Package evaluation of QuasiNewtonMethods on Julia 1.13.0-DEV.1176 (573db77327*) started at 2025-09-21T17:11:31.188 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.73s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.3.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 3.66s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 207.07s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_3U1F6s/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_3U1F6s/Manifest.toml` [79e6a3ab] Adapt v4.3.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [3.0957458818647865e-12, 6.120881579363413e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-6.977063371493841e-11, -1.2375589442115142e-10] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [4.527000996290553e-11, 8.626876990547316e-11, 5.863753926860227e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-7.326361739501408e-13, -1.7575940702840853e-12, -6.676981190167908e-11] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [6.197486968062549e-12, 4.636069306229729e-12, 1.2677414673589738e-11, 1.0374145986702388e-11] QuasiNewtonMethods.optimum(state) .- 1 = [7.620570841027074e-12, 1.9120260930094446e-11, 1.6702195182460855e-11, 4.0280445645635155e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [-1.2902823254279383e-10, 4.263478459165526e-11, -2.630482498489073e-10, 7.680656111119788e-11, 4.7387205270865707e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.9788539130114486e-10, -1.1381728892700949e-10, -8.122668093690777e-10, -2.198481396931129e-10, -8.770761894538737e-15] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [2.1322477117280414e-10, 1.8745094365613113e-10, -9.551470725455147e-12, 4.0462722061818113e-10, 3.727038677681094e-10, -3.710132201462102e-11] QuasiNewtonMethods.optimum(state) .- 1 = [3.472673260063175e-10, -3.4379377122917276e-10, -2.2930657372910446e-10, 7.21034121298203e-10, -6.96796065291494e-10, -4.4494297135599936e-10] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [7.659872736098805e-11, 1.9401169559785103e-10, 6.551048592484676e-11, 1.4412204762948022e-10, 3.8946557090469014e-10, 1.3446821434115463e-10, 5.93749494015583e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-6.493705573262787e-11, -1.5123180485687726e-10, 1.0888423496169253e-10, -1.0883816070617058e-10, -2.909605889556133e-10, 2.0330670480461777e-10, -1.1544432076959765e-11] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-1.1575462810498038e-10, -5.379532375116014e-10, 1.1401990462900358e-10, 3.175373297636952e-10, -2.512597907511349e-10, -1.0789964477453395e-9, 2.2774027108596329e-10, 6.377856021089201e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.4753198662731393e-10, 3.987143948336325e-11, -1.529596449501014e-10, -9.229195185866956e-11, 2.914972707657171e-10, 7.838640847523948e-11, -3.129634329468445e-10, -1.9518164862120102e-10] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [3.554267991034976e-11, 4.963807143099075e-12, -1.2383094549761609e-11, -3.5310310231295716e-11, 7.129297152630443e-11, 1.6050050177796038e-11, -2.701971979490736e-11, -7.475575714011029e-11, -2.743361093848762e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.2096990076315706e-12, 8.878897617137227e-12, 7.944978008822545e-12, 2.4356072714226684e-12, -2.7396973578674988e-12, 1.698308160769102e-11, 1.7532419960275547e-11, 5.5431215173484816e-12, -5.995204332975845e-15] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [1.9201751300101932e-11, 2.956923594865657e-11, 3.33546523734185e-11, -4.1480374690650024e-11, -3.3970826152085465e-11, 3.5579539314767317e-11, 5.875366859697806e-11, 6.998090995580242e-11, -8.600054002272373e-11, -6.514078165764658e-11] QuasiNewtonMethods.optimum(state) .- 1 = [6.648059880376422e-11, 5.031552952061702e-11, -4.696443234308845e-11, 1.0381584480967376e-10, 1.7695622744895445e-11, 1.3738743476210402e-10, 9.605094497544542e-11, -9.273537493470485e-11, 2.08601802498265e-10, 3.2757574430775094e-11] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [1.6538970193380464e-10, -3.6405656267390896e-11, -2.0830870361976395e-10, 8.315836907968333e-11, -1.8718104843884475e-10, 3.188040942347925e-10, -7.675604596357744e-11, -4.032832956468724e-10, 1.7006485109050118e-10, -3.6128544600444457e-10, 6.994405055138486e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.457922671477263e-11, -6.705747068735946e-14, -2.105216001524468e-11, -1.3647416530204737e-11, -4.453470925369629e-11, 2.90878432451791e-11, -4.707345624410664e-13, -4.294531397164292e-11, -2.8233304583125118e-11, -8.864664557961532e-11, -1.796685022981137e-11] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [2.4504576146000545e-10, -1.586010212051292e-10, 4.7297943339685844e-11, 5.5915272412221384e-11, 1.9057866396110512e-11, -3.5771829942632394e-11, 4.721874002910909e-10, -3.337830012384302e-10, 9.448641868914365e-11, 1.009030636822672e-10, 5.044253903463414e-11, -7.480049912800268e-11] QuasiNewtonMethods.optimum(state) .- 1 = [9.061595918069543e-11, -1.0509992875995522e-10, -1.6479118070122922e-10, 1.4132894854412825e-10, -4.707922940383469e-11, 3.1370905873018273e-11, 1.8361556719526106e-10, -2.1190826871020363e-10, -3.433775486172408e-10, 2.866782367050291e-10, -8.656997341205397e-11, 6.280753694909436e-11] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [2.236810736633288e-11, -8.293732367548046e-11, -2.9024560532775467e-11, -3.1980862402747334e-11, -2.4003021792395884e-11, 2.333866433446019e-11, 4.905520434306254e-11, -1.6490575571737054e-10, -5.6781579438336394e-11, -6.043576750158763e-11, -4.9980353189482685e-11, 4.726374847052739e-11, -1.2338241539566752e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.193112441124413e-11, 2.8948154984220764e-10, 8.017830843698448e-11, -8.20652434896374e-11, -5.944800207657863e-12, -1.4186396501969512e-10, -5.4848237063254146e-11, 5.64907232103451e-10, 1.7121171147493897e-10, -1.537234783910435e-10, 2.7076119124558318e-12, -2.944228194579068e-10, 9.023226610338497e-12] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [-6.733613666654037e-12, 6.202416358291885e-11, 2.738165250093516e-11, -9.507317155765804e-11, -1.5100265482459463e-10, -1.25532806372064e-10, 1.591380360821404e-10, -1.64994684581643e-11, 1.2435652507747363e-10, 5.4673376936875684e-11, -1.900435364632358e-10, -2.9746105578709603e-10, -2.52953769042108e-10, 3.1357694219025234e-10] QuasiNewtonMethods.optimum(state) .- 1 = [2.933631115809021e-11, 3.194444708753963e-11, 8.094480641318569e-11, -2.2363222385024528e-11, -1.4308154661080152e-10, 1.0419221041502169e-11, -6.096934068722248e-11, 7.139755453522412e-11, 6.712519429186159e-11, 1.442779229421376e-10, -5.652511791964798e-11, -2.826248124421227e-10, 4.29101199017623e-11, -1.215366696172282e-10] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [-7.103428956156677e-11, -4.691103061560398e-11, 6.955502840355621e-11, 6.006084518617172e-12, -1.4428569450330997e-11, 1.7628121184998236e-12, 4.0223158137564496e-11, -1.357363110798815e-10, -9.314260474013736e-11, 1.4416068339073718e-10, 1.2073231303588727e-11, -3.065458997753012e-11, 4.090727756533852e-12, 7.928591116979078e-11, 1.1702194768759e-11] QuasiNewtonMethods.optimum(state) .- 1 = [7.584488592726757e-11, 3.8080427700037944e-11, 3.0822011609643596e-11, 4.480149584651372e-11, 5.561928695385632e-11, 6.397904428467882e-11, -7.571243632042979e-11, 1.5420620336215052e-10, 8.182743371776269e-11, 5.6420201843820905e-11, 9.068923390032069e-11, 1.1937584254440026e-10, 1.3238299345630367e-10, -1.4630896494338685e-10, -9.016454249888284e-12] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [5.3161031132731296e-11, -1.492161949556703e-11, -8.664735595687034e-12, 4.1796344163458343e-11, -1.609379296496627e-12, -2.9317104299764196e-11, -4.9782289401889557e-11, -1.0274447959091049e-11, 1.088262813198071e-10, -2.9180657890037764e-11, -1.8782975175213323e-11, 8.604006396240038e-11, -1.985300812634705e-12, -5.475586650760533e-11, -1.0108325287916387e-10, -2.061351089821528e-11] QuasiNewtonMethods.optimum(state) .- 1 = [5.899725152858082e-13, 9.966005798389688e-11, 4.608979864428875e-12, 2.713280711219568e-10, 2.3842705587640012e-11, -5.5080828786913116e-11, -8.095735193336395e-11, -4.268185804789937e-11, -2.4672486276244854e-12, 1.902893398408878e-10, 2.247979580261017e-12, 5.510105705042179e-10, 4.5598858022799504e-11, -1.2134693250231976e-10, -1.6836299021605328e-10, -8.669376327929967e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [-2.911343388589671e-10, -1.3464851456035376e-10, -2.3180901642660956e-11, -7.679989977305013e-11, -1.4010959059618244e-10, -1.2367584734107595e-10, -6.972766808388542e-11, 1.8013102121017255e-10, -5.978321171440371e-10, -2.580071711832943e-10, -3.750610932939935e-11, -1.6048162798654175e-10, -2.803989263000517e-10, -2.483756533777637e-10, -1.5027390443123068e-10, 3.4663005799018265e-10, 8.359757330822504e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-9.49294753915808e-10, 3.3714808722606904e-11, 4.80696371596423e-10, -1.8321255623732213e-10, -3.915919810637547e-10, 1.3506651352912513e-9, -2.109575847342171e-9, 6.287439457963728e-10, -1.9193472367007303e-9, 6.673106511811966e-11, 9.676293100113753e-10, -3.709290652409436e-10, -7.793985457027475e-10, 2.687059241779366e-9, -4.223468130781782e-9, 1.2555809725256495e-9, -2.0376367260155348e-11] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [-2.7201685348643423e-11, -4.8476778147232835e-12, -6.193934254383748e-13, -4.990763358136974e-11, 1.5721424162506992e-11, 5.0461856915262615e-12, -8.557998754099572e-11, 1.8041568239368644e-11, 3.8486103193235977e-11, -6.65318911075019e-11, -1.0313638831860317e-11, 3.0819791163594346e-12, -9.564249392468582e-11, 3.401301462702122e-11, 1.6696422022732804e-11, -1.8025925196951675e-10, 4.336064840515519e-11, 6.701728061386802e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.2672840554728282e-10, 7.762790410481557e-11, 1.0027312313809489e-10, 3.289235550596459e-11, -9.11115627388881e-12, -2.4034774170900164e-11, 3.835620709935483e-11, 2.2992052706172217e-11, -4.0122016820021145e-11, 2.5944713044623313e-10, 1.5548273779586452e-10, 1.9665691297632293e-10, 6.059752699627552e-11, -7.42839123546446e-12, -4.167999279047763e-11, 6.939737673405943e-11, 4.0671910284117985e-11, -7.36944949508711e-11] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [2.0574697501274386e-10, -9.651701660118306e-11, 3.3271385646571616e-11, -1.186684084331091e-11, 3.285594019075688e-11, 1.3910050888910064e-10, -5.498157484851163e-12, -2.5368451783691626e-10, -9.898759589788142e-11, 4.070133119427055e-10, -1.9210188995089084e-10, 6.333999991170458e-11, -1.9696910769084752e-11, 6.788680728675445e-11, 2.7906321697912517e-10, -8.622769165356203e-12, -5.065317054686602e-10, -1.9899204506401702e-10, 3.737010700888277e-13] QuasiNewtonMethods.optimum(state) .- 1 = [4.212585835716709e-11, -3.3900660056929155e-11, 6.0811355950818324e-12, 1.9837020914792447e-11, -4.547917598074491e-12, 8.086087355252403e-11, 2.0973667247403682e-11, -2.465028181575235e-11, 1.248778858098376e-12, 8.617639934982435e-11, -6.367006921692564e-11, 1.4067191855815508e-11, 4.265054975860494e-11, -8.31590352134981e-12, 1.6457479823372978e-10, 4.4503067897494475e-11, -4.9693138493012157e-11, 3.419042826635632e-12, 1.4712675522332574e-12] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [-1.685216410862722e-10, -3.739974996364026e-11, -6.675304753400724e-11, -6.344613723285875e-11, 1.9467560896657687e-10, 3.905986645236226e-12, -2.520672559569448e-11, 5.240030631625814e-11, 7.706058013923212e-11, -1.6366907829024058e-11, -3.3057812043324475e-10, -6.551337250471079e-11, -1.321749376614889e-10, -1.1933443122558174e-10, 4.0854919447497196e-10, 1.2881473665515841e-11, -4.633260441977427e-11, 1.0002354500215915e-10, 1.462143739416888e-10, -3.114886126809324e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-6.422351539470128e-11, 3.06525915760858e-11, 3.576405838146002e-11, -2.8383184691449515e-11, -7.772693599861213e-11, 9.524758759482665e-11, 1.8677059898664083e-11, -2.702982282443145e-11, 1.5546230969221142e-11, 1.3293810496861624e-10, -1.2900269741322745e-10, 6.321299039768746e-11, 7.458500483892294e-11, -5.924416512925745e-11, -1.4930123803935658e-10, 1.8667822843099202e-10, 3.9542591423469275e-11, -5.4818594108496654e-11, 3.391775749150838e-11, 2.6331758995468135e-10] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [-1.5094570038343136e-10, 2.0989143756366957e-10, 7.35831395815012e-11, -7.706169036225674e-12, -1.3466805448558716e-10, -6.211497982633318e-11, -5.0487058977921606e-11, -1.4200274289777326e-10, -9.857115124134452e-12, -8.523182160047327e-11, -2.7792124157599574e-10, 4.0720538052596567e-10, 1.4904899536816174e-10, -2.2720048065139054e-11, -2.6279212139712627e-10, -1.1111533915197924e-10, -8.965350684064788e-11, -2.7278423964105514e-10, -2.3709145757777605e-11, -1.6612422548689665e-10, -4.357070260141427e-12] QuasiNewtonMethods.jl: Test Failed at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:47 Expression: abs(optimize!(state, Rosenbrock(), x, QuasiNewtonMethods.BackTracking{3}())) < eps() Evaluated: 2.3813371862086027e-16 < 2.220446049250313e-16 Stacktrace: [1] top-level scope @ ~/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:36 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [3] macro expansion @ ~/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:47 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] QuasiNewtonMethods.optimum(state) .- 1 = [2.5112734114429713e-10, 4.132334918693914e-9, -3.5493287198207213e-9, -3.0480018509138063e-10, -1.6565540050805794e-9, 3.1770097663752495e-10, 1.2379781644256127e-9, 2.0452199933629345e-9, -1.2191615272882927e-8, 7.119417722023513e-9, 4.923961238745278e-10, 8.263616235737459e-9, -7.099888232886542e-9, -5.97810023705847e-10, -3.3242141261879965e-9, 6.479137226733656e-10, 2.4576018997635174e-9, 4.0936281031633825e-9, -2.442866509078101e-8, 1.4274570636629846e-8, 3.0080160584589066e-11] QuasiNewtonMethods.jl: Test Failed at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:49 Expression: all((x->begin #= /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:49 =# x ≈ 1 end), QuasiNewtonMethods.optimum(state)) Evaluated: all(var"#5#6"(), [1.0000000002511273, 1.000000004132335, 0.9999999964506713, 0.9999999996951998, 0.999999998343446, 1.000000000317701, 1.0000000012379782, 1.00000000204522, 0.9999999878083847, 1.0000000071194177 … 1.0000000082636162, 0.9999999929001118, 0.99999999940219, 0.9999999966757859, 1.0000000006479137, 1.000000002457602, 1.000000004093628, 0.9999999755713349, 1.0000000142745706, 1.0000000000300802]) Stacktrace: [1] top-level scope @ ~/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:36 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [3] macro expansion @ ~/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:49 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [3.5993874547557425e-11, 4.986633328485368e-11, -5.487166276907374e-12, 1.1110445896633792e-11, -5.130229574490386e-12, -3.997668862609771e-11, 3.0421665186963764e-11, 4.554401300538302e-11, -3.2790437032304e-12, -4.042999268705216e-11, -3.582556473702425e-11, 7.630518439327716e-11, 1.0397394056838039e-10, -1.3212209104551675e-11, 2.1046497877819093e-11, -1.564859353209158e-11, -7.306222293834708e-11, 6.45847819669143e-11, 9.800160682971182e-11, -2.9357627440163014e-12, -7.78224151787299e-11, -7.022882275720121e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-7.1916916866143765e-12, 1.7953860620423256e-11, 1.1443734848626264e-11, -1.5261569785707252e-11, -1.4373835455216977e-11, -1.619404610408992e-11, 2.6223467841646197e-12, -3.7317815504422924e-11, 1.1228795671058833e-12, -8.782641280902226e-12, 1.1711298597560926e-11, -1.296263096861594e-11, 3.602762532750603e-11, 2.201283599845283e-11, -2.9469759965650155e-11, -2.512468011417468e-11, -3.661460024062535e-11, 4.909850304102292e-12, -7.150802172617432e-11, 2.483124816876625e-12, -1.9936607920101324e-11, 2.8716362621139524e-11] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [4.026867728157413e-11, 1.899833623753011e-10, -8.618383784408934e-11, 7.925571310352097e-11, 1.0395173610788788e-10, 1.3843015622683197e-10, 6.996314638740841e-11, -6.060818513731192e-12, -1.0027667585177369e-10, -1.1148715284292621e-10, 2.1541524120038957e-10, 7.858313999520306e-11, 3.74932307423137e-10, -1.7889534298376475e-10, 1.5763657046363733e-10, 2.1136736805260625e-10, 2.7891555731685003e-10, 1.5332379810217844e-10, -1.9220292024613173e-11, -1.9970614051345592e-10, -2.2273971556074912e-10, 4.457538782531856e-10, 1.1945555655756834e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.2095657808686155e-11, -4.062128411419508e-11, -6.25307583490553e-11, -5.393208102333347e-11, -1.73687730864458e-11, -2.4063417924935493e-11, 4.508460271779313e-11, 1.4708456674839e-11, 4.428235556019899e-12, 3.2115865522541753e-11, 2.133671017645611e-11, -3.0310864929106174e-11, -8.627720760046032e-11, -1.2975209795484943e-10, -1.0751233237016322e-10, -4.409828058271614e-11, -5.314759743413333e-11, 8.327427636345419e-11, 2.9049207483922146e-11, 5.085043497388142e-12, 6.569389476851484e-11, 4.772182649048773e-11, -2.262234843897204e-11] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [-1.3679268828781233e-10, 3.6417557858214877e-10, -7.623552900071218e-10, 2.0812152001781214e-10, -4.5387316127687427e-10, 1.6781687151024016e-10, -7.074341112911497e-11, 9.06370534181633e-11, -1.0120349003273077e-10, -8.602485390696302e-11, 2.643114616063258e-10, -3.4416913763379853e-12, -2.737641224825893e-10, 7.391849354831947e-10, -1.5257581864602798e-9, 4.330735769997318e-10, -8.978275900517474e-10, 3.332676357103992e-10, -1.4336531961589571e-10, 1.791593540190206e-10, -2.153188738418521e-10, -1.958720963202154e-10, 5.263720570525265e-10, -1.0909495529176638e-11] QuasiNewtonMethods.optimum(state) .- 1 = [5.394928948021516e-11, 2.4091839634365897e-12, -2.6781132866915414e-11, -5.866240826435387e-11, 5.304956474105893e-11, -6.216738235309549e-11, 4.980460488468452e-12, -1.0127343408328215e-11, 2.5355273436389325e-11, -1.4765966227514582e-12, -3.108036050747387e-11, 1.4201972931005002e-12, 9.937850542485194e-11, 3.3504310437137974e-12, -6.042943923034727e-11, -1.1956269307944467e-10, 1.0592904331474529e-10, -1.3214351834989202e-10, 1.0721201704200212e-11, -1.7062795620859106e-11, 4.726197211368799e-11, -8.79341044424109e-12, -6.175582267786695e-11, 6.52322640348757e-12] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 146 3 149 4m19.1s Method ambiguity | 1 1 9.7s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 6.8s Compat bounds | 3 1 4 11.2s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.5s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 52.6s RNG of the outermost testset: Random.Xoshiro(0x49ec2e524cb978f2, 0x7df20a67fb589901, 0xe5562471889814a5, 0x0b283657605c8019, 0x8c8a80258c432bdd) ERROR: LoadError: Some tests did not pass: 146 passed, 3 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 288.97s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2673 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2522 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:515 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:157 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:309 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:330 [14] _start() @ Base ./client.jl:563 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 529.06s: package has test failures