Package evaluation of QuasiNewtonMethods on Julia 1.13.0-DEV.1200 (a5576b4ddb*) started at 2025-09-25T17:11:13.185 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.8s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 5.12s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 205.82s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_PqJ5nR/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_PqJ5nR/Manifest.toml` [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [5.097899880013301e-11, 1.0124745486450593e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.2023715356690445e-13, 3.339550858072471e-13] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [-2.5314306206780657e-11, -4.901323791273171e-11, -6.585368916844914e-10] QuasiNewtonMethods.optimum(state) .- 1 = [5.6597615483156005e-11, 1.0720735410529869e-10, -7.825784464898788e-11] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [7.779288324627487e-11, -8.45357117640333e-12, 1.601245802618223e-10, -2.3556934181101497e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.4230350231514421e-10, 5.03677100027744e-11, 2.7158852944353384e-10, 8.10442823961921e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [5.915268275202834e-13, 6.243072725453658e-11, 7.500666754367558e-13, 1.172579811026253e-10, 1.247890679678676e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-4.197309166897867e-11, -9.491629704427851e-12, -8.47921732827217e-11, -6.7363892242156e-12, -5.827565097149545e-10] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [5.509948053372682e-11, -4.7418846627067524e-11, 1.6826984250428723e-11, 1.0924439131088093e-10, -8.769007742159829e-11, 3.671973836105735e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.3593349496309202e-11, -3.0173641363262504e-12, -2.2015722578316854e-11, -4.7772341638108173e-11, -2.8664848272796917e-12, -4.154598887140537e-11] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [-8.567291320815684e-11, -4.3778869418531485e-11, -1.1214029704831319e-11, -1.525977122440736e-10, -8.363398862343274e-11, -2.723821168615359e-11, -1.47111212100981e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.901456769815013e-11, 1.8594015216422122e-11, -1.3136158827364852e-11, 4.0951686486323524e-11, 3.374145407519791e-11, -2.6820767828894532e-11, -1.559152806862585e-11] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-2.80956369280716e-11, 2.2485791006943145e-11, 3.659073044559591e-12, 5.503597577671826e-12, -5.6736615405839075e-11, 4.452327395654265e-11, 5.667022406896649e-12, 9.25370891025068e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.9974133458333654e-11, 3.6732172858933154e-11, 8.028688824879282e-12, 2.6059154834001674e-12, -3.569544659853818e-11, 7.312728200759011e-11, 1.6293189020188947e-11, 4.0738523665595494e-12] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [1.653477355034738e-11, -6.189826429192635e-11, 6.041411815260744e-11, 1.372657543186051e-11, 3.909650381217489e-11, -1.24029675419024e-10, 1.1914758069053732e-10, 1.9519941218959502e-11, -1.3981971136445281e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.9128032491266822e-11, 1.7722912026840731e-10, 8.198197676279051e-11, 9.52222745098652e-11, 5.5011994959386357e-11, 3.625941769058727e-10, 1.8408652380230706e-10, 1.68208336148723e-10, -2.0154211632927854e-11] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [9.952771939936156e-11, 9.019918145725114e-11, 3.7136960173711486e-11, -8.281375585283968e-12, 5.773204136971799e-11, 2.0022827840193713e-10, 1.8434032078573637e-10, 7.496736564860385e-11, -1.0025091867760239e-11, 1.168187768740836e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-3.019684502447717e-11, -4.707123579805739e-12, 8.272804663533861e-11, -8.68000116227563e-11, -2.661326714559209e-11, -5.0640602822227265e-11, -1.1723622073134266e-11, 1.5710699408089113e-10, -1.5798162777969083e-10, -6.391653872839242e-11] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-3.930189507173054e-14, 5.128120150743598e-12, -2.5234037082100258e-11, 1.797428872407636e-11, 1.3709033908071433e-12, 1.5698553568199713e-13, 8.228306924706885e-12, -5.083145016016033e-11, 4.041145196254092e-11, 1.5920598173124745e-12, -6.611378111642807e-13] QuasiNewtonMethods.optimum(state) .- 1 = [7.859335404702961e-11, -1.0727607691052299e-10, 2.111761876477658e-10, 1.6018608661738654e-10, 7.171130356198319e-11, 1.7321633016820215e-10, -2.2001656052594853e-10, 4.081053273097268e-10, 3.3315217251583817e-10, 1.4505174839030133e-10, -2.2478863215269484e-10] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [7.915668120972441e-12, 7.702882776072784e-11, -3.7150171827704526e-11, -4.663402997096e-11, 1.651789816037308e-12, 4.459099756104479e-12, 2.194711079539502e-11, 1.5783196971597135e-10, -6.95917767856713e-11, -9.317568938627119e-11, 3.6006753134643077e-12, 8.675060669816048e-12] QuasiNewtonMethods.optimum(state) .- 1 = [2.1687096563027808e-11, -2.61547450364219e-11, -1.3138035104276469e-10, -1.2107648217352107e-11, 5.515143897127928e-12, 2.5109914147947165e-11, 4.647215945396965e-11, -5.846045869617456e-11, -2.565686552102875e-10, -2.1793344906484435e-11, 9.99644811372491e-12, 4.9474646601765926e-11] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [6.870881641418691e-11, 1.237654423391632e-11, 2.0165424885476568e-11, -3.457423236596924e-11, 1.0722978061039612e-11, -8.096712189598065e-11, 1.270086258386982e-10, 2.655098363391062e-11, 3.445110863253831e-11, -6.63743504603076e-11, 2.537969834293108e-11, -1.6160495164285749e-10, -3.5921488006351865e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.436650798325445e-11, -2.928990383566088e-11, -6.547784536792278e-11, 2.5285995519652715e-11, -2.991362713089529e-11, 1.6845191908032575e-11, -2.8718916134096162e-11, -5.5132787224465574e-11, -1.334100607763844e-10, 4.39914771277472e-11, -6.171529953746813e-11, 2.7894353493707058e-11, 1.2408074567815675e-11] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [1.6250334411438416e-11, 1.0385026172343714e-11, -5.4615201250385326e-12, 5.901723554302407e-12, -8.232303727595536e-12, -2.3566260054508348e-11, 1.8752999153548444e-11, 3.292610628591319e-11, 2.081113059659856e-11, -1.0933365324206079e-11, 1.1193490578875753e-11, -1.5993539825842618e-11, -4.8077319902972704e-11, 3.4827474237886236e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.6324497309483377e-11, -6.502465232927079e-12, -5.394573676653636e-12, 3.356648292651698e-11, -4.203848380512909e-11, -5.048184092970587e-11, -3.0662139494097573e-12, 3.509170731774702e-11, -1.5297096922495257e-11, -1.380817682417046e-11, 6.781775141462276e-11, -8.358869152402804e-11, -1.0029732600003172e-10, -7.1804784340656624e-12] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [6.694644838489694e-13, -1.7323253942436168e-11, 1.922462189440921e-11, -3.904054857173378e-11, -1.5942802633617248e-11, 2.5760726884982432e-11, 2.0040413772903776e-11, 3.589128994008206e-12, -3.5234370976411356e-11, 3.973554818514913e-11, -7.824385583887761e-11, -3.261102499152457e-11, 5.073097497643175e-11, 3.8452130368682447e-11, 2.94497759512069e-11] QuasiNewtonMethods.optimum(state) .- 1 = [8.274936291741142e-12, 1.0515588400039633e-11, -2.374467289456561e-11, -5.866296337586618e-11, 1.3664402942481502e-11, -1.1117584630682131e-10, -2.350009076224069e-11, 1.475886080015698e-11, 1.9692469876986252e-11, -4.650246854254192e-11, -1.1560641333119293e-10, 3.101074952382987e-11, -2.2168400448663306e-10, -4.1077030665803704e-11, -3.5395020248074616e-12] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [-5.4331872334500986e-11, -2.15079287713138e-10, 1.9094947845132992e-11, -2.0705992476166557e-11, -1.2695511308891128e-11, 3.518962898851896e-11, 1.0969358754664427e-10, 3.731281950081211e-11, -1.1308010083865838e-10, -4.170755962817907e-10, 3.4604097365331654e-11, -3.9778624838504584e-11, -2.655986541810762e-11, 6.960765297492344e-11, 2.3173685193000892e-10, 9.115974641815683e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.0725421379097497e-11, -1.4612533405511385e-11, -1.4247492075014634e-11, -4.5470516241152836e-11, -4.687328303276672e-11, 4.204037118427095e-11, -1.7641443861293737e-11, 1.4726442287837926e-11, -3.7317038348305687e-11, -3.006095372626305e-11, -2.6823987475665945e-11, -8.859168953989638e-11, -8.895062464375769e-11, 8.423439723515003e-11, -3.1988856008524635e-11, 2.9467983608810755e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [5.4787285819202225e-11, 3.0593305666570814e-11, 1.6076473485782117e-11, -1.7981172106829035e-12, 2.8277380437202737e-12, 2.938049803447029e-11, 5.1170179204973465e-11, -2.923439268442962e-11, 1.1102407881935505e-10, 6.168687782803772e-11, 3.4757752231939776e-11, -3.008038262919399e-12, 5.21560572508406e-12, 6.037614852516526e-11, 1.0426814966990605e-10, -5.86134474289679e-11, -6.166178678768119e-13] QuasiNewtonMethods.optimum(state) .- 1 = [1.3129497489217101e-12, -1.241993174971867e-10, -3.747946397680835e-11, 1.393885007416884e-11, 5.378364420494108e-12, -1.6227019727921288e-12, -6.18960438458771e-12, 5.021094651169733e-11, -5.5676574461926975e-12, -2.4092317030266486e-10, -7.257150436146276e-11, 2.6472379843767158e-11, 6.800338070434009e-12, -1.0656475701864565e-11, -1.2404632876439337e-11, 9.760769970057481e-11, -4.9471537977296975e-12] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [4.047939761164798e-11, 4.3870684862667986e-11, 6.790012996304995e-11, -6.664235829845211e-11, -3.3957281431185038e-12, -4.0095149422825216e-11, -1.845046337933809e-10, -8.02760080631515e-11, -2.4012680732710123e-11, 8.382805560813722e-11, 9.0113694284355e-11, 1.3668044474002272e-10, -1.3703760348704463e-10, -7.229883358661482e-12, -8.464007272834806e-11, -3.6717651141771057e-10, -1.5389312046920622e-10, -4.7702175542951863e-11] QuasiNewtonMethods.optimum(state) .- 1 = [3.339195586704591e-11, 5.014433313021982e-11, 3.680078464185499e-11, 2.8106850180620313e-11, -8.377054605546164e-11, -2.823297151621773e-13, -2.4987567570633473e-11, -9.057077310359318e-11, -1.671962568394747e-11, 6.716560640995795e-11, 1.001925209465071e-10, 7.044498318009573e-11, 6.080025372057207e-11, -1.645759084567544e-10, 5.742295527966235e-12, -5.394928948021516e-11, -1.845312791459719e-10, -3.1303959424633376e-11] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [6.529909946095813e-11, -1.4377388168895777e-10, 1.0731682209552673e-10, 4.0331293860162987e-11, 2.2586377212974185e-12, 3.3373304120232206e-11, 3.360867140145274e-12, -8.898282111147182e-11, -4.2225778429383354e-11, 1.2679723937480958e-10, -3.060347530947638e-10, 2.220552630660677e-10, 7.050027228672207e-11, 6.893374759897597e-12, 6.959766096770181e-11, 1.0591749699528918e-11, -1.7836387922187669e-10, -8.31572588566587e-11, -1.3318235403403378e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.9046986210469186e-11, -2.554345623906329e-11, 4.1001646522431656e-11, -1.9510726367855113e-11, 3.3428815271463463e-11, -1.368949398283803e-11, 3.1215252604965826e-11, 2.479594307658317e-11, -2.393529818789375e-12, 3.74280606507682e-11, -4.92961227394062e-11, 8.093148373689019e-11, -3.8827163706400825e-11, 6.311662303915e-11, -3.863509512314067e-11, 5.88293858072575e-11, 4.851230528402084e-11, -3.374855950255551e-12, 1.092503865152139e-11] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [-1.210834765785762e-10, -3.7858050028205525e-11, 3.0468072509393096e-11, -6.735634272558855e-11, -4.329836489347372e-11, 5.841971351117081e-11, -6.189770918041404e-11, -8.448786115167195e-11, 4.1799452787927294e-11, -9.359513164497457e-12, -2.412210431401718e-10, -7.557787728984522e-11, 6.276690278639308e-11, -1.251895254128499e-10, -8.296818787556504e-11, 1.2325385156941593e-10, -1.1634393448645142e-10, -1.6815593362196068e-10, 8.248202121308168e-11, -2.2495338924954922e-11] QuasiNewtonMethods.optimum(state) .- 1 = [4.77056172343282e-11, -5.390188295706366e-11, -2.759994455203696e-10, 6.078026970612882e-12, -8.374145821221646e-11, 6.43691766555321e-11, 8.895550962506604e-12, -6.222533599498092e-11, -1.0657896787336085e-10, 2.2352342199383202e-11, 9.408718248948844e-11, -1.0746681322615359e-10, -5.444662498632624e-10, 7.353451181302262e-12, -1.6091639132298496e-10, 1.2751932843002578e-10, 1.7052137479822704e-11, -1.2476819577500464e-10, -2.1028534469280658e-10, 4.547029419654791e-11] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [-6.091338544678138e-11, -8.56765769441381e-11, -3.27083915507842e-11, -5.6033955253553813e-11, 1.1584289083543808e-11, -5.8007598724429954e-11, -7.759903830617532e-12, -2.358835349269839e-11, -2.0153767543718004e-11, -2.7444380101826482e-11, -1.1733158888915796e-10, -1.7845791511206244e-10, -6.742628677613993e-11, -1.2197598486807237e-10, 2.557354328303063e-11, -1.0588629972829722e-10, -1.8194779016766915e-11, -5.012101844670269e-11, -3.5434211120843884e-11, -5.2453041909927833e-11, 1.1304290836733344e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.163567020512346e-10, -3.5720670865657667e-10, 2.4803892273439487e-10, -2.275815091934419e-10, 3.667492975978348e-10, 4.0625414143846683e-10, 1.46367806763692e-10, 2.852038605283269e-10, 5.269709113520094e-10, -1.652793457651569e-10, 2.365878604138061e-10, -7.153776460100403e-10, 5.079869858093389e-10, -4.496861771841054e-10, 7.257516809744402e-10, 8.049148014777074e-10, 2.979427815574809e-10, 5.561586746694047e-10, 1.0482890111518373e-9, -3.263203041115048e-10, -4.212186155427844e-13] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-3.639577528247173e-11, -1.6727286222817384e-11, -1.420408235475179e-11, 7.528866419193037e-12, 1.2427836537654002e-12, 7.524070255726656e-11, -1.9925949779064922e-11, 8.502532011789299e-12, -1.562905360685818e-11, 1.0940137684656293e-11, -2.640632157380196e-11, -7.203670993050082e-11, -3.2068681043995184e-11, -2.850220059968933e-11, 1.5499601602186885e-11, 3.0448976673369543e-12, 1.437350238830959e-10, -3.943900761527175e-11, 1.7305490374042165e-11, -3.4550695637847184e-11, 2.2036150681969957e-11, -5.402323033365519e-11] QuasiNewtonMethods.optimum(state) .- 1 = [9.717338045334145e-12, -5.88649129440455e-11, 3.2186475706907913e-11, -1.536245575195494e-10, -4.046385448930323e-11, 1.8667956069862157e-11, -5.626765720023741e-11, 7.946687752280468e-11, -4.4754200345664685e-12, -3.2529867688424474e-11, -1.6810774994269195e-11, 2.0764501229564303e-11, -1.20228160760405e-10, 6.784928174852212e-11, -3.1644808995423546e-10, -7.653011557806622e-11, 3.193156850045398e-11, -1.0946110684528776e-10, 1.4896150979382128e-10, -8.289036124153881e-12, -5.695666160931978e-11, -3.519173841226575e-11] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [8.839817766670421e-12, 9.744560713897954e-11, 7.075229291331198e-12, 1.028066520802895e-12, 3.7510661243800314e-11, -1.9187207378479343e-11, -2.0597190619753292e-11, 6.66755539668884e-11, -4.6774584205877545e-11, -8.882217183980856e-11, -2.6320057244788586e-12, 1.5920598173124745e-11, 1.974957974937297e-10, 1.768873936214277e-11, 3.976152740392536e-12, 7.771716603599543e-11, -3.961075911718126e-11, -4.3197223575930366e-11, 1.4665380021483543e-10, -9.945422263513137e-11, -1.7330481494326477e-10, -5.42743627818254e-12, -2.8775870575259432e-12] QuasiNewtonMethods.optimum(state) .- 1 = [2.6042723533237222e-11, -1.6537438085606482e-11, 2.2807977728689366e-11, -1.4540024739773116e-10, -1.6845114192420851e-10, -4.634848060902641e-12, -1.3198120374369182e-10, 1.2414824723805395e-10, 1.7497114868092467e-11, -1.6250389922589648e-10, -1.0317813270432907e-10, 5.660183433064958e-11, -3.13737924528823e-11, 4.579336909671383e-11, -2.851245906043687e-10, -3.262868863984636e-10, -1.8705037518884637e-12, -2.643795182777353e-10, 2.455826653147142e-10, 4.180633617067997e-11, -3.1822433577133324e-10, -2.0645507525784978e-10, -4.815925436219004e-12] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [-2.0780488441118905e-11, -3.648314983450973e-11, -1.4915846335838978e-11, -5.201428177059597e-11, 7.712031013795695e-11, -4.66331417925403e-11, -6.543998676278306e-11, 6.701506016781877e-11, -3.3674174559905623e-12, 1.5292211941186906e-12, 3.385181024384565e-11, -4.867550806864074e-11, -4.303279954598338e-11, -6.910561012318794e-11, -3.151456873240477e-11, -1.0284229023937996e-10, 1.4613488197312563e-10, -9.56520418426976e-11, -1.2489353995448482e-10, 1.3706569212956765e-10, -3.1246116805050406e-12, 1.7150725284409418e-12, 6.218114911860084e-11, -9.443079651560993e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.2021494910641195e-12, -7.6261219561502e-13, -2.0495050101487777e-11, -4.616751425601251e-12, -1.5805357023168654e-11, 1.2972067864325254e-11, 9.07762753854513e-12, -1.3184564551238509e-11, -5.8502092059598e-12, -5.528133506516042e-12, 1.54287693732158e-11, 2.2639667918156192e-12, -3.0772051573535464e-12, -5.685452109105427e-13, -4.1720071841666595e-11, -8.900102876907567e-12, -3.382572000276696e-11, 2.3968604878632505e-11, 1.5579093570750047e-11, -2.742928106869158e-11, -1.2300049867519647e-11, -1.0957013074630595e-11, 3.125455450003756e-11, 1.5780710072021975e-12] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 4m22.8s Method ambiguity | 1 1 9.7s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.5s Stale dependencies | 1 1 9.3s Compat bounds | 3 1 4 11.4s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 52.1s RNG of the outermost testset: Random.Xoshiro(0x1af1cb73df51d736, 0x312e2cce53cae19e, 0xbe3d370e2dd3ea2b, 0x7755865c586e4af9, 0xa90511ac2ada1bb6) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 291.23s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2673 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2522 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:515 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:157 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:309 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:330 [14] _start() @ Base ./client.jl:563 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 541.56s: package has test failures