Package evaluation of GaussianMixtures on Julia 1.13.0-DEV.1216 (bcb9a929e5*) started at 2025-09-28T18:19:13.732 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.99s ################################################################################ # Installation # Installing GaussianMixtures... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [cc18c42c] + GaussianMixtures v0.3.13 Updating `~/.julia/environments/v1.13/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [7d9fca2a] + Arpack v0.5.4 [aaaa29a8] + Clustering v0.15.8 [34da2185] + Compat v4.18.0 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.1 [8bb1440f] + DelimitedFiles v1.9.1 [b4f34e82] + Distances v0.10.12 [31c24e10] + Distributions v0.25.120 [ffbed154] + DocStringExtensions v0.9.5 [5789e2e9] + FileIO v1.17.0 [1a297f60] + FillArrays v1.14.0 [cc18c42c] + GaussianMixtures v0.3.13 [076d061b] + HashArrayMappedTries v0.2.0 [34004b35] + HypergeometricFunctions v0.3.28 [92d709cd] + IrrationalConstants v0.2.4 ⌅ [033835bb] + JLD2 v0.5.15 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 [e1d29d7a] + Missings v1.2.0 [b8a86587] + NearestNeighbors v0.4.22 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.35 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [6e75b9c4] + ScikitLearnBase v0.5.0 [7e506255] + ScopedValues v1.5.0 [a2af1166] + SortingAlgorithms v1.2.2 [276daf66] + SpecialFunctions v2.5.1 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [4c63d2b9] + StatsFuns v1.5.0 [3bb67fe8] + TranscodingStreams v0.11.3 ⌅ [68821587] + Arpack_jll v3.5.1+1 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.9.9 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.7+0 [458c3c95] + OpenSSL_jll v3.5.2+0 [efcefdf7] + PCRE2_jll v10.46.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.13.1+0 [8e850ede] + nghttp2_jll v1.67.1+0 [3f19e933] + p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 6.14s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 40.2s ################################################################################ # Testing # Testing GaussianMixtures Status `/tmp/jl_m6W6Cv/Project.toml` [7d9fca2a] Arpack v0.5.4 [aaaa29a8] Clustering v0.15.8 [34da2185] Compat v4.18.0 [8bb1440f] DelimitedFiles v1.9.1 [31c24e10] Distributions v0.25.120 [5789e2e9] FileIO v1.17.0 [cc18c42c] GaussianMixtures v0.3.13 ⌅ [033835bb] JLD2 v0.5.15 [90014a1f] PDMats v0.11.35 [ce6b1742] RDatasets v0.7.7 [6e75b9c4] ScikitLearnBase v0.5.0 [276daf66] SpecialFunctions v2.5.1 [10745b16] Statistics v1.11.1 [2913bbd2] StatsBase v0.34.6 [8ba89e20] Distributed v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_m6W6Cv/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [7d9fca2a] Arpack v0.5.4 [336ed68f] CSV v0.10.15 ⌅ [324d7699] CategoricalArrays v0.10.8 [aaaa29a8] Clustering v0.15.8 [944b1d66] CodecZlib v0.7.8 [34da2185] Compat v4.18.0 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [a93c6f00] DataFrames v1.8.0 [864edb3b] DataStructures v0.19.1 [e2d170a0] DataValueInterfaces v1.0.0 [8bb1440f] DelimitedFiles v1.9.1 [b4f34e82] Distances v0.10.12 [31c24e10] Distributions v0.25.120 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 [5789e2e9] FileIO v1.17.0 [48062228] FilePathsBase v0.9.24 [1a297f60] FillArrays v1.14.0 [cc18c42c] GaussianMixtures v0.3.13 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [842dd82b] InlineStrings v1.4.5 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.4 [82899510] IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] JLD2 v0.5.15 [692b3bcd] JLLWrappers v1.7.1 [b964fa9f] LaTeXStrings v1.4.0 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [e1d29d7a] Missings v1.2.0 [78c3b35d] Mocking v0.8.1 [b8a86587] NearestNeighbors v0.4.22 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.35 [69de0a69] Parsers v2.8.3 [2dfb63ee] PooledArrays v1.4.3 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [08abe8d2] PrettyTables v3.0.11 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 ⌅ [df47a6cb] RData v0.8.3 [ce6b1742] RDatasets v0.7.7 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [6e75b9c4] ScikitLearnBase v0.5.0 [7e506255] ScopedValues v1.5.0 [6c6a2e73] Scratch v1.3.0 [91c51154] SentinelArrays v1.4.8 [a2af1166] SortingAlgorithms v1.2.2 [276daf66] SpecialFunctions v2.5.1 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.6 [4c63d2b9] StatsFuns v1.5.0 [892a3eda] StringManipulation v0.4.1 [dc5dba14] TZJData v1.5.0+2025b [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [f269a46b] TimeZones v1.22.0 [3bb67fe8] TranscodingStreams v0.11.3 [ea10d353] WeakRefStrings v1.4.2 [76eceee3] WorkerUtilities v1.6.1 ⌅ [68821587] Arpack_jll v3.5.1+1 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.46.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Precompiling packages... 63056.7 ms ✓ GaussianMixtures 1 dependency successfully precompiled in 65 seconds. 85 already precompiled. Precompiling packages... 29277.7 ms ✓ RData 23210.6 ms ✓ RDatasets 2 dependencies successfully precompiled in 53 seconds. 74 already precompiled. (100000, -1.459826670136002e6, [49298.15532537193, 50701.84467462808], [-14205.797300925225 27384.245543707755 -4667.51537038812; 14356.30192754872 -27643.262659241518 4180.094343506896], [[52367.43234727566 1709.0171977317475 -2538.8981673233534; 1709.0171977317475 31469.899716466472 2898.499129219809; -2538.8981673233534 2898.499129219809 48478.785589433035], [47720.90694042475 -1763.0342421589162 2438.466059551857; -1763.0342421589162 68557.21467320286 -2789.70148143218; 2438.4660595518576 -2789.70148143218 51176.984373652456]]) Test Summary: | Pass Total Time data.jl | 8 8 4m44.4s [ Info: Initializing GMM, 2 Gaussians diag covariance 1 dimensions using 272 data points K-means converged with 4 iterations (objv = 8855.79069767458) ┌ Info: K-means with 272 data points using 4 iterations └ 68.0 data points per parameter [ Info: Initializing GMM, 8 Gaussians diag covariance 2 dimensions using 272 data points K-means converged with 3 iterations (objv = 815.0918829392785) ┌ Info: K-means with 272 data points using 3 iterations └ 11.3 data points per parameter ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = lowerbound(vg::VGMM{Float64}, N::Vector{Float64}, mx::Matrix{Float64}, S::Vector{Matrix{Float64}}, Elogπ::Vector{Float64}, ElogdetΛ::Vector{Float64}, ElogpZπqZ::Float64) at bayes.jl:221 └ @ Core ~/.julia/packages/GaussianMixtures/RYvNa/src/bayes.jl:221 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = lowerbound(vg::VGMM{Float64}, N::Vector{Float64}, mx::Matrix{Float64}, S::Vector{Matrix{Float64}}, Elogπ::Vector{Float64}, ElogdetΛ::Vector{Float64}, ElogpZπqZ::Float64) at bayes.jl:221 └ @ Core ~/.julia/packages/GaussianMixtures/RYvNa/src/bayes.jl:221 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = _broadcast_getindex_evalf at broadcast.jl:701 [inlined] └ @ Core ./broadcast.jl:701 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = lowerbound(vg::VGMM{Float64}, N::Vector{Float64}, mx::Matrix{Float64}, S::Vector{Matrix{Float64}}, Elogπ::Vector{Float64}, ElogdetΛ::Vector{Float64}, ElogpZπqZ::Float64) at bayes.jl:230 └ @ Core ~/.julia/packages/GaussianMixtures/RYvNa/src/bayes.jl:230 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = _broadcast_getindex_evalf at broadcast.jl:701 [inlined] └ @ Core ./broadcast.jl:701 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = _broadcast_getindex_evalf at broadcast.jl:701 [inlined] └ @ Core ./broadcast.jl:701 History[Sun Sep 28 18:29:35 2025: Initializing GMM, 8 Gaussians diag covariance 2 dimensions using 272 data points , Sun Sep 28 18:29:36 2025: K-means with 272 data points using 3 iterations 11.3 data points per parameter , Sun Sep 28 18:29:36 2025: EM with 272 data points 0 iterations avll -2.052558 5.8 data points per parameter , Sun Sep 28 18:29:45 2025: GMM converted to Variational GMM , Sun Sep 28 18:29:56 2025: iteration 1, lowerbound -3.802675 , Sun Sep 28 18:29:56 2025: iteration 2, lowerbound -3.701170 , Sun Sep 28 18:29:56 2025: iteration 3, lowerbound -3.594590 , Sun Sep 28 18:29:56 2025: iteration 4, lowerbound -3.476748 , Sun Sep 28 18:29:56 2025: iteration 5, lowerbound -3.362877 , Sun Sep 28 18:29:56 2025: iteration 6, lowerbound -3.264492 , Sun Sep 28 18:29:57 2025: dropping number of Gaussions to 7 , Sun Sep 28 18:29:57 2025: iteration 7, lowerbound -3.174850 , Sun Sep 28 18:29:57 2025: iteration 8, lowerbound -3.088097 , Sun Sep 28 18:29:57 2025: dropping number of Gaussions to 5 , Sun Sep 28 18:29:57 2025: iteration 9, lowerbound -2.990736 , Sun Sep 28 18:29:57 2025: iteration 10, lowerbound -2.886758 , Sun Sep 28 18:29:57 2025: iteration 11, lowerbound -2.801724 , Sun Sep 28 18:29:57 2025: dropping number of Gaussions to 4 , Sun Sep 28 18:29:57 2025: iteration 12, lowerbound -2.730996 , Sun Sep 28 18:29:57 2025: iteration 13, lowerbound -2.666618 , Sun Sep 28 18:29:57 2025: dropping number of Gaussions to 3 , Sun Sep 28 18:29:57 2025: iteration 14, lowerbound -2.603180 , Sun Sep 28 18:29:57 2025: iteration 15, lowerbound -2.531556 , Sun Sep 28 18:29:57 2025: iteration 16, lowerbound -2.464862 , Sun Sep 28 18:29:57 2025: iteration 17, lowerbound -2.408817 , Sun Sep 28 18:29:57 2025: iteration 18, lowerbound -2.366050 , Sun Sep 28 18:29:57 2025: iteration 19, lowerbound -2.334630 , Sun Sep 28 18:29:57 2025: iteration 20, lowerbound -2.314265 , Sun Sep 28 18:29:57 2025: iteration 21, lowerbound -2.307396 , Sun Sep 28 18:29:57 2025: dropping number of Gaussions to 2 , Sun Sep 28 18:29:57 2025: iteration 22, lowerbound -2.302940 , Sun Sep 28 18:29:57 2025: iteration 23, lowerbound -2.299261 , Sun Sep 28 18:29:57 2025: iteration 24, lowerbound -2.299257 , Sun Sep 28 18:29:57 2025: iteration 25, lowerbound -2.299255 , Sun Sep 28 18:29:57 2025: iteration 26, lowerbound -2.299254 , Sun Sep 28 18:29:57 2025: iteration 27, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 28, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 29, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 30, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 31, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 32, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 33, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 34, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 35, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 36, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 37, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 38, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 39, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 40, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 41, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 42, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 43, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 44, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 45, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 46, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 47, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 48, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 49, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: iteration 50, lowerbound -2.299253 , Sun Sep 28 18:29:57 2025: 50 variational Bayes EM-like iterations using 272 data points, final lowerbound -2.299253 ] α = [95.9549077739831, 178.04509222601686] β = [95.9549077739831, 178.04509222601686] m = [2.0002292577753447 53.85198717246116; 4.250300733269888 79.2868669443615] ν = [97.9549077739831, 180.04509222601686] W = LinearAlgebra.UpperTriangular{Float64, Matrix{Float64}}[[0.3758763611948833 -0.008953123827346544; 0.0 0.01274866477740955], [0.18404155547484205 -0.007644049042327327; 0.0 0.008581705166333133]] Test Summary: | Pass Total Time bayes.jl | 3 3 2m06.4s Kind: diag, size256 nx: 100000 sum(zeroth order stats): 99999.99999999997 avll from stats: -0.9902833516516129 avll from llpg: -0.9902833516516117 avll direct: -0.9902833516516117 sum posterior: 100000.0 Kind: full, size16 nx: 100000 sum(zeroth order stats): 100000.0 avll from stats: -0.9755187622476597 avll from llpg: -0.9755187622476599 avll direct: -0.9755187622476599 sum posterior: 100000.0 kind diag, method split ┌ Info: 0: avll = └ tll[1] = -1.3899688126007486 ┌ Info: 1 │ avll = │ 50-element Vector{Float64}: │ -1.3900487583207872 │ -1.3899388062786293 │ -1.388940205252231 │ -1.3778917132152044 │ ⋮ │ -1.3456207989831832 │ -1.3456203134752065 └ -1.34561991338561 ┌ Info: 2 │ avll = │ 50-element Vector{Float64}: │ -1.3457449557644066 │ -1.3456225722176223 │ -1.3451177433309784 │ -1.3398793260322346 │ ⋮ │ -1.299986045380325 │ -1.2997394239126476 └ -1.2995208939414926 ┌ Info: 3 │ avll = │ 50-element Vector{Float64}: │ -1.299552921473354 │ -1.2992422866307818 │ -1.2985699870349798 │ -1.2927012132718683 │ ⋮ │ -1.2336907071025798 │ -1.2336744301650497 └ -1.2336651888141532 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 9 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 10 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 9 │ 12 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 9 │ 10 │ 12 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 1 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 10 │ 12 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 12 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 10 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 12 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 9 │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 12 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 9 │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 12 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 9 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 10 │ 12 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 9 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 12 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 9 │ 10 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 12 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 10 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Info: 4 │ avll = │ 50-element Vector{Float64}: │ -1.2339217806405367 │ -1.2336021547765184 │ -1.23130391162482 │ -1.2087829438569622 │ ⋮ │ -1.1449912416109438 │ -1.1244320781531703 └ -1.1409084333767063 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 23 │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 19 │ 20 │ 23 │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 2 │ 23 │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 14 │ 18 │ 19 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 3 │ 5 │ 7 │ 12 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 14 │ 16 │ 19 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 3 │ 5 │ 7 │ 12 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 5 │ 7 │ 12 │ 14 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 3 │ 14 │ 19 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 3 │ 5 │ 7 │ 12 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 3 │ 14 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 3 │ 4 │ 5 │ 7 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 14 │ 17 │ 19 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 3 │ 5 │ 7 │ 12 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 3 │ 14 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 3 │ 5 │ 7 │ 12 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 3 │ 4 │ 14 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 5 │ 7 │ 12 │ 14 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 3 │ 14 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 5 │ 7 │ 12 │ 14 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 3 │ 14 │ 19 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 3 │ 4 │ 5 │ 7 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 14 │ 16 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 3 │ 5 │ 7 │ 12 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 3 │ 14 │ 19 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 3 │ 5 │ 7 │ 12 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 5 │ 7 │ 12 │ 14 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 3 │ 14 │ 16 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 3 │ 5 │ 7 │ 12 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 3 │ 14 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 13-element Vector{Int64}: │ 3 │ 4 │ 5 │ 7 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 14 │ 19 │ 20 │ 23 │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 3 │ 5 │ 7 │ 12 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 3 │ 14 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 3 │ 5 │ 7 │ 12 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 3 │ 4 │ 14 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 5 │ 7 │ 12 │ 14 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 3 │ 14 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 5 │ 7 │ 12 │ 14 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 3 │ 14 │ 16 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 3 │ 4 │ 5 │ 7 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 14 │ 19 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 3 │ 5 │ 7 │ 12 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 3 │ 14 │ 19 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 3 │ 5 │ 7 │ 12 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 13-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 5 │ 7 │ 12 │ 14 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 3 │ 14 │ 19 │ ⋮ │ 24 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Info: 5 │ avll = │ 50-element Vector{Float64}: │ -1.1336443400212262 │ -1.1220285832896444 │ -1.1199321840155274 │ -1.0881326322585345 │ ⋮ │ -1.024356373651258 │ -1.0285326558613537 └ -1.0478450170070772 ┌ Info: Total log likelihood: │ tll = │ 251-element Vector{Float64}: │ -1.3899688126007486 │ -1.3900487583207872 │ -1.3899388062786293 │ -1.388940205252231 │ ⋮ │ -1.024356373651258 │ -1.0285326558613537 └ -1.0478450170070772 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 3 │ 5 │ 7 │ 12 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 17-element Vector{Int64}: │ 1 │ 2 │ 3 │ 5 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 13-element Vector{Int64}: │ 3 │ 4 │ 5 │ 7 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 17-element Vector{Int64}: │ 1 │ 2 │ 3 │ 5 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 3 │ 5 │ 7 │ 12 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 18-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 3 │ 5 │ 7 │ 12 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 17-element Vector{Int64}: │ 1 │ 2 │ 3 │ 5 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 13-element Vector{Int64}: │ 3 │ 4 │ 5 │ 7 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 17-element Vector{Int64}: │ 1 │ 2 │ 3 │ 5 │ ⋮ │ 28 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 kind diag, method kmeans [ Info: Initializing GMM, 32 Gaussians diag covariance 26 dimensions using 100000 data points K-means terminated without convergence after 50 iterations (objv = 576176.9404768206) ┌ Info: K-means with 32000 data points using 50 iterations └ 37.0 data points per parameter ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 8 │ 18 │ 22 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 4 │ 12 │ 16 │ 27 │ 29 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 20 │ 23 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 7 │ 18 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 3 │ 12 │ 13 │ 15 │ 16 │ 27 │ 29 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 4 │ 8 │ 23 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 7 │ 20 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 3 │ 12 │ 15 │ 27 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 4 │ 8 │ 13 │ 16 │ 18 │ 22 │ 23 │ 29 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 7 │ 20 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 3 │ 12 │ 15 │ 27 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 4 │ 29 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 7 │ 8 │ 20 │ 23 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 16 │ 18 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 3 │ 12 │ 15 │ 27 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 4 │ 22 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 7 │ 16 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 3 │ 8 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 12 │ 13 │ 15 │ 23 │ 27 │ 29 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 4 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 7 │ 18 │ 24 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 3 │ 8 │ 20 │ 22 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 12 │ 13 │ 15 │ 16 │ 23 │ 27 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 4 │ 7 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 18 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 3 │ 16 │ 22 │ 23 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 4 │ 7 │ 12 │ 13 │ 27 │ 29 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 15 │ 18 │ 20 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 8 │ 16 │ 22 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 3 │ 7 │ 23 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 4 │ 12 │ 13 │ 18 │ 24 │ 27 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 15 │ 16 │ 22 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 3 │ 7 │ 20 │ 23 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 4 │ 12 │ 13 │ 16 │ 18 │ 24 │ 27 │ 29 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 3 │ 7 │ 15 │ 22 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 20 │ 23 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 3 │ 4 │ 7 │ 8 │ ⋮ │ 24 │ 27 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 22 │ 29 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 3 │ 4 │ 7 │ 12 │ ⋮ │ 23 │ 27 │ 29 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 3 │ 7 │ 8 │ 16 │ ⋮ │ 23 │ 24 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 3 │ 4 │ 7 │ 12 │ 13 │ 15 │ 20 │ 27 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 16 │ 18 │ 23 │ 29 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 13-element Vector{Int64}: │ 3 │ 4 │ 7 │ 8 │ ⋮ │ 24 │ 27 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 3 │ 7 │ 13 │ 18 │ 29 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 4 │ 12 │ 15 │ 16 │ ⋮ │ 23 │ 24 │ 27 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 3 │ 7 │ 8 │ 23 │ 29 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 13-element Vector{Int64}: │ 3 │ 4 │ 7 │ 12 │ ⋮ │ 24 │ 27 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 kind full, method split ┌ Info: 0: avll = └ tll[1] = -1.4081193168196526 ┌ Info: 1 │ avll = │ 50-element Vector{Float64}: │ -1.408148365498259 │ -1.4080886056816455 │ -1.4080457076294821 │ -1.4079745565872492 │ ⋮ │ -1.4023417580217559 │ -1.4023417269588556 └ -1.4023416992324325 ┌ Info: 2 │ avll = │ 50-element Vector{Float64}: │ -1.4023666404845219 │ -1.402303432527025 │ -1.4022493462381227 │ -1.4021590259602295 │ ⋮ │ -1.3952603936280805 │ -1.3952467148784398 └ -1.3952338024374553 ┌ Info: 3 │ avll = │ 50-element Vector{Float64}: │ -1.3952638514928142 │ -1.395113636118594 │ -1.3948927204115995 │ -1.3939516255688922 │ ⋮ │ -1.3396451474824214 │ -1.3395645255421011 └ -1.3394615359654485 ┌ Info: 4 │ avll = │ 50-element Vector{Float64}: │ -1.3393874453667833 │ -1.3389600826495882 │ -1.338361815711282 │ -1.3371172200226278 │ ⋮ │ -1.298832414336711 │ -1.2988267155060989 └ -1.2988217285563863 ┌ Info: 5 │ avll = │ 50-element Vector{Float64}: │ -1.2988963628046022 │ -1.2985759462886606 │ -1.2982537590980252 │ -1.2977514812025872 │ ⋮ │ -1.2868967044281452 │ -1.2864604068262055 └ -1.285631290523428 ┌ Info: Total log likelihood: │ tll = │ 251-element Vector{Float64}: │ -1.4081193168196526 │ -1.408148365498259 │ -1.4080886056816455 │ -1.4080457076294821 │ ⋮ │ -1.2868967044281452 │ -1.2864604068262055 └ -1.285631290523428 kind full, method kmeans [ Info: Initializing GMM, 32 Gaussians diag covariance 26 dimensions using 100000 data points K-means terminated without convergence after 50 iterations (objv = 663660.8132871827) ┌ Info: K-means with 32000 data points using 50 iterations └ 37.0 data points per parameter Test Summary: | Broken Total Time train.jl | 1 1 8m36.2s [ Info: Initializing GMM, 2 Gaussians diag covariance 2 dimensions using 900 data points K-means converged with 2 iterations (objv = 7869.867369234178) ┌ Info: K-means with 900 data points using 2 iterations └ 150.0 data points per parameter Test Summary: | Pass Total Time ScikitLearnBase | 1 1 2.7s Testing GaussianMixtures tests passed Testing completed after 1096.71s PkgEval succeeded after 1175.13s