Package evaluation of QuasiNewtonMethods on Julia 1.13.0-DEV.1184 (441ebf9584*) started at 2025-09-24T05:02:47.844 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.99s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 3.9s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 215.47s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_Iw1WWY/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_Iw1WWY/Manifest.toml` [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [-7.294165271787278e-14, -1.5154544286133387e-13] QuasiNewtonMethods.optimum(state) .- 1 = [9.547918011776346e-13, 1.8887114094923163e-12] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [3.7958836074380997e-10, 7.458464956755506e-10, 8.614464697132007e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-4.577616063983214e-11, -9.166456482745389e-11, 4.838351941316432e-12] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [-2.263911280664388e-11, -8.119094285774509e-11, -4.6003534315275374e-11, -1.6157186699672366e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-8.023137709756156e-12, 2.5442314921519937e-11, -1.3005596599668934e-11, 4.923550456226167e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [-1.8333334850240135e-11, 1.0635292646554717e-10, -3.3520741737902426e-11, 2.126177012229391e-10, -3.2796432236636974e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.092637091915094e-11, -4.9008574976028285e-12, -2.230193807406522e-11, -1.065714183567934e-11, 8.973244369769873e-11] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [-3.1099567365799885e-11, 2.081823602395616e-11, 7.145728453394895e-11, -5.898381782998285e-11, 4.639577610987544e-11, 1.420976669663787e-10] QuasiNewtonMethods.optimum(state) .- 1 = [8.667289108643672e-12, -1.0407119610533755e-11, -5.775713241007452e-12, 1.794075998873268e-11, -2.1313284470636518e-11, -1.2230216839270724e-11] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [8.93285445613401e-12, 1.3891110484109959e-11, -3.201983123091168e-11, 1.6041834527413812e-11, 2.955791167380539e-11, -6.298961352513288e-11, 2.708500090875532e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.571520691356909e-12, -4.5570214268764175e-12, 2.433386825373418e-12, -2.348343741687131e-12, -6.643685601659399e-12, 5.200284647344233e-12, -5.546674231027282e-13] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-3.187261565784638e-11, -1.5304424394457783e-11, 7.043987615418246e-11, 5.188183216375819e-11, -5.697786686909012e-11, -2.5873747588889273e-11, 1.4265144621106174e-10, 1.0664469307641866e-10] QuasiNewtonMethods.optimum(state) .- 1 = [5.719003048909599e-11, -4.7136961001115196e-11, 5.0697446241088073e-11, 4.6879167214797235e-11, 1.0322387389294363e-10, -1.0213330181585434e-10, 9.211098550565566e-11, 1.1741807526277626e-10] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [-3.0934144135130737e-12, 5.551070714204798e-11, -2.070056348557614e-10, -9.470202400052585e-12, -4.597766611880161e-12, 1.1936784893862296e-10, -4.212855619911693e-10, -2.1508572700668083e-11, -8.33000335376255e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-6.00952620999351e-12, 1.294719886857365e-11, -4.361322414325741e-11, 1.2526646386845641e-11, -1.2429168805283553e-11, 2.5620172650064887e-11, -9.095124653413222e-11, 2.577338342746316e-11, -4.969025191314813e-12] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [1.341149413747189e-12, -5.5218940531176486e-11, -3.545530535831176e-11, 8.268496998198316e-12, 5.0046633504052807e-11, 4.079403481682675e-12, -1.128407367545492e-10, -7.470624119321201e-11, 1.6677992320524027e-11, 1.0112888304547596e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-2.8261948337160447e-11, -4.027953526275496e-10, -3.329554409958746e-10, 3.184030816782979e-11, -1.3226197914661952e-10, -7.040279470515998e-11, -7.983734784389185e-10, -6.85849044224085e-10, 5.933764590793089e-11, -2.6509383577177914e-10] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-3.0016988894487895e-11, -1.959921114291774e-11, 1.8116175226623454e-11, 1.248734449177391e-11, -6.352030013090371e-12, -5.4319104769717796e-11, -3.755340483024838e-11, 3.731015496555301e-11, 2.3462121134798508e-11, -1.2772782831405038e-11, -1.496580637194711e-13] QuasiNewtonMethods.optimum(state) .- 1 = [5.300537786467885e-11, 2.0976109738057858e-11, -1.900257728948418e-11, -6.58687548948933e-11, 1.3364842565977142e-10, 8.95494789432405e-11, 5.1809223577947705e-11, -3.2582936349001557e-11, -1.3027834366852176e-10, 2.538980137245517e-10, 1.0923373316984453e-10] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [1.2225331857962374e-11, -6.772649108199857e-11, -3.837630213610055e-11, 3.339639675914441e-11, -4.071709636122023e-11, -8.690381747555875e-12, 2.049027614248189e-11, -1.4167400586018175e-10, -8.351852542887173e-11, 7.225886555772831e-11, -6.904277149999416e-11, -1.7378432026760038e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.471600619140645e-12, 2.218891737015838e-12, -2.775446539260429e-12, 2.6503244043851737e-12, -6.423195308968843e-12, -4.064526493152698e-12, -3.2287506002148803e-12, 3.7203573555188996e-12, -5.561995308767109e-12, 5.35504973697698e-12, -1.2117307157666346e-11, -7.793321543658749e-12] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [1.4546785997993084e-10, -1.2542233918111378e-10, 4.4429349088659364e-11, -3.710098894771363e-11, 1.2398704285487838e-10, -2.9524316325080235e-10, 2.9837621262629455e-10, -2.464750625819079e-10, 9.017986357662267e-11, -8.783240801335523e-11, 2.442106517008824e-10, -5.948030956659522e-10, 2.2419444078991546e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-2.678380850440476e-10, -3.475564280819299e-11, 1.2751910638542086e-10, 1.8807910784346404e-10, 1.52380330575852e-11, 6.387490536496898e-11, -5.557296844926896e-10, -6.881806235981003e-11, 2.7152036174982186e-10, 3.819871086108151e-10, 4.1563863462101835e-11, 1.2304490759618147e-10, 3.1301627956281664e-12] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [-2.0196622152468535e-11, 2.099964646617991e-11, 3.1129099298254914e-11, -2.921762831675778e-11, -9.002354417475544e-12, 3.6672664904813246e-11, 5.650124812461854e-11, -4.234212980236407e-11, 5.182587692331708e-11, 6.168909827408697e-11, -5.929157165240895e-11, -1.7391865725358002e-11, 8.106315618761073e-11, 1.1249845499605726e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-3.152078598134267e-11, 4.64486227258476e-11, 1.0390821536532258e-10, -6.573852573410477e-12, 1.3038192747671928e-10, -5.287614790461248e-11, 7.998890438898343e-11, -6.708289479462337e-11, 9.344036655534183e-11, 2.2486656980902353e-10, -1.8318013772500308e-11, 2.6183100132470827e-10, -9.295109126838952e-11, 1.6737877750472308e-10] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [3.021316530293916e-11, -2.915037100592599e-10, -1.2238210445048026e-11, 8.901523962379088e-11, -4.507616502280598e-12, 1.9900592285182483e-10, -7.522205081045286e-11, 6.524758511261552e-11, -5.921196866154332e-10, -2.665601073204016e-11, 1.784292713580271e-10, -1.9788948257826178e-11, 3.9327119338850025e-10, -1.4320356012120783e-10, -8.604006396240038e-12] QuasiNewtonMethods.optimum(state) .- 1 = [2.8092417281300186e-11, 1.1760814544459208e-11, -5.868849850543256e-11, 1.472577615402315e-11, 3.4645175617242785e-11, 2.9478641749847156e-12, 1.0792144955473759e-10, 5.000710956437615e-11, 2.277378285953091e-11, -1.269340188514434e-10, 2.3751001165805974e-11, 6.844635969116553e-11, 1.4916734514258678e-11, 2.153408562577397e-10, -9.438672066153231e-12] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [7.172040739078511e-12, 3.4656721936698887e-12, 2.3510082769462315e-12, 4.4930725806580085e-12, 1.0490941448892954e-11, 1.9022783348532357e-11, 3.150724126044224e-11, -6.163958232718869e-13, 1.4917622692678378e-11, 6.8622885152080926e-12, 5.477396314290672e-12, 9.156009284083666e-12, 2.3825608153060784e-11, 3.5108582707721325e-11, 6.070144387138043e-11, -1.7307266730881565e-12] QuasiNewtonMethods.optimum(state) .- 1 = [3.0743851908709985e-11, -7.968181670037211e-12, 8.644196469731469e-13, 3.4510172497448366e-12, -1.9636625658847606e-11, 3.1889602070123146e-11, 3.9189540501638476e-11, 3.164934980759426e-11, 6.044786893255605e-11, -1.4524159652751223e-11, -1.4425127758954659e-12, 1.9577894860844935e-11, -3.88367116244126e-11, 6.396128071628482e-11, 7.601097529175149e-11, 5.88329385209363e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [8.681189100911979e-11, 5.130051938806446e-11, 3.7263525598518754e-11, 8.451683797261467e-12, -5.455746965310482e-12, -4.8193005142138645e-11, -7.65725260976069e-11, 1.226503343332297e-10, 1.8567547499515058e-10, 1.0938983052710682e-10, 8.08562106158206e-11, 2.0117241206207837e-11, -1.4590439967321345e-11, -9.604395057039028e-11, -1.4395407088585443e-10, 2.3217361366789646e-10, 2.7071678232459817e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.4007017767880825e-11, -1.9872992140790302e-12, 6.120437490153563e-12, 6.018074927283124e-11, -2.5505819678528496e-11, -6.535916252659035e-11, 1.1284084777685166e-11, 3.5416114485542494e-12, -2.840949697713313e-11, -4.8011594699914895e-12, 1.5563550448405294e-11, 1.1743161998367668e-10, -4.9685588976444706e-11, -1.348643419163409e-10, 2.3250512626304953e-11, 5.120348589571222e-12, -3.945177518005494e-12] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [1.3668399745370152e-11, -2.3381074854000872e-11, 2.2071233729548112e-13, 4.302957989921197e-11, -1.8406609569865395e-11, -7.923883771354667e-12, -3.892441924335799e-13, -6.397160579041383e-11, -1.5148771126405336e-11, 1.9326762412674725e-11, -4.472699988156137e-11, 1.2354561818028742e-12, 8.476441770710608e-11, -3.916411639437456e-11, -2.1269097594256436e-11, -1.2823075934420558e-12, -1.265531013316945e-10, -2.970312884542636e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.173939834231419e-10, 1.7249757178205982e-11, 1.302657981483435e-10, 7.58753060381423e-11, 5.763922672485933e-11, -1.1522938159203022e-10, -1.0303013997514654e-10, 6.672640218141623e-11, 1.2203971166968586e-10, -2.4462276648762327e-10, 3.1088465135553633e-11, 2.8330249257635387e-10, 1.535362947890917e-10, 9.368394948694458e-11, -2.4244029006581513e-10, -1.9675283624565054e-10, 1.1722978143779983e-10, 2.3138380100817812e-10] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [9.304912396146392e-11, 1.184767839390588e-10, -3.802202996894266e-11, -6.649591988150405e-11, -1.328680498957624e-10, -2.4697244249693995e-11, 1.6222578835822787e-10, -1.1087220030958633e-10, 1.617310729784549e-10, 1.8816859181924883e-10, 2.3139801186289333e-10, -7.211453656452704e-11, -1.412123751265426e-10, -2.64878008415792e-10, -4.301381473226229e-11, 3.277020876879533e-10, -2.1919965842442934e-10, 3.027136319389001e-10, -2.9286573166587004e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.3173906410202108e-11, -4.368716499669745e-11, 5.0524029404641624e-11, 1.7560175535891176e-11, 4.027889133340068e-13, -4.23894253032131e-12, 9.639178344400534e-12, 1.4082512933555336e-11, 3.598010778205207e-11, -2.6931346042147197e-11, -9.149081492410005e-11, 1.0049161502934112e-10, 3.212452526213383e-11, 2.8348434710778747e-12, -8.616773961023227e-12, 2.061129045216603e-11, 2.619660044445027e-11, 6.859113277357665e-11, 7.103206911551752e-13] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [-1.693145623704595e-11, -1.2613576849673791e-11, 7.378320177053865e-12, 4.146882837119392e-11, 1.5820900145513406e-11, -1.3352097205654445e-11, -1.1101675134739253e-11, 7.927880574243318e-12, 1.0169642905566434e-13, -1.4539813797398438e-11, -3.392641723110046e-11, -2.561850731552795e-11, 1.3732126546983636e-11, 7.94253551816837e-11, 3.19202442256028e-11, -2.683830935268361e-11, -1.923250447788405e-11, 1.2466028209701108e-11, -2.5934809855243657e-13, -3.0045188559313374e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-6.076650294062347e-11, 4.7102099998141966e-11, -4.668976316679618e-11, -1.3391288078423713e-11, -4.400202424648114e-11, -3.4148239791420565e-12, 3.6771030664795035e-11, 3.659561542690426e-11, -1.4207079956918278e-11, 4.126921027136632e-12, -1.2563095008744085e-10, 8.740563828268932e-11, -9.100420417240684e-11, -2.4463431280707937e-11, -8.692702113677342e-11, -6.788680728675445e-12, 7.262768164650879e-11, 7.87192533380221e-11, -3.2533420402103275e-11, 9.066081219089028e-12] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [7.950662350708626e-11, -6.426414955740256e-12, 7.667866341876106e-11, 1.6166401550776754e-11, -3.87502252507943e-11, 2.97939450888407e-12, -7.668021773099554e-11, -2.1465051958102777e-11, 8.449752009198619e-11, -2.449973557361318e-11, 1.6435475203024907e-10, -1.2063239296367101e-11, 1.5764900496151313e-10, 3.2439384511917524e-11, -7.897549281210559e-11, 6.908917882242349e-12, -1.524851356293766e-10, -4.0367376108463304e-11, 1.6471646269167195e-10, -4.4729442372215544e-11, -5.544453784978032e-13] QuasiNewtonMethods.optimum(state) .- 1 = [7.846079341788936e-11, -1.4099832412739488e-13, -1.3460887959837464e-10, -9.928446953466619e-11, 1.5831647104391777e-10, -1.8543278024196752e-11, 3.0160318686967e-11, -1.3650847119350829e-10, -3.561817507602427e-11, 7.028466697533986e-11, 1.6005641256811032e-10, 1.1037837310823306e-12, -2.7020774506780754e-10, -1.9774115678217186e-10, 3.069615672757209e-10, -3.9899528125886263e-11, 4.778355489065689e-11, -2.7485391740356135e-10, -8.069844792402137e-11, 1.3764411832539736e-10, 2.5406343695522082e-12] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [2.8449465006019636e-11, -3.36943806189538e-11, -2.575484270295192e-11, 2.365418971805866e-11, -2.717204239388593e-11, 2.117972464077411e-11, 3.7764014138019775e-11, -4.228062344679984e-12, -1.4629186750880763e-11, -5.514289025398966e-11, -2.9066749007711223e-12, 6.052247591981086e-11, -6.767431059984119e-11, -5.0542570129152864e-11, 4.7275072745378566e-11, -5.301425964887585e-11, 4.313993606785971e-11, 7.579314953432004e-11, -8.774314608217537e-12, -2.9901414677624416e-11, -1.0935718997018284e-10, -4.859557201086773e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.1292156099074191e-10, 4.0326852968064486e-11, -1.3580980784411167e-10, -1.4061984909830016e-10, 1.5674506137486333e-10, 1.504485425130042e-11, 2.741118443339019e-11, 8.820766339567854e-11, -3.038735929550285e-11, 8.72013572461583e-12, 1.7437162824762709e-12, -2.2361157370198725e-10, 7.427791715031162e-11, -2.648421482120966e-10, -2.8290336739900113e-10, 3.103413082072848e-10, 2.3607560351024404e-11, 7.02460312140829e-11, 1.7382051353820316e-10, -5.899769561779067e-11, 2.174593838333294e-11, -1.0974776643024597e-11] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [3.689382133131858e-11, 4.956657306820489e-11, 5.458966612081895e-11, -2.5635049638594865e-11, -8.439360321688127e-12, 8.988809696575117e-12, -2.4051205471664616e-11, -1.1659562204613394e-12, 1.3380629937387312e-11, 5.7955640286877497e-11, 4.796896213576929e-11, 7.739453522503936e-11, 9.716250026770012e-11, 1.1426082302534724e-10, -5.4404591942613933e-11, -1.5546897103035917e-11, 1.7952528352793706e-11, -4.9273807256611235e-11, -5.4989346409684e-13, 2.840283563898538e-11, 1.1108824971017839e-10, 9.258283029112135e-11, 7.103873045366527e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-3.933153802648803e-11, -3.2240876635114546e-12, 1.0404566097577117e-11, -1.0485057266862441e-11, -1.6383738810077375e-10, -4.311184742533669e-11, 6.661338147750939e-12, -9.404255152389851e-12, 4.0043968141389996e-11, 2.8283375641535713e-11, -3.505673529247133e-11, -7.844724869698894e-11, -8.534839501805891e-12, 2.004285626355795e-11, -2.1431079133549247e-11, -3.3328340087734887e-10, -9.126743805154547e-11, 1.202082877682642e-11, -1.7855494860441468e-11, 7.688494285673642e-11, 5.756639609444392e-11, -7.177869409957793e-11, 4.426015109970649e-12] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [1.720690256945545e-11, 3.891775790521024e-11, -3.287026206777455e-11, -6.520595174919208e-11, -1.3158918399369668e-11, -1.7716939026968248e-11, 2.8815838604145938e-11, -2.300104551267168e-11, 2.0447643578336283e-11, -4.383260421292334e-11, 4.0467629247586956e-12, -2.8959723508137358e-11, 3.480193910831986e-11, 7.477751751139294e-11, -6.822797882222176e-11, -1.3116274732993816e-10, -2.5222046673434306e-11, -3.4733882436910335e-11, 5.829070559570937e-11, -4.383815532804647e-11, 3.977707052627011e-11, -9.553069446610607e-11, 6.170841615471545e-12, -5.7028826105920416e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.9310009147233131e-10, -1.1509204700388409e-10, -7.86283260723053e-11, -7.350942077266609e-11, 1.060391774387881e-10, 1.1388467946460423e-10, -1.778609481917215e-10, -2.0122303823200127e-10, -1.1152412326964622e-10, 1.609974376037826e-10, -2.5393798175343818e-11, -1.1911127639763208e-10, -3.8232483845490606e-10, -2.2563462209745921e-10, -1.4775547452217097e-10, -1.6101719957362093e-10, 2.1037815933766524e-10, 2.3523050174389937e-10, -3.363387346411173e-10, -4.018796406768388e-10, -2.2661228449294413e-10, 3.2787283998914063e-10, -6.126077423118659e-11, -2.5315760598942916e-10] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 4m27.8s Method ambiguity | 1 1 9.8s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 6.7s Compat bounds | 3 1 4 11.4s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.7s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 52.5s RNG of the outermost testset: Random.Xoshiro(0xf3f0cf775cc7f478, 0xe895c82b4459e715, 0xeca2e17cd1a53f44, 0xfdc78e9775f3adfa, 0x3d55758d7bb9a7e1) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 299.81s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2673 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2522 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:515 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:157 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:309 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:330 [14] _start() @ Base ./client.jl:563 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 551.34s: package has test failures