.9 2.366e+01 1.051e+02 -6.048e+01 3.71e+00 1.87e-75 6.91e-76 5.08e-65 8.03e-01 8.03e-01 1.00e-01 40 31.9 6.562e+00 2.998e+01 -1.595e+01 3.28e+00 6.74e-76 6.56e-76 1.00e-65 8.57e-01 8.57e-01 1.00e-01 41 31.9 1.499e+00 4.629e+00 -5.866e+00 8.49e+00 6.91e-77 2.07e-76 1.43e-66 8.75e-01 8.75e-01 1.00e-01 42 31.9 3.183e-01 -4.666e-01 -2.695e+00 7.05e-01 4.32e-77 1.73e-77 1.78e-67 9.64e-01 9.64e-01 1.00e-01 43 31.9 4.224e-02 -1.900e+00 -2.195e+00 7.22e-02 2.59e-77 1.73e-77 6.48e-69 9.83e-01 9.83e-01 1.00e-01 44 31.9 4.861e-03 -2.089e+00 -2.123e+00 8.08e-03 8.64e-78 1.73e-77 1.08e-70 9.97e-01 9.97e-01 1.00e-01 45 31.9 5.004e-04 -2.110e+00 -2.114e+00 8.29e-04 1.73e-77 2.59e-77 3.54e-73 9.99e-01 9.99e-01 1.00e-01 46 31.9 5.050e-05 -2.113e+00 -2.113e+00 8.37e-05 1.73e-77 2.59e-77 4.56e-75 1.00e+00 1.00e+00 1.00e-01 47 31.9 5.060e-06 -2.113e+00 -2.113e+00 8.38e-06 8.64e-78 8.64e-78 5.80e-75 1.00e+00 1.00e+00 1.00e-01 48 31.9 5.060e-07 -2.113e+00 -2.113e+00 8.38e-07 8.64e-78 0.00e+00 1.12e-74 1.00e+00 1.00e+00 1.00e-01 49 32.0 5.061e-08 -2.113e+00 -2.113e+00 8.38e-08 4.32e-78 8.64e-78 1.26e-74 1.00e+00 1.00e+00 1.00e-01 50 32.0 5.062e-09 -2.113e+00 -2.113e+00 8.38e-09 1.73e-77 3.45e-77 1.36e-74 1.00e+00 1.00e+00 1.00e-01 51 32.0 5.062e-10 -2.113e+00 -2.113e+00 8.39e-10 8.64e-78 3.45e-77 1.33e-74 1.00e+00 1.00e+00 1.00e-01 52 32.0 5.063e-11 -2.113e+00 -2.113e+00 8.39e-11 8.64e-78 1.73e-77 1.45e-73 1.00e+00 1.00e+00 1.00e-01 53 32.0 5.063e-12 -2.113e+00 -2.113e+00 8.39e-12 8.64e-78 8.64e-78 1.00e-73 1.00e+00 1.00e+00 1.00e-01 54 32.0 5.064e-13 -2.113e+00 -2.113e+00 8.39e-13 8.64e-78 5.18e-77 4.89e-73 1.00e+00 1.00e+00 1.00e-01 55 32.0 5.064e-14 -2.113e+00 -2.113e+00 8.39e-14 8.64e-78 0.00e+00 5.30e-73 1.00e+00 1.00e+00 1.00e-01 56 32.0 5.065e-15 -2.113e+00 -2.113e+00 8.39e-15 8.64e-78 1.73e-77 8.67e-73 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 32.047477 seconds (5.51 M allocations: 305.650 MiB, 0.97% gc time, 98.61% compilation time: <1% of which was recompilation) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:-2.112913881423601868173307075449542317040456760246895294815684753298576550572474 Dual objective:-2.112913881423605414010784337930385538738413653005493965784538342881202713338281 Duality gap:8.390870797993494176938263261121030855023248167606681248121038077400753451608425e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.3 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 2.10e+11 7.15e-01 8.46e-01 3.00e-01 2 0.4 4.213e+19 -7.841e+09 2.996e+11 1.05e+00 2.85e+09 2.85e-01 3.23e+10 7.79e-01 1.00e+00 3.00e-01 3 0.5 1.478e+19 1.359e+09 5.379e+11 9.95e-01 6.29e+08 6.29e-02 1.10e-65 8.20e-01 1.00e+00 3.00e-01 4 0.5 4.264e+18 4.397e+08 8.578e+11 9.99e-01 1.13e+08 1.13e-02 8.75e-65 8.92e-01 1.00e+00 3.00e-01 5 0.6 7.344e+17 4.931e+07 1.370e+12 1.00e+00 1.22e+07 1.22e-03 1.79e-64 8.98e-01 1.00e+00 3.00e-01 6 0.6 1.198e+17 4.867e+06 2.189e+12 1.00e+00 1.24e+06 1.24e-04 2.69e-64 8.95e-01 1.00e+00 3.00e-01 7 0.7 2.010e+16 5.242e+05 3.499e+12 1.00e+00 1.30e+05 1.30e-05 4.37e-64 8.99e-01 1.00e+00 3.00e-01 8 0.8 3.262e+15 5.203e+04 5.596e+12 1.00e+00 1.32e+04 1.32e-06 1.01e-63 8.97e-01 1.00e+00 3.00e-01 9 0.8 5.394e+14 5.483e+03 8.950e+12 1.00e+00 1.37e+03 1.37e-07 1.23e-63 8.99e-01 1.00e+00 3.00e-01 10 0.9 8.742e+13 5.525e+02 1.430e+13 1.00e+00 1.38e+02 1.38e-08 1.67e-63 8.99e-01 1.00e+00 3.00e-01 11 0.9 1.453e+13 6.378e+01 2.266e+13 1.00e+00 1.40e+01 1.40e-09 2.18e-63 8.96e-01 1.00e+00 3.00e-01 12 1.0 2.995e+12 1.385e+01 3.308e+13 1.00e+00 1.45e+00 1.45e-10 4.01e-63 8.80e-01 1.00e+00 3.00e-01 13 1.1 1.001e+12 9.125e+00 2.897e+13 1.00e+00 1.74e-01 1.74e-11 7.19e-63 8.85e-01 1.00e+00 3.00e-01 14 1.1 3.229e+11 8.728e+00 1.226e+13 1.00e+00 2.01e-02 2.01e-12 5.46e-63 8.77e-01 1.00e+00 3.00e-01 15 1.2 9.802e+10 8.791e+00 3.989e+12 1.00e+00 2.47e-03 2.47e-13 1.61e-63 1.00e+00 1.00e+00 3.00e-01 16 1.3 2.964e+10 8.979e+00 1.245e+12 1.00e+00 5.18e-77 1.73e-77 1.31e-64 1.00e+00 1.00e+00 3.00e-01 17 1.3 8.892e+09 9.036e+00 3.735e+11 1.00e+00 3.45e-77 1.73e-77 2.37e-65 9.97e-01 9.97e-01 1.00e-01 18 1.4 9.112e+08 9.041e+00 3.827e+10 1.00e+00 4.32e-77 3.45e-77 2.37e-66 1.00e+00 1.00e+00 1.00e-01 19 1.4 9.117e+07 9.046e+00 3.829e+09 1.00e+00 4.75e-77 3.45e-77 4.82e-67 1.00e+00 1.00e+00 1.00e-01 20 1.5 9.118e+06 9.050e+00 3.830e+08 1.00e+00 3.45e-77 1.73e-77 6.03e-68 1.00e+00 1.00e+00 1.00e-01 21 1.5 9.119e+05 9.054e+00 3.830e+07 1.00e+00 3.45e-77 3.45e-77 4.06e-69 1.00e+00 1.00e+00 1.00e-01 22 1.6 9.120e+04 9.058e+00 3.830e+06 1.00e+00 3.89e-77 2.59e-77 5.07e-70 1.00e+00 1.00e+00 1.00e-01 23 1.7 9.121e+03 9.061e+00 3.831e+05 1.00e+00 4.32e-77 1.73e-77 2.57e-71 1.00e+00 1.00e+00 1.00e-01 24 1.7 9.123e+02 9.064e+00 3.832e+04 1.00e+00 4.32e-77 1.73e-77 3.96e-72 1.00e+00 1.00e+00 1.00e-01 25 1.8 9.154e+01 9.069e+00 3.854e+03 9.95e-01 3.45e-77 1.73e-77 2.35e-73 9.96e-01 9.96e-01 1.00e-01 26 1.8 9.453e+00 9.090e+00 4.061e+02 9.56e-01 3.45e-77 1.73e-77 9.73e-74 9.67e-01 9.67e-01 1.00e-01 27 1.9 1.226e+00 9.266e+00 6.078e+01 7.35e-01 5.18e-77 3.45e-77 6.08e-75 8.41e-01 8.41e-01 1.00e-01 28 2.0 2.985e-01 1.028e+01 2.281e+01 3.79e-01 3.45e-77 3.45e-77 3.32e-75 7.57e-01 7.57e-01 1.00e-01 29 2.0 9.522e-02 1.184e+01 1.584e+01 1.45e-01 6.91e-77 3.45e-77 5.54e-75 5.18e-01 5.18e-01 1.00e-01 30 2.1 5.085e-02 1.263e+01 1.477e+01 7.79e-02 6.05e-77 2.59e-77 1.16e-74 6.13e-01 6.13e-01 1.00e-01 31 2.1 2.282e-02 1.280e+01 1.376e+01 3.61e-02 3.64e-77 1.73e-77 5.57e-75 8.46e-01 8.46e-01 1.00e-01 32 2.2 5.436e-03 1.307e+01 1.330e+01 8.66e-03 6.91e-77 4.32e-77 1.16e-74 8.46e-01 8.46e-01 1.00e-01 33 2.2 1.296e-03 1.314e+01 1.319e+01 2.07e-03 4.32e-77 2.59e-77 4.98e-74 8.17e-01 8.17e-01 1.00e-01 34 2.3 3.428e-04 1.315e+01 1.317e+01 5.47e-04 8.01e-77 2.59e-77 3.79e-73 8.07e-01 8.07e-01 1.00e-01 35 2.4 9.373e-05 1.316e+01 1.316e+01 1.50e-04 3.45e-77 8.64e-78 1.29e-72 7.58e-01 7.58e-01 1.00e-01 36 2.4 2.978e-05 1.316e+01 1.316e+01 4.75e-05 5.18e-77 2.59e-77 8.25e-73 8.83e-01 8.83e-01 1.00e-01 37 2.5 6.117e-06 1.316e+01 1.316e+01 9.76e-06 1.04e-76 2.59e-77 1.60e-72 8.72e-01 8.72e-01 1.00e-01 38 2.5 1.315e-06 1.316e+01 1.316e+01 2.10e-06 3.45e-77 2.59e-77 8.48e-73 9.01e-01 9.01e-01 1.00e-01 39 2.6 2.487e-07 1.316e+01 1.316e+01 3.97e-07 7.55e-77 2.59e-77 7.04e-72 9.70e-01 9.70e-01 1.00e-01 40 2.7 3.167e-08 1.316e+01 1.316e+01 5.05e-08 8.69e-77 2.59e-77 1.47e-71 9.98e-01 9.98e-01 1.00e-01 41 2.7 3.234e-09 1.316e+01 1.316e+01 5.16e-09 6.91e-77 1.73e-77 1.06e-71 9.98e-01 9.98e-01 1.00e-01 42 2.8 3.294e-10 1.316e+01 1.316e+01 5.26e-10 1.04e-76 1.73e-77 1.46e-71 1.00e+00 1.00e+00 1.00e-01 43 2.8 3.303e-11 1.316e+01 1.316e+01 5.27e-11 6.91e-77 3.45e-77 5.96e-72 1.00e+00 1.00e+00 1.00e-01 44 2.9 3.303e-12 1.316e+01 1.316e+01 5.27e-12 7.67e-77 2.59e-77 5.05e-72 1.00e+00 1.00e+00 1.00e-01 45 2.9 3.304e-13 1.316e+01 1.316e+01 5.27e-13 6.91e-77 2.59e-77 7.33e-72 1.00e+00 1.00e+00 1.00e-01 46 3.0 3.304e-14 1.316e+01 1.316e+01 5.27e-14 6.91e-77 1.73e-77 8.67e-72 1.00e+00 1.00e+00 1.00e-01 47 3.1 3.304e-15 1.316e+01 1.316e+01 5.27e-15 7.34e-77 1.73e-77 6.37e-72 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 3.068532 seconds (6.54 M allocations: 401.548 MiB, 13.29% gc time, 8.71% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:13.15831434739029877923834564513935085838263088868115174314710583333613838949579 Dual objective:13.15831434739031265910111941108301460240354882696535100550146160750418245292972 Duality gap:5.274179658323310600123927155205995070335825028706291882132373701048292256351988e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.585e-02 1.585e-02 0.00e+00 1.00e+10 3.02e+20 8.43e+10 7.03e-01 7.57e-01 3.00e-01 2 0.2 4.190e+19 -2.320e+10 -2.620e+08 9.78e-01 2.97e+09 8.99e+19 2.04e+10 7.89e-01 7.78e-01 3.00e-01 3 0.3 1.306e+19 -4.643e+10 -1.742e+09 9.28e-01 6.28e+08 1.90e+19 4.53e+09 8.17e-01 7.43e-01 3.00e-01 4 0.4 3.686e+18 -7.438e+10 -1.494e+09 9.61e-01 1.15e+08 3.48e+18 1.17e+09 8.25e-01 8.15e-01 3.00e-01 5 0.5 9.725e+17 -1.038e+11 1.515e+08 1.00e+00 2.01e+07 6.09e+17 2.16e+08 7.94e-01 7.63e-01 3.00e-01 6 0.6 3.020e+17 -1.438e+11 3.329e+09 1.05e+00 4.16e+06 1.26e+17 5.11e+07 7.09e-01 7.99e-01 3.00e-01 7 0.7 1.203e+17 -1.906e+11 1.626e+10 1.19e+00 1.21e+06 3.65e+16 1.03e+07 7.49e-01 8.14e-01 3.00e-01 8 0.8 4.286e+16 -2.882e+11 3.009e+10 1.23e+00 3.03e+05 9.15e+15 1.92e+06 7.63e-01 8.17e-01 3.00e-01 9 0.9 1.468e+16 -4.788e+11 5.004e+10 1.23e+00 7.18e+04 2.17e+15 3.51e+05 7.82e-01 6.89e-01 3.00e-01 10 1.0 4.729e+15 -8.435e+11 8.455e+10 1.22e+00 1.57e+04 4.74e+14 1.09e+05 6.46e-01 6.36e-01 3.00e-01 11 1.1 2.321e+15 -1.155e+12 1.377e+11 1.27e+00 5.54e+03 1.67e+14 3.98e+04 6.72e-01 6.11e-01 3.00e-01 12 1.2 1.063e+15 -1.592e+12 1.951e+11 1.28e+00 1.81e+03 5.49e+13 1.55e+04 5.62e-01 9.01e-01 3.00e-01 13 1.3 6.779e+14 -2.021e+12 2.787e+11 1.32e+00 7.94e+02 2.40e+13 1.53e+03 8.24e-01 9.11e-01 3.00e-01 14 1.4 1.835e+14 -5.984e+12 4.300e+11 1.15e+00 1.40e+02 4.23e+12 1.36e+02 8.55e-01 1.00e+00 3.00e-01 15 1.5 4.247e+13 -1.546e+13 6.864e+11 1.09e+00 2.03e+01 6.13e+11 3.93e-48 8.97e-01 1.00e+00 3.00e-01 16 1.6 7.181e+12 -1.302e+13 1.093e+12 1.18e+00 2.08e+00 6.30e+10 2.62e-48 8.89e-01 1.00e+00 3.00e-01 17 1.7 1.329e+12 -3.359e+12 1.724e+12 3.11e+00 2.31e-01 6.99e+09 8.70e-48 8.33e-01 1.00e+00 3.00e-01 18 1.7 3.857e+11 -8.933e+11 2.306e+12 2.26e+00 3.86e-02 1.17e+09 1.58e-48 7.07e-01 1.00e+00 3.00e-01 19 1.8 1.766e+11 -3.434e+11 1.375e+12 1.67e+00 1.13e-02 3.42e+08 7.52e-48 8.44e-01 8.41e-01 3.00e-01 20 1.9 4.903e+10 -9.837e+10 7.115e+11 1.32e+00 1.77e-03 5.34e+07 3.75e-47 8.56e-01 1.00e+00 3.00e-01 21 2.0 1.622e+10 -2.672e+10 4.770e+11 1.12e+00 2.54e-04 7.67e+06 5.93e-48 7.71e-01 1.00e+00 3.00e-01 22 2.1 5.589e+09 -9.867e+09 1.839e+11 1.11e+00 5.81e-05 1.76e+06 2.03e-48 8.65e-01 8.10e-01 3.00e-01 23 2.2 2.102e+09 -2.786e+09 8.647e+10 1.07e+00 7.86e-06 2.38e+05 5.78e-48 7.54e-01 1.00e+00 3.00e-01 24 2.3 6.491e+08 -1.160e+09 2.539e+10 1.10e+00 1.93e-06 5.84e+04 1.05e-48 9.04e-01 9.19e-01 3.00e-01 25 2.4 2.210e+08 -2.876e+08 9.863e+09 1.06e+00 1.86e-07 5.62e+03 1.24e-48 9.41e-01 1.00e+00 3.00e-01 26 2.5 6.517e+07 -7.947e+07 3.067e+09 1.05e+00 1.11e-08 3.34e+02 3.14e-48 1.00e+00 1.00e+00 3.00e-01 27 2.6 1.954e+07 -1.955e+07 9.380e+08 1.04e+00 8.88e-64 3.53e-43 3.36e-47 1.00e+00 1.00e+00 3.00e-01 28 2.7 5.862e+06 -5.862e+06 2.814e+08 1.04e+00 1.01e-63 3.18e-44 4.40e-48 1.00e+00 1.00e+00 1.00e-01 29 2.8 5.873e+05 -5.873e+05 2.819e+07 1.04e+00 1.23e-63 5.59e-43 7.59e-50 1.00e+00 1.00e+00 1.00e-01 30 2.9 5.874e+04 -5.874e+04 2.819e+06 1.04e+00 1.80e-63 1.00e-43 1.17e-50 1.00e+00 1.00e+00 1.00e-01 31 3.0 5.874e+03 -5.874e+03 2.820e+05 1.04e+00 1.55e-63 3.83e-44 1.20e-51 1.00e+00 1.00e+00 1.00e-01 32 3.1 5.875e+02 -5.874e+02 2.820e+04 1.04e+00 1.12e-63 2.15e-43 3.82e-53 1.00e+00 1.00e+00 1.00e-01 33 3.2 5.876e+01 -5.866e+01 2.820e+03 1.04e+00 1.79e-63 3.83e-44 3.42e-54 1.00e+00 1.00e+00 1.00e-01 34 3.3 5.883e+00 -5.788e+00 2.825e+02 1.04e+00 1.76e-63 1.86e-43 1.14e-54 9.99e-01 9.99e-01 1.00e-01 35 3.4 5.954e-01 -4.995e-01 2.867e+01 1.04e+00 1.59e-63 2.43e-43 1.37e-55 9.88e-01 9.88e-01 1.00e-01 36 3.5 6.616e-02 3.259e-02 3.274e+00 9.80e-01 1.23e-63 7.19e-43 1.74e-55 9.22e-01 9.22e-01 1.00e-01 37 3.6 1.126e-02 1.068e-01 6.584e-01 5.52e-01 1.88e-63 3.10e-43 1.28e-55 8.48e-01 8.48e-01 1.00e-01 38 3.7 2.667e-03 1.882e-01 3.188e-01 1.31e-01 1.53e-63 8.20e-43 1.34e-55 8.38e-01 8.38e-01 1.00e-01 39 3.8 6.553e-04 2.394e-01 2.715e-01 3.21e-02 1.75e-63 3.69e-43 1.87e-56 8.06e-01 8.06e-01 1.00e-01 40 3.9 1.798e-04 2.495e-01 2.583e-01 8.81e-03 1.47e-63 1.61e-42 4.58e-56 8.23e-01 8.23e-01 1.00e-01 41 4.0 4.661e-05 2.526e-01 2.549e-01 2.28e-03 1.27e-63 5.07e-43 3.79e-56 7.89e-01 7.89e-01 1.00e-01 42 4.1 1.350e-05 2.534e-01 2.540e-01 6.61e-04 1.88e-63 5.07e-43 1.87e-55 7.75e-01 7.75e-01 1.00e-01 43 4.2 4.080e-06 2.536e-01 2.538e-01 2.00e-04 8.61e-64 1.61e-43 1.61e-54 7.61e-01 7.61e-01 1.00e-01 44 4.3 1.286e-06 2.537e-01 2.538e-01 6.30e-05 1.03e-63 7.87e-43 6.40e-55 9.61e-01 9.61e-01 1.00e-01 45 4.4 1.738e-07 2.537e-01 2.537e-01 8.52e-06 8.89e-64 7.04e-43 1.68e-54 9.60e-01 9.60e-01 1.00e-01 46 4.5 2.368e-08 2.537e-01 2.537e-01 1.16e-06 1.24e-63 1.48e-42 1.66e-54 9.77e-01 9.77e-01 1.00e-01 47 4.6 2.854e-09 2.537e-01 2.537e-01 1.40e-07 1.36e-63 3.86e-43 1.47e-54 9.93e-01 9.93e-01 1.00e-01 48 4.7 3.031e-10 2.537e-01 2.537e-01 1.49e-08 1.20e-63 8.39e-43 5.37e-55 9.99e-01 9.99e-01 1.00e-01 49 4.8 3.050e-11 2.537e-01 2.537e-01 1.49e-09 2.03e-63 2.90e-43 7.95e-55 1.00e+00 1.00e+00 1.00e-01 50 4.9 3.051e-12 2.537e-01 2.537e-01 1.49e-10 1.59e-63 2.82e-43 9.91e-55 1.00e+00 1.00e+00 1.00e-01 51 4.9 3.051e-13 2.537e-01 2.537e-01 1.49e-11 1.42e-63 1.54e-43 7.64e-55 1.00e+00 1.00e+00 1.00e-01 52 5.0 3.051e-14 2.537e-01 2.537e-01 1.50e-12 1.80e-63 1.14e-43 5.21e-55 1.00e+00 1.00e+00 1.00e-01 53 5.1 3.052e-15 2.537e-01 2.537e-01 1.50e-13 1.34e-63 6.74e-43 1.46e-54 1.00e+00 1.00e+00 1.00e-01 54 5.2 3.052e-16 2.537e-01 2.537e-01 1.50e-14 1.53e-63 3.20e-43 4.88e-55 1.00e+00 1.00e+00 1.00e-01 55 5.3 3.052e-17 2.537e-01 2.537e-01 1.50e-15 2.27e-63 5.54e-43 3.39e-55 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 5.329475 seconds (9.60 M allocations: 518.129 MiB, 8.16% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:0.2537404272210647350124044798026149608281511546128763509958434360811650414265707 Dual objective:0.2537404272210648845819327403162021181079244636192063340934962633660353438333613 Duality gap:1.495695282605135871572797733090063299830976528272848703024067906393958802016496e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.6 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 8.43e+10 6.32e-01 5.24e-01 3.00e-01 2 1.2 5.118e+19 7.190e+07 1.164e+10 9.88e-01 3.68e+09 3.68e-01 4.01e+10 6.36e-01 6.99e-01 3.00e-01 3 1.8 2.570e+19 6.028e+07 2.506e+10 9.95e-01 1.34e+09 1.34e-01 1.21e+10 7.82e-01 7.56e-01 3.00e-01 4 2.4 8.263e+18 1.502e+07 4.098e+10 9.99e-01 2.93e+08 2.93e-02 2.94e+09 8.07e-01 8.00e-01 3.00e-01 5 3.0 2.367e+18 3.547e+06 6.396e+10 1.00e+00 5.64e+07 5.64e-03 5.87e+08 8.04e-01 7.46e-01 3.00e-01 6 3.6 7.008e+17 8.038e+05 9.568e+10 1.00e+00 1.11e+07 1.11e-03 1.49e+08 8.14e-01 7.81e-01 3.00e-01 7 4.2 1.972e+17 1.837e+05 1.446e+11 1.00e+00 2.06e+06 2.06e-04 3.27e+07 7.79e-01 7.96e-01 3.00e-01 8 4.8 6.361e+16 4.687e+04 2.206e+11 1.00e+00 4.56e+05 4.56e-05 6.67e+06 7.28e-01 7.70e-01 3.00e-01 9 5.5 2.470e+16 1.204e+04 3.288e+11 1.00e+00 1.24e+05 1.24e-05 1.54e+06 7.29e-01 7.91e-01 3.00e-01 10 6.1 9.586e+15 3.109e+03 5.041e+11 1.00e+00 3.37e+04 3.37e-06 3.21e+05 7.58e-01 7.85e-01 3.00e-01 11 6.8 3.375e+15 7.627e+02 8.164e+11 1.00e+00 8.17e+03 8.17e-07 6.90e+04 6.24e-01 7.24e-01 3.00e-01 12 7.4 1.763e+15 3.251e+02 1.508e+12 1.00e+00 3.07e+03 3.07e-07 1.91e+04 5.66e-01 4.74e-01 3.00e-01 13 8.0 1.006e+15 3.029e+02 2.709e+12 1.00e+00 1.33e+03 1.33e-07 1.00e+04 6.70e-01 6.86e-01 3.00e-01 14 8.6 4.647e+14 3.925e+02 4.272e+12 1.00e+00 4.40e+02 4.40e-08 3.14e+03 5.67e-01 6.23e-01 3.00e-01 15 9.3 2.709e+14 6.587e+02 6.050e+12 1.00e+00 1.91e+02 1.91e-08 1.18e+03 4.25e-01 9.14e-01 3.00e-01 16 9.9 2.367e+14 6.300e+01 9.859e+12 1.00e+00 1.10e+02 1.10e-08 1.01e+02 7.83e-01 1.00e+00 3.00e-01 17 10.5 8.205e+13 7.894e+01 1.584e+13 1.00e+00 2.37e+01 2.37e-09 4.72e-58 8.13e-01 1.00e+00 3.00e-01 18 11.1 2.463e+13 1.886e+01 2.504e+13 1.00e+00 4.43e+00 4.43e-10 1.42e-57 8.84e-01 1.00e+00 3.00e-01 19 11.7 4.808e+12 2.447e+00 3.732e+13 1.00e+00 5.16e-01 5.16e-11 3.17e-57 8.88e-01 1.00e+00 3.00e-01 20 12.4 1.084e+12 3.495e-01 3.941e+13 1.00e+00 5.77e-02 5.77e-12 3.49e-57 8.56e-01 1.00e+00 3.00e-01 21 13.0 3.431e+11 1.295e-01 2.400e+13 1.00e+00 8.33e-03 8.33e-13 2.48e-57 8.25e-01 1.00e+00 3.00e-01 22 13.6 1.158e+11 9.545e-02 1.061e+13 1.00e+00 1.46e-03 1.46e-13 5.94e-58 8.40e-01 8.07e-01 3.00e-01 23 14.2 4.557e+10 8.306e-02 4.818e+12 1.00e+00 2.34e-04 2.34e-14 1.30e-58 7.20e-01 1.00e+00 3.00e-01 24 14.7 1.417e+10 8.217e-02 1.436e+12 1.00e+00 6.54e-05 6.54e-15 4.61e-60 8.96e-01 8.18e-01 3.00e-01 25 15.3 5.688e+09 7.650e-02 6.445e+11 1.00e+00 6.79e-06 6.79e-16 4.38e-59 9.34e-01 1.00e+00 3.00e-01 26 15.9 1.690e+09 7.658e-02 1.988e+11 1.00e+00 4.49e-07 4.49e-17 1.22e-59 1.00e+00 1.00e+00 3.00e-01 27 16.5 5.061e+08 7.648e-02 6.022e+10 1.00e+00 4.37e-74 5.22e-51 4.68e-59 1.00e+00 1.00e+00 3.00e-01 28 17.1 1.518e+08 7.648e-02 1.807e+10 1.00e+00 3.93e-74 5.53e-51 7.94e-59 1.00e+00 1.00e+00 1.00e-01 29 17.7 1.524e+07 7.648e-02 1.814e+09 1.00e+00 3.20e-74 6.41e-51 1.07e-59 1.00e+00 1.00e+00 1.00e-01 30 18.3 1.524e+06 7.649e-02 1.814e+08 1.00e+00 2.60e-74 3.76e-51 4.12e-61 1.00e+00 1.00e+00 1.00e-01 31 18.9 1.525e+05 7.649e-02 1.814e+07 1.00e+00 2.25e-74 3.18e-51 8.76e-62 1.00e+00 1.00e+00 1.00e-01 32 19.5 1.525e+04 7.649e-02 1.814e+06 1.00e+00 2.96e-74 3.44e-51 1.76e-63 1.00e+00 1.00e+00 1.00e-01 33 20.1 1.525e+03 7.649e-02 1.815e+05 1.00e+00 2.79e-74 7.37e-51 3.87e-64 1.00e+00 1.00e+00 1.00e-01 34 20.7 1.525e+02 7.649e-02 1.815e+04 1.00e+00 1.83e-74 5.29e-51 7.01e-65 1.00e+00 1.00e+00 1.00e-01 35 21.3 1.529e+01 7.653e-02 1.820e+03 1.00e+00 2.64e-74 2.05e-51 4.16e-66 9.97e-01 9.97e-01 1.00e-01 36 21.9 1.564e+00 7.692e-02 1.862e+02 9.99e-01 4.25e-74 5.93e-51 2.89e-67 9.76e-01 9.76e-01 1.00e-01 37 22.5 1.897e-01 8.062e-02 2.266e+01 9.93e-01 2.66e-74 1.96e-51 1.49e-68 8.77e-01 8.77e-01 1.00e-01 38 23.2 3.990e-02 1.073e-01 4.856e+00 9.57e-01 2.78e-74 6.35e-51 7.64e-69 9.21e-01 9.21e-01 1.00e-01 39 23.8 6.811e-03 1.612e-01 9.718e-01 7.15e-01 2.76e-74 4.12e-51 4.72e-69 8.71e-01 8.71e-01 1.00e-01 40 24.4 1.473e-03 2.059e-01 3.812e-01 1.75e-01 2.27e-74 3.57e-51 1.03e-68 8.63e-01 8.63e-01 1.00e-01 41 25.0 3.291e-04 2.437e-01 2.829e-01 3.92e-02 3.51e-74 6.29e-51 4.58e-69 8.93e-01 8.93e-01 1.00e-01 42 25.6 6.458e-05 2.517e-01 2.594e-01 7.69e-03 4.68e-74 1.77e-51 7.29e-70 8.48e-01 8.48e-01 1.00e-01 43 26.2 1.529e-05 2.532e-01 2.550e-01 1.82e-03 6.33e-74 4.23e-51 1.11e-67 8.38e-01 8.38e-01 1.00e-01 44 26.8 3.758e-06 2.536e-01 2.540e-01 4.47e-04 4.04e-74 8.01e-51 5.21e-67 8.60e-01 8.60e-01 1.00e-01 45 27.4 8.506e-07 2.537e-01 2.538e-01 1.01e-04 6.06e-74 8.02e-51 1.03e-66 9.32e-01 9.32e-01 1.00e-01 46 28.0 1.372e-07 2.537e-01 2.538e-01 1.63e-05 4.55e-74 9.50e-51 5.91e-67 9.60e-01 9.60e-01 1.00e-01 47 28.7 1.861e-08 2.537e-01 2.537e-01 2.21e-06 5.32e-74 6.38e-51 2.58e-66 9.53e-01 9.53e-01 1.00e-01 48 29.3 2.646e-09 2.537e-01 2.537e-01 3.15e-07 4.91e-74 1.14e-50 8.16e-67 9.65e-01 9.65e-01 1.00e-01 49 29.9 3.469e-10 2.537e-01 2.537e-01 4.13e-08 5.08e-74 1.22e-50 8.25e-67 9.73e-01 9.73e-01 1.00e-01 50 30.5 4.314e-11 2.537e-01 2.537e-01 5.13e-09 4.20e-74 6.11e-51 4.47e-67 9.75e-01 9.75e-01 1.00e-01 51 31.1 5.269e-12 2.537e-01 2.537e-01 6.27e-10 4.72e-74 1.80e-51 4.64e-65 9.79e-01 9.79e-01 1.00e-01 52 31.8 6.243e-13 2.537e-01 2.537e-01 7.43e-11 5.50e-74 6.29e-51 5.79e-64 9.96e-01 9.96e-01 1.00e-01 53 32.4 6.487e-14 2.537e-01 2.537e-01 7.72e-12 7.54e-74 5.20e-51 1.71e-64 1.00e+00 1.00e+00 1.00e-01 54 33.0 6.499e-15 2.537e-01 2.537e-01 7.73e-13 5.17e-74 4.08e-51 3.89e-63 1.00e+00 1.00e+00 1.00e-01 55 33.6 6.501e-16 2.537e-01 2.537e-01 7.74e-14 3.92e-74 4.00e-51 4.26e-61 1.00e+00 1.00e+00 1.00e-01 56 34.3 6.502e-17 2.537e-01 2.537e-01 7.74e-15 4.79e-74 1.91e-51 5.10e-61 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 34.285394 seconds (60.80 M allocations: 3.580 GiB, 4.96% gc time, 0.64% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:0.25374042722106456993789674612483872136737343903687207858190289514034425792667960270715509254 Dual objective:0.25374042722106534372828050086183781677274144212693285929185439516412200620142955311954467625 Duality gap:7.7379038375473699909540536800309006078070995150002377774827474995041238958370876675351486478e-16 [ Info: Creating the univariate constraint [ Info: Constructing trivariate constraint iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.9 1.000e+06 1.000e+00 5.001e+03 1.00e+00 1.00e+03 0.00e+00 3.99e+06 6.53e-01 5.28e-01 3.00e-01 2 1.2 5.015e+05 5.164e+02 3.088e+03 7.13e-01 3.47e+02 0.00e+00 1.88e+06 4.22e-01 6.07e-01 3.00e-01 3 1.4 3.499e+05 6.688e+02 8.065e+03 8.47e-01 2.00e+02 0.00e+00 7.40e+05 5.84e-01 4.21e-01 3.00e-01 4 1.6 2.030e+05 5.414e+02 1.758e+04 9.40e-01 8.32e+01 0.00e+00 4.29e+05 4.22e-01 9.53e-01 3.00e-01 5 1.9 1.588e+05 3.876e+02 6.630e+04 9.88e-01 4.81e+01 0.00e+00 2.00e+04 7.78e-01 1.00e+00 3.00e-01 6 2.1 5.705e+04 1.104e+02 1.123e+05 9.98e-01 1.07e+01 0.00e+00 5.41e-67 8.24e-01 1.00e+00 3.00e-01 7 2.4 1.728e+04 2.822e+01 1.690e+05 1.00e+00 1.88e+00 0.00e+00 2.25e-67 8.75e-01 1.00e+00 3.00e-01 8 2.6 4.993e+03 1.126e+01 1.883e+05 1.00e+00 2.35e-01 0.00e+00 2.12e-66 8.48e-01 9.86e-01 3.00e-01 9 2.9 1.681e+03 9.036e+00 9.790e+04 1.00e+00 3.57e-02 0.00e+00 1.20e-66 8.19e-01 1.00e+00 3.00e-01 10 3.1 5.450e+02 8.700e+00 3.672e+04 1.00e+00 6.44e-03 0.00e+00 1.13e-66 8.33e-01 1.00e+00 3.00e-01 11 3.3 1.723e+02 8.588e+00 1.271e+04 9.99e-01 1.08e-03 0.00e+00 4.82e-67 1.00e+00 1.00e+00 3.00e-01 12 3.6 5.146e+01 8.519e+00 4.074e+03 9.96e-01 2.17e-73 0.00e+00 1.70e-67 1.00e+00 1.00e+00 3.00e-01 13 3.8 1.544e+01 8.502e+00 1.228e+03 9.86e-01 1.81e-73 0.00e+00 9.70e-69 9.92e-01 9.92e-01 1.00e-01 14 4.1 1.654e+00 8.507e+00 1.392e+02 8.85e-01 2.74e-73 0.00e+00 1.84e-69 9.78e-01 9.78e-01 1.00e-01 15 4.3 1.981e-01 8.562e+00 2.421e+01 4.77e-01 2.81e-73 0.00e+00 1.37e-69 8.60e-01 8.60e-01 1.00e-01 16 4.6 4.484e-02 8.877e+00 1.242e+01 1.66e-01 1.34e-73 0.00e+00 1.06e-69 8.02e-01 8.02e-01 1.00e-01 17 4.8 1.245e-02 9.486e+00 1.047e+01 4.93e-02 1.84e-73 0.00e+00 1.04e-69 7.62e-01 7.62e-01 1.00e-01 18 5.0 3.917e-03 9.841e+00 1.015e+01 1.55e-02 3.38e-73 0.00e+00 4.32e-70 7.52e-01 7.52e-01 1.00e-01 19 5.3 1.267e-03 9.941e+00 1.004e+01 5.01e-03 1.68e-73 0.00e+00 4.26e-70 8.14e-01 8.14e-01 1.00e-01 20 5.5 3.392e-04 9.983e+00 1.001e+01 1.34e-03 1.05e-73 0.00e+00 2.20e-70 7.89e-01 7.89e-01 1.00e-01 21 5.8 9.835e-05 9.995e+00 1.000e+01 3.89e-04 2.27e-73 0.00e+00 9.72e-71 9.42e-01 9.42e-01 1.00e-01 22 6.0 1.496e-05 9.999e+00 1.000e+01 5.91e-05 2.89e-73 0.00e+00 1.47e-70 9.79e-01 9.79e-01 1.00e-01 23 6.3 1.780e-06 1.000e+01 1.000e+01 7.03e-06 6.78e-73 0.00e+00 7.93e-71 9.89e-01 9.89e-01 1.00e-01 24 6.5 1.951e-07 1.000e+01 1.000e+01 7.71e-07 3.34e-73 0.00e+00 1.84e-70 9.97e-01 9.97e-01 1.00e-01 25 6.8 2.009e-08 1.000e+01 1.000e+01 7.94e-08 4.62e-73 0.00e+00 1.18e-70 1.00e+00 1.00e+00 1.00e-01 26 7.0 2.016e-09 1.000e+01 1.000e+01 7.96e-09 2.06e-73 0.00e+00 4.67e-70 1.00e+00 1.00e+00 1.00e-01 27 7.3 2.017e-10 1.000e+01 1.000e+01 7.97e-10 1.93e-73 0.00e+00 5.23e-70 1.00e+00 1.00e+00 1.00e-01 28 7.5 2.017e-11 1.000e+01 1.000e+01 7.97e-11 1.80e-73 0.00e+00 1.20e-70 1.00e+00 1.00e+00 1.00e-01 29 7.8 2.017e-12 1.000e+01 1.000e+01 7.97e-12 5.51e-73 0.00e+00 3.24e-70 1.00e+00 1.00e+00 1.00e-01 30 8.0 2.018e-13 1.000e+01 1.000e+01 7.97e-13 5.25e-73 0.00e+00 2.81e-70 1.00e+00 1.00e+00 1.00e-01 31 8.2 2.018e-14 1.000e+01 1.000e+01 7.97e-14 4.14e-73 0.00e+00 2.01e-70 1.00e+00 1.00e+00 1.00e-01 32 8.5 2.018e-15 1.000e+01 1.000e+01 7.97e-15 5.34e-73 0.00e+00 1.12e-70 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 8.502189 seconds (14.52 M allocations: 876.273 MiB, 14.55% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:9.999999999999988697811582854914558981664133668768836318925293240430915306239117 Dual objective:10.0000000000000046419702427791554505739798324309705050994144471340092929968061 Duality gap:7.972079329962123100585539894415996793376784875332540007486508186681505335872011e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.2 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 2.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.2 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 0.00e+00 2.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.2 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 2.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.2 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 2.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.2 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 0.00e+00 2.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.2 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 2.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.2 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 2.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.2 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 2.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.2 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 0.00e+00 1.99e+02 1.00e+00 9.05e-01 3.00e-01 10 0.2 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 1.90e+01 1.00e+00 9.47e-01 3.00e-01 11 0.2 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e+00 3.00e-01 12 0.2 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 3.00e-01 13 0.2 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 14 0.2 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 15 0.2 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 16 0.2 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 17 0.2 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 18 0.2 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 19 0.2 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 20 0.2 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.2 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 22 0.2 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 4.91e-91 9.98e-01 9.98e-01 1.00e-01 23 0.3 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 0.00e+00 0.00e+00 9.78e-01 9.78e-01 1.00e-01 24 0.3 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 0.00e+00 1.47e-90 8.86e-01 8.86e-01 1.00e-01 25 0.3 2.642e-01 1.213e+00 6.845e-01 2.78e-01 0.00e+00 0.00e+00 4.91e-91 9.25e-01 9.25e-01 1.00e-01 26 0.3 4.423e-02 1.057e+00 9.685e-01 4.37e-02 9.82e-91 0.00e+00 9.82e-91 9.82e-01 9.82e-01 1.00e-01 27 0.3 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 0.00e+00 9.82e-91 9.90e-01 9.90e-01 1.00e-01 28 0.3 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 0.00e+00 1.47e-90 9.98e-01 9.98e-01 1.00e-01 29 0.3 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 30 0.3 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.3 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.3 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 33 0.3 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 34 0.3 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.3 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 36 0.3 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 37 0.3 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 38 0.3 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 0.00e+00 2.45e-90 1.00e+00 1.00e+00 1.00e-01 39 0.3 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.322891 seconds (38.95 k allocations: 3.276 MiB, 77.02% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279668 Dual objective:0.9999999999999994308276721633712720975914346046825898890655777243547660499609509826264801335 Duality gap:5.691723278366352070451840708486824389848583387797514538933756972301949865323277923806982379e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 1.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.0 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 8.43e-81 1.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.0 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 1.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.0 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 1.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.1 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 3.37e-80 1.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.1 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 1.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.1 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 1.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.1 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 1.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.1 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 2.70e-79 9.95e+01 1.00e+00 9.05e-01 3.00e-01 10 0.1 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 9.50e+00 1.00e+00 9.47e-01 3.00e-01 11 0.1 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 5.00e-01 1.00e+00 1.00e+00 3.00e-01 12 0.1 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 5.40e-79 0.00e+00 1.00e+00 1.00e+00 3.00e-01 13 0.1 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 14 0.1 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 1.35e-79 2.45e-91 1.00e+00 1.00e+00 1.00e-01 15 0.1 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 1.69e-80 1.23e-90 1.00e+00 1.00e+00 1.00e-01 16 0.1 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 17 0.1 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 2.64e-82 1.23e-90 1.00e+00 1.00e+00 1.00e-01 18 0.1 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 1.65e-83 9.82e-91 1.00e+00 1.00e+00 1.00e-01 19 0.1 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 1.03e-84 7.36e-91 1.00e+00 1.00e+00 1.00e-01 20 0.1 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.1 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 1.61e-86 4.91e-91 1.00e+00 1.00e+00 1.00e-01 22 0.1 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 7.36e-91 9.98e-01 9.98e-01 1.00e-01 23 0.1 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 1.10e-88 9.82e-91 9.78e-01 9.78e-01 1.00e-01 24 0.1 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 1.77e-89 4.91e-91 8.86e-01 8.86e-01 1.00e-01 25 0.1 2.642e-01 1.213e+00 6.845e-01 2.78e-01 9.82e-91 9.82e-91 1.47e-90 9.25e-01 9.25e-01 1.00e-01 26 0.1 4.423e-02 1.057e+00 9.685e-01 4.37e-02 4.91e-91 9.82e-91 1.47e-90 9.82e-01 9.82e-01 1.00e-01 27 0.2 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 9.82e-91 4.91e-91 9.90e-01 9.90e-01 1.00e-01 28 0.2 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 9.82e-91 2.45e-90 9.98e-01 9.98e-01 1.00e-01 29 0.2 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 1.96e-90 4.91e-91 1.00e+00 1.00e+00 1.00e-01 30 0.2 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.2 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 9.82e-91 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.2 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 33 0.2 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 34 0.2 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 9.82e-91 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.2 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 36 0.2 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 9.82e-91 4.91e-91 1.00e+00 1.00e+00 1.00e-01 37 0.2 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 38 0.2 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 1.96e-90 1.96e-90 1.00e+00 1.00e+00 1.00e-01 39 0.2 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 9.82e-91 1.58e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.204772 seconds (42.80 k allocations: 3.462 MiB, 72.20% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279658 Dual objective:0.99999999999999943082767216337127209759143460468258988906557772435476604996095098262648013301 Duality gap:5.6917232783663520704518407084868243898485833877975145389337569723019498653208233770743335244e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.000e+00 7.000e+10 1.00e+00 1.00e+10 0.00e+00 7.05e+10 6.66e-01 6.95e-01 3.00e-01 2 0.1 4.559e+19 1.338e+10 7.193e+10 6.86e-01 3.34e+09 0.00e+00 2.15e+10 7.05e-01 7.53e-01 3.00e-01 3 0.1 1.822e+19 2.640e+10 9.901e+10 5.79e-01 9.85e+08 0.00e+00 5.31e+09 6.16e-01 7.88e-01 3.00e-01 4 0.1 8.970e+18 3.260e+10 1.789e+11 6.92e-01 3.78e+08 0.00e+00 1.12e+09 7.73e-01 1.00e+00 3.00e-01 5 0.2 3.189e+18 1.238e+10 3.561e+11 9.33e-01 8.58e+07 0.00e+00 4.41e-142 8.40e-01 1.00e+00 3.00e-01 6 0.2 8.172e+17 2.052e+09 5.731e+11 9.93e-01 1.37e+07 0.00e+00 3.11e-141 8.95e-01 1.00e+00 3.00e-01 7 0.2 1.367e+17 2.121e+08 9.202e+11 1.00e+00 1.44e+06 0.00e+00 1.40e-141 8.90e-01 1.00e+00 3.00e-01 8 0.2 2.412e+16 2.361e+07 1.476e+12 1.00e+00 1.58e+05 0.00e+00 2.66e-141 8.97e-01 1.00e+00 3.00e-01 9 0.2 3.957e+15 2.403e+06 2.364e+12 1.00e+00 1.62e+04 0.00e+00 9.04e-141 8.94e-01 1.00e+00 3.00e-01 10 0.2 6.738e+14 2.573e+05 3.785e+12 1.00e+00 1.73e+03 0.00e+00 1.97e-140 8.99e-01 1.00e+00 3.00e-01 11 0.2 1.095e+14 2.604e+04 6.056e+12 1.00e+00 1.75e+02 0.00e+00 8.38e-141 8.99e-01 1.00e+00 3.00e-01 12 0.2 1.816e+13 2.738e+03 9.636e+12 1.00e+00 1.76e+01 0.00e+00 7.86e-141 9.13e-01 1.00e+00 3.00e-01 13 0.3 3.342e+12 3.449e+02 1.456e+13 1.00e+00 1.53e+00 0.00e+00 5.80e-141 1.00e+00 1.00e+00 3.00e-01 14 0.3 1.007e+12 1.188e+02 1.410e+13 1.00e+00 2.86e-152 0.00e+00 1.83e-140 1.00e+00 1.00e+00 3.00e-01 15 0.3 3.022e+11 1.198e+02 4.231e+12 1.00e+00 9.55e-153 0.00e+00 9.49e-142 9.99e-01 9.99e-01 1.00e-01 16 0.3 3.062e+10 1.199e+02 4.287e+11 1.00e+00 9.55e-153 0.00e+00 1.70e-142 1.00e+00 1.00e+00 1.00e-01 17 0.3 3.063e+09 1.200e+02 4.288e+10 1.00e+00 9.55e-153 0.00e+00 1.35e-143 1.00e+00 1.00e+00 1.00e-01 18 0.3 3.063e+08 1.201e+02 4.288e+09 1.00e+00 9.55e-153 0.00e+00 2.63e-144 1.00e+00 1.00e+00 1.00e-01 19 0.3 3.063e+07 1.202e+02 4.289e+08 1.00e+00 9.55e-153 0.00e+00 6.89e-145 1.00e+00 1.00e+00 1.00e-01 20 0.3 3.064e+06 1.202e+02 4.289e+07 1.00e+00 9.55e-153 0.00e+00 7.01e-146 1.00e+00 1.00e+00 1.00e-01 21 0.4 3.064e+05 1.203e+02 4.290e+06 1.00e+00 9.55e-153 0.00e+00 2.33e-147 1.00e+00 1.00e+00 1.00e-01 22 0.4 3.065e+04 1.203e+02 4.293e+05 9.99e-01 9.55e-153 0.00e+00 1.94e-148 1.00e+00 1.00e+00 1.00e-01 23 0.4 3.075e+03 1.204e+02 4.317e+04 9.94e-01 9.55e-153 0.00e+00 5.97e-149 9.97e-01 9.97e-01 1.00e-01 24 0.4 3.167e+02 1.211e+02 4.554e+03 9.48e-01 9.55e-153 0.00e+00 7.25e-150 9.70e-01 9.70e-01 1.00e-01 25 0.4 4.021e+01 1.274e+02 6.904e+02 6.88e-01 9.55e-153 0.00e+00 2.27e-150 8.70e-01 8.70e-01 1.00e-01 26 0.4 8.743e+00 1.689e+02 2.913e+02 2.66e-01 1.91e-152 0.00e+00 3.86e-151 9.15e-01 9.15e-01 1.00e-01 27 0.4 1.547e+00 2.316e+02 2.532e+02 4.47e-02 1.91e-152 0.00e+00 1.49e-150 9.82e-01 9.82e-01 1.00e-01 28 0.4 1.800e-01 2.389e+02 2.414e+02 5.25e-03 3.82e-152 0.00e+00 8.53e-151 9.89e-01 9.89e-01 1.00e-01 29 0.5 1.986e-02 2.399e+02 2.401e+02 5.79e-04 3.82e-152 0.00e+00 7.50e-151 9.97e-01 9.97e-01 1.00e-01 30 0.5 2.030e-03 2.400e+02 2.400e+02 5.92e-05 1.91e-152 0.00e+00 1.25e-151 1.00e+00 1.00e+00 1.00e-01 31 0.5 2.034e-04 2.400e+02 2.400e+02 5.93e-06 1.91e-152 0.00e+00 1.11e-150 1.00e+00 1.00e+00 1.00e-01 32 0.5 2.035e-05 2.400e+02 2.400e+02 5.93e-07 1.91e-152 0.00e+00 6.46e-151 1.00e+00 1.00e+00 1.00e-01 33 0.5 2.035e-06 2.400e+02 2.400e+02 5.94e-08 3.82e-152 0.00e+00 3.33e-151 1.00e+00 1.00e+00 1.00e-01 34 0.5 2.035e-07 2.400e+02 2.400e+02 5.94e-09 1.91e-152 0.00e+00 5.53e-151 1.00e+00 1.00e+00 1.00e-01 35 0.5 2.035e-08 2.400e+02 2.400e+02 5.94e-10 3.82e-152 0.00e+00 1.63e-150 1.00e+00 1.00e+00 1.00e-01 36 0.6 2.036e-09 2.400e+02 2.400e+02 5.94e-11 9.55e-153 0.00e+00 1.70e-150 1.00e+00 1.00e+00 1.00e-01 37 0.6 2.036e-10 2.400e+02 2.400e+02 5.94e-12 1.91e-152 0.00e+00 1.62e-150 1.00e+00 1.00e+00 1.00e-01 38 0.6 2.036e-11 2.400e+02 2.400e+02 5.94e-13 1.91e-152 0.00e+00 1.19e-150 1.00e+00 1.00e+00 1.00e-01 39 0.6 2.036e-12 2.400e+02 2.400e+02 5.94e-14 1.91e-152 0.00e+00 2.34e-151 1.00e+00 1.00e+00 1.00e-01 40 0.6 2.036e-13 2.400e+02 2.400e+02 5.94e-15 1.91e-152 0.00e+00 1.96e-150 1.00e+00 1.00e+00 1.00e-01 41 0.6 2.037e-14 2.400e+02 2.400e+02 5.94e-16 1.91e-152 0.00e+00 1.49e-150 1.00e+00 1.00e+00 1.00e-01 42 0.6 2.037e-15 2.400e+02 2.400e+02 5.94e-17 1.91e-152 0.00e+00 5.19e-150 1.00e+00 1.00e+00 1.00e-01 43 0.6 2.037e-16 2.400e+02 2.400e+02 5.94e-18 1.91e-152 0.00e+00 1.10e-149 1.00e+00 1.00e+00 1.00e-01 44 0.7 2.037e-17 2.400e+02 2.400e+02 5.94e-19 1.91e-152 0.00e+00 8.30e-150 1.00e+00 1.00e+00 1.00e-01 45 0.7 2.037e-18 2.400e+02 2.400e+02 5.94e-20 1.91e-152 0.00e+00 4.62e-149 1.00e+00 1.00e+00 1.00e-01 46 0.7 2.038e-19 2.400e+02 2.400e+02 5.94e-21 1.91e-152 0.00e+00 6.77e-149 1.00e+00 1.00e+00 1.00e-01 47 0.7 2.038e-20 2.400e+02 2.400e+02 5.94e-22 9.55e-153 0.00e+00 1.25e-148 1.00e+00 1.00e+00 1.00e-01 48 0.7 2.038e-21 2.400e+02 2.400e+02 5.94e-23 1.91e-152 0.00e+00 9.19e-149 1.00e+00 1.00e+00 1.00e-01 49 0.7 2.038e-22 2.400e+02 2.400e+02 5.94e-24 1.91e-152 0.00e+00 8.22e-148 1.00e+00 1.00e+00 1.00e-01 50 0.7 2.038e-23 2.400e+02 2.400e+02 5.95e-25 1.91e-152 0.00e+00 3.55e-147 1.00e+00 1.00e+00 1.00e-01 51 0.7 2.039e-24 2.400e+02 2.400e+02 5.95e-26 1.91e-152 0.00e+00 1.25e-147 1.00e+00 1.00e+00 1.00e-01 52 0.8 2.039e-25 2.400e+02 2.400e+02 5.95e-27 1.91e-152 0.00e+00 5.40e-147 1.00e+00 1.00e+00 1.00e-01 53 0.8 2.039e-26 2.400e+02 2.400e+02 5.95e-28 1.91e-152 0.00e+00 9.28e-147 1.00e+00 1.00e+00 1.00e-01 54 0.8 2.039e-27 2.400e+02 2.400e+02 5.95e-29 1.91e-152 0.00e+00 3.17e-147 1.00e+00 1.00e+00 1.00e-01 55 0.8 2.039e-28 2.400e+02 2.400e+02 5.95e-30 9.55e-153 0.00e+00 4.21e-146 1.00e+00 1.00e+00 1.00e-01 56 0.8 2.040e-29 2.400e+02 2.400e+02 5.95e-31 1.91e-152 0.00e+00 9.11e-146 1.00e+00 1.00e+00 1.00e-01 57 0.8 2.040e-30 2.400e+02 2.400e+02 5.95e-32 1.91e-152 0.00e+00 5.23e-145 1.00e+00 1.00e+00 1.00e-01 58 0.8 2.040e-31 2.400e+02 2.400e+02 5.95e-33 1.91e-152 0.00e+00 6.60e-145 1.00e+00 1.00e+00 1.00e-01 59 0.8 2.040e-32 2.400e+02 2.400e+02 5.95e-34 1.91e-152 0.00e+00 8.90e-145 1.00e+00 1.00e+00 1.00e-01 60 0.9 2.040e-33 2.400e+02 2.400e+02 5.95e-35 1.91e-152 0.00e+00 1.74e-144 1.00e+00 1.00e+00 1.00e-01 61 0.9 2.041e-34 2.400e+02 2.400e+02 5.95e-36 1.91e-152 0.00e+00 1.85e-144 1.00e+00 1.00e+00 1.00e-01 62 0.9 2.041e-35 2.400e+02 2.400e+02 5.95e-37 1.91e-152 0.00e+00 8.71e-145 1.00e+00 1.00e+00 1.00e-01 63 0.9 2.041e-36 2.400e+02 2.400e+02 5.95e-38 1.91e-152 0.00e+00 3.10e-143 1.00e+00 1.00e+00 1.00e-01 64 0.9 2.041e-37 2.400e+02 2.400e+02 5.95e-39 1.91e-152 0.00e+00 8.69e-144 1.00e+00 1.00e+00 1.00e-01 65 0.9 2.041e-38 2.400e+02 2.400e+02 5.95e-40 1.91e-152 0.00e+00 6.16e-143 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.926408 seconds (1.04 M allocations: 59.756 MiB, 51.40% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:239.999999999999999999999999999999999999985708477495814925921809305622167843286238069292995712318302294898104936089429662656734980058948296517625406006973387 Dual objective:240.000000000000000000000000000000000000014291522504185074078190694377832156713797168628126856493958439785061442310927034199206493199352327547707105520264987 Duality gap:5.95480104341044753257945599076339863074147902815232170326169685144927212947861863419237884531789840734630770165421788746102581858385462537894980474664963406e-41 ** Starting computation of basis transformations ** Block 0 of size 1 x 1 Block 0 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 5 of size 1 x 1 Block 2 of size 1 x 1 Block 4 of size 1 x 1 Block 1 of size 1 x 1 Block 6 of size 1 x 1 Block 3 of size 1 x 1 Block B of size 3 x 3 Block B has 2 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block A of size 4 x 4 Block A has 4 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 ** Finished computation of basis transformations (10.89667643s) ** ** Transforming the problem and the solution ** (6.89121863s) ** Projection the solution into the affine space ** Reducing the system from 7 columns to 7 columns Constructing the linear system... (8.142323692s) Preprocessing to get an integer system... (6.5119e-5s) Finding the pivots of A using RREF mod p... (0.000566865 7.183e-5 s) Solving the system of size 7 x 7 using the pseudoinverse... 0.858617057s ** Finished projection into affine space (11.622516003s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.178802274) [ Info: Creating the univariate constraint [ Info: Constructing trivariate constraint iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.4 1.000e+06 1.000e+00 5.001e+03 1.00e+00 1.00e+03 0.00e+00 3.99e+06 6.53e-01 5.28e-01 3.00e-01 2 0.6 5.015e+05 5.164e+02 3.088e+03 7.13e-01 3.47e+02 0.00e+00 1.88e+06 4.22e-01 6.07e-01 3.00e-01 3 0.9 3.499e+05 6.688e+02 8.065e+03 8.47e-01 2.00e+02 0.00e+00 7.40e+05 5.84e-01 4.21e-01 3.00e-01 4 1.1 2.030e+05 5.414e+02 1.758e+04 9.40e-01 8.32e+01 0.00e+00 4.29e+05 4.22e-01 9.53e-01 3.00e-01 5 1.4 1.588e+05 3.876e+02 6.630e+04 9.88e-01 4.81e+01 0.00e+00 2.00e+04 7.78e-01 1.00e+00 3.00e-01 6 1.6 5.705e+04 1.104e+02 1.123e+05 9.98e-01 1.07e+01 0.00e+00 5.41e-67 8.24e-01 1.00e+00 3.00e-01 7 1.9 1.728e+04 2.822e+01 1.690e+05 1.00e+00 1.88e+00 0.00e+00 2.25e-67 8.75e-01 1.00e+00 3.00e-01 8 2.1 4.993e+03 1.126e+01 1.883e+05 1.00e+00 2.35e-01 0.00e+00 2.12e-66 8.48e-01 9.86e-01 3.00e-01 9 2.4 1.681e+03 9.036e+00 9.790e+04 1.00e+00 3.57e-02 0.00e+00 1.20e-66 8.19e-01 1.00e+00 3.00e-01 10 2.6 5.450e+02 8.700e+00 3.672e+04 1.00e+00 6.44e-03 0.00e+00 1.13e-66 8.33e-01 1.00e+00 3.00e-01 11 2.8 1.723e+02 8.588e+00 1.271e+04 9.99e-01 1.08e-03 0.00e+00 4.82e-67 1.00e+00 1.00e+00 3.00e-01 12 3.1 5.146e+01 8.519e+00 4.074e+03 9.96e-01 2.17e-73 0.00e+00 1.70e-67 1.00e+00 1.00e+00 3.00e-01 13 3.3 1.544e+01 8.502e+00 1.228e+03 9.86e-01 1.81e-73 0.00e+00 9.70e-69 9.92e-01 9.92e-01 1.00e-01 14 3.6 1.654e+00 8.507e+00 1.392e+02 8.85e-01 2.74e-73 0.00e+00 1.84e-69 9.78e-01 9.78e-01 1.00e-01 15 3.8 1.981e-01 8.562e+00 2.421e+01 4.77e-01 2.81e-73 0.00e+00 1.37e-69 8.60e-01 8.60e-01 1.00e-01 16 4.1 4.484e-02 8.877e+00 1.242e+01 1.66e-01 1.34e-73 0.00e+00 1.06e-69 8.02e-01 8.02e-01 1.00e-01 17 4.3 1.245e-02 9.486e+00 1.047e+01 4.93e-02 1.84e-73 0.00e+00 1.04e-69 7.62e-01 7.62e-01 1.00e-01 18 4.6 3.917e-03 9.841e+00 1.015e+01 1.55e-02 3.38e-73 0.00e+00 4.32e-70 7.52e-01 7.52e-01 1.00e-01 19 4.8 1.267e-03 9.941e+00 1.004e+01 5.01e-03 1.68e-73 0.00e+00 4.26e-70 8.14e-01 8.14e-01 1.00e-01 20 5.1 3.392e-04 9.983e+00 1.001e+01 1.34e-03 1.05e-73 0.00e+00 2.20e-70 7.89e-01 7.89e-01 1.00e-01 21 5.3 9.835e-05 9.995e+00 1.000e+01 3.89e-04 2.27e-73 0.00e+00 9.72e-71 9.42e-01 9.42e-01 1.00e-01 22 5.6 1.496e-05 9.999e+00 1.000e+01 5.91e-05 2.89e-73 0.00e+00 1.47e-70 9.79e-01 9.79e-01 1.00e-01 23 5.8 1.780e-06 1.000e+01 1.000e+01 7.03e-06 6.78e-73 0.00e+00 7.93e-71 9.89e-01 9.89e-01 1.00e-01 24 6.1 1.951e-07 1.000e+01 1.000e+01 7.71e-07 3.34e-73 0.00e+00 1.84e-70 9.97e-01 9.97e-01 1.00e-01 25 6.4 2.009e-08 1.000e+01 1.000e+01 7.94e-08 4.62e-73 0.00e+00 1.18e-70 1.00e+00 1.00e+00 1.00e-01 26 6.6 2.016e-09 1.000e+01 1.000e+01 7.96e-09 2.06e-73 0.00e+00 4.67e-70 1.00e+00 1.00e+00 1.00e-01 27 6.9 2.017e-10 1.000e+01 1.000e+01 7.97e-10 1.93e-73 0.00e+00 5.23e-70 1.00e+00 1.00e+00 1.00e-01 28 7.1 2.017e-11 1.000e+01 1.000e+01 7.97e-11 1.80e-73 0.00e+00 1.20e-70 1.00e+00 1.00e+00 1.00e-01 29 7.4 2.017e-12 1.000e+01 1.000e+01 7.97e-12 5.51e-73 0.00e+00 3.24e-70 1.00e+00 1.00e+00 1.00e-01 30 7.6 2.018e-13 1.000e+01 1.000e+01 7.97e-13 5.25e-73 0.00e+00 2.81e-70 1.00e+00 1.00e+00 1.00e-01 31 7.8 2.018e-14 1.000e+01 1.000e+01 7.97e-14 4.14e-73 0.00e+00 2.01e-70 1.00e+00 1.00e+00 1.00e-01 32 8.1 2.018e-15 1.000e+01 1.000e+01 7.97e-15 5.34e-73 0.00e+00 1.12e-70 1.00e+00 1.00e+00 1.00e-01 33 8.3 2.018e-16 1.000e+01 1.000e+01 7.97e-16 2.40e-73 0.00e+00 1.69e-70 1.00e+00 1.00e+00 1.00e-01 34 8.6 2.018e-17 1.000e+01 1.000e+01 7.97e-17 2.50e-73 0.00e+00 1.96e-70 1.00e+00 1.00e+00 1.00e-01 35 8.8 2.019e-18 1.000e+01 1.000e+01 7.97e-18 2.32e-73 0.00e+00 4.18e-70 1.00e+00 1.00e+00 1.00e-01 36 9.1 2.019e-19 1.000e+01 1.000e+01 7.97e-19 1.67e-73 0.00e+00 6.17e-70 1.00e+00 1.00e+00 1.00e-01 37 9.3 2.019e-20 1.000e+01 1.000e+01 7.98e-20 7.29e-73 0.00e+00 2.57e-69 1.00e+00 1.00e+00 1.00e-01 38 9.6 2.019e-21 1.000e+01 1.000e+01 7.98e-21 2.40e-73 0.00e+00 1.54e-69 1.00e+00 1.00e+00 1.00e-01 39 9.8 2.019e-22 1.000e+01 1.000e+01 7.98e-22 2.94e-73 0.00e+00 8.30e-69 1.00e+00 1.00e+00 1.00e-01 40 10.1 2.020e-23 1.000e+01 1.000e+01 7.98e-23 3.31e-73 0.00e+00 2.45e-68 1.00e+00 1.00e+00 1.00e-01 41 10.3 2.020e-24 1.000e+01 1.000e+01 7.98e-24 2.07e-73 0.00e+00 1.19e-68 1.00e+00 1.00e+00 1.00e-01 42 10.6 2.020e-25 1.000e+01 1.000e+01 7.98e-25 3.22e-73 0.00e+00 3.93e-68 1.00e+00 1.00e+00 1.00e-01 43 10.8 2.020e-26 1.000e+01 1.000e+01 7.98e-26 4.11e-73 0.00e+00 4.91e-68 1.00e+00 1.00e+00 1.00e-01 44 11.1 2.020e-27 1.000e+01 1.000e+01 7.98e-27 4.49e-73 0.00e+00 6.62e-68 1.00e+00 1.00e+00 1.00e-01 45 11.3 2.021e-28 1.000e+01 1.000e+01 7.98e-28 4.59e-73 0.00e+00 2.15e-67 1.00e+00 1.00e+00 1.00e-01 46 11.6 2.021e-29 1.000e+01 1.000e+01 7.98e-29 3.99e-73 0.00e+00 1.41e-66 1.00e+00 1.00e+00 1.00e-01 47 11.8 2.021e-30 1.000e+01 1.000e+01 7.98e-30 4.55e-73 0.00e+00 1.68e-66 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 11.823714 seconds (21.28 M allocations: 1.252 GiB, 10.41% gc time, 0.18% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:9.999999999999999999999999999988680845960537105239762720542034640630029096842082 Dual objective:10.00000000000000000000000000000464893826620797463366888265772922163856296418307 Duality gap:7.98404615283543469695308105784995326979608557945816996746307753735272828661533e-31 ** Starting computation of basis transformations ** Block (:trivariatesos, 2, 2) of size 1 x 1 Block (:F, 4) of size 1 x 1 Block (:F, 4) has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block (:trivariatesos, 4, 3) of size 1 x 1 Block (:trivariatesos, 4, 1) of size 2 x 2 Block (:trivariatesos, 1, 2) of size 2 x 2 Block (:F, 3) of size 2 x 2 Block (:F, 3) has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block (:trivariatesos, 3, 3) of size 3 x 3 Block (:trivariatesos, 3, 3) has 1 kernel vectors. The maximum numerator and denominator are 7 and 6 After reduction, the maximum number of the basis transformation matrix is 7 Block (:F, 2) of size 3 x 3 Block (:F, 2) has 1 kernel vectors. The maximum numerator and denominator are 1 and 2 After reduction, the maximum number of the basis transformation matrix is 2 Block (:trivariatesos, 5, 3) of size 3 x 3 Block (:trivariatesos, 5, 3) has 2 kernel vectors. The maximum numerator and denominator are 1 and 2 After reduction, the maximum number of the basis transformation matrix is 2 Block (:trivariatesos, 3, 1) of size 4 x 4 Block (:trivariatesos, 3, 1) has 1 kernel vectors. The maximum numerator and denominator are 49 and 36 After reduction, the maximum number of the basis transformation matrix is 49 Block (:univariatesos, 2) of size 4 x 4 Block (:univariatesos, 2) has 1 kernel vectors. The maximum numerator and denominator are 22 and 27 After reduction, the maximum number of the basis transformation matrix is 27 Block (:trivariatesos, 5, 1) of size 4 x 4 Block (:trivariatesos, 5, 1) has 3 kernel vectors. The maximum numerator and denominator are 1 and 6 After reduction, the maximum number of the basis transformation matrix is 3 Block (:F, 1) of size 4 x 4 Block (:F, 0) of size 5 x 5 Block (:F, 0) has 1 kernel vectors. The maximum numerator and denominator are 23 and 144 After reduction, the maximum number of the basis transformation matrix is 144 Block (:univariatesos, 1) of size 5 x 5 Block (:univariatesos, 1) has 2 kernel vectors. The maximum numerator and denominator are 35 and 81 After reduction, the maximum number of the basis transformation matrix is 81 Block (:trivariatesos, 2, 3) of size 6 x 6 Block (:trivariatesos, 2, 3) has 2 kernel vectors. The maximum numerator and denominator are 13 and 36 After reduction, the maximum number of the basis transformation matrix is 36 Block (:trivariatesos, 2, 1) of size 7 x 7 Block (:trivariatesos, 2, 1) has 2 kernel vectors. The maximum numerator and denominator are 67 and 36 After reduction, the maximum number of the basis transformation matrix is 66 Block (:trivariatesos, 1, 3) of size 11 x 11 Block (:trivariatesos, 1, 3) has 2 kernel vectors. The maximum numerator and denominator are 67 and 72 After reduction, the maximum number of the basis transformation matrix is 72 Block (:trivariatesos, 1, 1) of size 11 x 11 Block (:trivariatesos, 1, 1) has 3 kernel vectors. The maximum numerator and denominator are 49 and 432 After reduction, the maximum number of the basis transformation matrix is 432 ** Finished computation of basis transformations (7.493364086s) ** ** Transforming the problem and the solution ** (1.673321166s) ** Projection the solution into the affine space ** Reducing the system from 161 columns to 161 columns Constructing the linear system... (3.143045985s) Preprocessing to get an integer system... (0.02134742s) Finding the pivots of A using RREF mod p... (0.018584539 0.014349912 s) Solving the system of size 50 x 52 using the pseudoinverse... 0.307934305s ** Finished projection into affine space (4.813190505s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.307396051) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.000e+00 1.900e+11 1.00e+00 1.00e+10 0.00e+00 2.18e+11 3.69e-01 5.95e-01 3.00e-01 2 0.2 6.494e+19 1.223e+10 1.739e+11 8.69e-01 6.31e+09 0.00e+00 8.84e+10 7.31e-01 6.03e-01 3.00e-01 3 0.2 2.817e+19 3.102e+10 2.208e+11 7.54e-01 1.70e+09 0.00e+00 3.51e+10 6.85e-01 7.10e-01 3.00e-01 4 0.3 1.230e+19 3.546e+10 3.600e+11 8.21e-01 5.34e+08 0.00e+00 1.02e+10 5.57e-01 1.00e+00 3.00e-01 5 0.3 8.216e+18 2.178e+10 8.065e+11 9.47e-01 2.37e+08 0.00e+00 1.18e-78 7.69e-01 1.00e+00 3.00e-01 6 0.4 3.035e+18 5.560e+09 1.290e+12 9.91e-01 5.47e+07 0.00e+00 2.56e-77 8.01e-01 1.00e+00 3.00e-01 7 0.4 9.665e+17 1.150e+09 2.064e+12 9.99e-01 1.09e+07 0.00e+00 4.20e-77 8.65e-01 1.00e+00 3.00e-01 8 0.5 2.092e+17 1.573e+08 3.302e+12 1.00e+00 1.47e+06 0.00e+00 1.29e-76 8.98e-01 1.00e+00 3.00e-01 9 0.5 3.428e+16 1.603e+07 5.284e+12 1.00e+00 1.51e+05 0.00e+00 3.04e-76 8.88e-01 1.00e+00 3.00e-01 10 0.6 6.127e+15 1.797e+06 8.453e+12 1.00e+00 1.68e+04 0.00e+00 5.02e-77 8.99e-01 1.00e+00 3.00e-01 11 0.6 9.935e+14 1.816e+05 1.352e+13 1.00e+00 1.71e+03 0.00e+00 2.58e-76 8.93e-01 1.00e+00 3.00e-01 12 0.7 1.699e+14 1.946e+04 2.163e+13 1.00e+00 1.82e+02 0.00e+00 5.01e-76 9.00e-01 1.00e+00 3.00e-01 13 0.7 2.794e+13 2.009e+03 3.442e+13 1.00e+00 1.82e+01 0.00e+00 3.27e-76 8.98e-01 1.00e+00 3.00e-01 14 0.8 5.597e+12 2.662e+02 5.231e+13 1.00e+00 1.86e+00 0.00e+00 2.76e-75 8.79e-01 1.00e+00 3.00e-01 15 0.8 2.030e+12 9.171e+01 5.562e+13 1.00e+00 2.25e-01 0.00e+00 2.50e-75 7.97e-01 1.00e+00 3.00e-01 16 0.9 7.056e+11 7.350e+01 2.417e+13 1.00e+00 4.58e-02 0.00e+00 1.50e-75 8.24e-01 1.00e+00 3.00e-01 17 1.0 2.136e+11 7.073e+01 7.703e+12 1.00e+00 8.06e-03 0.00e+00 2.88e-76 1.00e+00 1.00e+00 3.00e-01 18 1.0 6.305e+10 6.979e+01 2.396e+12 1.00e+00 3.14e-89 0.00e+00 6.67e-76 1.00e+00 1.00e+00 3.00e-01 19 1.1 1.891e+10 6.985e+01 7.188e+11 1.00e+00 3.14e-89 0.00e+00 5.94e-75 9.94e-01 9.94e-01 1.00e-01 20 1.1 1.996e+09 6.986e+01 7.583e+10 1.00e+00 6.28e-89 0.00e+00 3.72e-76 1.00e+00 1.00e+00 1.00e-01 21 1.2 2.003e+08 6.986e+01 7.613e+09 1.00e+00 6.28e-89 0.00e+00 1.30e-77 1.00e+00 1.00e+00 1.00e-01 22 1.2 2.005e+07 6.987e+01 7.619e+08 1.00e+00 6.28e-89 0.00e+00 1.09e-78 1.00e+00 1.00e+00 1.00e-01 23 1.3 2.005e+06 6.987e+01 7.619e+07 1.00e+00 6.28e-89 0.00e+00 2.81e-80 1.00e+00 1.00e+00 1.00e-01 24 1.3 2.005e+05 6.988e+01 7.620e+06 1.00e+00 6.28e-89 0.00e+00 8.85e-81 1.00e+00 1.00e+00 1.00e-01 25 1.4 2.006e+04 6.988e+01 7.622e+05 1.00e+00 3.14e-89 0.00e+00 8.91e-82 1.00e+00 1.00e+00 1.00e-01 26 1.4 2.008e+03 6.989e+01 7.636e+04 9.98e-01 3.14e-89 0.00e+00 1.26e-82 9.99e-01 9.99e-01 1.00e-01 27 1.5 2.026e+02 6.998e+01 7.769e+03 9.82e-01 6.28e-89 0.00e+00 8.02e-84 9.90e-01 9.90e-01 1.00e-01 28 1.5 2.205e+01 7.086e+01 9.089e+02 8.55e-01 3.14e-89 0.00e+00 1.92e-84 9.26e-01 9.26e-01 1.00e-01 29 1.6 3.667e+00 7.788e+01 2.172e+02 4.72e-01 3.14e-89 0.00e+00 1.01e-83 8.10e-01 8.10e-01 1.00e-01 30 1.6 9.926e-01 1.015e+02 1.392e+02 1.57e-01 6.28e-89 0.00e+00 2.27e-84 6.72e-01 6.72e-01 1.00e-01 31 1.7 3.920e-01 1.120e+02 1.269e+02 6.23e-02 3.14e-89 0.00e+00 2.69e-84 8.04e-01 8.04e-01 1.00e-01 32 1.7 1.082e-01 1.179e+02 1.220e+02 1.71e-02 6.28e-89 0.00e+00 3.52e-84 8.72e-01 8.72e-01 1.00e-01 33 1.8 2.331e-02 1.195e+02 1.204e+02 3.69e-03 6.28e-89 0.00e+00 7.19e-84 9.67e-01 9.67e-01 1.00e-01 34 1.8 3.027e-03 1.199e+02 1.201e+02 4.79e-04 6.28e-89 0.00e+00 3.87e-85 9.83e-01 9.83e-01 1.00e-01 35 1.9 3.478e-04 1.200e+02 1.200e+02 5.51e-05 3.14e-89 0.00e+00 1.73e-84 9.94e-01 9.94e-01 1.00e-01 36 1.9 3.681e-05 1.200e+02 1.200e+02 5.83e-06 6.28e-89 0.00e+00 4.45e-84 9.99e-01 9.99e-01 1.00e-01 37 2.0 3.725e-06 1.200e+02 1.200e+02 5.90e-07 2.51e-88 0.00e+00 2.64e-84 1.00e+00 1.00e+00 1.00e-01 38 2.0 3.731e-07 1.200e+02 1.200e+02 5.91e-08 1.26e-88 0.00e+00 2.28e-84 1.00e+00 1.00e+00 1.00e-01 39 2.1 3.732e-08 1.200e+02 1.200e+02 5.91e-09 6.28e-89 0.00e+00 3.88e-84 1.00e+00 1.00e+00 1.00e-01 40 2.1 3.733e-09 1.200e+02 1.200e+02 5.91e-10 6.28e-89 0.00e+00 5.19e-85 1.00e+00 1.00e+00 1.00e-01 41 2.2 3.733e-10 1.200e+02 1.200e+02 5.91e-11 6.28e-89 0.00e+00 7.69e-85 1.00e+00 1.00e+00 1.00e-01 42 2.2 3.733e-11 1.200e+02 1.200e+02 5.91e-12 6.28e-89 0.00e+00 2.83e-84 1.00e+00 1.00e+00 1.00e-01 43 2.3 3.734e-12 1.200e+02 1.200e+02 5.91e-13 1.26e-88 0.00e+00 2.19e-84 1.00e+00 1.00e+00 1.00e-01 44 2.3 3.734e-13 1.200e+02 1.200e+02 5.91e-14 1.26e-88 0.00e+00 2.34e-84 1.00e+00 1.00e+00 1.00e-01 45 2.4 3.735e-14 1.200e+02 1.200e+02 5.91e-15 6.28e-89 0.00e+00 2.09e-84 1.00e+00 1.00e+00 1.00e-01 46 2.4 3.735e-15 1.200e+02 1.200e+02 5.91e-16 1.26e-88 0.00e+00 3.60e-83 1.00e+00 1.00e+00 1.00e-01 47 2.5 3.735e-16 1.200e+02 1.200e+02 5.91e-17 1.89e-88 0.00e+00 2.52e-83 1.00e+00 1.00e+00 1.00e-01 48 2.5 3.736e-17 1.200e+02 1.200e+02 5.91e-18 6.28e-89 0.00e+00 1.22e-82 1.00e+00 1.00e+00 1.00e-01 49 2.6 3.736e-18 1.200e+02 1.200e+02 5.92e-19 6.28e-89 0.00e+00 2.70e-82 1.00e+00 1.00e+00 1.00e-01 50 2.6 3.736e-19 1.200e+02 1.200e+02 5.92e-20 6.28e-89 0.00e+00 2.80e-82 1.00e+00 1.00e+00 1.00e-01 51 2.7 3.737e-20 1.200e+02 1.200e+02 5.92e-21 6.28e-89 0.00e+00 2.21e-82 1.00e+00 1.00e+00 1.00e-01 52 2.8 3.737e-21 1.200e+02 1.200e+02 5.92e-22 1.26e-88 0.00e+00 1.11e-81 1.00e+00 1.00e+00 1.00e-01 53 2.8 3.737e-22 1.200e+02 1.200e+02 5.92e-23 3.14e-89 0.00e+00 1.01e-81 1.00e+00 1.00e+00 1.00e-01 54 2.9 3.738e-23 1.200e+02 1.200e+02 5.92e-24 6.28e-89 0.00e+00 1.80e-81 1.00e+00 1.00e+00 1.00e-01 55 2.9 3.738e-24 1.200e+02 1.200e+02 5.92e-25 6.28e-89 0.00e+00 6.41e-81 1.00e+00 1.00e+00 1.00e-01 56 3.0 3.739e-25 1.200e+02 1.200e+02 5.92e-26 6.28e-89 0.00e+00 1.31e-80 1.00e+00 1.00e+00 1.00e-01 57 3.0 3.739e-26 1.200e+02 1.200e+02 5.92e-27 6.28e-89 0.00e+00 8.39e-81 1.00e+00 1.00e+00 1.00e-01 58 3.1 3.739e-27 1.200e+02 1.200e+02 5.92e-28 3.14e-89 0.00e+00 4.75e-80 1.00e+00 1.00e+00 1.00e-01 59 3.1 3.740e-28 1.200e+02 1.200e+02 5.92e-29 6.28e-89 0.00e+00 1.44e-79 1.00e+00 1.00e+00 1.00e-01 60 3.2 3.740e-29 1.200e+02 1.200e+02 5.92e-30 6.28e-89 0.00e+00 2.67e-79 1.00e+00 1.00e+00 1.00e-01 61 3.2 3.740e-30 1.200e+02 1.200e+02 5.92e-31 1.26e-88 0.00e+00 2.15e-79 1.00e+00 1.00e+00 1.00e-01 62 3.3 3.741e-31 1.200e+02 1.200e+02 5.92e-32 6.28e-89 0.00e+00 6.15e-79 1.00e+00 1.00e+00 1.00e-01 63 3.3 3.741e-32 1.200e+02 1.200e+02 5.92e-33 6.28e-89 0.00e+00 2.36e-78 1.00e+00 1.00e+00 1.00e-01 64 3.4 3.742e-33 1.200e+02 1.200e+02 5.92e-34 6.28e-89 0.00e+00 3.27e-78 1.00e+00 1.00e+00 1.00e-01 65 3.4 3.742e-34 1.200e+02 1.200e+02 5.92e-35 1.26e-88 0.00e+00 8.89e-79 1.00e+00 1.00e+00 1.00e-01 66 3.5 3.742e-35 1.200e+02 1.200e+02 5.93e-36 6.28e-89 0.00e+00 1.36e-77 1.00e+00 1.00e+00 1.00e-01 67 3.5 3.743e-36 1.200e+02 1.200e+02 5.93e-37 6.28e-89 0.00e+00 9.99e-78 1.00e+00 1.00e+00 1.00e-01 68 3.6 3.743e-37 1.200e+02 1.200e+02 5.93e-38 6.28e-89 0.00e+00 4.21e-77 1.00e+00 1.00e+00 1.00e-01 69 3.6 3.743e-38 1.200e+02 1.200e+02 5.93e-39 3.14e-89 0.00e+00 1.73e-76 1.00e+00 1.00e+00 1.00e-01 70 3.7 3.744e-39 1.200e+02 1.200e+02 5.93e-40 3.14e-89 0.00e+00 1.54e-76 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 3.700355 seconds (7.94 M allocations: 469.202 MiB, 23.48% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:119.9999999999999999999999999999999999999917627071459420465498830738291365255687525220985538 Dual objective:120.00000000000000000000000000000000000000599075843931487523644867357880979958641927278708336 Duality gap:5.9283547055720119527356665623638641740278682796076042096053214014331035991058062231162635603e-41 Rounding: Error During Test at /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:69 Test threw exception Expression: begin #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:70 =# (N2, gapprox2) = find_field(primalsol, dualsol) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:72 =# ginfield = to_field(gapprox, N2, gapprox2) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:73 =# gapprox3 = generic_embedding(ginfield, gapprox2) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:74 =# abs(gapprox3 - gapprox) < 1.0e-10 end MethodError: no method matching svd!(::Matrix{BigFloat}; full::Bool, alg::LinearAlgebra.DivideAndConquer, atol::Int64, rtol::Int64) This method does not support all of the given keyword arguments (and may not support any). Closest candidates are: svd!(::StridedMatrix{T}; tol, full, alg) where T got unsupported keyword arguments "atol", "rtol" @ GenericLinearAlgebra ~/.julia/packages/GenericLinearAlgebra/jlOvW/src/svd.jl:635 svd!(!Matched::LinearAlgebra.Bidiagonal{var"#s5089", V} where {var"#s5089"<:Union{Float32, Float64}, V<:AbstractVector{var"#s5089"}}; full) got unsupported keyword arguments "alg", "atol", "rtol" @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.13/LinearAlgebra/src/bidiag.jl:268 svd!(!Matched::LinearAlgebra.Bidiagonal{T, V} where V<:AbstractVector{T}; tol, full, alg) where T<:Real got unsupported keyword arguments "atol", "rtol" @ GenericLinearAlgebra ~/.julia/packages/GenericLinearAlgebra/jlOvW/src/svd.jl:595 ... Stacktrace: [1] kwerr(::@NamedTuple{full::Bool, alg::LinearAlgebra.DivideAndConquer, atol::Int64, rtol::Int64}, ::Function, ::Matrix{BigFloat}) @ Base ./error.jl:175 [2] kwcall(::@NamedTuple{full::Bool, alg::LinearAlgebra.DivideAndConquer, atol::Int64, rtol::Int64}, ::typeof(LinearAlgebra.svd!), A::Matrix{BigFloat}) @ GenericLinearAlgebra ~/.julia/packages/GenericLinearAlgebra/jlOvW/src/svd.jl:635 [3] svd(A::Matrix{BigFloat}; full::Bool, alg::LinearAlgebra.DivideAndConquer, atol::Int64, rtol::Int64) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.13/LinearAlgebra/src/svd.jl:194 [4] svd(A::Matrix{BigFloat}) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.13/LinearAlgebra/src/svd.jl:193 [5] select_vals(primalsol::PrimalSolution{BigFloat}, dualsol::DualSolution{BigFloat}, max_d::Int64; valbound::Float64, errbound::Float64, bits::Int64, max_coeff::Int64, sizebound::Int64) @ ClusteredLowRankSolver ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/find_field.jl:6 [6] select_vals @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/find_field.jl:1 [inlined] [7] #find_field#1003 @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/find_field.jl:96 [inlined] [8] find_field @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/find_field.jl:95 [inlined] [9] find_field(primalsol::PrimalSolution{BigFloat}, dualsol::DualSolution{BigFloat}) @ ClusteredLowRankSolver ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/find_field.jl:95 [10] top-level scope @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:7 [11] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [12] macro expansion @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:53 [inlined] [13] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [14] macro expansion @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:69 [inlined] [15] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:748 [inlined] [16] macro expansion @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:70 [inlined] ** Starting computation of basis transformations ** Block 14 of size 1 x 1 Block 11 of size 1 x 1 Block 0 of size 1 x 1 Block 0 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 8 of size 1 x 1 Block 5 of size 1 x 1 Block 16 of size 1 x 1 Block 2 of size 1 x 1 Block 13 of size 1 x 1 Block 10 of size 1 x 1 Block 7 of size 1 x 1 Block 18 of size 1 x 1 Block 15 of size 1 x 1 Block 4 of size 1 x 1 Block 1 of size 1 x 1 Block 12 of size 1 x 1 Block 12 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 9 of size 1 x 1 Block 6 of size 1 x 1 Block 17 of size 1 x 1 Block 3 of size 1 x 1 Block B of size 9 x 9 Block B has 6 kernel vectors. The maximum numerator and denominator are 18 and 2 After reduction, the maximum number of the basis transformation matrix is 10 Block A of size 10 x 10 Block A has 8 kernel vectors. The maximum numerator and denominator are 12 and 1 After reduction, the maximum number of the basis transformation matrix is 1 ** Finished computation of basis transformations (9.560150304s) ** ** Transforming the problem and the solution ** (2.8563395089999997s) ** Projection the solution into the affine space ** Reducing the system from 26 columns to 26 columns Constructing the linear system... (2.190555365s) Computing an approximate solution in the extension field... (0.736339552s) Preprocessing to get an integer system... (0.006282525s) Finding the pivots of A using RREF mod p... (0.004041198 0.004203127 s) Solving the system of size 38 x 40 using the pseudoinverse... 0.022660117s ** Finished projection into affine space (4.953770125s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.226284821) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.000e+00 7.000e+10 1.00e+00 1.00e+10 0.00e+00 7.05e+10 6.66e-01 6.95e-01 3.00e-01 2 0.1 4.559e+19 1.338e+10 7.193e+10 6.86e-01 3.34e+09 0.00e+00 2.15e+10 7.05e-01 7.53e-01 3.00e-01 3 0.1 1.822e+19 2.640e+10 9.901e+10 5.79e-01 9.85e+08 0.00e+00 5.31e+09 6.16e-01 7.88e-01 3.00e-01 4 0.1 8.970e+18 3.260e+10 1.789e+11 6.92e-01 3.78e+08 0.00e+00 1.12e+09 7.73e-01 1.00e+00 3.00e-01 5 0.1 3.189e+18 1.238e+10 3.561e+11 9.33e-01 8.58e+07 0.00e+00 6.29e-143 8.40e-01 1.00e+00 3.00e-01 6 0.1 8.172e+17 2.052e+09 5.731e+11 9.93e-01 1.37e+07 0.00e+00 3.51e-141 8.95e-01 1.00e+00 3.00e-01 7 0.1 1.367e+17 2.121e+08 9.202e+11 1.00e+00 1.44e+06 0.00e+00 1.74e-141 8.90e-01 1.00e+00 3.00e-01 8 0.2 2.412e+16 2.361e+07 1.476e+12 1.00e+00 1.58e+05 0.00e+00 4.56e-141 8.97e-01 1.00e+00 3.00e-01 9 0.2 3.957e+15 2.403e+06 2.364e+12 1.00e+00 1.62e+04 0.00e+00 1.45e-141 8.94e-01 1.00e+00 3.00e-01 10 0.2 6.738e+14 2.573e+05 3.785e+12 1.00e+00 1.73e+03 0.00e+00 2.08e-141 8.99e-01 1.00e+00 3.00e-01 11 0.2 1.095e+14 2.604e+04 6.056e+12 1.00e+00 1.75e+02 0.00e+00 1.00e-140 8.99e-01 1.00e+00 3.00e-01 12 0.2 1.816e+13 2.738e+03 9.636e+12 1.00e+00 1.76e+01 0.00e+00 1.05e-140 9.13e-01 1.00e+00 3.00e-01 13 0.2 3.342e+12 3.449e+02 1.456e+13 1.00e+00 1.53e+00 0.00e+00 2.80e-140 1.00e+00 1.00e+00 3.00e-01 14 0.2 1.007e+12 1.188e+02 1.410e+13 1.00e+00 3.82e-152 0.00e+00 4.09e-141 1.00e+00 1.00e+00 3.00e-01 15 0.2 3.022e+11 1.198e+02 4.231e+12 1.00e+00 9.55e-153 0.00e+00 2.16e-141 9.99e-01 9.99e-01 1.00e-01 16 0.3 3.062e+10 1.199e+02 4.287e+11 1.00e+00 9.55e-153 0.00e+00 2.36e-142 1.00e+00 1.00e+00 1.00e-01 17 0.3 3.063e+09 1.200e+02 4.288e+10 1.00e+00 9.55e-153 0.00e+00 2.11e-143 1.00e+00 1.00e+00 1.00e-01 18 0.3 3.063e+08 1.201e+02 4.288e+09 1.00e+00 1.91e-152 0.00e+00 2.53e-144 1.00e+00 1.00e+00 1.00e-01 19 0.3 3.063e+07 1.202e+02 4.289e+08 1.00e+00 1.91e-152 0.00e+00 4.69e-145 1.00e+00 1.00e+00 1.00e-01 20 0.3 3.064e+06 1.202e+02 4.289e+07 1.00e+00 9.55e-153 0.00e+00 2.34e-146 1.00e+00 1.00e+00 1.00e-01 21 0.3 3.064e+05 1.203e+02 4.290e+06 1.00e+00 9.55e-153 0.00e+00 1.89e-147 1.00e+00 1.00e+00 1.00e-01 22 0.3 3.065e+04 1.203e+02 4.292e+05 9.99e-01 9.55e-153 0.00e+00 2.69e-148 1.00e+00 1.00e+00 1.00e-01 23 0.4 3.075e+03 1.204e+02 4.317e+04 9.94e-01 1.91e-152 0.00e+00 6.93e-149 9.97e-01 9.97e-01 1.00e-01 24 0.4 3.166e+02 1.211e+02 4.554e+03 9.48e-01 9.55e-153 0.00e+00 6.31e-150 9.70e-01 9.70e-01 1.00e-01 25 0.4 4.021e+01 1.274e+02 6.904e+02 6.88e-01 9.55e-153 0.00e+00 3.56e-150 8.70e-01 8.70e-01 1.00e-01 26 0.4 8.743e+00 1.689e+02 2.913e+02 2.66e-01 9.55e-153 0.00e+00 1.43e-150 9.15e-01 9.15e-01 1.00e-01 27 0.4 1.547e+00 2.316e+02 2.532e+02 4.47e-02 1.91e-152 0.00e+00 8.44e-151 9.82e-01 9.82e-01 1.00e-01 28 0.4 1.800e-01 2.389e+02 2.414e+02 5.25e-03 9.55e-153 0.00e+00 7.95e-152 9.89e-01 9.89e-01 1.00e-01 29 0.4 1.986e-02 2.399e+02 2.401e+02 5.79e-04 1.91e-152 0.00e+00 1.34e-151 9.97e-01 9.97e-01 1.00e-01 30 0.5 2.030e-03 2.400e+02 2.400e+02 5.92e-05 1.91e-152 0.00e+00 4.08e-151 1.00e+00 1.00e+00 1.00e-01 31 0.5 2.034e-04 2.400e+02 2.400e+02 5.93e-06 1.91e-152 0.00e+00 7.01e-151 1.00e+00 1.00e+00 1.00e-01 32 0.5 2.035e-05 2.400e+02 2.400e+02 5.93e-07 1.91e-152 0.00e+00 2.13e-151 1.00e+00 1.00e+00 1.00e-01 33 0.5 2.035e-06 2.400e+02 2.400e+02 5.93e-08 1.91e-152 0.00e+00 7.92e-151 1.00e+00 1.00e+00 1.00e-01 34 0.5 2.035e-07 2.400e+02 2.400e+02 5.94e-09 9.55e-153 0.00e+00 1.19e-150 1.00e+00 1.00e+00 1.00e-01 35 0.5 2.035e-08 2.400e+02 2.400e+02 5.94e-10 1.91e-152 0.00e+00 1.50e-150 1.00e+00 1.00e+00 1.00e-01 36 0.5 2.035e-09 2.400e+02 2.400e+02 5.94e-11 1.91e-152 0.00e+00 1.70e-150 1.00e+00 1.00e+00 1.00e-01 37 0.6 2.036e-10 2.400e+02 2.400e+02 5.94e-12 1.91e-152 0.00e+00 9.86e-151 1.00e+00 1.00e+00 1.00e-01 38 0.6 2.036e-11 2.400e+02 2.400e+02 5.94e-13 9.55e-153 0.00e+00 9.47e-151 1.00e+00 1.00e+00 1.00e-01 39 0.6 2.036e-12 2.400e+02 2.400e+02 5.94e-14 1.91e-152 0.00e+00 1.75e-150 1.00e+00 1.00e+00 1.00e-01 40 0.6 2.036e-13 2.400e+02 2.400e+02 5.94e-15 1.91e-152 0.00e+00 3.88e-150 1.00e+00 1.00e+00 1.00e-01 41 0.6 2.036e-14 2.400e+02 2.400e+02 5.94e-16 9.55e-153 0.00e+00 2.39e-150 1.00e+00 1.00e+00 1.00e-01 42 0.6 2.037e-15 2.400e+02 2.400e+02 5.94e-17 1.91e-152 0.00e+00 5.44e-150 1.00e+00 1.00e+00 1.00e-01 43 0.6 2.037e-16 2.400e+02 2.400e+02 5.94e-18 1.91e-152 0.00e+00 1.68e-149 1.00e+00 1.00e+00 1.00e-01 44 0.6 2.037e-17 2.400e+02 2.400e+02 5.94e-19 1.91e-152 0.00e+00 3.76e-149 1.00e+00 1.00e+00 1.00e-01 45 0.7 2.037e-18 2.400e+02 2.400e+02 5.94e-20 1.91e-152 0.00e+00 1.17e-148 1.00e+00 1.00e+00 1.00e-01 46 0.7 2.037e-19 2.400e+02 2.400e+02 5.94e-21 1.91e-152 0.00e+00 1.75e-148 1.00e+00 1.00e+00 1.00e-01 47 0.7 2.038e-20 2.400e+02 2.400e+02 5.94e-22 1.91e-152 0.00e+00 1.34e-148 1.00e+00 1.00e+00 1.00e-01 48 0.7 2.038e-21 2.400e+02 2.400e+02 5.94e-23 1.91e-152 0.00e+00 1.38e-148 1.00e+00 1.00e+00 1.00e-01 49 0.7 2.038e-22 2.400e+02 2.400e+02 5.94e-24 1.91e-152 0.00e+00 8.16e-148 1.00e+00 1.00e+00 1.00e-01 50 0.7 2.038e-23 2.400e+02 2.400e+02 5.95e-25 1.91e-152 0.00e+00 1.82e-147 1.00e+00 1.00e+00 1.00e-01 51 0.8 2.038e-24 2.400e+02 2.400e+02 5.95e-26 1.91e-152 0.00e+00 3.09e-147 1.00e+00 1.00e+00 1.00e-01 52 0.8 2.039e-25 2.400e+02 2.400e+02 5.95e-27 1.91e-152 0.00e+00 4.31e-147 1.00e+00 1.00e+00 1.00e-01 53 0.8 2.039e-26 2.400e+02 2.400e+02 5.95e-28 1.91e-152 0.00e+00 9.06e-147 1.00e+00 1.00e+00 1.00e-01 54 0.8 2.039e-27 2.400e+02 2.400e+02 5.95e-29 1.91e-152 0.00e+00 4.94e-146 1.00e+00 1.00e+00 1.00e-01 55 0.8 2.039e-28 2.400e+02 2.400e+02 5.95e-30 1.91e-152 0.00e+00 6.20e-146 1.00e+00 1.00e+00 1.00e-01 56 0.8 2.040e-29 2.400e+02 2.400e+02 5.95e-31 3.82e-152 0.00e+00 2.13e-145 1.00e+00 1.00e+00 1.00e-01 57 0.9 2.040e-30 2.400e+02 2.400e+02 5.95e-32 3.82e-152 0.00e+00 1.57e-145 1.00e+00 1.00e+00 1.00e-01 58 0.9 2.040e-31 2.400e+02 2.400e+02 5.95e-33 9.55e-153 0.00e+00 8.23e-145 1.00e+00 1.00e+00 1.00e-01 59 0.9 2.040e-32 2.400e+02 2.400e+02 5.95e-34 4.77e-153 0.00e+00 2.51e-144 1.00e+00 1.00e+00 1.00e-01 60 0.9 2.040e-33 2.400e+02 2.400e+02 5.95e-35 1.91e-152 0.00e+00 1.24e-144 1.00e+00 1.00e+00 1.00e-01 61 0.9 2.041e-34 2.400e+02 2.400e+02 5.95e-36 3.82e-152 0.00e+00 5.87e-144 1.00e+00 1.00e+00 1.00e-01 62 0.9 2.041e-35 2.400e+02 2.400e+02 5.95e-37 1.91e-152 0.00e+00 5.62e-144 1.00e+00 1.00e+00 1.00e-01 63 0.9 2.041e-36 2.400e+02 2.400e+02 5.95e-38 1.91e-152 0.00e+00 6.76e-144 1.00e+00 1.00e+00 1.00e-01 64 1.0 2.041e-37 2.400e+02 2.400e+02 5.95e-39 1.91e-152 0.00e+00 5.54e-144 1.00e+00 1.00e+00 1.00e-01 65 1.0 2.041e-38 2.400e+02 2.400e+02 5.95e-40 1.91e-152 0.00e+00 4.34e-143 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.970009 seconds (1.04 M allocations: 59.910 MiB, 52.53% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:239.999999999999999999999999999999999999985709081187036394589365774550978046266703949715172597217354340046938976020953143178280625396733772292906601591035228 Dual objective:240.000000000000000000000000000000000000014290918812963605410634225449021953733331285229027905272397306512924904803827822439314110120124490645545509542880381 Duality gap:5.95454950540150225443092727042581405554736156538652251146728468041373516309889107561485189664050250433253943111184110518254622684228957628993173675470253265e-41 Rounding: Error During Test at /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:83 Test threw exception Expression: begin #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:84 =# (n, d, costheta) = (8, 3, 1 // 2) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:85 =# (obj, problem, primalsol, dualsol) = delsarte_exact(n, d, costheta; prec = 512) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:88 =# (R, x) = polynomial_ring(Nemo.AbstractAlgebra.QQ, :x) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:89 =# b = [x ^ k for k = 0:2d] #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:92 =# for k = 0:2d #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:93 =# (problem.constraints[1]).matrixcoeff[k] = matrix(R, (problem.constraints[1]).matrixcoeff[k]) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:94 =# end #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:95 =# all_success = true #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:96 =# for k = Iterators.product([[true, false] for i = 1:7]...) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:97 =# for s = [2, 100] #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:98 =# settings = RoundingSettings(kernel_lll = k[1], kernel_use_primal = k[2], reduce_kernelvectors = k[3], unimodular_transform = k[4], normalize_transformation = k[5], pseudo = k[6], extracolumns_linindep = k[7], reduce_kernelvectors_cutoff = s, reduce_kernelvectors_stepsize = if s == 2 1 else 100 end) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:108 =# (success, exactdualsol) = exact_solution(problem, primalsol, dualsol, monomial_bases = [b], settings = settings, verbose = false) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:109 =# (success, exactdualsol) = exact_solution(problem, primalsol, dualsol, settings = settings, verbose = false) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:112 =# all_success = all_success && (success && objvalue(problem, exactdualsol) == 240) #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:113 =# end #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:114 =# end #= /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:115 =# all_success end MethodError: no method matching svd!(::Matrix{BigFloat}; full::Bool, alg::LinearAlgebra.DivideAndConquer, atol::Int64, rtol::Int64) This method does not support all of the given keyword arguments (and may not support any). Closest candidates are: svd!(::StridedMatrix{T}; tol, full, alg) where T got unsupported keyword arguments "atol", "rtol" @ GenericLinearAlgebra ~/.julia/packages/GenericLinearAlgebra/jlOvW/src/svd.jl:635 svd!(!Matched::LinearAlgebra.Bidiagonal{var"#s5089", V} where {var"#s5089"<:Union{Float32, Float64}, V<:AbstractVector{var"#s5089"}}; full) got unsupported keyword arguments "alg", "atol", "rtol" @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.13/LinearAlgebra/src/bidiag.jl:268 svd!(!Matched::LinearAlgebra.Bidiagonal{T, V} where V<:AbstractVector{T}; tol, full, alg) where T<:Real got unsupported keyword arguments "atol", "rtol" @ GenericLinearAlgebra ~/.julia/packages/GenericLinearAlgebra/jlOvW/src/svd.jl:595 ... Stacktrace: [1] kwerr(::@NamedTuple{full::Bool, alg::LinearAlgebra.DivideAndConquer, atol::Int64, rtol::Int64}, ::Function, ::Matrix{BigFloat}) @ Base ./error.jl:175 [2] kwcall(::@NamedTuple{full::Bool, alg::LinearAlgebra.DivideAndConquer, atol::Int64, rtol::Int64}, ::typeof(LinearAlgebra.svd!), A::Matrix{BigFloat}) @ GenericLinearAlgebra ~/.julia/packages/GenericLinearAlgebra/jlOvW/src/svd.jl:635 [3] svd(A::Matrix{BigFloat}; full::Bool, alg::LinearAlgebra.DivideAndConquer, atol::Int64, rtol::Int64) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.13/LinearAlgebra/src/svd.jl:194 [4] svd(A::Matrix{BigFloat}) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.13/LinearAlgebra/src/svd.jl:193 [5] detecteigenvectors(block::Matrix{BigFloat}, bits::Int64, errbound::Float64; FF::QQField, g::Int64) @ ClusteredLowRankSolver ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/rounding.jl:631 [6] kwcall(::@NamedTuple{FF::QQField, g::Int64}, ::typeof(ClusteredLowRankSolver.detecteigenvectors), block::Matrix{BigFloat}, bits::Int64, errbound::Float64) @ ClusteredLowRankSolver ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/rounding.jl:630 [7] basis_transformations(primalsol::PrimalSolution{BigFloat}, sol::DualSolution{BigFloat}; FF::QQField, g::Int64, settings::RoundingSettings, verbose::Bool) @ ClusteredLowRankSolver ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/rounding.jl:765 [8] basis_transformations @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/rounding.jl:735 [inlined] [9] macro expansion @ ./timing.jl:461 [inlined] [10] exact_solution(problem::Problem, primalsol::PrimalSolution{BigFloat}, dualsol::DualSolution{BigFloat}; transformed::Bool, FF::QQField, g::Int64, settings::RoundingSettings, monomial_bases::Vector{Vector{AbstractAlgebra.Generic.Poly{Rational{BigInt}}}}, verbose::Bool) @ ClusteredLowRankSolver ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/rounding.jl:1359 [11] kwcall(::@NamedTuple{monomial_bases::Vector{Vector{AbstractAlgebra.Generic.Poly{Rational{BigInt}}}}, settings::RoundingSettings, verbose::Bool}, ::typeof(exact_solution), problem::Problem, primalsol::PrimalSolution{BigFloat}, dualsol::DualSolution{BigFloat}) @ ClusteredLowRankSolver ~/.julia/packages/ClusteredLowRankSolver/jpKRz/src/rounding.jl:1351 [12] top-level scope @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:7 [13] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [14] macro expansion @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:53 [inlined] [15] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [16] macro expansion @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:83 [inlined] [17] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:748 [inlined] [18] macro expansion @ ~/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:108 [inlined] [ Info: Empty constraint found and removed. [ Info: Empty constraint found and removed. [ Info: The coefficient for the PSD variable 1 has an empty decomposition in a constraint, so we remove it from that constraint. [ Info: The matrix variable 1 is not used in any constraint and will be removed. Test Summary: | Pass Error Total Time ClusteredLowRankSolver.jl | 34 2 36 7m21.1s Examples | 5 5 3m55.6s Modelling | 1 1 8.5s Warnings | 2 2 1.2s Rounding | 3 2 5 2m54.4s SampledMPolyElem | 13 13 6.6s LowRankMat(Pol) | 2 2 2.0s SDPA format | 4 4 3.5s Checking | 4 4 9.2s RNG of the outermost testset: Random.Xoshiro(0xcf29b0e98c4b184c, 0xcbee5915d1cdb8ae, 0xb4493f62a9e64960, 0xe72d0cc8aaf6516e, 0x0a9e5294ffefeb38) ERROR: LoadError: Some tests did not pass: 34 passed, 0 failed, 2 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/ClusteredLowRankSolver/jpKRz/test/runtests.jl:5 Testing failed after 473.21s ERROR: LoadError: Package ClusteredLowRankSolver errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2673 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2522 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:515 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:157 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:309 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [14] _start() @ Base ./client.jl:577 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 609.81s: package tests unexpectedly errored