Package evaluation of StructuralIdentifiability on Julia 1.13.0-DEV.1200 (a5576b4ddb*) started at 2025-09-25T15:08:06.691 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 7.35s ################################################################################ # Installation # Installing StructuralIdentifiability... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [220ca800] + StructuralIdentifiability v0.5.16 Updating `~/.julia/environments/v1.13/Manifest.toml` ⌅ [c3fe647b] + AbstractAlgebra v0.46.5 [a9b6321e] + Atomix v1.1.2 [861a8166] + Combinatorics v1.0.3 [864edb3b] + DataStructures v0.19.1 [e2ba6199] + ExprTools v0.1.10 [0b43b601] + Groebner v0.9.5 [18e54dd8] + IntegerMathUtils v0.1.3 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [1914dd2f] + MacroTools v0.5.16 ⌅ [2edaba10] + Nemo v0.51.1 [bac558e1] + OrderedCollections v1.8.1 [3e851597] + ParamPunPam v0.5.3 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.11.0 [fb686558] + RandomExtensions v0.4.4 [220ca800] + StructuralIdentifiability v0.5.16 [a759f4b9] + TimerOutputs v0.5.29 [013be700] + UnsafeAtomics v0.3.0 [e134572f] + FLINT_jll v301.300.102+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.31s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 169.7s ################################################################################ # Testing # Testing StructuralIdentifiability Status `/tmp/jl_N6SyyD/Project.toml` ⌅ [c3fe647b] AbstractAlgebra v0.46.5 [4c88cf16] Aqua v0.8.14 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [864edb3b] DataStructures v0.19.1 [0b43b601] Groebner v0.9.5 [c8e1da08] IterTools v1.10.0 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.51.1 [3e851597] ParamPunPam v0.5.3 [aea7be01] PrecompileTools v1.3.3 [27ebfcd6] Primes v0.5.7 [276daf66] SpecialFunctions v2.5.1 [220ca800] StructuralIdentifiability v0.5.16 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_N6SyyD/Manifest.toml` ⌅ [c3fe647b] AbstractAlgebra v0.46.5 [4c88cf16] Aqua v0.8.14 [a9b6321e] Atomix v1.1.2 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.0 [adafc99b] CpuId v0.3.1 [864edb3b] DataStructures v0.19.1 [ab62b9b5] DeepDiffs v1.2.0 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 [0b43b601] Groebner v0.9.5 [615f187c] IfElse v0.1.1 [18e54dd8] IntegerMathUtils v0.1.3 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.51.1 [bac558e1] OrderedCollections v1.8.1 [3e851597] ParamPunPam v0.5.3 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.11.0 [fb686558] RandomExtensions v0.4.4 [431bcebd] SciMLPublic v1.0.0 [276daf66] SpecialFunctions v2.5.1 [aedffcd0] Static v1.3.0 [220ca800] StructuralIdentifiability v0.5.16 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [013be700] UnsafeAtomics v0.3.0 [e134572f] FLINT_jll v301.300.102+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.2+0 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.46.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Precompiling packages... 7092.3 ms ✓ AbstractAlgebra → TestExt 1 dependency successfully precompiled in 8 seconds. 18 already precompiled. Resolving package versions... Updating `/tmp/jl_N6SyyD/Project.toml` ⌅ [c3fe647b] ↓ AbstractAlgebra v0.46.5 ⇒ v0.44.13 [loaded: v0.46.5] ⌅ [864edb3b] ↓ DataStructures v0.19.1 ⇒ v0.18.22 [loaded: v0.19.1] [961ee093] + ModelingToolkit v10.23.0 ⌅ [2edaba10] ↓ Nemo v0.51.1 ⇒ v0.49.5 [loaded: v0.51.1] Updating `/tmp/jl_N6SyyD/Manifest.toml` [47edcb42] + ADTypes v1.18.0 ⌅ [c3fe647b] ↓ AbstractAlgebra v0.46.5 ⇒ v0.44.13 [loaded: v0.46.5] [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.4.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.20.0 [4c555306] + ArrayLayouts v1.11.2 [e2ed5e7c] + Bijections v0.2.2 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] + BlockArrays v1.7.2 [70df07ce] + BracketingNonlinearSolve v1.4.0 [d360d2e6] + ChainRulesCore v1.26.0 [fb6a15b2] + CloseOpenIntervals v0.1.13 [a80b9123] + CommonMark v0.9.1 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 [187b0558] + ConstructionBase v1.6.0 [9a962f9c] + DataAPI v1.16.0 ⌅ [864edb3b] ↓ DataStructures v0.19.1 ⇒ v0.18.22 [loaded: v0.19.1] [2b5f629d] + DiffEqBase v6.190.2 [459566f4] + DiffEqCallbacks v4.9.0 [77a26b50] + DiffEqNoiseProcess v5.24.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.7 [8d63f2c5] + DispatchDoctor v0.4.26 [31c24e10] + Distributions v0.25.120 [5b8099bc] + DomainSets v0.7.16 ⌃ [7c1d4256] + DynamicPolynomials v0.6.3 [06fc5a27] + DynamicQuantities v1.10.0 [4e289a0a] + EnumX v1.0.5 [f151be2c] + EnzymeCore v0.8.13 [55351af7] + ExproniconLite v0.10.14 [7034ab61] + FastBroadcast v0.3.5 [9aa1b823] + FastClosures v0.3.2 [a4df4552] + FastPower v1.1.3 [1a297f60] + FillArrays v1.14.0 [64ca27bc] + FindFirstFunctions v1.4.2 [6a86dc24] + FiniteDiff v2.28.1 [1fa38f19] + Format v1.3.7 ⌃ [f6369f11] + ForwardDiff v0.10.39 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [d9f16b24] + Functors v0.5.2 [46192b85] + GPUArraysCore v0.2.0 [c27321d9] + Glob v1.3.1 [86223c79] + Graphs v1.13.1 [34004b35] + HypergeometricFunctions v0.3.28 [3263718b] + ImplicitDiscreteSolve v1.2.0 [d25df0c9] + Inflate v0.1.5 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [82899510] + IteratorInterfaceExtensions v1.0.0 [ae98c720] + Jieko v0.2.1 [98e50ef6] + JuliaFormatter v2.1.6 ⌅ [70703baa] + JuliaSyntax v0.4.10 [ccbc3e58] + JumpProcesses v9.19.1 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.10 [10f19ff3] + LayoutPointers v0.1.17 [87fe0de2] + LineSearch v0.1.4 [d3d80556] + LineSearches v7.4.0 [d8e11817] + MLStyle v0.4.17 [d125e4d3] + ManualMemory v0.1.8 [bb5d69b7] + MaybeInplace v0.1.4 [e1d29d7a] + Missings v1.2.0 [961ee093] + ModelingToolkit v10.23.0 [2e0e35c7] + Moshi v0.3.7 [46d2c3a1] + MuladdMacro v0.2.4 ⌃ [102ac46a] + MultivariatePolynomials v0.5.9 [d8a4904e] + MutableArithmetics v1.6.5 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 ⌅ [2edaba10] ↓ Nemo v0.51.1 ⇒ v0.49.5 [loaded: v0.51.1] [be0214bd] + NonlinearSolveBase v1.16.1 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.13.2 [bbf590c4] + OrdinaryDiffEqCore v1.34.0 [90014a1f] + PDMats v0.11.35 [d96e819e] + Parameters v0.12.3 [e409e4f3] + PoissonRandom v0.4.6 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [85a6dd25] + PositiveFactorizations v0.2.4 [d236fae5] + PreallocationTools v0.4.34 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.37.1 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [ae5879a3] + ResettableStacks v1.1.1 [79098fc4] + Rmath v0.8.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.15 [9dfe8606] + SCCNonlinearSolve v1.5.0 [94e857df] + SIMDTypes v0.1.0 [0bca4576] + SciMLBase v2.120.0 [19f34311] + SciMLJacobianOperators v0.1.11 [c0aeaf25] + SciMLOperators v1.7.2 [53ae85a6] + SciMLStructures v1.7.0 [efcf1570] + Setfield v1.1.2 [727e6d20] + SimpleNonlinearSolve v2.8.0 [699a6c99] + SimpleTraits v0.9.5 [ce78b400] + SimpleUnPack v1.1.0 [a2af1166] + SortingAlgorithms v1.2.2 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [4c63d2b9] + StatsFuns v1.5.0 [7792a7ef] + StrideArraysCore v0.5.8 [2efcf032] + SymbolicIndexingInterface v0.3.44 [19f23fe9] + SymbolicLimits v0.2.3 ⌃ [d1185830] + SymbolicUtils v3.31.0 [0c5d862f] + Symbolics v6.55.0 [ed4db957] + TaskLocalValues v0.1.3 [8ea1fca8] + TermInterface v2.0.0 [1c621080] + TestItems v1.0.0 [8290d209] + ThreadingUtilities v0.5.5 [410a4b4d] + Tricks v0.1.12 [781d530d] + TruncatedStacktraces v1.4.0 [5c2747f8] + URIs v1.6.1 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.25.0 [a7c27f48] + Unityper v0.1.6 ⌅ [e134572f] ↓ FLINT_jll v301.300.102+0 ⇒ v300.200.201+0 [loaded: v301.300.102+0] [61579ee1] + Ghostscript_jll v9.55.1+0 [aacddb02] + JpegTurbo_jll v3.1.3+0 [f50d1b31] + Rmath_jll v0.5.1+0 [9fa8497b] + Future v1.11.0 [a63ad114] + Mmap v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [4607b0f0] + SuiteSparse Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Resolving package versions... Updating `/tmp/jl_N6SyyD/Project.toml` [0c5d862f] + Symbolics v6.55.0 Manifest No packages added to or removed from `/tmp/jl_N6SyyD/Manifest.toml` Precompiling packages... 1158.7 ms ✓ CommonSubexpressions 835.5 ms ✓ PoissonRandom 1585.5 ms ✓ SimpleTraits 2491.9 ms ✓ DispatchDoctor 1692.4 ms ✓ TruncatedStacktraces 1907.0 ms ✓ Accessors → UnitfulExt 1105.3 ms ✓ MaybeInplace 4283.0 ms ✓ StatsBase 10234.0 ms ✓ CommonMark 3966.3 ms ✓ Static 2850.3 ms ✓ SciMLOperators 1819.9 ms ✓ SymbolicIndexingInterface 1084.3 ms ✓ FiniteDiff → FiniteDiffStaticArraysExt 5347.1 ms ✓ MultivariatePolynomials 3637.5 ms ✓ ArnoldiMethod 1240.4 ms ✓ ResettableStacks 16507.5 ms ✓ ArrayLayouts 1127.1 ms ✓ DifferentiationInterface → DifferentiationInterfaceStaticArraysExt 1208.0 ms ✓ Accessors → StaticArraysExt 1935.1 ms ✓ HypergeometricFunctions 4834.8 ms ✓ Latexify 8913.2 ms ✓ ForwardDiff 2490.0 ms ✓ DispatchDoctor → DispatchDoctorChainRulesCoreExt 1772.9 ms ✓ DispatchDoctor → DispatchDoctorEnzymeCoreExt 6312.5 ms ✓ DynamicQuantities 1019.1 ms ✓ MaybeInplace → MaybeInplaceSparseArraysExt 41842.5 ms ✓ JuliaFormatter 1027.3 ms ✓ BitTwiddlingConvenienceFunctions 6105.1 ms ✓ StaticArrayInterface 1737.0 ms ✓ CPUSummary 888.0 ms ✓ SciMLOperators → SciMLOperatorsStaticArraysCoreExt 1262.9 ms ✓ SciMLOperators → SciMLOperatorsSparseArraysExt 4442.7 ms ✓ RecursiveArrayTools 5427.3 ms ✓ DynamicPolynomials 7787.3 ms ✓ Graphs 2422.7 ms ✓ ArrayLayouts → ArrayLayoutsSparseArraysExt 3365.2 ms ✓ BlockArrays 2354.6 ms ✓ StatsFuns 2574.9 ms ✓ Latexify → SparseArraysExt 3082.0 ms ✓ Unitful → LatexifyExt 2822.9 ms ✓ ForwardDiff → ForwardDiffStaticArraysExt 2392.8 ms ✓ FastPower → FastPowerForwardDiffExt 1583.9 ms ✓ DifferentiationInterface → DifferentiationInterfaceForwardDiffExt 1920.9 ms ✓ Unitful → ForwardDiffExt 1028.0 ms ✓ PreallocationTools → PreallocationToolsForwardDiffExt 1550.7 ms ✓ DynamicQuantities → DynamicQuantitiesLinearAlgebraExt 2902.7 ms ✓ DynamicQuantities → DynamicQuantitiesUnitfulExt 894.8 ms ✓ StaticArrayInterface → StaticArrayInterfaceOffsetArraysExt 1239.4 ms ✓ StaticArrayInterface → StaticArrayInterfaceStaticArraysExt 916.5 ms ✓ CloseOpenIntervals 1111.5 ms ✓ LayoutPointers 1440.4 ms ✓ PolyesterWeave 1378.8 ms ✓ RecursiveArrayTools → RecursiveArrayToolsSparseArraysExt 1197.3 ms ✓ RecursiveArrayTools → RecursiveArrayToolsForwardDiffExt 20082.8 ms ✓ SciMLBase 62213.6 ms ✓ SymbolicUtils 2351.9 ms ✓ BlockArrays → BlockArraysAdaptExt 2640.0 ms ✓ StatsFuns → StatsFunsChainRulesCoreExt 1143.9 ms ✓ StatsFuns → StatsFunsInverseFunctionsExt 7264.7 ms ✓ Distributions 3699.0 ms ✓ NLSolversBase 1605.8 ms ✓ StrideArraysCore 2341.1 ms ✓ SciMLBase → SciMLBaseChainRulesCoreExt 4262.2 ms ✓ SciMLBase → SciMLBaseForwardDiffExt 2930.0 ms ✓ SciMLBase → SciMLBaseMLStyleExt 5874.0 ms ✓ SciMLJacobianOperators 2433.6 ms ✓ SCCNonlinearSolve 6168.5 ms ✓ SymbolicLimits 2916.3 ms ✓ Distributions → DistributionsTestExt 3798.3 ms ✓ Distributions → DistributionsChainRulesCoreExt 5022.4 ms ✓ SciMLBase → SciMLBaseDistributionsExt 5262.0 ms ✓ LineSearches 2012.6 ms ✓ Polyester 7816.7 ms ✓ LineSearch 45854.9 ms ✓ NonlinearSolveBase 73646.7 ms ✓ Symbolics 9448.3 ms ✓ Optim 1858.3 ms ✓ FastBroadcast 2804.0 ms ✓ LineSearch → LineSearchLineSearchesExt 2872.6 ms ✓ NonlinearSolveBase → NonlinearSolveBaseSparseArraysExt 2393.6 ms ✓ NonlinearSolveBase → NonlinearSolveBaseChainRulesCoreExt 16898.8 ms ✓ NonlinearSolveBase → NonlinearSolveBaseLineSearchExt 4346.6 ms ✓ NonlinearSolveBase → NonlinearSolveBaseForwardDiffExt 8158.3 ms ✓ BracketingNonlinearSolve 120720.2 ms ✓ Symbolics → SymbolicsForwardDiffExt 7922.3 ms ✓ DifferentiationInterface → DifferentiationInterfaceSymbolicsExt 3052.5 ms ✓ RecursiveArrayTools → RecursiveArrayToolsFastBroadcastExt 2666.8 ms ✓ BracketingNonlinearSolve → BracketingNonlinearSolveForwardDiffExt 13165.3 ms ✓ Symbolics → SymbolicsPreallocationToolsExt 5402.0 ms ✓ DiffEqBase 2941.2 ms ✓ BracketingNonlinearSolve → BracketingNonlinearSolveChainRulesCoreExt 15341.0 ms ✓ SimpleNonlinearSolve 3151.6 ms ✓ DiffEqBase → DiffEqBaseSparseArraysExt 3694.3 ms ✓ DiffEqBase → DiffEqBaseUnitfulExt 3178.5 ms ✓ DiffEqBase → DiffEqBaseChainRulesCoreExt 4093.1 ms ✓ DiffEqBase → DiffEqBaseForwardDiffExt 7073.9 ms ✓ OrdinaryDiffEqCore 8479.2 ms ✓ DiffEqCallbacks 3094.4 ms ✓ SimpleNonlinearSolve → SimpleNonlinearSolveChainRulesCoreExt 7735.0 ms ✓ DiffEqNoiseProcess 2866.9 ms ✓ OrdinaryDiffEqCore → OrdinaryDiffEqCoreEnzymeCoreExt 5883.8 ms ✓ JumpProcesses 6030.1 ms ✓ ImplicitDiscreteSolve Info Given ModelingToolkit was explicitly requested, output will be shown live  ┌ Warning: `enqueue!(q::Queue, x)` is deprecated, use `Base.push!(q, x)` instead. │ caller = topsort_equations(eqs::Vector{Symbolics.Equation}, unknowns::Vector{SymbolicUtils.BasicSymbolic}; check::Bool) at alias_elimination.jl:429 └ @ Core ~/.julia/packages/ModelingToolkit/bdYND/src/systems/alias_elimination.jl:429 ┌ Warning: `dequeue!(q::Queue)` is deprecated, use `Base.popfirst!(q)` instead. │ caller = topsort_equations(eqs::Vector{Symbolics.Equation}, unknowns::Vector{SymbolicUtils.BasicSymbolic}; check::Bool) at alias_elimination.jl:436 └ @ Core ~/.julia/packages/ModelingToolkit/bdYND/src/systems/alias_elimination.jl:436 237580.9 ms ✓ ModelingToolkit 104 dependencies successfully precompiled in 984 seconds. 167 already precompiled. 2 dependencies had output during precompilation: ┌ Graphs │ WARNING: importing deprecated binding DataStructures.IntDisjointSets into Graphs. │ , use IntDisjointSet instead. └ ┌ ModelingToolkit │ [Output was shown above] └ Precompiling packages... 2929.8 ms ✓ DataStructures 17435.9 ms ✓ AbstractAlgebra 1567.6 ms ✓ FLINT_jll 5230.5 ms ✓ AbstractAlgebra → TestExt ✗ Nemo 7219.1 ms ✓ Groebner → GroebnerDynamicPolynomialsExt 5 dependencies successfully precompiled in 59 seconds. 39 already precompiled. 4 dependencies precompiled but different versions are currently loaded. Restart julia to access the new versions. Otherwise, loading dependents of these packages may trigger further precompilation to work with the unexpected versions. ┌ Error: Error during loading of extension GroebnerDynamicPolynomialsExt of Groebner, use `Base.retry_load_extensions()` to retry. │ exception = │ 1-element ExceptionStack: │ The following 1 direct dependency failed to precompile: │ │ Nemo │ │ Failed to precompile Nemo [2edaba10-b0f1-5616-af89-8c11ac63239a] to "/home/pkgeval/.julia/compiled/v1.13/Nemo/jl_1wQfMD" (ProcessExited(1)). │ ERROR: LoadError: cannot declare Nemo.PosInf constant; it was already declared as an import │ Stacktrace: │ [1] top-level scope │ @ ~/.julia/packages/Nemo/SKc7w/src/Infinity.jl:1 │ [2] include(mapexpr::Function, mod::Module, _path::String) │ @ Base ./Base.jl:310 │ [3] top-level scope │ @ ~/.julia/packages/Nemo/SKc7w/src/Nemo.jl:440 │ [4] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [5] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing) │ @ Base ./loading.jl:3069 │ [6] top-level scope │ @ stdin:5 │ [7] eval(m::Module, e::Any) │ @ Core ./boot.jl:489 │ [8] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String) │ @ Base ./loading.jl:2915 │ [9] include_string │ @ ./loading.jl:2925 [inlined] │ [10] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:328 │ [11] _start() │ @ Base ./client.jl:563 │ in expression starting at /home/pkgeval/.julia/packages/Nemo/SKc7w/src/Infinity.jl:1 │ in expression starting at /home/pkgeval/.julia/packages/Nemo/SKc7w/src/Nemo.jl:1 │ in expression starting at stdin: └ @ Base loading.jl:1588 Precompiling packages... ✗ Nemo Info Given SymbolicsNemoExt was explicitly requested, output will be shown live  [ Info: Assuming ((1//128)*(√((5120//1)*(a^4)) - (80//1)*(a^2))) != 0 [ Info: Assuming ((1//128)*(√((5120//1)*(a^4)) - (80//1)*(a^2))) != 0 82052.5 ms ✓ Symbolics → SymbolicsNemoExt 1 dependency successfully precompiled in 110 seconds. 158 already precompiled. 1 dependency had output during precompilation: ┌ Symbolics → SymbolicsNemoExt │ [Output was shown above] └ ┌ Error: Error during loading of extension SymbolicsNemoExt of Symbolics, use `Base.retry_load_extensions()` to retry. │ exception = │ 1-element ExceptionStack: │ The following 1 direct dependency failed to precompile: │ │ Nemo │ │ Failed to precompile Nemo [2edaba10-b0f1-5616-af89-8c11ac63239a] to "/home/pkgeval/.julia/compiled/v1.13/Nemo/jl_NfQVho" (ProcessExited(1)). │ ERROR: LoadError: cannot declare Nemo.PosInf constant; it was already declared as an import │ Stacktrace: │ [1] top-level scope │ @ ~/.julia/packages/Nemo/SKc7w/src/Infinity.jl:1 │ [2] include(mapexpr::Function, mod::Module, _path::String) │ @ Base ./Base.jl:310 │ [3] top-level scope │ @ ~/.julia/packages/Nemo/SKc7w/src/Nemo.jl:440 │ [4] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [5] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing) │ @ Base ./loading.jl:3069 │ [6] top-level scope │ @ stdin:5 │ [7] eval(m::Module, e::Any) │ @ Core ./boot.jl:489 │ [8] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String) │ @ Base ./loading.jl:2915 │ [9] include_string │ @ ./loading.jl:2925 [inlined] │ [10] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:328 │ [11] _start() │ @ Base ./client.jl:563 │ in expression starting at /home/pkgeval/.julia/packages/Nemo/SKc7w/src/Infinity.jl:1 │ in expression starting at /home/pkgeval/.julia/packages/Nemo/SKc7w/src/Nemo.jl:1 │ in expression starting at stdin: └ @ Base loading.jl:1588 Precompiling packages... ✗ Nemo 15503.9 ms ✓ Symbolics → SymbolicsGroebnerExt 1 dependency successfully precompiled in 40 seconds. 163 already precompiled. ┌ Error: Error during loading of extension SymbolicsGroebnerExt of Symbolics, use `Base.retry_load_extensions()` to retry. │ exception = │ 1-element ExceptionStack: │ The following 1 direct dependency failed to precompile: │ │ Nemo │ │ Failed to precompile Nemo [2edaba10-b0f1-5616-af89-8c11ac63239a] to "/home/pkgeval/.julia/compiled/v1.13/Nemo/jl_jWbomg" (ProcessExited(1)). │ ERROR: LoadError: cannot declare Nemo.PosInf constant; it was already declared as an import │ Stacktrace: │ [1] top-level scope │ @ ~/.julia/packages/Nemo/SKc7w/src/Infinity.jl:1 │ [2] include(mapexpr::Function, mod::Module, _path::String) │ @ Base ./Base.jl:310 │ [3] top-level scope │ @ ~/.julia/packages/Nemo/SKc7w/src/Nemo.jl:440 │ [4] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [5] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing) │ @ Base ./loading.jl:3069 │ [6] top-level scope │ @ stdin:5 │ [7] eval(m::Module, e::Any) │ @ Core ./boot.jl:489 │ [8] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String) │ @ Base ./loading.jl:2915 │ [9] include_string │ @ ./loading.jl:2925 [inlined] │ [10] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:328 │ [11] _start() │ @ Base ./client.jl:563 │ in expression starting at /home/pkgeval/.julia/packages/Nemo/SKc7w/src/Infinity.jl:1 │ in expression starting at /home/pkgeval/.julia/packages/Nemo/SKc7w/src/Nemo.jl:1 │ in expression starting at stdin: └ @ Base loading.jl:1588 Precompiling packages... 34309.8 ms ✓ ModelingToolkit → MTKDeepDiffsExt 1 dependency successfully precompiled in 36 seconds. 272 already precompiled. Precompiling packages... ✗ Nemo 47218.5 ms ✓ StructuralIdentifiability → ModelingToolkitSIExt 1 dependency successfully precompiled in 73 seconds. 288 already precompiled. ┌ Error: Error during loading of extension ModelingToolkitSIExt of StructuralIdentifiability, use `Base.retry_load_extensions()` to retry. │ exception = │ 1-element ExceptionStack: │ The following 1 direct dependency failed to precompile: │ │ Nemo │ │ Failed to precompile Nemo [2edaba10-b0f1-5616-af89-8c11ac63239a] to "/home/pkgeval/.julia/compiled/v1.13/Nemo/jl_2nyW2J" (ProcessExited(1)). │ ERROR: LoadError: cannot declare Nemo.PosInf constant; it was already declared as an import │ Stacktrace: │ [1] top-level scope │ @ ~/.julia/packages/Nemo/SKc7w/src/Infinity.jl:1 │ [2] include(mapexpr::Function, mod::Module, _path::String) │ @ Base ./Base.jl:310 │ [3] top-level scope │ @ ~/.julia/packages/Nemo/SKc7w/src/Nemo.jl:440 │ [4] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [5] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing) │ @ Base ./loading.jl:3069 │ [6] top-level scope │ @ stdin:5 │ [7] eval(m::Module, e::Any) │ @ Core ./boot.jl:489 │ [8] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String) │ @ Base ./loading.jl:2915 │ [9] include_string │ @ ./loading.jl:2925 [inlined] │ [10] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:328 │ [11] _start() │ @ Base ./client.jl:563 │ in expression starting at /home/pkgeval/.julia/packages/Nemo/SKc7w/src/Infinity.jl:1 │ in expression starting at /home/pkgeval/.julia/packages/Nemo/SKc7w/src/Nemo.jl:1 │ in expression starting at stdin: └ @ Base loading.jl:1588 [ Info: Testing started [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y ┌ Warning: New variable c, treating as a scalar parameter └ @ StructuralIdentifiability ~/.julia/packages/StructuralIdentifiability/0tPYp/src/pb_representation.jl:94 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: a [ Info: Parameters: b [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: a, b [ Info: Parameters: k1, k2 [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y 1.463656 seconds (941.84 k allocations: 50.383 MiB, 99.43% compilation time) 0.001215 seconds (7.13 k allocations: 321.750 KiB) 0.001119 seconds (10.81 k allocations: 486.688 KiB) 0.001026 seconds (10.77 k allocations: 481.188 KiB) 0.001371 seconds (14.54 k allocations: 636.938 KiB) 0.000761 seconds (7.95 k allocations: 362.367 KiB) 0.000487 seconds (7.46 k allocations: 301.766 KiB) 10.606377 seconds (6.52 M allocations: 348.577 MiB, 0.97% gc time, 99.78% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.241227 seconds (111.98 k allocations: 6.272 MiB, 97.28% compilation time) [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.008905 seconds (9.81 k allocations: 543.414 KiB, 91.42% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b [ Info: Inputs: u [ Info: Outputs: y Coefficient extraction for rational functions: Test Failed at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/extract_coefficients.jl:27 Expression: Set(C) == Set([x // 1, (y + 3) // 1, y ^ 2 // 1, one(R) // 1, 3 * one(R) // 1, -((x ^ 2 + y ^ 2)) // 1]) Evaluated: Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[1//3, -1//3*x^2 - 1//3*y^2, 1//3*y^2, 1//3*x, 1, 1//3*y + 1]) == Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[y^2, 3, y + 3, 1, x, -x^2 - y^2]) Stacktrace: [1] top-level scope @ ~/.julia/packages/StructuralIdentifiability/0tPYp/test/extract_coefficients.jl:2 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [3] macro expansion @ ~/.julia/packages/StructuralIdentifiability/0tPYp/test/extract_coefficients.jl:27 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 IOEQS: Dict{QQMPolyRingElem, QQMPolyRingElem}(y2(t)_1 => -a*y2(t)_0 + a*u(t)_0 + y2(t)_1 - u(t)_1, y1(t)_2 => -y1(t)_0 + y1(t)_2) [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a, b, c, d [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, I, W, R [ Info: Parameters: a, bi, bw, gam, k, mu, xi [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a01, a12, a13, a21, a31 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, In [ Info: Parameters: N, a, b, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002563645 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 5.181145753 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.044143825 seconds [ Info: Global identifiability assessed in 37.625775374 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001550525 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Global identifiability assessed in 0.538911026 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Global identifiability assessed in 3.332e-5 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.022626878 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.351504397 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.4669e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:08 ✓ # Computing specializations.. Time: 0:00:09 [ Info: Search for polynomial generators concluded in 7.92589109 [ Info: Selecting generators in 0.00954026 [ Info: Inclusion checked with probability 0.9955 in 0.041688978 seconds [ Info: Global identifiability assessed in 66.394366478 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.991131742 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.97115556 seconds [ Info: Dimensions of the Wronskians [676] [ Info: Ranks of the Wronskians computed in 0.061940628 seconds [ Info: Global identifiability assessed in 21.527149056 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007962286 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.018381647 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000195468 seconds [ Info: Global identifiability assessed in 0.044712299 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Note: the input model has nontrivial submodels. If the computation for the full model will be too heavy, you may want to try to first analyze one of the submodels. They can be produced using function `find_submodels` [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 8.945202571 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002327808 seconds [ Info: Dimensions of the Wronskians [2, 3, 2] [ Info: Ranks of the Wronskians computed in 2.594e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.710878896 [ Info: Selecting generators in 0.000350266 [ Info: Inclusion checked with probability 0.9955 in 0.002385428 seconds [ Info: Global identifiability assessed in 10.595658382 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002434867 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001472296 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 4.7679e-5 seconds [ Info: Global identifiability assessed in 0.006023993 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00215925 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001711404 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.721e-5 seconds [ Info: Global identifiability assessed in 0.00632807 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004398568 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003496027 seconds [ Info: Dimensions of the Wronskians [6] [ Info: Ranks of the Wronskians computed in 2.9839e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.783656211 [ Info: Selecting generators in 0.009056615 [ Info: Inclusion checked with probability 0.9955 in 0.002971772 seconds [ Info: Global identifiability assessed in 1.659159838 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004931013 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002416287 seconds [ Info: Dimensions of the Wronskians [2, 5] [ Info: Ranks of the Wronskians computed in 2.704e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005525878 [ Info: Selecting generators in 0.002974172 [ Info: Inclusion checked with probability 0.9955 in 0.002599316 seconds [ Info: Global identifiability assessed in 0.033300867 seconds [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: V_m, c, k01, k_m [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k1, k2, k3, k4 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: s, i, r, x1, x2 [ Info: Parameters: M, b0, b1, g, mu, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, E, I, R, Q [ Info: Parameters: beta, gamma, psi, v [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: k01, k12, k13, k14, k21, k31, k41 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x5, x7, x4, x6 [ Info: Parameters: k10, k5, k6, k7, k8, k9 [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, In, L, Q [ Info: Parameters: Ninv, a, b, e, g, s [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, R, W [ Info: Parameters: Dd, T, a, d, dr, e, g, r, rR [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: P3, P0, P5, P4, P1, P2 [ Info: Parameters: Ks, M, Mar, alpa, beta, beta_SA, beta_SI, phi, siga1, siga2 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: C, α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR [ Info: Parameters: EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1 [ Info: Inputs: pro_EGFR [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio [ Info: Parameters: kOHbeta10, kbeta, kbeta10, kcryOH, kcrybeta, kzea [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: EpoR_A, k1, k2, k3, k5, k6, k7 [ Info: Inputs: [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, U, I [ Info: Parameters: N, a, b, d, g [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: alpha [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k01, k02, k12, k21, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: K_M, V_M, b1, c, k02, k12, k21 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: k02, k03, k12, k13, k21, k31, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: a03, a04, a13, a24, a31, a42, a43 [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, I [ Info: Parameters: N, beta, k, mu, nu [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4, p5 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: beta, c, d, k1, k2, mu1, mu2, q1, q2, s [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00103361 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000794942 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.493e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.1299e-5 [ Info: Selecting generators in 0.724684595 [ Info: Inclusion checked with probability 0.995 in 0.001263538 seconds [ Info: The search for identifiable functions concluded in 1.527314648 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001262318 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000893431 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.901e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 6.8729e-5 [ Info: Selecting generators in 0.000494476 [ Info: Inclusion checked with probability 0.995 in 0.000822613 seconds [ Info: The search for identifiable functions concluded in 0.006724207 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000870012 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000760053 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.424e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 5.386e-5 [ Info: Selecting generators in 0.000408756 [ Info: Inclusion checked with probability 0.995 in 0.000771792 seconds [ Info: The search for identifiable functions concluded in 0.005651287 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000860222 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000766623 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.371e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000452765 [ Info: Selecting generators in 0.000439236 [ Info: Inclusion checked with probability 0.995 in 0.000825902 seconds [ Info: The search for identifiable functions concluded in 0.006163562 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00104411 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000802452 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.627e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000323987 [ Info: Selecting generators in 0.000414406 [ Info: Inclusion checked with probability 0.995 in 0.000745962 seconds [ Info: The search for identifiable functions concluded in 0.006174642 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000803462 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000719443 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.273e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000287747 [ Info: Selecting generators in 0.000400576 [ Info: Inclusion checked with probability 0.995 in 0.000780762 seconds [ Info: The search for identifiable functions concluded in 0.005569528 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001247728 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000815722 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.351e-5 seconds [ Info: The search for identifiable functions concluded in 0.016764012 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001239089 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000810222 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.441e-5 seconds [ Info: The search for identifiable functions concluded in 0.002484006 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000922231 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000697184 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.861e-5 seconds [ Info: The search for identifiable functions concluded in 0.001984001 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000860332 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000646324 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.811e-5 seconds [ Info: The search for identifiable functions concluded in 0.001862382 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000869042 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000684854 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.831e-5 seconds [ Info: The search for identifiable functions concluded in 0.001927982 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000914921 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000747593 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.047e-5 seconds [ Info: The search for identifiable functions concluded in 0.002068371 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001387157 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000918412 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.408e-5 seconds [ Info: The search for identifiable functions concluded in 0.003102951 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00101353 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000728383 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.806e-5 seconds [ Info: The search for identifiable functions concluded in 0.00214185 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000956461 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000683014 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.662e-5 seconds [ Info: The search for identifiable functions concluded in 0.002042221 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000975441 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000645264 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.596e-5 seconds [ Info: The search for identifiable functions concluded in 0.001998901 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000921131 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000626585 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.619e-5 seconds [ Info: The search for identifiable functions concluded in 0.001938462 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000914371 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000617064 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.6059e-5 seconds [ Info: The search for identifiable functions concluded in 0.001895402 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.211018246 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001267509 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.479e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 6.4579e-5 [ Info: Selecting generators in 0.000362696 [ Info: Inclusion checked with probability 0.995 in 0.000751163 seconds [ Info: The search for identifiable functions concluded in 0.218174618 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001568825 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001004991 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.2649e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 5.816e-5 [ Info: Selecting generators in 0.000380056 [ Info: Inclusion checked with probability 0.995 in 0.000707153 seconds [ Info: The search for identifiable functions concluded in 0.006473359 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001570526 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0010142 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.1649e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 5.276e-5 [ Info: Selecting generators in 0.000375596 [ Info: Inclusion checked with probability 0.995 in 0.000718723 seconds [ Info: The search for identifiable functions concluded in 0.006330881 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001581275 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00102562 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.23e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000314148 [ Info: Selecting generators in 0.000376867 [ Info: Inclusion checked with probability 0.995 in 0.000736683 seconds [ Info: The search for identifiable functions concluded in 0.006690277 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001619284 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00107628 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.337e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000306578 [ Info: Selecting generators in 0.000369927 [ Info: Inclusion checked with probability 0.995 in 0.000726353 seconds [ Info: The search for identifiable functions concluded in 0.006887515 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001577835 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001046151 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.386e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000322807 [ Info: Selecting generators in 0.000363746 [ Info: Inclusion checked with probability 0.995 in 0.000712773 seconds [ Info: The search for identifiable functions concluded in 0.006658118 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000903362 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001389067 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.8199e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.8629e-5 [ Info: Selecting generators in 0.001253338 [ Info: Inclusion checked with probability 0.995 in 0.002013231 seconds [ Info: The search for identifiable functions concluded in 0.011133606 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000963661 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000917571 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.552e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.6669e-5 [ Info: Selecting generators in 0.001255488 [ Info: Inclusion checked with probability 0.995 in 0.001949422 seconds [ Info: The search for identifiable functions concluded in 0.01058361 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000956181 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000904202 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.722e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.7529e-5 [ Info: Selecting generators in 0.001252978 [ Info: Inclusion checked with probability 0.995 in 0.001928021 seconds [ Info: The search for identifiable functions concluded in 0.010509611 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000941371 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000894142 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.7059e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.171472427 [ Info: Selecting generators in 0.002295798 [ Info: Inclusion checked with probability 0.995 in 0.001895002 seconds [ Info: The search for identifiable functions concluded in 0.182958469 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000931931 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000874882 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.4569e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008720468 [ Info: Selecting generators in 0.00210684 [ Info: Inclusion checked with probability 0.995 in 0.001887542 seconds [ Info: The search for identifiable functions concluded in 0.019885543 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000946501 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000888282 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.628e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008387111 [ Info: Selecting generators in 0.002032001 [ Info: Inclusion checked with probability 0.995 in 0.001807393 seconds [ Info: The search for identifiable functions concluded in 0.019352418 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000866741 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000788782 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.4179e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.2409e-5 [ Info: Selecting generators in 0.001267039 [ Info: Inclusion checked with probability 0.995 in 0.001505636 seconds [ Info: The search for identifiable functions concluded in 0.739670794 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000906071 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000762253 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.434e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.528e-5 [ Info: Selecting generators in 0.001179958 [ Info: Inclusion checked with probability 0.995 in 0.001371407 seconds [ Info: The search for identifiable functions concluded in 0.008113424 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000883311 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000716173 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.217e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.1929e-5 [ Info: Selecting generators in 0.001196029 [ Info: Inclusion checked with probability 0.995 in 0.001406416 seconds [ Info: The search for identifiable functions concluded in 0.007969445 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000834122 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000736313 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.364e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.156056142 [ Info: Selecting generators in 0.001668724 [ Info: Inclusion checked with probability 0.995 in 0.001529855 seconds [ Info: The search for identifiable functions concluded in 0.164683051 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000855342 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000718484 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.24e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003431128 [ Info: Selecting generators in 0.001448946 [ Info: Inclusion checked with probability 0.995 in 0.001407017 seconds [ Info: The search for identifiable functions concluded in 0.161783309 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000879722 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000749743 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.313e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00315711 [ Info: Selecting generators in 0.001370037 [ Info: Inclusion checked with probability 0.995 in 0.001384087 seconds [ Info: The search for identifiable functions concluded in 0.011202615 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001357857 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00101693 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.219e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.855e-5 [ Info: Selecting generators in 0.000347377 [ Info: Inclusion checked with probability 0.995 in 0.001402237 seconds [ Info: The search for identifiable functions concluded in 0.009742239 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001371948 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00105537 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.529e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.4139e-5 [ Info: Selecting generators in 0.000326947 [ Info: Inclusion checked with probability 0.995 in 0.001408007 seconds [ Info: The search for identifiable functions concluded in 0.009839708 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001367947 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001011661 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.3009e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.429e-5 [ Info: Selecting generators in 0.000345857 [ Info: Inclusion checked with probability 0.995 in 0.001464406 seconds [ Info: The search for identifiable functions concluded in 0.009809708 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001377687 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00107548 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.475e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003909243 [ Info: Selecting generators in 0.000449646 [ Info: Inclusion checked with probability 0.995 in 0.001520626 seconds [ Info: The search for identifiable functions concluded in 0.013963059 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001382307 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00103943 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.358e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004445298 [ Info: Selecting generators in 0.000464915 [ Info: Inclusion checked with probability 0.995 in 0.001503606 seconds [ Info: The search for identifiable functions concluded in 0.014580343 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001386897 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00102835 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.258e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004097031 [ Info: Selecting generators in 0.000421536 [ Info: Inclusion checked with probability 0.995 in 0.001496926 seconds [ Info: The search for identifiable functions concluded in 0.014085297 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001739693 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001303897 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.441e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.3889e-5 [ Info: Selecting generators in 0.001885103 [ Info: Inclusion checked with probability 0.995 in 0.001867512 seconds [ Info: The search for identifiable functions concluded in 0.013194036 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001746244 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001285788 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.554e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.9549e-5 [ Info: Selecting generators in 0.001879503 [ Info: Inclusion checked with probability 0.995 in 0.001909522 seconds [ Info: The search for identifiable functions concluded in 0.013304955 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001806463 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001342357 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.623e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.3219e-5 [ Info: Selecting generators in 0.001786844 [ Info: Inclusion checked with probability 0.995 in 0.001869692 seconds [ Info: The search for identifiable functions concluded in 0.013182966 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001688544 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001272158 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.557e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007904015 [ Info: Selecting generators in 0.002069861 [ Info: Inclusion checked with probability 0.995 in 0.001869842 seconds [ Info: The search for identifiable functions concluded in 0.021156741 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001691314 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001277618 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.635e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007837366 [ Info: Selecting generators in 0.002053301 [ Info: Inclusion checked with probability 0.995 in 0.001874713 seconds [ Info: The search for identifiable functions concluded in 0.020993542 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001730034 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001287228 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.5629e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007584749 [ Info: Selecting generators in 0.002012451 [ Info: Inclusion checked with probability 0.995 in 0.001831343 seconds [ Info: The search for identifiable functions concluded in 0.020551837 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010885178 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002980852 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.5799e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000101039 [ Info: Selecting generators in 0.005580597 [ Info: Inclusion checked with probability 0.995 in 0.003244309 seconds [ Info: The search for identifiable functions concluded in 0.209037814 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004118581 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002921062 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.416e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.44e-5 [ Info: Selecting generators in 0.005489659 [ Info: Inclusion checked with probability 0.995 in 0.003293769 seconds [ Info: The search for identifiable functions concluded in 0.026930007 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004690775 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003767204 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 4.043e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000117508 [ Info: Selecting generators in 0.006556239 [ Info: Inclusion checked with probability 0.995 in 0.003708835 seconds [ Info: The search for identifiable functions concluded in 0.032199717 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004645636 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003582006 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.712e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001528715 [ Info: Selecting generators in 0.00640972 [ Info: Inclusion checked with probability 0.995 in 0.003533937 seconds [ Info: The search for identifiable functions concluded in 0.03302373 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004505358 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003530646 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.575e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001458166 [ Info: Selecting generators in 0.19454827 [ Info: Inclusion checked with probability 0.995 in 0.003548937 seconds [ Info: The search for identifiable functions concluded in 0.220351448 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00428117 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003077032 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.5719e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001366568 [ Info: Selecting generators in 0.005715216 [ Info: Inclusion checked with probability 0.995 in 0.003324439 seconds [ Info: The search for identifiable functions concluded in 0.029472423 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002941553 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001889972 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.751e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.851e-5 [ Info: Selecting generators in 0.001164759 [ Info: Inclusion checked with probability 0.995 in 0.002159189 seconds [ Info: The search for identifiable functions concluded in 0.014703601 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002964682 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001928122 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.634e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.6109e-5 [ Info: Selecting generators in 0.00112846 [ Info: Inclusion checked with probability 0.995 in 0.002025941 seconds [ Info: The search for identifiable functions concluded in 0.014381005 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002882543 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001927671 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.76e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.9329e-5 [ Info: Selecting generators in 0.00113114 [ Info: Inclusion checked with probability 0.995 in 0.002047511 seconds [ Info: The search for identifiable functions concluded in 0.014465944 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002890912 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001842503 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.5859e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000813352 [ Info: Selecting generators in 0.001156059 [ Info: Inclusion checked with probability 0.995 in 0.001995261 seconds [ Info: The search for identifiable functions concluded in 0.015089488 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002908842 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001815863 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.413e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000715793 [ Info: Selecting generators in 0.00111859 [ Info: Inclusion checked with probability 0.995 in 0.002003711 seconds [ Info: The search for identifiable functions concluded in 0.014590633 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002818493 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001824503 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.577e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000730773 [ Info: Selecting generators in 0.001126039 [ Info: Inclusion checked with probability 0.995 in 0.002007731 seconds [ Info: The search for identifiable functions concluded in 0.014531923 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002905753 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001871013 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.854e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000101859 [ Info: Selecting generators in 0.001352088 [ Info: Inclusion checked with probability 0.995 in 0.001900423 seconds [ Info: The search for identifiable functions concluded in 0.016390776 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002872053 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001820453 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.759e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.4419e-5 [ Info: Selecting generators in 0.001377497 [ Info: Inclusion checked with probability 0.995 in 0.001911122 seconds [ Info: The search for identifiable functions concluded in 0.016833112 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002812903 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001806913 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.693e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.5169e-5 [ Info: Selecting generators in 0.001307798 [ Info: Inclusion checked with probability 0.995 in 0.001854692 seconds [ Info: The search for identifiable functions concluded in 0.015994629 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003476127 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002047021 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.6309e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009854737 [ Info: Selecting generators in 0.002309318 [ Info: Inclusion checked with probability 0.995 in 0.001979641 seconds [ Info: The search for identifiable functions concluded in 0.028338643 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003152601 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002099011 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.945e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.010878247 [ Info: Selecting generators in 0.002457897 [ Info: Inclusion checked with probability 0.995 in 0.002024201 seconds [ Info: The search for identifiable functions concluded in 0.029670802 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00311171 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002093171 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.782e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.010728899 [ Info: Selecting generators in 0.002423517 [ Info: Inclusion checked with probability 0.995 in 0.00202894 seconds [ Info: The search for identifiable functions concluded in 0.029432243 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001637485 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001296928 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.444e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.5899e-5 [ Info: Selecting generators in 0.00107945 [ Info: Inclusion checked with probability 0.995 in 0.001763483 seconds [ Info: The search for identifiable functions concluded in 0.011514691 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001655295 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001293078 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.586e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.5749e-5 [ Info: Selecting generators in 0.00104564 [ Info: Inclusion checked with probability 0.995 in 0.001738913 seconds [ Info: The search for identifiable functions concluded in 0.011290214 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001656964 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001324067 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.461e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.928e-5 [ Info: Selecting generators in 0.00103246 [ Info: Inclusion checked with probability 0.995 in 0.001737634 seconds [ Info: The search for identifiable functions concluded in 0.011277474 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001931921 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001302887 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.363e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007083053 [ Info: Selecting generators in 0.001879202 [ Info: Inclusion checked with probability 0.995 in 0.001746593 seconds [ Info: The search for identifiable functions concluded in 0.019612466 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001649944 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001320377 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.606e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007263602 [ Info: Selecting generators in 0.001950911 [ Info: Inclusion checked with probability 0.995 in 0.001802523 seconds [ Info: The search for identifiable functions concluded in 0.019783754 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001681314 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001355097 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.56e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007247472 [ Info: Selecting generators in 0.001903392 [ Info: Inclusion checked with probability 0.995 in 0.001772423 seconds [ Info: The search for identifiable functions concluded in 0.019687865 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009266692 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.018970852 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000202738 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 [ Info: Search for polynomial generators concluded in 0.000118819 [ Info: Selecting generators in 0.009470221 [ Info: Inclusion checked with probability 0.995 in 0.016810802 seconds [ Info: The search for identifiable functions concluded in 8.490569624 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00854664 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017558375 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000231568 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.248e-5 [ Info: Selecting generators in 0.00954644 [ Info: Inclusion checked with probability 0.995 in 0.016910241 seconds [ Info: The search for identifiable functions concluded in 0.094566771 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008352191 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01799432 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000214168 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000109199 [ Info: Selecting generators in 0.010092415 [ Info: Inclusion checked with probability 0.995 in 0.017133019 seconds [ Info: The search for identifiable functions concluded in 0.096839919 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00851594 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017747773 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000204948 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.731698889 [ Info: Selecting generators in 0.00959204 [ Info: Inclusion checked with probability 0.995 in 0.018225688 seconds [ Info: The search for identifiable functions concluded in 0.828858186 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009365352 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.238780954 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000250758 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.025881757 [ Info: Selecting generators in 0.00960236 [ Info: Inclusion checked with probability 0.995 in 0.016816812 seconds [ Info: The search for identifiable functions concluded in 0.344582339 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008725028 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017901261 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000256138 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.026765768 [ Info: Selecting generators in 0.009897347 [ Info: Inclusion checked with probability 0.995 in 0.01704171 seconds [ Info: The search for identifiable functions concluded in 0.12231168 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.090421635 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 4.865011677 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.122674486 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000101569 [ Info: Selecting generators in 0.574430018 [ Info: Inclusion checked with probability 0.995 in 1.831880661 seconds [ Info: The search for identifiable functions concluded in 10.931895629 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.03244042 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 5.16630513 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.128025026 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000110579 [ Info: Selecting generators in 0.71023972 [ Info: Inclusion checked with probability 0.995 in 1.519006013 seconds [ Info: The search for identifiable functions concluded in 11.174119474 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.197014971 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 5.446786598 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.125338901 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000145398 [ Info: Selecting generators in 0.690464765 [ Info: Inclusion checked with probability 0.995 in 1.653985082 seconds [ Info: The search for identifiable functions concluded in 11.619119681 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.301473418 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 5.344743425 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.125284091 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.018202459 [ Info: Selecting generators in 0.743166959 [ Info: Inclusion checked with probability 0.995 in 1.681448183 seconds [ Info: The search for identifiable functions concluded in 11.814591434 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.247786682 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 5.585228939 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.130192616 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.016047569 [ Info: Selecting generators in 0.439388676 [ Info: Inclusion checked with probability 0.995 in 1.728113343 seconds [ Info: The search for identifiable functions concluded in 12.188626488 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.15974897 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.118112853 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.130192095 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.018397687 [ Info: Selecting generators in 0.386412864 [ Info: Inclusion checked with probability 0.995 in 1.822346574 seconds [ Info: The search for identifiable functions concluded in 13.655126442 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009199103 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007903145 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.662e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000116829 [ Info: Selecting generators in 0.005470218 [ Info: Inclusion checked with probability 0.995 in 0.005829836 seconds [ Info: The search for identifiable functions concluded in 0.055406988 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008738248 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007650288 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.2899e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.8069e-5 [ Info: Selecting generators in 0.005526418 [ Info: Inclusion checked with probability 0.995 in 0.005889675 seconds [ Info: The search for identifiable functions concluded in 0.053173469 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008660549 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007817617 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.1929e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000103459 [ Info: Selecting generators in 0.005518368 [ Info: Inclusion checked with probability 0.995 in 0.006252981 seconds [ Info: The search for identifiable functions concluded in 0.053559976 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008875217 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007652928 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 5.5079e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.547947205 [ Info: Selecting generators in 0.010109155 [ Info: Inclusion checked with probability 0.995 in 0.006545769 seconds [ Info: The search for identifiable functions concluded in 0.606557924 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010476592 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.008732658 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.3759e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.022503389 [ Info: Selecting generators in 0.008941206 [ Info: Inclusion checked with probability 0.995 in 0.006220312 seconds [ Info: The search for identifiable functions concluded in 0.088862784 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009089204 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007649638 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.9569e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.020893174 [ Info: Selecting generators in 0.00850267 [ Info: Inclusion checked with probability 0.995 in 0.005765046 seconds [ Info: The search for identifiable functions concluded in 0.077190314 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015469325 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010323073 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.9999e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000118829 [ Info: Selecting generators in 0.006884915 [ Info: Inclusion checked with probability 0.995 in 0.009454491 seconds [ Info: The search for identifiable functions concluded in 0.275430659 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014520294 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010226094 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.0889e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000107389 [ Info: Selecting generators in 0.006589309 [ Info: Inclusion checked with probability 0.995 in 0.009452461 seconds [ Info: The search for identifiable functions concluded in 0.068706333 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014093878 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00964785 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.9299e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000112709 [ Info: Selecting generators in 0.006228011 [ Info: Inclusion checked with probability 0.995 in 0.009236203 seconds [ Info: The search for identifiable functions concluded in 0.06591203 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014270655 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.009484501 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.901e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.027766459 [ Info: Selecting generators in 0.009810718 [ Info: Inclusion checked with probability 0.995 in 0.008816297 seconds [ Info: The search for identifiable functions concluded in 0.09779857 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013997248 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.009181013 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.096e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.031527504 [ Info: Selecting generators in 0.010722799 [ Info: Inclusion checked with probability 0.995 in 0.009353652 seconds [ Info: The search for identifiable functions concluded in 0.100716263 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014707942 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010897708 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.2429e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.032726262 [ Info: Selecting generators in 0.011210304 [ Info: Inclusion checked with probability 0.995 in 0.009861578 seconds [ Info: The search for identifiable functions concluded in 0.109861636 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008184913 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010838998 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.6639e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000129059 [ Info: Selecting generators in 0.053494576 [ Info: Inclusion checked with probability 0.995 in 0.012055126 seconds [ Info: The search for identifiable functions concluded in 0.357988822 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.602791369 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012899429 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.5809e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000125629 [ Info: Selecting generators in 0.050136618 [ Info: Inclusion checked with probability 0.995 in 0.010867978 seconds [ Info: The search for identifiable functions concluded in 0.976742711 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007154582 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.009660449 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.3879e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000154338 [ Info: Selecting generators in 0.057625847 [ Info: Inclusion checked with probability 0.995 in 0.012395543 seconds [ Info: The search for identifiable functions concluded in 0.340182529 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007602689 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010792898 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.6829e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.052938422 [ Info: Selecting generators in 0.054898074 [ Info: Inclusion checked with probability 0.995 in 0.010690709 seconds [ Info: The search for identifiable functions concluded in 0.401958279 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007298751 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010321603 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.6799e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.981568205 [ Info: Selecting generators in 0.076375091 [ Info: Inclusion checked with probability 0.995 in 0.014318806 seconds [ Info: The search for identifiable functions concluded in 3.011974581 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010043246 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.013530983 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 8.0259e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.865570396 [ Info: Selecting generators in 0.048502074 [ Info: Inclusion checked with probability 0.995 in 0.00952981 seconds [ Info: The search for identifiable functions concluded in 1.274611097 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.100205479 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.046231674 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 7.7799e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 12   ⌝ # Computing specializations.. Time: 0:00:00 Points: 23   ⌟ # Computing specializations.. Time: 0:00:00 Points: 39   ⌞ # Computing specializations.. Time: 0:00:01 Points: 54   ⌜ # Computing specializations.. Time: 0:00:01 Points: 66   ⌝ # Computing specializations.. Time: 0:00:01 Points: 81   ⌟ # Computing specializations.. Time: 0:00:02 Points: 96   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 12   ⌝ # Computing specializations.. Time: 0:00:00 Points: 22   ⌟ # Computing specializations.. Time: 0:00:00 Points: 38   ⌞ # Computing specializations.. Time: 0:00:01 Points: 53   ⌜ # Computing specializations.. Time: 0:00:01 Points: 67   ⌝ # Computing specializations.. Time: 0:00:02 Points: 83   ⌟ # Computing specializations.. Time: 0:00:02 Points: 97   ⌞ # Computing specializations.. Time: 0:00:02 Points: 111   ⌜ # Computing specializations.. Time: 0:00:03 Points: 127   ⌝ # Computing specializations.. Time: 0:00:03 Points: 142   ⌟ # Computing specializations.. Time: 0:00:04 Points: 157   ⌞ # Computing specializations.. Time: 0:00:04 Points: 172   ⌜ # Computing specializations.. Time: 0:00:04 Points: 187   ⌝ # Computing specializations.. Time: 0:00:05 Points: 201   ⌟ # Computing specializations.. Time: 0:00:05 Points: 215   ⌞ # Computing specializations.. Time: 0:00:05 Points: 229   ⌜ # Computing specializations.. Time: 0:00:06 Points: 245   ⌝ # Computing specializations.. Time: 0:00:06 Points: 260   ⌟ # Computing specializations.. Time: 0:00:06 Points: 275   ⌞ # Computing specializations.. Time: 0:00:07 Points: 288   ⌜ # Computing specializations.. Time: 0:00:07 Points: 302   ⌝ # Computing specializations.. Time: 0:00:08 Points: 317   ⌟ # Computing specializations.. Time: 0:00:08 Points: 332   ⌞ # Computing specializations.. Time: 0:00:08 Points: 347   ⌜ # Computing specializations.. Time: 0:00:09 Points: 362   ⌝ # Computing specializations.. Time: 0:00:09 Points: 377   ⌟ # Computing specializations.. Time: 0:00:09 Points: 390   ⌞ # Computing specializations.. Time: 0:00:10 Points: 404   ⌜ # Computing specializations.. Time: 0:00:10 Points: 418   ⌝ # Computing specializations.. Time: 0:00:11 Points: 432   ⌟ # Computing specializations.. Time: 0:00:11 Points: 448   ⌞ # Computing specializations.. Time: 0:00:11 Points: 463   ⌜ # Computing specializations.. Time: 0:00:12 Points: 478   ⌝ # Computing specializations.. Time: 0:00:12 Points: 492   ⌟ # Computing specializations.. Time: 0:00:12 Points: 507   ⌞ # Computing specializations.. Time: 0:00:13 Points: 520   ⌜ # Computing specializations.. Time: 0:00:13 Points: 535   ⌝ # Computing specializations.. Time: 0:00:13 Points: 548   ⌟ # Computing specializations.. Time: 0:00:14 Points: 562   ⌞ # Computing specializations.. Time: 0:00:14 Points: 576   ⌜ # Computing specializations.. Time: 0:00:15 Points: 590   ⌝ # Computing specializations.. Time: 0:00:15 Points: 606   ⌟ # Computing specializations.. Time: 0:00:15 Points: 621   ⌞ # Computing specializations.. Time: 0:00:16 Points: 636   ✓ # Computing specializations.. Time: 0:00:16 [ Info: Search for polynomial generators concluded in 0.000440356 [ Info: Selecting generators in 0.031182246 [ Info: Inclusion checked with probability 0.995 in 6.701340154 seconds [ Info: The search for identifiable functions concluded in 39.981177797 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.035005738 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.051542605 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000395516 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 23   ⌟ # Computing specializations.. Time: 0:00:00 Points: 35   ⌞ # Computing specializations.. Time: 0:00:01 Points: 49   ⌜ # Computing specializations.. Time: 0:00:01 Points: 65   ⌝ # Computing specializations.. Time: 0:00:02 Points: 79   ⌟ # Computing specializations.. Time: 0:00:02 Points: 93   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 13   ⌝ # Computing specializations.. Time: 0:00:01 Points: 23   ⌟ # Computing specializations.. Time: 0:00:01 Points: 39   ⌞ # Computing specializations.. Time: 0:00:03 Points: 53   ⌜ # Computing specializations.. Time: 0:00:03 Points: 67   ⌝ # Computing specializations.. Time: 0:00:04 Points: 81   ⌟ # Computing specializations.. Time: 0:00:04 Points: 95   ⌞ # Computing specializations.. Time: 0:00:04 Points: 109   ⌜ # Computing specializations.. Time: 0:00:05 Points: 121   ⌝ # Computing specializations.. Time: 0:00:05 Points: 135   ⌟ # Computing specializations.. Time: 0:00:06 Points: 148   ⌞ # Computing specializations.. Time: 0:00:06 Points: 161   ⌜ # Computing specializations.. Time: 0:00:07 Points: 174   ⌝ # Computing specializations.. Time: 0:00:07 Points: 187   ⌟ # Computing specializations.. Time: 0:00:07 Points: 202   ⌞ # Computing specializations.. Time: 0:00:08 Points: 216   ⌜ # Computing specializations.. Time: 0:00:08 Points: 231   ⌝ # Computing specializations.. Time: 0:00:08 Points: 245   ⌟ # Computing specializations.. Time: 0:00:09 Points: 259   ⌞ # Computing specializations.. Time: 0:00:09 Points: 273   ⌜ # Computing specializations.. Time: 0:00:09 Points: 285   ⌝ # Computing specializations.. Time: 0:00:10 Points: 297   ⌟ # Computing specializations.. Time: 0:00:10 Points: 311   ⌞ # Computing specializations.. Time: 0:00:11 Points: 326   ⌜ # Computing specializations.. Time: 0:00:11 Points: 340   ⌝ # Computing specializations.. Time: 0:00:11 Points: 354   ⌟ # Computing specializations.. Time: 0:00:12 Points: 368   ⌞ # Computing specializations.. Time: 0:00:12 Points: 379   ⌜ # Computing specializations.. Time: 0:00:12 Points: 394   ⌝ # Computing specializations.. Time: 0:00:13 Points: 408   ⌟ # Computing specializations.. Time: 0:00:13 Points: 422   ⌞ # Computing specializations.. Time: 0:00:13 Points: 437   ⌜ # Computing specializations.. Time: 0:00:14 Points: 452   ⌝ # Computing specializations.. Time: 0:00:14 Points: 466   ⌟ # Computing specializations.. Time: 0:00:15 Points: 481   ⌞ # Computing specializations.. Time: 0:00:15 Points: 496   ⌜ # Computing specializations.. Time: 0:00:15 Points: 508   ⌝ # Computing specializations.. Time: 0:00:16 Points: 518   ⌟ # Computing specializations.. Time: 0:00:16 Points: 532   ⌞ # Computing specializations.. Time: 0:00:16 Points: 546   ⌜ # Computing specializations.. Time: 0:00:17 Points: 560   ⌝ # Computing specializations.. Time: 0:00:17 Points: 574   ⌟ # Computing specializations.. Time: 0:00:17 Points: 588   ⌞ # Computing specializations.. Time: 0:00:18 Points: 601   ⌜ # Computing specializations.. Time: 0:00:18 Points: 616   ⌝ # Computing specializations.. Time: 0:00:19 Points: 630   ✓ # Computing specializations.. Time: 0:00:19 [ Info: Search for polynomial generators concluded in 0.000289927 [ Info: Selecting generators in 0.034153118 [ Info: Inclusion checked with probability 0.995 in 6.635381039 seconds [ Info: The search for identifiable functions concluded in 43.305182019 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.640038336 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.094871907 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000148789 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 21   ⌟ # Computing specializations.. Time: 0:00:00 Points: 34   ⌞ # Computing specializations.. Time: 0:00:01 Points: 47   ⌜ # Computing specializations.. Time: 0:00:01 Points: 61   ⌝ # Computing specializations.. Time: 0:00:02 Points: 75   ⌟ # Computing specializations.. Time: 0:00:02 Points: 88   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 24   ⌟ # Computing specializations.. Time: 0:00:01 Points: 37   ⌞ # Computing specializations.. Time: 0:00:01 Points: 50   ⌜ # Computing specializations.. Time: 0:00:01 Points: 60   ⌝ # Computing specializations.. Time: 0:00:02 Points: 72   ⌟ # Computing specializations.. Time: 0:00:02 Points: 85   ⌞ # Computing specializations.. Time: 0:00:02 Points: 98   ⌜ # Computing specializations.. Time: 0:00:03 Points: 108   ⌝ # Computing specializations.. Time: 0:00:03 Points: 121   ⌟ # Computing specializations.. Time: 0:00:03 Points: 133   ⌞ # Computing specializations.. Time: 0:00:04 Points: 143   ⌜ # Computing specializations.. Time: 0:00:04 Points: 156   ⌝ # Computing specializations.. Time: 0:00:04 Points: 168   ⌟ # Computing specializations.. Time: 0:00:05 Points: 177   ⌞ # Computing specializations.. Time: 0:00:05 Points: 190   ⌜ # Computing specializations.. Time: 0:00:05 Points: 202   ⌝ # Computing specializations.. Time: 0:00:06 Points: 212   ⌟ # Computing specializations.. Time: 0:00:06 Points: 225   ⌞ # Computing specializations.. Time: 0:00:06 Points: 238   ⌜ # Computing specializations.. Time: 0:00:07 Points: 248   ⌝ # Computing specializations.. Time: 0:00:07 Points: 261   ⌟ # Computing specializations.. Time: 0:00:07 Points: 274   ⌞ # Computing specializations.. Time: 0:00:08 Points: 284   ⌜ # Computing specializations.. Time: 0:00:08 Points: 296   ⌝ # Computing specializations.. Time: 0:00:09 Points: 308   ⌟ # Computing specializations.. Time: 0:00:09 Points: 321   ⌞ # Computing specializations.. Time: 0:00:09 Points: 335   ⌜ # Computing specializations.. Time: 0:00:10 Points: 347   ⌝ # Computing specializations.. Time: 0:00:10 Points: 359   ⌟ # Computing specializations.. Time: 0:00:10 Points: 371   ⌞ # Computing specializations.. Time: 0:00:11 Points: 381   ⌜ # Computing specializations.. Time: 0:00:11 Points: 390   ⌝ # Computing specializations.. Time: 0:00:12 Points: 398   ⌟ # Computing specializations.. Time: 0:00:12 Points: 412   ⌞ # Computing specializations.. Time: 0:00:12 Points: 425   ⌜ # Computing specializations.. Time: 0:00:13 Points: 435   ⌝ # Computing specializations.. Time: 0:00:13 Points: 444   ⌟ # Computing specializations.. Time: 0:00:14 Points: 453   ⌞ # Computing specializations.. Time: 0:00:14 Points: 462   ⌜ # Computing specializations.. Time: 0:00:14 Points: 469   ⌝ # Computing specializations.. Time: 0:00:15 Points: 479   ⌟ # Computing specializations.. Time: 0:00:15 Points: 488   ⌞ # Computing specializations.. Time: 0:00:15 Points: 497   ⌜ # Computing specializations.. Time: 0:00:16 Points: 509   ⌝ # Computing specializations.. Time: 0:00:16 Points: 521   ⌟ # Computing specializations.. Time: 0:00:16 Points: 533   ⌞ # Computing specializations.. Time: 0:00:17 Points: 546   ⌜ # Computing specializations.. Time: 0:00:17 Points: 559   ⌝ # Computing specializations.. Time: 0:00:17 Points: 570   ⌟ # Computing specializations.. Time: 0:00:18 Points: 581   ⌞ # Computing specializations.. Time: 0:00:18 Points: 591   ⌜ # Computing specializations.. Time: 0:00:18 Points: 599   ⌝ # Computing specializations.. Time: 0:00:19 Points: 612   ⌟ # Computing specializations.. Time: 0:00:19 Points: 623   ⌞ # Computing specializations.. Time: 0:00:19 Points: 634   ✓ # Computing specializations.. Time: 0:00:20 [ Info: Search for polynomial generators concluded in 0.000331246 [ Info: Selecting generators in 0.042103344 [ Info: Inclusion checked with probability 0.995 in 6.262822194 seconds [ Info: The search for identifiable functions concluded in 48.724785867 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.953361485 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.051299997 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000128149 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 25   ⌟ # Computing specializations.. Time: 0:00:01 Points: 39   ⌞ # Computing specializations.. Time: 0:00:01 Points: 50   ⌜ # Computing specializations.. Time: 0:00:01 Points: 63   ⌝ # Computing specializations.. Time: 0:00:01 Points: 74   ⌟ # Computing specializations.. Time: 0:00:02 Points: 87   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 12   ⌝ # Computing specializations.. Time: 0:00:00 Points: 22   ⌟ # Computing specializations.. Time: 0:00:01 Points: 35   ⌞ # Computing specializations.. Time: 0:00:01 Points: 50   ⌜ # Computing specializations.. Time: 0:00:01 Points: 65   ⌝ # Computing specializations.. Time: 0:00:02 Points: 78   ⌟ # Computing specializations.. Time: 0:00:02 Points: 93   ⌞ # Computing specializations.. Time: 0:00:02 Points: 107   ⌜ # Computing specializations.. Time: 0:00:03 Points: 120   ⌝ # Computing specializations.. Time: 0:00:03 Points: 135   ⌟ # Computing specializations.. Time: 0:00:03 Points: 149   ⌞ # Computing specializations.. Time: 0:00:04 Points: 162   ⌜ # Computing specializations.. Time: 0:00:04 Points: 177   ⌝ # Computing specializations.. Time: 0:00:05 Points: 191   ⌟ # Computing specializations.. Time: 0:00:05 Points: 205   ⌞ # Computing specializations.. Time: 0:00:05 Points: 220   ⌜ # Computing specializations.. Time: 0:00:06 Points: 234   ⌝ # Computing specializations.. Time: 0:00:06 Points: 247   ⌟ # Computing specializations.. Time: 0:00:06 Points: 258   ⌞ # Computing specializations.. Time: 0:00:07 Points: 271   ⌜ # Computing specializations.. Time: 0:00:07 Points: 285   ⌝ # Computing specializations.. Time: 0:00:08 Points: 299   ⌟ # Computing specializations.. Time: 0:00:08 Points: 312   ⌞ # Computing specializations.. Time: 0:00:08 Points: 325   ⌜ # Computing specializations.. Time: 0:00:09 Points: 338   ⌝ # Computing specializations.. Time: 0:00:09 Points: 353   ⌟ # Computing specializations.. Time: 0:00:09 Points: 367   ⌞ # Computing specializations.. Time: 0:00:10 Points: 380   ⌜ # Computing specializations.. Time: 0:00:10 Points: 393   ⌝ # Computing specializations.. Time: 0:00:11 Points: 406   ⌟ # Computing specializations.. Time: 0:00:11 Points: 419   ⌞ # Computing specializations.. Time: 0:00:11 Points: 431   ⌜ # Computing specializations.. Time: 0:00:12 Points: 445   ⌝ # Computing specializations.. Time: 0:00:12 Points: 458   ⌟ # Computing specializations.. Time: 0:00:12 Points: 471   ⌞ # Computing specializations.. Time: 0:00:13 Points: 484   ⌜ # Computing specializations.. Time: 0:00:13 Points: 496   ⌝ # Computing specializations.. Time: 0:00:13 Points: 511   ⌟ # Computing specializations.. Time: 0:00:14 Points: 525   ⌞ # Computing specializations.. Time: 0:00:14 Points: 538   ⌜ # Computing specializations.. Time: 0:00:15 Points: 551   ⌝ # Computing specializations.. Time: 0:00:15 Points: 563   ⌟ # Computing specializations.. Time: 0:00:15 Points: 574   ⌞ # Computing specializations.. Time: 0:00:16 Points: 587   ⌜ # Computing specializations.. Time: 0:00:16 Points: 598   ⌝ # Computing specializations.. Time: 0:00:16 Points: 611   ⌟ # Computing specializations.. Time: 0:00:17 Points: 622   ⌞ # Computing specializations.. Time: 0:00:17 Points: 635   ✓ # Computing specializations.. Time: 0:00:17 [ Info: Search for polynomial generators concluded in 1.605562698 [ Info: Selecting generators in 0.02552744 [ Info: Inclusion checked with probability 0.995 in 6.802084591 seconds [ Info: The search for identifiable functions concluded in 41.569189866 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.737424645 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.073820225 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000169018 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 14   ⌝ # Computing specializations.. Time: 0:00:00 Points: 29   ⌟ # Computing specializations.. Time: 0:00:01 Points: 43   ⌞ # Computing specializations.. Time: 0:00:01 Points: 53   ⌜ # Computing specializations.. Time: 0:00:01 Points: 67   ⌝ # Computing specializations.. Time: 0:00:02 Points: 80   ⌟ # Computing specializations.. Time: 0:00:02 Points: 92   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 22   ⌟ # Computing specializations.. Time: 0:00:01 Points: 37   ⌞ # Computing specializations.. Time: 0:00:01 Points: 51   ⌜ # Computing specializations.. Time: 0:00:01 Points: 63   ⌝ # Computing specializations.. Time: 0:00:02 Points: 78   ⌟ # Computing specializations.. Time: 0:00:02 Points: 92   ⌞ # Computing specializations.. Time: 0:00:02 Points: 102   ⌜ # Computing specializations.. Time: 0:00:03 Points: 116   ⌝ # Computing specializations.. Time: 0:00:03 Points: 129   ⌟ # Computing specializations.. Time: 0:00:04 Points: 142   ⌞ # Computing specializations.. Time: 0:00:04 Points: 157   ⌜ # Computing specializations.. Time: 0:00:04 Points: 171   ⌝ # Computing specializations.. Time: 0:00:05 Points: 184   ⌟ # Computing specializations.. Time: 0:00:05 Points: 198   ⌞ # Computing specializations.. Time: 0:00:05 Points: 212   ⌜ # Computing specializations.. Time: 0:00:06 Points: 223   ⌝ # Computing specializations.. Time: 0:00:06 Points: 237   ⌟ # Computing specializations.. Time: 0:00:07 Points: 251   ⌞ # Computing specializations.. Time: 0:00:07 Points: 263   ⌜ # Computing specializations.. Time: 0:00:07 Points: 277   ⌝ # Computing specializations.. Time: 0:00:08 Points: 290   ⌟ # Computing specializations.. Time: 0:00:08 Points: 303   ⌞ # Computing specializations.. Time: 0:00:08 Points: 314   ⌜ # Computing specializations.. Time: 0:00:09 Points: 324   ⌝ # Computing specializations.. Time: 0:00:09 Points: 339   ⌟ # Computing specializations.. Time: 0:00:09 Points: 352   ⌞ # Computing specializations.. Time: 0:00:10 Points: 365   ⌜ # Computing specializations.. Time: 0:00:10 Points: 376   ⌝ # Computing specializations.. Time: 0:00:11 Points: 388   ⌟ # Computing specializations.. Time: 0:00:11 Points: 401   ⌞ # Computing specializations.. Time: 0:00:11 Points: 414   ⌜ # Computing specializations.. Time: 0:00:12 Points: 427   ⌝ # Computing specializations.. Time: 0:00:12 Points: 438   ⌟ # Computing specializations.. Time: 0:00:12 Points: 451   ⌞ # Computing specializations.. Time: 0:00:13 Points: 465   ⌜ # Computing specializations.. Time: 0:00:13 Points: 479   ⌝ # Computing specializations.. Time: 0:00:13 Points: 491   ⌟ # Computing specializations.. Time: 0:00:14 Points: 503   ⌞ # Computing specializations.. Time: 0:00:14 Points: 515   ⌜ # Computing specializations.. Time: 0:00:14 Points: 526   ⌝ # Computing specializations.. Time: 0:00:15 Points: 537   ⌟ # Computing specializations.. Time: 0:00:15 Points: 550   ⌞ # Computing specializations.. Time: 0:00:16 Points: 563   ⌜ # Computing specializations.. Time: 0:00:16 Points: 576   ⌝ # Computing specializations.. Time: 0:00:16 Points: 589   ⌟ # Computing specializations.. Time: 0:00:17 Points: 602   ⌞ # Computing specializations.. Time: 0:00:17 Points: 615   ⌜ # Computing specializations.. Time: 0:00:17 Points: 627   ✓ # Computing specializations.. Time: 0:00:18 [ Info: Search for polynomial generators concluded in 1.916612844 [ Info: Selecting generators in 0.32593484 [ Info: Inclusion checked with probability 0.995 in 6.214451322 seconds [ Info: The search for identifiable functions concluded in 43.68344191 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.856215402 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.05094192 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 9.6049e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 21   ⌟ # Computing specializations.. Time: 0:00:01 Points: 33   ⌞ # Computing specializations.. Time: 0:00:01 Points: 43   ⌜ # Computing specializations.. Time: 0:00:01 Points: 56   ⌝ # Computing specializations.. Time: 0:00:02 Points: 68   ⌟ # Computing specializations.. Time: 0:00:02 Points: 78   ⌞ # Computing specializations.. Time: 0:00:02 Points: 91   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 22   ⌟ # Computing specializations.. Time: 0:00:01 Points: 34   ⌞ # Computing specializations.. Time: 0:00:01 Points: 45   ⌜ # Computing specializations.. Time: 0:00:01 Points: 58   ⌝ # Computing specializations.. Time: 0:00:02 Points: 71   ⌟ # Computing specializations.. Time: 0:00:02 Points: 82   ⌞ # Computing specializations.. Time: 0:00:02 Points: 95   ⌜ # Computing specializations.. Time: 0:00:03 Points: 107   ⌝ # Computing specializations.. Time: 0:00:03 Points: 119   ⌟ # Computing specializations.. Time: 0:00:04 Points: 131   ⌞ # Computing specializations.. Time: 0:00:04 Points: 141   ⌜ # Computing specializations.. Time: 0:00:04 Points: 153   ⌝ # Computing specializations.. Time: 0:00:04 Points: 163   ⌟ # Computing specializations.. Time: 0:00:05 Points: 175   ⌞ # Computing specializations.. Time: 0:00:05 Points: 189   ⌜ # Computing specializations.. Time: 0:00:06 Points: 202   ⌝ # Computing specializations.. Time: 0:00:06 Points: 214   ⌟ # Computing specializations.. Time: 0:00:06 Points: 226   ⌞ # Computing specializations.. Time: 0:00:07 Points: 235   ⌜ # Computing specializations.. Time: 0:00:07 Points: 246   ⌝ # Computing specializations.. Time: 0:00:08 Points: 256   ⌟ # Computing specializations.. Time: 0:00:08 Points: 268   ⌞ # Computing specializations.. Time: 0:00:08 Points: 280   ⌜ # Computing specializations.. Time: 0:00:09 Points: 293   ⌝ # Computing specializations.. Time: 0:00:09 Points: 304   ⌟ # Computing specializations.. Time: 0:00:09 Points: 316   ⌞ # Computing specializations.. Time: 0:00:10 Points: 329   ⌜ # Computing specializations.. Time: 0:00:10 Points: 340   ⌝ # Computing specializations.. Time: 0:00:10 Points: 352   ⌟ # Computing specializations.. Time: 0:00:11 Points: 364   ⌞ # Computing specializations.. Time: 0:00:11 Points: 374   ⌜ # Computing specializations.. Time: 0:00:12 Points: 388   ⌝ # Computing specializations.. Time: 0:00:12 Points: 400   ⌟ # Computing specializations.. Time: 0:00:12 Points: 412   ⌞ # Computing specializations.. Time: 0:00:13 Points: 425   ⌜ # Computing specializations.. Time: 0:00:13 Points: 438   ⌝ # Computing specializations.. Time: 0:00:13 Points: 450   ⌟ # Computing specializations.. Time: 0:00:14 Points: 464   ⌞ # Computing specializations.. Time: 0:00:14 Points: 477   ⌜ # Computing specializations.. Time: 0:00:15 Points: 489   ⌝ # Computing specializations.. Time: 0:00:15 Points: 502   ⌟ # Computing specializations.. Time: 0:00:15 Points: 515   ⌞ # Computing specializations.. Time: 0:00:16 Points: 527   ⌜ # Computing specializations.. Time: 0:00:16 Points: 539   ⌝ # Computing specializations.. Time: 0:00:16 Points: 548   ⌟ # Computing specializations.. Time: 0:00:17 Points: 560   ⌞ # Computing specializations.. Time: 0:00:17 Points: 570   ⌜ # Computing specializations.. Time: 0:00:17 Points: 582   ⌝ # Computing specializations.. Time: 0:00:18 Points: 594   ⌟ # Computing specializations.. Time: 0:00:18 Points: 605   ⌞ # Computing specializations.. Time: 0:00:19 Points: 618   ⌜ # Computing specializations.. Time: 0:00:19 Points: 631   ✓ # Computing specializations.. Time: 0:00:20 [ Info: Search for polynomial generators concluded in 0.882439075 [ Info: Selecting generators in 0.036626205 [ Info: Inclusion checked with probability 0.995 in 5.941246704 seconds [ Info: The search for identifiable functions concluded in 42.431059029 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001886632 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000125619 [ Info: Selecting generators in 0.000192698 [ Info: Inclusion checked with probability 0.995 in 0.001130619 seconds [ Info: The search for identifiable functions concluded in 0.022713186 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :weak │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000809823 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.847e-5 [ Info: Selecting generators in 0.000114229 [ Info: Inclusion checked with probability 0.995 in 0.00101972 seconds [ Info: The search for identifiable functions concluded in 0.005936714 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :weak │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000790443 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.48e-5 [ Info: Selecting generators in 0.000128948 [ Info: Inclusion checked with probability 0.995 in 0.000994831 seconds [ Info: The search for identifiable functions concluded in 0.005458479 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :weak │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000786622 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000806893 [ Info: Selecting generators in 0.000128769 [ Info: Inclusion checked with probability 0.995 in 0.001000021 seconds [ Info: The search for identifiable functions concluded in 0.006027013 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :standard │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t)] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000770943 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000343957 [ Info: Selecting generators in 0.000124769 [ Info: Inclusion checked with probability 0.995 in 0.000997031 seconds [ Info: The search for identifiable functions concluded in 0.005433999 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :standard │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t)] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000758993 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000378087 [ Info: Selecting generators in 0.000130828 [ Info: Inclusion checked with probability 0.995 in 0.000972521 seconds [ Info: The search for identifiable functions concluded in 0.005583348 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :standard │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t)] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001174939 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001538206 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 0.000126699 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000424226 [ Info: Selecting generators in 0.000556614 [ Info: Inclusion checked with probability 0.995 in 0.000942771 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.7329e-5 [ Info: Selecting generators in 0.000380716 [ Info: Inclusion checked with probability 0.995 in 0.001616015 seconds [ Info: The search for identifiable functions concluded in 0.017936631 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000983911 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000856692 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.3819e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000361217 [ Info: Selecting generators in 0.000551875 [ Info: Inclusion checked with probability 0.995 in 0.000952481 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.647e-5 [ Info: Selecting generators in 0.000394596 [ Info: Inclusion checked with probability 0.995 in 0.001636124 seconds [ Info: The search for identifiable functions concluded in 0.013426434 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00099705 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000902161 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.481e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000370196 [ Info: Selecting generators in 0.000529455 [ Info: Inclusion checked with probability 0.995 in 0.000948931 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.6099e-5 [ Info: Selecting generators in 0.000343287 [ Info: Inclusion checked with probability 0.995 in 0.001633735 seconds [ Info: The search for identifiable functions concluded in 0.013533152 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00104407 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000904781 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.4029e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000375776 [ Info: Selecting generators in 0.000548015 [ Info: Inclusion checked with probability 0.995 in 0.000989631 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.197963794 [ Info: Selecting generators in 0.000481955 [ Info: Inclusion checked with probability 0.995 in 0.001695484 seconds [ Info: The search for identifiable functions concluded in 0.211828414 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000956341 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000898122 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.1519e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000348737 [ Info: Selecting generators in 0.000549485 [ Info: Inclusion checked with probability 0.995 in 0.00102725 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000502495 [ Info: Selecting generators in 0.000380147 [ Info: Inclusion checked with probability 0.995 in 0.001716384 seconds [ Info: The search for identifiable functions concluded in 0.013876419 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00105198 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000871182 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.169e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000409117 [ Info: Selecting generators in 0.000614304 [ Info: Inclusion checked with probability 0.995 in 0.000983641 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000569524 [ Info: Selecting generators in 0.000374886 [ Info: Inclusion checked with probability 0.995 in 0.001548755 seconds [ Info: The search for identifiable functions concluded in 0.014304925 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001988932 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001756723 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.677e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006161582 [ Info: Selecting generators in 0.001879932 [ Info: Inclusion checked with probability 0.995 in 0.002552085 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000121659 [ Info: Selecting generators in 0.002695755 [ Info: Inclusion checked with probability 0.995 in 0.00421729 seconds [ Info: The search for identifiable functions concluded in 0.040368199 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00212607 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001777873 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.788e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005913324 [ Info: Selecting generators in 0.002032911 [ Info: Inclusion checked with probability 0.995 in 0.002546916 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000146329 [ Info: Selecting generators in 0.003611676 [ Info: Inclusion checked with probability 0.995 in 0.004383529 seconds [ Info: The search for identifiable functions concluded in 0.042375031 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003020501 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002817844 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 4.458e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.010685889 [ Info: Selecting generators in 0.002963122 [ Info: Inclusion checked with probability 0.995 in 0.003635236 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000145389 [ Info: Selecting generators in 0.004038912 [ Info: Inclusion checked with probability 0.995 in 0.005766936 seconds [ Info: The search for identifiable functions concluded in 0.060846507 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002222839 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001879922 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.3919e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009752198 [ Info: Selecting generators in 0.002167839 [ Info: Inclusion checked with probability 0.995 in 0.002872693 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.021762295 [ Info: Selecting generators in 0.003291249 [ Info: Inclusion checked with probability 0.995 in 0.005635287 seconds [ Info: The search for identifiable functions concluded in 0.071987722 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002987092 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002240349 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.8979e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006343561 [ Info: Selecting generators in 0.00219037 [ Info: Inclusion checked with probability 0.995 in 0.002876963 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.021391009 [ Info: Selecting generators in 0.003091621 [ Info: Inclusion checked with probability 0.995 in 0.004515887 seconds [ Info: The search for identifiable functions concluded in 0.066403854 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002163279 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001777163 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.1229e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005981214 [ Info: Selecting generators in 0.001967561 [ Info: Inclusion checked with probability 0.995 in 0.002446567 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.020713795 [ Info: Selecting generators in 0.002935302 [ Info: Inclusion checked with probability 0.995 in 0.004027183 seconds [ Info: The search for identifiable functions concluded in 0.060827757 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001994581 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001663805 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.083e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005820465 [ Info: Selecting generators in 0.001915332 [ Info: Inclusion checked with probability 0.995 in 0.002412917 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000111259 [ Info: Selecting generators in 0.002825904 [ Info: Inclusion checked with probability 0.995 in 0.004283369 seconds [ Info: The search for identifiable functions concluded in 0.039355899 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002087621 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001747864 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.263e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006199941 [ Info: Selecting generators in 0.001999191 [ Info: Inclusion checked with probability 0.995 in 0.002513496 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000127419 [ Info: Selecting generators in 0.003581207 [ Info: Inclusion checked with probability 0.995 in 0.004675146 seconds [ Info: The search for identifiable functions concluded in 0.041891305 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00207688 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001757833 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.8019e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00637814 [ Info: Selecting generators in 0.002038431 [ Info: Inclusion checked with probability 0.995 in 0.002648445 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000127799 [ Info: Selecting generators in 0.313765073 [ Info: Inclusion checked with probability 0.995 in 0.006704857 seconds [ Info: The search for identifiable functions concluded in 0.356242843 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002592026 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001807663 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.868e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005617777 [ Info: Selecting generators in 0.001923592 [ Info: Inclusion checked with probability 0.995 in 0.002373678 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.018374107 [ Info: Selecting generators in 0.002608976 [ Info: Inclusion checked with probability 0.995 in 0.003627196 seconds [ Info: The search for identifiable functions concluded in 0.057002923 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001880742 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001540156 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.3169e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005548087 [ Info: Selecting generators in 0.001796693 [ Info: Inclusion checked with probability 0.995 in 0.002312968 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.018581665 [ Info: Selecting generators in 0.002589176 [ Info: Inclusion checked with probability 0.995 in 0.003628445 seconds [ Info: The search for identifiable functions concluded in 0.05519371 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001809113 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001510226 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.083e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005161372 [ Info: Selecting generators in 0.001742884 [ Info: Inclusion checked with probability 0.995 in 0.002307678 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.017725033 [ Info: Selecting generators in 0.002515587 [ Info: Inclusion checked with probability 0.995 in 0.003667925 seconds [ Info: The search for identifiable functions concluded in 0.053007041 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00527895 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003929853 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 4.601e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001570675 [ Info: Selecting generators in 0.006833605 [ Info: Inclusion checked with probability 0.995 in 0.0041806 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000155988 [ Info: Selecting generators in 0.011605941 [ Info: Inclusion checked with probability 0.995 in 0.009637969 seconds [ Info: The search for identifiable functions concluded in 0.319169722 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005354279 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003925694 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 4.898e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001575195 [ Info: Selecting generators in 0.006725757 [ Info: Inclusion checked with probability 0.995 in 0.003978823 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000138209 [ Info: Selecting generators in 0.009001195 [ Info: Inclusion checked with probability 0.995 in 0.008153583 seconds [ Info: The search for identifiable functions concluded in 0.078714038 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005073452 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003713405 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 5.3509e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001619665 [ Info: Selecting generators in 0.006870245 [ Info: Inclusion checked with probability 0.995 in 0.004308799 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000133259 [ Info: Selecting generators in 0.009308923 [ Info: Inclusion checked with probability 0.995 in 0.008775398 seconds [ Info: The search for identifiable functions concluded in 0.080574281 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006147632 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004707886 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 4.991e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001877212 [ Info: Selecting generators in 0.008479171 [ Info: Inclusion checked with probability 0.995 in 0.005348479 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003933133 [ Info: Selecting generators in 0.011069126 [ Info: Inclusion checked with probability 0.995 in 0.008942556 seconds [ Info: The search for identifiable functions concluded in 0.099676251 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005963184 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004614656 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 4.7929e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001848823 [ Info: Selecting generators in 0.00846456 [ Info: Inclusion checked with probability 0.995 in 0.004947753 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003759314 [ Info: Selecting generators in 0.010987877 [ Info: Inclusion checked with probability 0.995 in 0.00850523 seconds [ Info: The search for identifiable functions concluded in 0.098794749 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006474129 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004712565 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 4.7949e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001828223 [ Info: Selecting generators in 0.008379781 [ Info: Inclusion checked with probability 0.995 in 0.004885024 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003752745 [ Info: Selecting generators in 0.011005417 [ Info: Inclusion checked with probability 0.995 in 0.008775458 seconds [ Info: The search for identifiable functions concluded in 0.097808718 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001718623 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001142169 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 4.179e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.8029e-5 [ Info: Selecting generators in 0.000489276 [ Info: Inclusion checked with probability 0.995 in 0.00213371 seconds [ Info: The search for identifiable functions concluded in 0.011757549 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001653104 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001105249 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 3.1469e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.7789e-5 [ Info: Selecting generators in 0.000489786 [ Info: Inclusion checked with probability 0.995 in 0.002032211 seconds [ Info: The search for identifiable functions concluded in 0.011314983 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001647845 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001082009 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 3.162e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.2519e-5 [ Info: Selecting generators in 0.000472046 [ Info: Inclusion checked with probability 0.995 in 0.002064571 seconds [ Info: The search for identifiable functions concluded in 0.011495072 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001794053 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001095759 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 3.1299e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004534148 [ Info: Selecting generators in 0.000570025 [ Info: Inclusion checked with probability 0.995 in 0.002625456 seconds [ Info: The search for identifiable functions concluded in 0.01695845 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001593615 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001108379 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 3.212e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00435065 [ Info: Selecting generators in 0.000570704 [ Info: Inclusion checked with probability 0.995 in 0.002234139 seconds [ Info: The search for identifiable functions concluded in 0.016106109 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001609724 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001163589 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 3.753e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00427344 [ Info: Selecting generators in 0.000555525 [ Info: Inclusion checked with probability 0.995 in 0.002094821 seconds [ Info: The search for identifiable functions concluded in 0.015989679 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002827133 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002281149 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.4989e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002318058 [ Info: Selecting generators in 0.000843102 [ Info: Inclusion checked with probability 0.995 in 0.001446906 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000108929 [ Info: Selecting generators in 0.00414282 [ Info: Inclusion checked with probability 0.995 in 0.0031008 seconds [ Info: The search for identifiable functions concluded in 0.031233376 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002704375 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001865182 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.2999e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002071521 [ Info: Selecting generators in 0.000762493 [ Info: Inclusion checked with probability 0.995 in 0.001493336 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000111159 [ Info: Selecting generators in 0.004187261 [ Info: Inclusion checked with probability 0.995 in 0.003065251 seconds [ Info: The search for identifiable functions concluded in 0.029638671 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002698405 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001885082 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.141e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002072341 [ Info: Selecting generators in 0.000798002 [ Info: Inclusion checked with probability 0.995 in 0.001460326 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000114929 [ Info: Selecting generators in 0.00423436 [ Info: Inclusion checked with probability 0.995 in 0.002999132 seconds [ Info: The search for identifiable functions concluded in 0.030047657 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003074531 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001858572 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.124e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00213184 [ Info: Selecting generators in 0.000738093 [ Info: Inclusion checked with probability 0.995 in 0.001463087 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.022111572 [ Info: Selecting generators in 0.004531807 [ Info: Inclusion checked with probability 0.995 in 0.002982682 seconds [ Info: The search for identifiable functions concluded in 0.052455436 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), C, α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002661455 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001849113 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.215e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00206442 [ Info: Selecting generators in 0.000822762 [ Info: Inclusion checked with probability 0.995 in 0.001424786 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.022795295 [ Info: Selecting generators in 0.00426378 [ Info: Inclusion checked with probability 0.995 in 0.003062231 seconds [ Info: The search for identifiable functions concluded in 0.052686804 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), C, α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002675165 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001957612 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.542e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002134979 [ Info: Selecting generators in 0.000800023 [ Info: Inclusion checked with probability 0.995 in 0.001467787 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.022578138 [ Info: Selecting generators in 0.004477218 [ Info: Inclusion checked with probability 0.995 in 0.00312748 seconds [ Info: The search for identifiable functions concluded in 0.053546106 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), C, α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001849342 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001250348 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.348e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000622534 [ Info: Selecting generators in 0.008416861 [ Info: Inclusion checked with probability 0.995 in 0.004863224 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.9049e-5 [ Info: Selecting generators in 0.001549286 [ Info: Inclusion checked with probability 0.995 in 0.002271329 seconds [ Info: The search for identifiable functions concluded in 0.557872523 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001813913 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001233279 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.007e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000336217 [ Info: Selecting generators in 0.000483865 [ Info: Inclusion checked with probability 0.995 in 0.000917531 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.3349e-5 [ Info: Selecting generators in 0.00098548 [ Info: Inclusion checked with probability 0.995 in 0.001673684 seconds [ Info: The search for identifiable functions concluded in 0.01592225 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001473347 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001003431 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.895e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000334067 [ Info: Selecting generators in 0.000454306 [ Info: Inclusion checked with probability 0.995 in 0.000828982 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.9999e-5 [ Info: Selecting generators in 0.000999741 [ Info: Inclusion checked with probability 0.995 in 0.001699095 seconds [ Info: The search for identifiable functions concluded in 0.014976779 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001514966 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00104644 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.116e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000351717 [ Info: Selecting generators in 0.000470605 [ Info: Inclusion checked with probability 0.995 in 0.000836712 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003882634 [ Info: Selecting generators in 0.001210909 [ Info: Inclusion checked with probability 0.995 in 0.001809853 seconds [ Info: The search for identifiable functions concluded in 0.019517237 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001546615 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00102761 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.016e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000368857 [ Info: Selecting generators in 0.000485726 [ Info: Inclusion checked with probability 0.995 in 0.000872182 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003895223 [ Info: Selecting generators in 0.001228478 [ Info: Inclusion checked with probability 0.995 in 0.001758403 seconds [ Info: The search for identifiable functions concluded in 0.019864502 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001508135 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00103283 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.944e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000363247 [ Info: Selecting generators in 0.000501945 [ Info: Inclusion checked with probability 0.995 in 0.000874602 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003783344 [ Info: Selecting generators in 0.001236459 [ Info: Inclusion checked with probability 0.995 in 0.001781403 seconds [ Info: The search for identifiable functions concluded in 0.019674155 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00106297 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000965081 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 3.5299e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003558967 [ Info: Selecting generators in 0.001646695 [ Info: Inclusion checked with probability 0.995 in 0.001681514 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.4749e-5 [ Info: Selecting generators in 0.001743663 [ Info: Inclusion checked with probability 0.995 in 0.002280188 seconds [ Info: The search for identifiable functions concluded in 0.024419229 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000969761 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000899671 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 3.2949e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003558477 [ Info: Selecting generators in 0.001590866 [ Info: Inclusion checked with probability 0.995 in 0.001606085 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.4389e-5 [ Info: Selecting generators in 0.001697914 [ Info: Inclusion checked with probability 0.995 in 0.002234739 seconds [ Info: The search for identifiable functions concluded in 0.02334945 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001003741 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000897931 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 3.146e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003540267 [ Info: Selecting generators in 0.001606575 [ Info: Inclusion checked with probability 0.995 in 0.001650504 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.7729e-5 [ Info: Selecting generators in 0.001738413 [ Info: Inclusion checked with probability 0.995 in 0.002266968 seconds [ Info: The search for identifiable functions concluded in 0.023645198 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001010701 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000879391 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 3.322e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003528117 [ Info: Selecting generators in 0.001616694 [ Info: Inclusion checked with probability 0.995 in 0.001624624 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009867817 [ Info: Selecting generators in 0.001894962 [ Info: Inclusion checked with probability 0.995 in 0.002254419 seconds [ Info: The search for identifiable functions concluded in 0.033832931 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000999301 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000874572 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 3.381e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003585516 [ Info: Selecting generators in 0.001652394 [ Info: Inclusion checked with probability 0.995 in 0.001662675 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009934227 [ Info: Selecting generators in 0.001910352 [ Info: Inclusion checked with probability 0.995 in 0.002318868 seconds [ Info: The search for identifiable functions concluded in 0.033747632 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001016821 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000901611 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 3.224e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003602786 [ Info: Selecting generators in 0.001624115 [ Info: Inclusion checked with probability 0.995 in 0.001649745 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009850367 [ Info: Selecting generators in 0.001951111 [ Info: Inclusion checked with probability 0.995 in 0.002299819 seconds [ Info: The search for identifiable functions concluded in 0.033852401 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004154321 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003398828 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 3.737e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008884116 [ Info: Selecting generators in 0.00309178 [ Info: Inclusion checked with probability 0.995 in 0.002979692 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000141579 [ Info: Selecting generators in 0.018740954 [ Info: Inclusion checked with probability 0.995 in 0.006834485 seconds [ Info: The search for identifiable functions concluded in 0.088727694 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00425028 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003567026 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 3.7889e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00851954 [ Info: Selecting generators in 0.003108651 [ Info: Inclusion checked with probability 0.995 in 0.003122511 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000130709 [ Info: Selecting generators in 0.018184938 [ Info: Inclusion checked with probability 0.995 in 0.006737376 seconds [ Info: The search for identifiable functions concluded in 0.088035141 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003945653 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003282619 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 3.461e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008312232 [ Info: Selecting generators in 0.003048442 [ Info: Inclusion checked with probability 0.995 in 0.003016881 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000132108 [ Info: Selecting generators in 0.018190699 [ Info: Inclusion checked with probability 0.995 in 0.006780816 seconds [ Info: The search for identifiable functions concluded in 0.087156329 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003988963 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003321589 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 3.7539e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008146933 [ Info: Selecting generators in 0.002989072 [ Info: Inclusion checked with probability 0.995 in 0.002922162 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.070308828 [ Info: Selecting generators in 0.023113603 [ Info: Inclusion checked with probability 0.995 in 0.007799416 seconds [ Info: The search for identifiable functions concluded in 0.161589417 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y1(t), u(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004519277 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004840305 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 3.406e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.011375293 [ Info: Selecting generators in 0.004002333 [ Info: Inclusion checked with probability 0.995 in 0.003740805 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.082209746 [ Info: Selecting generators in 0.023452369 [ Info: Inclusion checked with probability 0.995 in 0.008126803 seconds [ Info: The search for identifiable functions concluded in 0.189650293 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y1(t), u(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004731285 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005416919 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 0.000141508 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.010052355 [ Info: Selecting generators in 0.003554907 [ Info: Inclusion checked with probability 0.995 in 0.003424258 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.097275464 [ Info: Selecting generators in 0.023901564 [ Info: Inclusion checked with probability 0.995 in 0.007808557 seconds [ Info: The search for identifiable functions concluded in 0.204408964 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y1(t), u(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.152833429 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.271402112 seconds [ Info: Dimensions of the Wronskians [145, 18, 9] [ Info: Ranks of the Wronskians computed in 0.001406717 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:05 ✓ # Computing specializations.. Time: 0:00:05 [ Info: Search for polynomial generators concluded in 6.697524221 [ Info: Selecting generators in 0.058044803 [ Info: Inclusion checked with probability 0.995 in 5.002032418 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:12 ✓ # Computing specializations.. Time: 0:00:12 [ Info: Search for polynomial generators concluded in 0.000355566 [ Info: Selecting generators in 0.447985007 [ Info: Inclusion checked with probability 0.995 in 12.287436992 seconds [ Info: The search for identifiable functions concluded in 49.146191095 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[reaction_8_k1, reaction_7_k1, reaction_6_k1, reaction_5_k2, reaction_4_k1, reaction_3_k1, reaction_2_k2, reaction_1_k1 - reaction_1_k2 - reaction_9_k1, pS6(t)*reaction_5_k1, reaction_2_k1//reaction_5_k1, a3//reaction_5_k1, a2//reaction_5_k1, a1//reaction_5_k1, pAkt_S6(t)//pS6(t), S6(t)//pS6(t), pAkt(t)//pS6(t), Akt(t)//pS6(t), pEGFR_Akt(t)//pS6(t), pEGFR(t)//pS6(t), (EGF_EGFR(t)*reaction_9_k1)//pS6(t)] │ case = │ (ode = EGFR'(t) = -EGFR(t)*EGFR_turnover - EGF_EGFR(t)*reaction_1_k1 + EGF_EGFR(t)*reaction_1_k2 + pro_EGFR(t)*EGFR_turnover │ pEGFR'(t) = -pEGFR(t)*Akt(t)*reaction_2_k1 - pEGFR(t)*reaction_4_k1 + pEGFR_Akt(t)*reaction_2_k2 + pEGFR_Akt(t)*reaction_3_k1 + EGF_EGFR(t)*reaction_9_k1 │ pEGFR_Akt'(t) = pEGFR(t)*Akt(t)*reaction_2_k1 - pEGFR_Akt(t)*reaction_2_k2 - pEGFR_Akt(t)*reaction_3_k1 │ Akt'(t) = -pEGFR(t)*Akt(t)*reaction_2_k1 + pEGFR_Akt(t)*reaction_2_k2 + pAkt(t)*reaction_7_k1 │ pAkt'(t) = pEGFR_Akt(t)*reaction_3_k1 - pAkt(t)*S6(t)*reaction_5_k1 - pAkt(t)*reaction_7_k1 + pAkt_S6(t)*reaction_5_k2 + pAkt_S6(t)*reaction_6_k1 │ S6'(t) = -pAkt(t)*S6(t)*reaction_5_k1 + pAkt_S6(t)*reaction_5_k2 + pS6(t)*reaction_8_k1 │ pAkt_S6'(t) = pAkt(t)*S6(t)*reaction_5_k1 - pAkt_S6(t)*reaction_5_k2 - pAkt_S6(t)*reaction_6_k1 │ pS6'(t) = pAkt_S6(t)*reaction_6_k1 - pS6(t)*reaction_8_k1 │ EGF_EGFR'(t) = EGF_EGFR(t)*reaction_1_k1 - EGF_EGFR(t)*reaction_1_k2 - EGF_EGFR(t)*reaction_9_k1 │ y1(t) = pEGFR(t)*a1 + pEGFR_Akt(t)*a1 │ y2(t) = pAkt(t)*a2 + pAkt_S6(t)*a2 │ y3(t) = pS6(t)*a3 │ , with_states = true, ident_funcs = RingElem[reaction_8_k1, a3//reaction_5_k1, reaction_3_k1, reaction_2_k2, pAkt(t)*reaction_5_k1, pEGFR(t)*reaction_5_k1, reaction_2_k1//reaction_5_k1, a1//reaction_5_k1, pS6(t)*reaction_5_k1, reaction_5_k2, reaction_6_k1, a2//reaction_5_k1, reaction_7_k1, reaction_4_k1, pAkt_S6(t)*reaction_5_k1, reaction_1_k1 - reaction_1_k2 - reaction_9_k1, pEGFR_Akt(t)*reaction_5_k1, S6(t)*reaction_5_k1, EGF_EGFR(t)*reaction_5_k1*reaction_9_k1, Akt(t)*reaction_5_k1]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 29 variables EGFR(t), pEGFR(t), pEGFR_Akt(t), Akt(t), ..., reaction_9_k1 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.161844034 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.511441319 seconds [ Info: Dimensions of the Wronskians [145, 18, 9] [ Info: Ranks of the Wronskians computed in 0.001534386 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 5.265580606 [ Info: Selecting generators in 0.058217521 [ Info: Inclusion checked with probability 0.995 in 0.095234352 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000399836 [ Info: Selecting generators in 0.17824489 [ Info: Inclusion checked with probability 0.995 in 0.047514422 seconds [ Info: The search for identifiable functions concluded in 7.940917588 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[reaction_8_k1, reaction_7_k1, reaction_6_k1, reaction_5_k2, reaction_4_k1, reaction_3_k1, reaction_2_k2, reaction_1_k1 - reaction_1_k2 - reaction_9_k1, pS6(t)*reaction_5_k1, reaction_2_k1//reaction_5_k1, a3//reaction_5_k1, a2//reaction_5_k1, a1//reaction_5_k1, pAkt_S6(t)//pS6(t), S6(t)//pS6(t), pAkt(t)//pS6(t), Akt(t)//pS6(t), pEGFR_Akt(t)//pS6(t), pEGFR(t)//pS6(t), (EGF_EGFR(t)*reaction_9_k1)//pS6(t)] │ case = │ (ode = EGFR'(t) = -EGFR(t)*EGFR_turnover - EGF_EGFR(t)*reaction_1_k1 + EGF_EGFR(t)*reaction_1_k2 + pro_EGFR(t)*EGFR_turnover │ pEGFR'(t) = -pEGFR(t)*Akt(t)*reaction_2_k1 - pEGFR(t)*reaction_4_k1 + pEGFR_Akt(t)*reaction_2_k2 + pEGFR_Akt(t)*reaction_3_k1 + EGF_EGFR(t)*reaction_9_k1 │ pEGFR_Akt'(t) = pEGFR(t)*Akt(t)*reaction_2_k1 - pEGFR_Akt(t)*reaction_2_k2 - pEGFR_Akt(t)*reaction_3_k1 │ Akt'(t) = -pEGFR(t)*Akt(t)*reaction_2_k1 + pEGFR_Akt(t)*reaction_2_k2 + pAkt(t)*reaction_7_k1 │ pAkt'(t) = pEGFR_Akt(t)*reaction_3_k1 - pAkt(t)*S6(t)*reaction_5_k1 - pAkt(t)*reaction_7_k1 + pAkt_S6(t)*reaction_5_k2 + pAkt_S6(t)*reaction_6_k1 │ S6'(t) = -pAkt(t)*S6(t)*reaction_5_k1 + pAkt_S6(t)*reaction_5_k2 + pS6(t)*reaction_8_k1 │ pAkt_S6'(t) = pAkt(t)*S6(t)*reaction_5_k1 - pAkt_S6(t)*reaction_5_k2 - pAkt_S6(t)*reaction_6_k1 │ pS6'(t) = pAkt_S6(t)*reaction_6_k1 - pS6(t)*reaction_8_k1 │ EGF_EGFR'(t) = EGF_EGFR(t)*reaction_1_k1 - EGF_EGFR(t)*reaction_1_k2 - EGF_EGFR(t)*reaction_9_k1 │ y1(t) = pEGFR(t)*a1 + pEGFR_Akt(t)*a1 │ y2(t) = pAkt(t)*a2 + pAkt_S6(t)*a2 │ y3(t) = pS6(t)*a3 │ , with_states = true, ident_funcs = RingElem[reaction_8_k1, a3//reaction_5_k1, reaction_3_k1, reaction_2_k2, pAkt(t)*reaction_5_k1, pEGFR(t)*reaction_5_k1, reaction_2_k1//reaction_5_k1, a1//reaction_5_k1, pS6(t)*reaction_5_k1, reaction_5_k2, reaction_6_k1, a2//reaction_5_k1, reaction_7_k1, reaction_4_k1, pAkt_S6(t)*reaction_5_k1, reaction_1_k1 - reaction_1_k2 - reaction_9_k1, pEGFR_Akt(t)*reaction_5_k1, S6(t)*reaction_5_k1, EGF_EGFR(t)*reaction_5_k1*reaction_9_k1, Akt(t)*reaction_5_k1]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 29 variables EGFR(t), pEGFR(t), pEGFR_Akt(t), Akt(t), ..., reaction_9_k1 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.142823523 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.5781612 seconds [ Info: Dimensions of the Wronskians [145, 18, 9] [ Info: Ranks of the Wronskians computed in 0.001499216 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 5.350313615 [ Info: Selecting generators in 0.06361009 [ Info: Inclusion checked with probability 0.995 in 0.105994851 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000359327 [ Info: Selecting generators in 0.464200464 [ Info: Inclusion checked with probability 0.995 in 0.063753039 seconds [ Info: The search for identifiable functions concluded in 8.281680732 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[reaction_8_k1, reaction_7_k1, reaction_6_k1, reaction_5_k2, reaction_4_k1, reaction_3_k1, reaction_2_k2, reaction_1_k1 - reaction_1_k2 - reaction_9_k1, pS6(t)*reaction_5_k1, reaction_2_k1//reaction_5_k1, a3//reaction_5_k1, a2//reaction_5_k1, a1//reaction_5_k1, pAkt_S6(t)//pS6(t), S6(t)//pS6(t), pAkt(t)//pS6(t), Akt(t)//pS6(t), pEGFR_Akt(t)//pS6(t), pEGFR(t)//pS6(t), (EGF_EGFR(t)*reaction_9_k1)//pS6(t)] │ case = │ (ode = EGFR'(t) = -EGFR(t)*EGFR_turnover - EGF_EGFR(t)*reaction_1_k1 + EGF_EGFR(t)*reaction_1_k2 + pro_EGFR(t)*EGFR_turnover │ pEGFR'(t) = -pEGFR(t)*Akt(t)*reaction_2_k1 - pEGFR(t)*reaction_4_k1 + pEGFR_Akt(t)*reaction_2_k2 + pEGFR_Akt(t)*reaction_3_k1 + EGF_EGFR(t)*reaction_9_k1 │ pEGFR_Akt'(t) = pEGFR(t)*Akt(t)*reaction_2_k1 - pEGFR_Akt(t)*reaction_2_k2 - pEGFR_Akt(t)*reaction_3_k1 │ Akt'(t) = -pEGFR(t)*Akt(t)*reaction_2_k1 + pEGFR_Akt(t)*reaction_2_k2 + pAkt(t)*reaction_7_k1 │ pAkt'(t) = pEGFR_Akt(t)*reaction_3_k1 - pAkt(t)*S6(t)*reaction_5_k1 - pAkt(t)*reaction_7_k1 + pAkt_S6(t)*reaction_5_k2 + pAkt_S6(t)*reaction_6_k1 │ S6'(t) = -pAkt(t)*S6(t)*reaction_5_k1 + pAkt_S6(t)*reaction_5_k2 + pS6(t)*reaction_8_k1 │ pAkt_S6'(t) = pAkt(t)*S6(t)*reaction_5_k1 - pAkt_S6(t)*reaction_5_k2 - pAkt_S6(t)*reaction_6_k1 │ pS6'(t) = pAkt_S6(t)*reaction_6_k1 - pS6(t)*reaction_8_k1 │ EGF_EGFR'(t) = EGF_EGFR(t)*reaction_1_k1 - EGF_EGFR(t)*reaction_1_k2 - EGF_EGFR(t)*reaction_9_k1 │ y1(t) = pEGFR(t)*a1 + pEGFR_Akt(t)*a1 │ y2(t) = pAkt(t)*a2 + pAkt_S6(t)*a2 │ y3(t) = pS6(t)*a3 │ , with_states = true, ident_funcs = RingElem[reaction_8_k1, a3//reaction_5_k1, reaction_3_k1, reaction_2_k2, pAkt(t)*reaction_5_k1, pEGFR(t)*reaction_5_k1, reaction_2_k1//reaction_5_k1, a1//reaction_5_k1, pS6(t)*reaction_5_k1, reaction_5_k2, reaction_6_k1, a2//reaction_5_k1, reaction_7_k1, reaction_4_k1, pAkt_S6(t)*reaction_5_k1, reaction_1_k1 - reaction_1_k2 - reaction_9_k1, pEGFR_Akt(t)*reaction_5_k1, S6(t)*reaction_5_k1, EGF_EGFR(t)*reaction_5_k1*reaction_9_k1, Akt(t)*reaction_5_k1]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 29 variables EGFR(t), pEGFR(t), pEGFR_Akt(t), Akt(t), ..., reaction_9_k1 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.135996988 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.278157478 seconds [ Info: Dimensions of the Wronskians [145, 18, 9] [ Info: Ranks of the Wronskians computed in 0.001876932 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 4.840487009 [ Info: Selecting generators in 0.05515148 [ Info: Inclusion checked with probability 0.995 in 0.250908875 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 71.757688047 [ Info: Selecting generators in 1.034712822 [ Info: Inclusion checked with probability 0.995 in 0.055015661 seconds [ Info: The search for identifiable functions concluded in 79.226330667 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[reaction_8_k1, reaction_7_k1, reaction_6_k1, reaction_5_k2, reaction_4_k1, reaction_3_k1, reaction_2_k2, reaction_1_k1 - reaction_1_k2 - reaction_9_k1, pS6(t)*reaction_5_k1, pAkt_S6(t)*reaction_5_k1, S6(t)*reaction_5_k1, pAkt(t)*reaction_5_k1, Akt(t)*reaction_5_k1, pEGFR_Akt(t)*reaction_5_k1, pEGFR(t)*reaction_5_k1, reaction_2_k1//reaction_5_k1, a3//reaction_5_k1, a2//reaction_5_k1, a1//reaction_5_k1, EGF_EGFR(t)*reaction_5_k1*reaction_9_k1] │ case = │ (ode = EGFR'(t) = -EGFR(t)*EGFR_turnover - EGF_EGFR(t)*reaction_1_k1 + EGF_EGFR(t)*reaction_1_k2 + pro_EGFR(t)*EGFR_turnover │ pEGFR'(t) = -pEGFR(t)*Akt(t)*reaction_2_k1 - pEGFR(t)*reaction_4_k1 + pEGFR_Akt(t)*reaction_2_k2 + pEGFR_Akt(t)*reaction_3_k1 + EGF_EGFR(t)*reaction_9_k1 │ pEGFR_Akt'(t) = pEGFR(t)*Akt(t)*reaction_2_k1 - pEGFR_Akt(t)*reaction_2_k2 - pEGFR_Akt(t)*reaction_3_k1 │ Akt'(t) = -pEGFR(t)*Akt(t)*reaction_2_k1 + pEGFR_Akt(t)*reaction_2_k2 + pAkt(t)*reaction_7_k1 │ pAkt'(t) = pEGFR_Akt(t)*reaction_3_k1 - pAkt(t)*S6(t)*reaction_5_k1 - pAkt(t)*reaction_7_k1 + pAkt_S6(t)*reaction_5_k2 + pAkt_S6(t)*reaction_6_k1 │ S6'(t) = -pAkt(t)*S6(t)*reaction_5_k1 + pAkt_S6(t)*reaction_5_k2 + pS6(t)*reaction_8_k1 │ pAkt_S6'(t) = pAkt(t)*S6(t)*reaction_5_k1 - pAkt_S6(t)*reaction_5_k2 - pAkt_S6(t)*reaction_6_k1 │ pS6'(t) = pAkt_S6(t)*reaction_6_k1 - pS6(t)*reaction_8_k1 │ EGF_EGFR'(t) = EGF_EGFR(t)*reaction_1_k1 - EGF_EGFR(t)*reaction_1_k2 - EGF_EGFR(t)*reaction_9_k1 │ y1(t) = pEGFR(t)*a1 + pEGFR_Akt(t)*a1 │ y2(t) = pAkt(t)*a2 + pAkt_S6(t)*a2 │ y3(t) = pS6(t)*a3 │ , with_states = true, ident_funcs = RingElem[reaction_8_k1, a3//reaction_5_k1, reaction_3_k1, reaction_2_k2, pAkt(t)*reaction_5_k1, pEGFR(t)*reaction_5_k1, reaction_2_k1//reaction_5_k1, a1//reaction_5_k1, pS6(t)*reaction_5_k1, reaction_5_k2, reaction_6_k1, a2//reaction_5_k1, reaction_7_k1, reaction_4_k1, pAkt_S6(t)*reaction_5_k1, reaction_1_k1 - reaction_1_k2 - reaction_9_k1, pEGFR_Akt(t)*reaction_5_k1, S6(t)*reaction_5_k1, EGF_EGFR(t)*reaction_5_k1*reaction_9_k1, Akt(t)*reaction_5_k1]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 29 variables EGFR(t), pEGFR(t), pEGFR_Akt(t), Akt(t), ..., reaction_9_k1 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[EGFR(t), pEGFR(t), pEGFR_Akt(t), Akt(t), pAkt(t), S6(t), pAkt_S6(t), pS6(t), EGF_EGFR(t), y1(t), y2(t), y3(t), pro_EGFR(t), EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.14626663 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.285744155 seconds [ Info: Dimensions of the Wronskians [145, 18, 9] [ Info: Ranks of the Wronskians computed in 0.001290198 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 6.060663865 [ Info: Selecting generators in 0.086568263 [ Info: Inclusion checked with probability 0.995 in 0.136326024 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 72.162341933 [ Info: Selecting generators in 0.962963765 [ Info: Inclusion checked with probability 0.995 in 0.051984699 seconds [ Info: The search for identifiable functions concluded in 80.503113431 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[reaction_8_k1, reaction_7_k1, reaction_6_k1, reaction_5_k2, reaction_4_k1, reaction_3_k1, reaction_2_k2, reaction_1_k1 - reaction_1_k2 - reaction_9_k1, pS6(t)*reaction_5_k1, pAkt_S6(t)*reaction_5_k1, S6(t)*reaction_5_k1, pAkt(t)*reaction_5_k1, Akt(t)*reaction_5_k1, pEGFR_Akt(t)*reaction_5_k1, pEGFR(t)*reaction_5_k1, reaction_2_k1//reaction_5_k1, a3//reaction_5_k1, a2//reaction_5_k1, a1//reaction_5_k1, EGF_EGFR(t)*reaction_5_k1*reaction_9_k1] │ case = │ (ode = EGFR'(t) = -EGFR(t)*EGFR_turnover - EGF_EGFR(t)*reaction_1_k1 + EGF_EGFR(t)*reaction_1_k2 + pro_EGFR(t)*EGFR_turnover │ pEGFR'(t) = -pEGFR(t)*Akt(t)*reaction_2_k1 - pEGFR(t)*reaction_4_k1 + pEGFR_Akt(t)*reaction_2_k2 + pEGFR_Akt(t)*reaction_3_k1 + EGF_EGFR(t)*reaction_9_k1 │ pEGFR_Akt'(t) = pEGFR(t)*Akt(t)*reaction_2_k1 - pEGFR_Akt(t)*reaction_2_k2 - pEGFR_Akt(t)*reaction_3_k1 │ Akt'(t) = -pEGFR(t)*Akt(t)*reaction_2_k1 + pEGFR_Akt(t)*reaction_2_k2 + pAkt(t)*reaction_7_k1 │ pAkt'(t) = pEGFR_Akt(t)*reaction_3_k1 - pAkt(t)*S6(t)*reaction_5_k1 - pAkt(t)*reaction_7_k1 + pAkt_S6(t)*reaction_5_k2 + pAkt_S6(t)*reaction_6_k1 │ S6'(t) = -pAkt(t)*S6(t)*reaction_5_k1 + pAkt_S6(t)*reaction_5_k2 + pS6(t)*reaction_8_k1 │ pAkt_S6'(t) = pAkt(t)*S6(t)*reaction_5_k1 - pAkt_S6(t)*reaction_5_k2 - pAkt_S6(t)*reaction_6_k1 │ pS6'(t) = pAkt_S6(t)*reaction_6_k1 - pS6(t)*reaction_8_k1 │ EGF_EGFR'(t) = EGF_EGFR(t)*reaction_1_k1 - EGF_EGFR(t)*reaction_1_k2 - EGF_EGFR(t)*reaction_9_k1 │ y1(t) = pEGFR(t)*a1 + pEGFR_Akt(t)*a1 │ y2(t) = pAkt(t)*a2 + pAkt_S6(t)*a2 │ y3(t) = pS6(t)*a3 │ , with_states = true, ident_funcs = RingElem[reaction_8_k1, a3//reaction_5_k1, reaction_3_k1, reaction_2_k2, pAkt(t)*reaction_5_k1, pEGFR(t)*reaction_5_k1, reaction_2_k1//reaction_5_k1, a1//reaction_5_k1, pS6(t)*reaction_5_k1, reaction_5_k2, reaction_6_k1, a2//reaction_5_k1, reaction_7_k1, reaction_4_k1, pAkt_S6(t)*reaction_5_k1, reaction_1_k1 - reaction_1_k2 - reaction_9_k1, pEGFR_Akt(t)*reaction_5_k1, S6(t)*reaction_5_k1, EGF_EGFR(t)*reaction_5_k1*reaction_9_k1, Akt(t)*reaction_5_k1]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 29 variables EGFR(t), pEGFR(t), pEGFR_Akt(t), Akt(t), ..., reaction_9_k1 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[EGFR(t), pEGFR(t), pEGFR_Akt(t), Akt(t), pAkt(t), S6(t), pAkt_S6(t), pS6(t), EGF_EGFR(t), y1(t), y2(t), y3(t), pro_EGFR(t), EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.147523318 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.282471656 seconds [ Info: Dimensions of the Wronskians [145, 18, 9] [ Info: Ranks of the Wronskians computed in 0.001325438 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 7.199658197 [ Info: Selecting generators in 0.065521951 [ Info: Inclusion checked with probability 0.995 in 0.095344761 seconds [ Info: Simplifying generating set. Simplification level: standard ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 43 running 1 of 1 signal (10): User defined signal 1 jl_to_typeof at /source/src/julia.h:1014 [inlined] sig_match_fast at /source/src/gf.c:4147 [inlined] sig_match_fast at /source/src/gf.c:4138 [inlined] jl_lookup_generic_ at /source/src/gf.c:4231 [inlined] ijl_apply_generic at /source/src/gf.c:4309 run_finalizer at /source/src/gc-common.c:180 jl_gc_run_finalizers_in_list at /source/src/gc-common.c:270 run_finalizers at /source/src/gc-common.c:316 ijl_gc_collect at /source/src/gc-stock.c:3513 maybe_collect at /source/src/gc-stock.c:349 [inlined] jl_gc_small_alloc_inner at /source/src/gc-stock.c:725 ijl_gc_small_alloc at /source/src/gc-stock.c:774 fpMPolyRingElem at /home/pkgeval/.julia/packages/Nemo/sUaag/src/flint/FlintTypes.jl:1465 [inlined] fpMPolyRing at /home/pkgeval/.julia/packages/Nemo/sUaag/src/flint/nmod_mpoly.jl:909 [inlined] - at /home/pkgeval/.julia/packages/Nemo/sUaag/src/flint/nmod_mpoly.jl:250 unknown function (ip: 0x7c3165d1fda6) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _broadcast_getindex_evalf at ./broadcast.jl:701 [inlined] _broadcast_getindex at ./broadcast.jl:674 [inlined] _getindex at ./broadcast.jl:622 [inlined] getindex at ./broadcast.jl:618 [inlined] macro expansion at ./broadcast.jl:997 [inlined] macro expansion at ./simdloop.jl:77 [inlined] copyto! at ./broadcast.jl:996 [inlined] copyto! at ./broadcast.jl:949 [inlined] materialize! at ./broadcast.jl:907 [inlined] materialize! at ./broadcast.jl:904 [inlined] elementary_operation! at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/normalforms.jl:55 unknown function (ip: 0x7c31b7fc1289) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 abstract_reduce! at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/normalforms.jl:7 abstract_rref at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/normalforms.jl:15 macro expansion at ./timing.jl:461 [inlined] refine_relations at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/normalforms.jl:75 unknown function (ip: 0x7c31b7fb8886) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #polynomial_generators#340 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/normalforms.jl:98 polynomial_generators at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/normalforms.jl:98 unknown function (ip: 0x7c31b7f8aa00) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#328 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/RationalFunctionFields/RationalFunctionField.jl:720 unknown function (ip: 0x7c31b7d031c9) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #_find_identifiable_functions#389 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:86 [inlined] #387 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#385 at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/src/identifiable_functions.jl:49 unknown function (ip: 0x7c31b7d02374) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2272 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:793 jl_eval_toplevel_stmts at /source/src/toplevel.c:622 jl_toplevel_eval_flex at /source/src/toplevel.c:734 ijl_toplevel_eval at /source/src/toplevel.c:805 ijl_toplevel_eval_in at /source/src/toplevel.c:850 eval at ./boot.jl:489 include_string at ./loading.jl:2915 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:2975 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x7c318c4aff02) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:162 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:160 [inlined] macro expansion at ./timing.jl:689 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/runtests.jl:159 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:782 jl_eval_toplevel_stmts at /source/src/toplevel.c:622 jl_toplevel_eval_flex at /source/src/toplevel.c:734 ijl_toplevel_eval at /source/src/toplevel.c:805 ijl_toplevel_eval_in at /source/src/toplevel.c:850 eval at ./boot.jl:489 include_string at ./loading.jl:2915 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:2975 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_36147.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2272 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:690 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:793 jl_eval_toplevel_stmts at /source/src/toplevel.c:622 jl_toplevel_eval_flex at /source/src/toplevel.c:734 ijl_toplevel_eval at /source/src/toplevel.c:805 ijl_toplevel_eval_in at /source/src/toplevel.c:850 eval at ./boot.jl:489 exec_options at ./client.jl:296 _start at ./client.jl:563 jfptr__start_69684.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2272 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7c31d3225249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1200 wait_forever at ./task.jl:1137 jfptr_wait_forever_71294.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2272 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007d7347f002e0 Total snapshots: 562. Utilization: 0% ╎562 @Base/task.jl:1137 wait_forever() 561╎ 562 @Base/task.jl:1200 wait() [43] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/0tPYp/test/identifiable_functions.jl:1077 PkgEval terminated after 2727.61s: test duration exceeded the time limit