Package evaluation of QuasiNewtonMethods on Julia 1.13.0-DEV.1216 (bcb9a929e5*) started at 2025-09-28T17:14:13.063 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 10.06s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 5.16s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 202.22s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_cJXRmB/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_cJXRmB/Manifest.toml` [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [-3.5963809708050576e-10, -7.222038522769481e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-4.1070480349958416e-12, -8.451461752656542e-12] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [-1.7189505374659575e-10, -3.4101499402083846e-10, -8.640211879296089e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-4.2454928461665986e-13, -9.315881399629689e-13, -2.310818203454801e-12] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [1.687983086640088e-12, 9.955813951023629e-12, 4.50506298932396e-12, 2.2281287925807192e-11] QuasiNewtonMethods.optimum(state) .- 1 = [5.976663608464605e-11, 2.0533708067205225e-10, 1.0528711236190702e-10, 3.9246139671433866e-10] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [1.876609978523902e-11, -7.000011681412843e-11, 5.276223902228594e-11, -1.4468981568427353e-10, -4.3898440438283615e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-6.379674566403537e-12, 4.470424030955655e-12, -1.3066658866023317e-11, 9.559242286627523e-12, -2.4202861936828413e-14] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [1.3788969965844444e-13, 5.249356505032665e-12, 1.177280495312516e-11, 5.684341886080802e-14, 9.29167853769286e-12, 2.3928414805141074e-11] QuasiNewtonMethods.optimum(state) .- 1 = [2.0332757699748072e-10, -9.453182681085082e-11, 3.4215297262107924e-11, 4.2792280829928586e-10, -1.8152801484205838e-10, 7.722333883464216e-11] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [-2.422828604409233e-11, 6.134182051198422e-11, 3.311972918140782e-11, -3.6004865755501214e-11, 1.2568546203794995e-10, 6.82562895093497e-11, -2.261524301161444e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.0632361657769707e-10, 8.675660190249346e-11, 1.5090151350705128e-12, -2.021799394569257e-10, 1.6872481189977862e-10, 8.761880110341735e-13, -1.5059065106015623e-12] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [1.1406431354998858e-11, 7.283063041541027e-12, -1.0336176359260207e-11, 1.3688827849023255e-11, 2.30424568314902e-11, 1.5331069747048787e-11, -1.9268031614672054e-11, 3.1210367623657476e-11] QuasiNewtonMethods.optimum(state) .- 1 = [3.090394606886093e-11, 6.108713535013521e-11, 8.804956763697191e-12, -1.0954015472464107e-11, 6.82411904762148e-11, 1.2236589519432073e-10, 1.9467982781407045e-11, -2.0705326342351782e-11] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [6.455058709775585e-12, -3.947031590456618e-11, 4.849010082352834e-12, 3.1990632365364036e-11, 1.0402345651527867e-11, -7.840605942277534e-11, 1.1894485396624077e-11, 6.334555102682771e-11, 3.604228027143108e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-2.856970215958654e-11, -1.693646334288701e-10, -3.5099700923524324e-12, -3.148912242068036e-10, -6.869949054078006e-11, -3.399452941366121e-10, -1.8818058222791478e-11, -6.469268454267763e-10, -5.8083537979314315e-12] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [-1.9769674786118685e-10, -1.457004517035898e-10, 1.8498313991699433e-11, -9.823408753106833e-11, 4.6981529777667674e-11, -3.852876906407232e-10, -3.0042879295422154e-10, 3.511679835810355e-11, -2.1114610060379846e-10, 8.636380499638108e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.0034195696562165e-11, 1.021449591576129e-10, 5.2524207205806306e-11, 9.655365396099569e-11, -6.944500530181585e-11, -2.09188222299872e-11, 2.1323431909081592e-10, 9.437450820826143e-11, 1.9828250152897908e-10, -1.2935519322354594e-10] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [1.3211653993039363e-11, 2.621081129916547e-11, 6.7132965853033966e-12, -4.3767323099075384e-11, -3.117739399982611e-11, 2.194799897381472e-11, 5.005063030694146e-11, 1.780220415525946e-11, -9.157719027541589e-11, -5.964984062245549e-11, -2.6397772856512347e-12] QuasiNewtonMethods.optimum(state) .- 1 = [6.0602634022188795e-12, 8.631761971855667e-12, 1.722844089613318e-12, -4.590772206825022e-13, 2.2175594693862877e-12, 1.106492675262416e-11, 1.956701467520361e-11, 5.210942788380635e-12, -1.8501866705378234e-12, 3.917755009297252e-12, 1.6069368058424516e-12] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [4.30973035037141e-11, -8.66575700086969e-11, -5.892131227369646e-11, 4.6948001042323995e-11, -4.338751580235112e-13, -2.963818079848579e-11, 8.732992107240989e-11, -1.660088733146381e-10, -1.0464129562848257e-10, 1.0725109689246892e-10, 1.8456347561368602e-12, -5.2596149657802016e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-8.192269085327553e-11, -5.6442628348918333e-11, 7.274381097488458e-11, -9.936396150322935e-11, 5.698042038204676e-11, 1.9522916616665498e-10, -1.5514833862084743e-10, -1.157622886438503e-10, 1.5494627803036565e-10, -2.1071477895873159e-10, 1.1580358894036635e-10, 3.898537048740991e-10] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [-1.834454810278885e-11, 7.637668275606302e-12, 3.4045433139340275e-11, -3.893940725419043e-11, -2.8553492903427014e-11, -9.163392267197423e-11, -3.8427816484443156e-11, 1.3520740083095006e-11, 6.70312694239783e-11, -7.631983933720221e-11, -5.7109539319810665e-11, -1.864366439008336e-10, 1.2099876656179731e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.205417987648616e-10, 1.6031509453284798e-10, -1.4554812910461123e-10, 1.4382717239413978e-11, -7.418621272847759e-12, 7.658451650627285e-11, -2.385570629925837e-10, 3.220790301128318e-10, -2.7527513601910414e-10, 4.341860204704062e-11, 1.6540102620865582e-12, 1.3975420820599993e-10, 1.1108891584399316e-11] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [-3.902733691774074e-11, -1.618560840910277e-11, 3.903299905516633e-11, 7.358158526926672e-11, -3.4094949086238557e-12, -7.764966447609822e-11, -1.5535350783579815e-12, -8.195899514618077e-11, -2.538380616812219e-11, 8.621081626358773e-11, 1.3499534823324666e-10, -2.3919755065548998e-12, -1.539879335155092e-10, -1.3677170507264691e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.0769886638637445e-10, -2.7192315066315587e-10, 1.363049673130945e-10, -2.6223689886251123e-11, 1.7116641437553426e-10, -6.509826011580344e-11, 2.7986502004750946e-10, -5.971928507264579e-10, -5.363544053338387e-10, 2.7513324951655704e-10, -3.514932789272507e-11, 3.3928415632544784e-10, -1.2817069627857336e-10, 5.501255007089867e-10] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [-9.277023593767808e-12, 3.319655661471188e-11, -2.9758862041262546e-11, -1.2333467580560864e-12, 5.324163332431908e-11, -2.4989343927472873e-11, -6.591283074897092e-12, -2.408573340773046e-11, 6.303491062453759e-11, -5.748168607766502e-11, -2.9295454950784006e-12, 1.0125278393502413e-10, -5.368538946726176e-11, -1.3864576153821417e-11, -8.329892331460087e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-3.6020852967055816e-11, -2.769007245717603e-11, 1.0562350993836844e-10, -7.143063918135795e-11, 1.3155965206124165e-10, 1.3798095999106863e-10, -9.60915791381467e-11, -7.623235376286175e-11, -6.193590085246115e-11, 2.1617374557081348e-10, -1.4432333106384476e-10, 2.4859758696038625e-10, 2.8059510270850296e-10, -2.0167545411453602e-10, -5.162981153716828e-12] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [-4.465561254107797e-11, -1.2433720719684516e-11, -7.418121672486677e-11, -4.664602037962595e-12, 1.5465184688423506e-11, -5.5747184646293135e-11, 2.804534382505608e-11, 1.2285861217264937e-10, -7.263412094005162e-11, -2.7129742896647713e-11, -1.597514343032458e-10, -9.25060028578173e-12, 3.01487723675109e-11, -1.1196454874351502e-10, 6.42290665098244e-11, 2.3106805357997473e-10] QuasiNewtonMethods.optimum(state) .- 1 = [3.5854874624874356e-11, -1.956330653030136e-10, 5.174194406265542e-11, -2.8281710306998775e-11, 1.3452083891252187e-10, 1.042810282569917e-10, 1.7176260413975797e-11, 2.212185989947102e-11, 8.117706506993727e-11, -3.8852010497691936e-10, 1.0587308807430418e-10, -5.7067683911782296e-11, 2.7501512178673693e-10, 1.9703971787521368e-10, 2.9055868822069897e-11, 5.281997061956645e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [-4.589029156676361e-11, 6.179590172905591e-11, -3.9284797637151314e-11, -5.16845455322823e-11, 4.54090098855886e-11, -4.312006307571892e-11, -4.030231703922027e-11, -6.101819050030599e-11, -8.974987419918534e-11, 1.3166867596225984e-10, -8.096168180315999e-11, -1.0188083710005458e-10, 8.485434577210071e-11, -8.661960038125471e-11, -8.109246607546083e-11, -1.2655476666623144e-10, 1.1994849558050191e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.871613974913089e-12, -1.6473489239388073e-12, 4.419664634269793e-11, 9.08251251985348e-11, -1.1338485705891799e-11, -5.3127502397387616e-11, -3.1608049511078207e-13, -1.0221268276211504e-11, 5.21338527903481e-12, -5.349498621853854e-12, 8.52995452049754e-11, 1.8037882298926888e-10, -2.3860802222941402e-11, -1.0872780453752284e-10, 1.4104273304837989e-12, -2.335187598845323e-11, -6.182943046439959e-12] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [2.5892643584768393e-10, 8.035461185329495e-11, -3.666345005370886e-11, 1.2107537195049645e-10, 5.954947646102937e-11, -1.0284884055522525e-10, -7.833478310459441e-11, -3.250333335813593e-11, -1.838980079327257e-10, 5.25846477472669e-10, 1.4495760147781311e-10, -6.9024008730878e-11, 2.4086599381689666e-10, 1.2822787276434156e-10, -2.1428825380809258e-10, -1.6772827571287507e-10, -7.77066189172615e-11, -3.7987546441797804e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.0218270674045016e-11, -6.732925328378769e-11, -1.3067813497968928e-10, 7.445466465583195e-11, 7.562128701010806e-11, 1.652900039061933e-12, -8.188905109562938e-11, 4.012346010995316e-12, 3.777422818984633e-12, 2.42887931989344e-11, -1.3665824027953022e-10, -2.554508826690949e-10, 1.5095746874749238e-10, 1.457984843966642e-10, 1.2236878177418475e-11, -1.635602764338273e-10, 1.0198286659601763e-11, 9.533041023246369e-12] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [1.5570233991013538e-10, -6.855782608283789e-11, -8.895728598190544e-11, 4.722799928913446e-11, 1.2235323865184e-10, -6.731504242907249e-12, 1.2215073397214837e-10, 7.178257988016412e-11, -6.590616941082317e-11, 3.174422946727873e-10, -1.3540568666314812e-10, -1.7236689853206144e-10, 8.823319852524492e-11, 2.5209878629084415e-10, -8.58202398035246e-12, 2.3619350919545923e-10, 1.451871955993056e-10, -1.3858802994093367e-10, -1.9673151996357774e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-2.3556490091891646e-11, 1.8431478565617e-11, 1.02891029030161e-11, 9.532374889431594e-13, -2.0314971926893577e-11, -8.760658865014648e-12, -1.7422063791627806e-11, 1.7703616350672746e-12, -1.832911600274656e-11, -4.578670775856608e-11, 3.978239959678831e-11, 2.3496093959352038e-11, -3.700373341075647e-13, -4.333411407486665e-11, -2.2370660879289517e-11, -3.439171170072086e-11, 3.836042594684841e-12, -3.876110543643563e-11, 8.246736626915663e-13] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [-2.06655803580702e-11, 3.0425217900642565e-11, 2.3035795493342448e-11, 2.8746782732014253e-11, 1.5987211554602254e-12, 2.593014691854023e-11, -3.714339946725431e-11, -3.562083961128337e-11, -2.6227464644534848e-11, 1.9588108912671487e-11, -4.0508596477195624e-11, 6.323808143804399e-11, 4.2546188794290174e-11, 5.6925131275420426e-11, 3.4994229736184934e-12, 5.524691815139704e-11, -7.187694883725726e-11, -7.236833354795635e-11, -5.291089788528325e-11, 3.838507289799509e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.0179301845880673e-11, -1.052824494252036e-12, 2.0539125955565396e-13, 1.6626700016786344e-12, 3.963274153306884e-12, -7.0145000918842015e-12, 6.934453011808728e-13, -9.713230220143032e-12, -9.068967798953054e-12, 5.114353385238246e-12, -2.0734636230201886e-11, -1.839084440291572e-12, -2.645661467681748e-13, 3.6142200343647346e-12, 8.716805055541954e-12, -1.5814127785063192e-11, 3.2023272922288015e-12, -1.8680168523133034e-11, -1.8318457861710158e-11, 9.567235892404824e-12] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [-2.4940827181296754e-11, -1.6188383966664333e-11, 1.6370904631912708e-10, -5.100742050956342e-11, 7.207345831261591e-12, -1.3981815705221834e-10, 5.3365312169262324e-11, 1.008906291843914e-10, -2.0993651261846935e-11, -3.5752512062003916e-12, -4.351075055808451e-11, -3.420674854481831e-11, 3.122266889477032e-10, -9.649592236371518e-11, 1.1431522395355387e-11, -2.801818776987375e-10, 1.1253309395442557e-10, 2.0761836694305202e-10, -4.207412196421956e-11, -2.7211566333562587e-12, -8.740785872873857e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-5.540136127635265e-10, -4.590239299773202e-11, 5.314724216276545e-10, 1.4347301124928435e-10, 4.323328361977019e-10, -3.395270731232358e-10, 4.686067089920698e-10, 2.843147939302071e-11, -4.117588492391633e-10, 6.203972890972409e-10, -1.105011859792171e-9, -1.0856160415073646e-10, 1.0671974415288332e-9, 3.013502780646604e-10, 8.767186976399444e-10, -6.711795563774103e-10, 9.490521701849275e-10, 5.717604167898571e-11, -8.20518986088814e-10, 1.266689197976234e-9, 8.58202398035246e-12] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [4.2728487414933625e-11, 3.307065732371939e-11, -6.380340700218312e-12, 7.876610474966128e-11, 2.8055779921487556e-11, -5.0453419220275464e-11, 5.7634341743550976e-11, 3.3139935240456e-11, 6.070477454045431e-12, 1.238054103680497e-11, 1.2339129717986452e-10, 8.917488969473197e-11, 6.747091774172986e-11, -1.1569301072711369e-11, 1.5619594506688372e-10, 5.698663763098466e-11, -9.831080394206992e-11, 1.2106116109578124e-10, 7.111844446683335e-11, 1.2505552149377763e-11, 1.5574652678651546e-11, 2.287934286471227e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-3.816058580241588e-12, 6.636025062789486e-11, -7.19757586864489e-11, -5.740286024291663e-11, 2.1567414520973216e-11, 4.4220183070819985e-11, 6.476064129401493e-11, -6.200129298861157e-11, -1.4693135597099172e-11, 4.6949333309953545e-11, -1.2565504192707522e-11, -2.64310795472511e-12, 1.39875444560289e-10, -1.4178902496553292e-10, -1.2037093544137178e-10, 5.100186939444029e-11, 9.44939682057111e-11, 1.2761680601158787e-10, -1.2103718027844934e-10, -2.6776802997119376e-11, 9.463541061904834e-11, -2.2470802996110706e-11] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [-2.4923285657507677e-11, 2.708508972659729e-10, -2.6414981313394037e-11, -1.009602401680354e-10, 1.5213541537661968e-10, -8.967104836443696e-11, 6.430500576470877e-11, 1.4800494163580424e-10, 1.6661982904508932e-10, -2.3654522784966048e-11, -5.109612732923097e-11, -4.695743793803331e-11, 5.318554485711502e-10, -5.011113746178353e-11, -2.0152202129253283e-10, 3.1004665501654927e-10, -1.8399670675961488e-10, 1.287037143526959e-10, 3.0331803735350604e-10, 3.3431146739815176e-10, -5.342692954712902e-11, -9.306166948164218e-11, -3.651412505689677e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-5.5263904563673805e-11, 2.148148325886723e-11, -1.7644330441157763e-11, -7.116418565544791e-12, 6.834532939592464e-12, -1.712963104694154e-12, 1.908917468540494e-11, -2.1036505870597466e-12, -1.3867906822895293e-11, -1.3019807454384136e-11, 2.932565301705381e-11, -1.0854650511760155e-10, 4.124234287417039e-11, -3.682898430668047e-11, -1.6019852111526234e-11, 1.4253709323952535e-11, -3.376410262490026e-12, 3.9031888832141703e-11, -4.527711539026313e-12, -2.9213298446961744e-11, -2.6091018234808416e-11, 5.789524415433789e-11, 5.826450433232822e-13] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [-5.4706461583009514e-11, -1.2381040637166052e-10, 5.636935362929307e-11, -1.48849821357544e-10, 2.166955503923873e-11, 6.469691449240145e-11, 1.0418732543371334e-10, -1.0259681992863534e-11, 5.4883875222344614e-11, 1.3777978757900655e-10, -1.5489498572662797e-11, 2.140210231260653e-10, -1.0620981871767299e-10, -2.626661110838313e-10, 1.1328249449604755e-10, -2.895542694503206e-10, 5.376987743943573e-11, 1.342088662426022e-10, 2.2717339120958968e-10, -3.721523089694756e-11, 1.0202372280332384e-10, 2.7439162053610744e-10, -3.769573542200533e-11, 4.3252046388886356e-10] QuasiNewtonMethods.optimum(state) .- 1 = [6.247313777407726e-11, -6.181699596652379e-11, -2.4593549419194005e-11, -5.1654680532919883e-11, -2.911915153447353e-11, 2.0042190129743176e-11, -3.868083631175523e-11, -5.275335723808894e-11, -8.782197191692376e-12, 1.4407142145955731e-11, 5.1382897936491645e-11, -6.492684168080132e-11, 1.2404544058597367e-10, -1.2879419752920285e-10, -5.918143752836613e-11, -1.0435630137806129e-10, -6.203582092467741e-11, 4.4015902034288956e-11, -6.785461081904032e-11, -1.0608980360871101e-10, -2.0179524717889308e-11, 3.097122558415322e-11, 9.858047711475137e-11, -1.347242317706332e-10] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 4m09.8s Method ambiguity | 1 1 9.6s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 6.6s Compat bounds | 3 1 4 10.0s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 9.3s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 52.6s RNG of the outermost testset: Random.Xoshiro(0x1065d94090d3f8a5, 0x84dbd874ba67d47a, 0xe0460c6207310868, 0xadeee38691153a26, 0xc1dfd936db953725) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 281.53s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2673 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2522 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:515 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:157 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:309 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:330 [14] _start() @ Base ./client.jl:563 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 518.34s: package has test failures