Package evaluation of QuasiNewtonMethods on Julia 1.13.0-DEV.1162 (f0ece4ad9a*) started at 2025-09-18T17:07:43.163 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 10.25s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.3.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 3.87s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 214.76s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_VOVIsf/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_VOVIsf/Manifest.toml` [79e6a3ab] Adapt v4.3.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.67.0+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [1.9772850023969113e-11, 3.6884939547121576e-11] QuasiNewtonMethods.optimum(state) .- 1 = [3.328171072070063e-10, 6.693303689075947e-10] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [-1.0791367799356522e-12, -2.5871527142840023e-12, -1.509592451043318e-11] QuasiNewtonMethods.optimum(state) .- 1 = [5.257128066205041e-12, 1.0932366123483916e-11, -3.754807575973018e-11] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [1.0439871189760197e-11, -1.3606893389805919e-11, 2.2297275137361794e-11, -2.600064608060393e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.0520030946945553e-13, -2.339739513246286e-11, -1.3133938381315602e-13, -4.663258668102799e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [2.8259616868808735e-12, -7.202904939163091e-12, 4.824807220416005e-12, -1.4480860954790842e-11, -3.4923175462608924e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.0756950885593142e-11, 8.594236433623337e-12, 1.9355406166710054e-11, 1.7214896175232752e-11, -3.214939425788543e-11] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [1.2130962900869235e-10, 7.918088407166124e-11, -1.0797007732321617e-10, 2.4267365894559134e-10, 1.6262591273630278e-10, -2.1961632512557117e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-4.5404680015792565e-11, -7.202904939163091e-12, -1.8629875420117514e-11, -8.951461794026727e-11, -1.8134826973437157e-11, -4.1744274703603423e-11] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [7.390821288311145e-11, 3.3022473644450656e-12, -8.764322600995911e-11, 1.4392464997570187e-10, 1.8620660569013125e-12, -1.8307144689089228e-10, 1.170175067954915e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-8.775091764334775e-12, 1.61384239305562e-11, -4.503231121333329e-11, -1.8896884057539864e-11, 3.28108651359571e-11, -9.412715051837495e-11, -9.53792600455472e-13] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-3.604361253906063e-11, -3.4333202947323116e-11, 9.600098493933729e-12, 3.4079405963893805e-12, -7.047928907155665e-11, -6.813261066440646e-11, 2.0198287487005473e-11, 7.583045302794744e-12] QuasiNewtonMethods.optimum(state) .- 1 = [7.132516799401856e-12, 1.0670131445067454e-11, 1.603828181373501e-11, 2.284394895468722e-12, 1.2751577571634698e-11, 2.000000165480742e-11, 3.282352167843783e-11, 3.5409453147394743e-12] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [-2.4985569169189148e-12, -9.835465775154262e-12, 1.605449106989454e-11, 2.7477131681052924e-11, -2.3490098755019062e-12, -1.9615309376774803e-11, 3.505751244858857e-11, 5.6140425641615366e-11, 3.169686735304822e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-8.884448732260353e-12, -4.888534022029489e-12, 3.000266701747023e-11, -1.9147683438802687e-11, -1.9837687048607222e-11, -1.1558975998582355e-11, 5.714362316666666e-11, -3.8418046521826454e-11, 2.041744551206648e-11] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [-6.833100751890697e-11, -9.90211246332251e-11, 8.018319341829283e-11, 8.949085916754029e-11, -1.390132453593651e-11, -1.325443088617817e-10, -1.9014434471387176e-10, 1.6981949180205902e-10, 1.7780266148292867e-10, -2.15348849863517e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.983180452138413e-11, -7.534417534316162e-12, -7.641232091515349e-11, 1.1182899051220829e-10, -1.6419721138305476e-10, -8.278844276787822e-11, -1.7116530415250963e-11, -1.524860238077963e-10, 2.1609070088857152e-10, -3.2523439497111895e-10] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-1.7677104224844697e-10, -5.156397531180801e-11, -9.43582989521019e-11, -3.7913672201739246e-11, -8.747835789080227e-11, -3.6291836202906325e-10, -1.0918477233445856e-10, -1.8795787148917498e-10, -7.782785527155056e-11, -1.7253098949510104e-10, -8.359979375427429e-14] QuasiNewtonMethods.optimum(state) .- 1 = [1.2307066477035278e-10, -2.0360380048600746e-11, 1.4554402127942012e-10, 1.6080181630684365e-10, 1.1022849299990867e-10, 2.454985104094476e-10, -3.310796081734679e-11, 2.960012235320164e-10, 3.0889135693712433e-10, 2.1777313286008848e-10, -1.3714140933984709e-11] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [-1.2442435970427823e-10, 5.055003082787835e-10, -8.155920383501325e-11, -1.6330348184823151e-10, -7.631761889115296e-11, -3.885258781366474e-11, -2.523533604303907e-10, 1.0111678161450754e-9, -1.8263357492998011e-10, -3.4751113098252517e-10, -1.5434920008772224e-10, -8.998146672212215e-11] QuasiNewtonMethods.optimum(state) .- 1 = [8.992273592411948e-11, -5.7131632758000706e-11, -4.8185455625571194e-11, -6.51226850223452e-11, 4.7102544087351816e-11, 1.1411405154149179e-10, 1.7697199261590413e-10, -1.065580956804979e-10, -9.360301422844941e-11, -1.38826949935833e-10, 9.866774064448691e-11, 2.2587065551249452e-10] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [-2.4644175589116912e-11, 1.785098735496149e-10, 8.280531815785253e-11, 2.294098244703946e-11, 8.020251129892131e-12, -3.0702773656798854e-11, -4.843536682841432e-11, 3.3856673020693506e-10, 1.697793017285676e-10, 4.0576653148605146e-11, 2.219024963778793e-11, -6.364286875282232e-11, -1.1266210186988701e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.885513967181396e-11, 6.712852496093547e-11, 6.581624134582853e-11, -3.071753962302637e-11, 5.497913235785745e-11, -4.3854808673415846e-11, 3.2634561719646626e-11, 1.3300449630548883e-10, 1.2869638688073337e-10, -6.280298503469339e-11, 1.131401639042906e-10, -8.726552813698163e-11, -3.2012170692041764e-11] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [-2.372657625926422e-12, -2.4079405136490095e-11, -1.7003065622134272e-12, 2.5104140988219115e-11, -1.4867662656570246e-11, -2.8507196603300144e-12, 6.212808045802376e-13, -6.3824501239651e-12, -4.618883053808531e-11, -5.0248694094534585e-12, 5.153877324914902e-11, -2.9079072483284563e-11, -8.983258581451992e-12, -3.1941116418465754e-13] QuasiNewtonMethods.optimum(state) .- 1 = [1.0777401193706737e-10, -2.2168789026721925e-10, -8.036171728065256e-11, -9.343359419489161e-11, -1.3596213044309025e-10, 2.1237767100501515e-10, -1.4862344688282292e-10, 1.987154885085829e-10, -4.653779583918549e-10, -1.66706648485615e-10, -1.9470047796232848e-10, -2.486350014763161e-10, 4.364950623170216e-10, -3.130101733361812e-10] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [-1.7402745910999329e-12, 1.0117062743120186e-10, -5.3835824687098466e-12, -1.7111201344732763e-11, -3.0632163472432694e-12, -2.1946555683882707e-11, -2.6684987552982875e-11, -2.7178259642823832e-12, 2.0135138001364794e-10, -1.1008305378368277e-11, -3.615263644007882e-11, -3.983147145447674e-12, -4.161171407446318e-11, -4.9677595370667404e-11, 5.6703530759705245e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.3357137618186243e-10, 8.828737740884662e-11, -1.4847401086370837e-10, 9.307510318024015e-11, -7.199540963398476e-11, -7.495271070467879e-11, -1.8603785179038823e-11, -2.583804281641733e-10, 1.7427081999699112e-10, -2.79550937953843e-10, 1.8264034729043033e-10, -1.444105945935803e-10, -1.4629353284334456e-10, -4.5012438221192497e-11, 7.347455976969286e-13] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [5.4172888397374663e-11, 5.8130389390953496e-11, -9.508094311883042e-11, 2.5876412124148374e-11, 2.6594060287266075e-11, 8.950618024528012e-12, 3.746647436742023e-11, 1.148503514514232e-11, 1.1145262490686036e-10, 1.182167697066916e-10, -1.817512806923105e-10, 5.115441403802379e-11, 5.186562290759866e-11, 1.9305890219811772e-11, 7.754707986862286e-11, 2.401612242408646e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.8496315590255108e-12, 2.5867308295346447e-11, 1.7460477508279837e-11, -9.758416297245276e-12, 6.284306408588236e-12, 7.142286762018557e-12, 1.440181307543753e-12, 5.945022252262788e-12, -3.602229625698783e-12, 5.2405413342171414e-11, 3.49202888827449e-11, -2.0402790568141427e-11, 1.1717071757288977e-11, 1.4799272918253337e-11, 2.9818369995382454e-12, 1.0957013074630595e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [-7.645661881383603e-12, 4.9187764972202785e-11, 2.514588537394502e-11, -2.0305535031184263e-11, 2.3318458275412013e-11, -1.1685208356482235e-11, 2.8065549884104257e-11, -1.9903523273967494e-11, -1.3125722730933376e-11, 1.017643747047714e-10, 5.253597556986733e-11, -3.982703056237824e-11, 4.620592797266454e-11, -1.935474003289528e-11, 5.844036365942884e-11, -3.94421162397407e-11, -1.2019274464591945e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-7.723044426199976e-12, 1.5011991649771517e-11, 6.744160785387976e-12, 2.474198623758639e-11, -2.157951595194163e-11, 1.3945955501526441e-11, -6.5741856403178645e-12, -4.1835646058530074e-11, -1.571909269415528e-11, 2.7861490892178153e-11, 1.4095391520640987e-11, 4.7861936636195423e-11, -4.391542685056038e-11, 2.8352653558272323e-11, -1.3338108395544168e-11, -8.612943691588271e-11, 1.3272938303998671e-11] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [2.2038149083414282e-11, 2.8852698008563493e-11, 4.5045078778116476e-11, 4.8938852970081825e-11, 1.3496981310368028e-11, -9.099831999037633e-12, -4.236733186502306e-11, 1.1746159600534156e-12, -4.816813614638704e-12, 4.719713508904988e-11, 5.992917273545117e-11, 9.031952963312051e-11, 1.0679768180921201e-10, 1.6710632877448006e-11, -1.7651879957725214e-11, -8.551304109261082e-11, 1.908251334725719e-12, -1.484934397666393e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-4.825634336569351e-10, 4.912714679505825e-10, -1.1566622104552948e-9, -1.2743939237225277e-10, 3.1507174647060765e-10, -2.33106534075489e-10, -7.104478116914947e-10, -2.9811608737162487e-10, -8.214773306036705e-11, -9.825914526473412e-10, 1.0064578059854057e-9, -2.330540427308847e-9, -2.3217250344487184e-10, 6.069982294576448e-10, -4.4404380172835545e-10, -1.4046924734500976e-9, -5.967342175949852e-10, -1.567869167828917e-10] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [1.5047252333033612e-10, -1.0538070416288292e-10, -8.981704269217516e-14, -3.6974090455998976e-11, -8.506861881585337e-11, 2.9071633989019574e-11, 1.5892109850312863e-10, -1.9337753620618514e-11, 8.008349539068149e-11, 2.859017467216063e-10, -2.1205726064010832e-10, 6.148415110374117e-12, -6.496791993271245e-11, -1.7419421460829199e-10, 5.727751606343645e-11, 3.282885074895603e-10, -3.1246893961167643e-11, 1.5467738201380143e-10, -2.468814042089207e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.1156964241365586e-11, -8.39068814428856e-11, -3.094624556609915e-11, -7.508904609210276e-11, -1.95877758457641e-11, -1.9064194667350876e-11, -8.008660401515044e-11, 2.893019157568233e-12, 3.234035261812096e-11, -1.8559709324961204e-11, -1.6081491693853422e-10, -5.927058843724353e-11, -1.5445911216716013e-10, -4.403866160629377e-11, -3.797773207026012e-11, -1.573449148750683e-10, 1.6706636074559356e-12, 6.686673437172885e-11, 2.4276136656453673e-12] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [5.517808432387028e-13, 1.0426615126846173e-10, -4.512938911460651e-10, -9.116976062983895e-10, 1.694786533334991e-10, 6.509317529435066e-10, -2.8266611273863873e-11, -9.753023944014672e-10, -4.1675107809169276e-11, -1.0430545316353346e-12, 1.9748647162032285e-12, 2.1484525269954702e-10, -9.025407088358861e-10, -1.8211285812697042e-9, 3.408087145828631e-10, 1.2995400311410776e-9, -5.69080338408412e-11, -1.951919181841788e-9, -8.244604998708382e-11, -3.7905234506752095e-12] QuasiNewtonMethods.optimum(state) .- 1 = [3.2441160868756924e-11, 2.255262643302558e-11, 1.1991740933581241e-11, -1.624478329631529e-11, 8.977396603881971e-11, -1.3322676295501878e-13, 6.267497631995411e-11, 3.312905505481467e-11, 2.591771242066443e-11, 6.825784382158417e-11, 6.072542468871234e-11, 4.6713743984128087e-11, 2.928723930040178e-11, -2.7399860158539013e-11, 1.7180479261469372e-10, -1.1017853296380054e-12, 1.2509970837015771e-10, 6.935430008070398e-11, 5.036793204737933e-11, 1.3153633737772452e-10] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [1.1717515846498827e-11, 3.761368994048553e-11, -4.404077103004056e-11, 1.2790857262245936e-10, -4.5992099018121735e-12, 1.3920864461169913e-11, -7.609701757615994e-11, 2.826294753788261e-11, 9.898570851873956e-11, 7.377187749568748e-11, 2.8954394437619158e-11, 6.797984397621804e-11, -9.157097302647799e-11, 2.5548585469437057e-10, -8.840483900485197e-12, 2.4116042496302725e-11, -1.5522938490164506e-10, 6.000422381191584e-11, 2.0548274193288307e-10, 1.458118070729597e-10, -6.263767282632671e-12] QuasiNewtonMethods.optimum(state) .- 1 = [2.0584423054970102e-11, 2.428124368236695e-11, 2.1509904968297633e-11, -9.692791014259683e-11, -3.8266279034360196e-11, -2.7199131835686785e-11, 4.5578651963751327e-11, 2.4292123868008275e-11, 4.023448241241567e-12, 2.921618502682577e-11, 4.373590378747849e-11, 3.838773743325419e-11, 4.324696156743357e-11, -1.9262846873147055e-10, -8.27541368764173e-11, -5.208300457582027e-11, 8.838574316882841e-11, 4.720157598114838e-11, 2.7502444766014378e-12, 6.095346449797034e-11, 6.830536136703813e-12] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-2.253008890562569e-11, -8.90673090836458e-11, -3.574152085406013e-11, 6.000000496442226e-11, -5.920774981404975e-11, 8.909695203840329e-11, -1.1117395892767945e-10, 1.4893042354913177e-10, -2.5296742478531087e-10, -3.975164641900619e-11, 1.016109418827682e-10, -4.286548893617237e-11, -1.8734491735727943e-10, -8.370093507181764e-11, 1.0122458427019865e-10, -1.282055572815466e-10, 1.9582357957403929e-10, -2.3226665035736005e-10, 2.9535507373168457e-10, -4.97103358476636e-10, -7.194311812952492e-11, 1.8718138150575214e-10] QuasiNewtonMethods.optimum(state) .- 1 = [4.523936780742588e-12, -8.857359290459499e-11, -2.4411583865457942e-11, -9.24005316704779e-12, 1.0922662774248693e-10, -7.650313715856782e-11, -2.1013524253987725e-11, 6.101319449669518e-11, -5.327338570282336e-11, -2.3601565146691428e-11, 1.0206946399193839e-10, 6.089573290068984e-12, -1.6949630587959064e-10, -4.446676360458923e-11, -3.124489555972332e-11, 2.182878322543047e-10, -1.4833911876621642e-10, -4.847311441125157e-11, 1.2559531192835038e-10, -1.1433698432483652e-10, -5.465872199295063e-11, 2.0506241149576e-10] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [2.953837174857199e-11, -1.300516361268933e-10, -4.499489669740342e-11, -7.599487705789443e-11, 1.8509416221945685e-10, 1.4376055901266227e-11, -7.917200228746424e-11, 2.596056702941496e-11, -2.9056757000489597e-12, -8.798017869793284e-11, 1.7470691560106388e-11, 5.7436500000562773e-11, -2.4896373851390763e-10, -9.276113210887615e-11, -1.4707191020590926e-10, 3.77005537899322e-10, 4.937072972666101e-11, -1.6264412039390663e-10, 5.541189729285634e-11, -1.0799916516646135e-11, -1.7709667066156953e-10, 3.167044404506214e-11, 1.756172984812565e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.60087515360874e-11, -5.3037463310090516e-11, -1.0766065816625314e-10, -1.060000975883213e-10, 1.3995493652885216e-10, 1.571138774636438e-10, 4.6144421617100306e-11, 6.459544010795071e-11, -1.1347200956635106e-10, -1.9785173499542452e-11, -1.7518453354625763e-10, -7.443790028816011e-11, -1.0423351071153775e-10, -2.1417378981425372e-10, -2.2030166579867227e-10, 2.7965185722678143e-10, 3.358766598182683e-10, 8.548095564719915e-11, 1.106092994973551e-10, -2.489309869346812e-10, -4.162059585866018e-11, -3.4233427204100053e-10, 3.865352482534945e-12] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [-2.962530221140014e-11, 2.4241053608875518e-11, 5.383693491012309e-12, -7.43327621677281e-12, -4.995759361747787e-11, 8.57713899904411e-12, -4.950029275363477e-11, 3.4792169145703156e-12, 2.0971446801354432e-11, 1.7674084418217717e-11, -3.3603453353237e-11, 9.237099973802287e-11, -6.006972697036872e-11, 4.4888315287039404e-11, 1.2362777468410968e-11, -1.5672130260213635e-11, -1.0011813600385722e-10, 1.8155033032485335e-11, -9.66469126950642e-11, 1.2350342970535166e-11, 4.719091784011198e-11, 3.26165761066477e-11, -6.42631503566804e-11, 1.8656787226234428e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-6.001088515006359e-12, -3.432809592140984e-12, -3.936850845320805e-12, -3.276312554589822e-11, -1.140165739599297e-11, 1.0473621969708802e-11, 3.5011105126159237e-11, 5.717648576819556e-12, -5.0103476922913615e-11, -8.93640716981281e-12, 3.2387426074365067e-12, 2.1315393894383305e-11, -1.0628165014736624e-11, -1.9062529332813938e-13, -8.912426352480907e-12, -6.855782608283789e-11, -2.1697643681761747e-11, 2.027533696491446e-11, 6.796740947834223e-11, 1.2458478693133657e-11, -1.0074052703146208e-10, -2.4120483388401226e-11, 4.445110945994202e-12, 4.16628953558984e-11] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 4m11.7s Method ambiguity | 1 1 9.7s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 6.9s Compat bounds | 3 1 4 11.1s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.4s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 49.4s RNG of the outermost testset: Random.Xoshiro(0x0956701989bd7523, 0x1ac3e182c2f37973, 0xe26e0ff6a91302f7, 0x26f4a7d89c1f9978, 0xd678fb5f64d42297) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 276.63s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2673 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2522 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:515 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:157 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:308 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:330 [14] _start() @ Base ./client.jl:563 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 526.83s: package has test failures