Package evaluation of QuasiNewtonMethods on Julia 1.13.0-DEV.1141 (aecb173ae6*) started at 2025-09-17T01:55:04.849 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.74s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.3.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 3.8s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 206.4s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_3RmuDR/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_3RmuDR/Manifest.toml` [79e6a3ab] Adapt v4.3.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.67.0+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [2.9840574455874957e-12, 5.9403593155593626e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-7.660072576243238e-11, -1.5847023693282836e-10] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [1.6680656855783127e-11, 3.517497404459391e-11, -7.714939798120213e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-5.13403763946485e-11, -9.83532144616106e-11, 7.492473308445824e-11] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [4.392264330022044e-11, 7.586065109421725e-11, 9.348233298567266e-11, 1.580762187813889e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.0084155732670297e-11, 1.8676393764849308e-11, 1.9532375716835304e-11, 3.66890962055777e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [-4.220956917322383e-12, -1.190036957865459e-11, -9.796607969292381e-12, -2.5427993044502273e-11, -1.0103029524088925e-14] QuasiNewtonMethods.optimum(state) .- 1 = [-3.123390435177953e-11, 4.3940850957824296e-11, -6.213307646163457e-11, 8.625944403206631e-11, 3.575229001739899e-11] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [-6.804523611236846e-11, 1.7516343930878975e-10, 1.0146483653272753e-10, -1.3819745348087054e-10, 3.4049163488703016e-10, 1.9943868778682372e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.1919687459283068e-10, -3.6161074135065974e-12, 5.956457549416427e-11, -2.4193025360830234e-10, -2.585154312839677e-12, 1.1816392309071944e-10] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [2.2865109805536576e-10, -5.948063153127237e-10, -6.340826752548878e-10, 4.729832081551422e-10, -1.1708595204495964e-9, -1.2858953901684345e-9, 1.11367803867779e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.8605561535878223e-11, -4.833922151448178e-11, 5.5960347467021165e-11, 3.378652912999769e-11, -9.49716971732073e-11, 1.0856759935506943e-10, -2.1052271037547143e-10] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [1.3298251388960125e-11, -3.246223290176431e-10, 6.063771706976695e-11, 8.293521425173367e-11, 1.3416379118780242e-11, -6.682910891342431e-10, 1.3167578138961744e-10, 1.6715029360625522e-10] QuasiNewtonMethods.optimum(state) .- 1 = [6.3153926532777405e-12, 1.077848921227087e-11, -2.665256904066382e-11, 1.2616796496445204e-11, 1.3284040534244923e-11, 2.1336044042641333e-11, -5.342692954712902e-11, 2.3413493366319926e-11] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [-1.470545907267251e-10, 1.5643042416968456e-12, -7.308564864416667e-11, 9.515499499457292e-12, -2.9075208907158867e-10, -9.058420680219115e-12, -1.554288919791702e-10, 2.561195699968266e-11, 5.383693491012309e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.3805223630924957e-10, 2.5109470058737315e-11, 1.5755174942455596e-11, 8.303158161027113e-11, 2.82013745689369e-10, 6.327849355614035e-11, 1.598787768841703e-11, 1.6675416603106896e-10, 7.628564446804376e-12] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [1.305984209665212e-10, 1.0040568376723513e-10, 1.4033552098169366e-10, 9.068790163269114e-11, -6.7371663803328374e-12, 2.7196400687046207e-10, 2.129965093189412e-10, 2.810531807284633e-10, 1.9778023663263866e-10, -9.581224702515101e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.2291057061020183e-11, 3.016431548985565e-11, 3.464895037552651e-11, -5.71067637622491e-11, 3.08486569622346e-11, 3.208744381311135e-11, 6.001399377453254e-11, 6.843170474724047e-11, -1.1231848784376552e-10, 6.106426475582794e-11] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-1.768231117083019e-10, 4.824030064298768e-11, -3.3642599817085284e-10, -5.913913803112791e-11, 5.2164939035037605e-12, -3.647012691843088e-10, 1.0745249134913593e-10, -6.595664014952263e-10, -1.3238388163472337e-10, -1.3077205984757256e-11, 1.478306366209381e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-6.150635556423367e-12, 1.8696155734687636e-13, 1.1832756996454918e-11, 1.3411050048262041e-11, 3.8264946766730645e-12, -1.571953678336513e-11, -2.8532731732866523e-13, 2.3865354137342365e-11, 2.7211566333562587e-11, 7.042588734407218e-12, -5.6710192097853e-13] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [-3.099798195904668e-11, 1.1456613435711915e-11, 1.3731238368563936e-12, -2.8007707264521287e-11, -2.91583424072428e-11, -1.8771428855757222e-11, -6.06417138726556e-11, 2.99837932260516e-11, -9.839906667252762e-12, -6.337019797797439e-11, -5.7133298092537643e-11, -4.1267655959131844e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-5.7386762009059566e-11, 8.43716208009937e-11, 8.145306651385908e-11, -8.142730933968778e-11, -9.37683264368161e-12, 1.8195667195186616e-11, -1.0583212084469551e-10, 1.6561774174306265e-10, 1.6753110010370165e-10, -1.7264933926952608e-10, -2.243127905643405e-11, 3.530331582624058e-11] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [-1.3846068736000916e-10, 1.802573645903749e-10, -6.657652207309184e-11, -1.4773149370483907e-10, 1.0576961528840911e-10, -1.6615597786540093e-11, -2.8892799264212954e-10, 3.6510039436166153e-10, -1.365475510439751e-10, -3.053908237404812e-10, 2.2293678014762008e-10, -4.3900216795123015e-11, 9.96513982443048e-12] QuasiNewtonMethods.optimum(state) .- 1 = [2.5440316520075612e-11, 3.061595421627317e-11, -4.0806913403912404e-11, -8.052847277895125e-11, -1.9040879983833747e-11, 7.51407824850503e-11, 6.338818359097331e-11, 5.1975979076246404e-11, -7.566824944404971e-11, -1.59347979256097e-10, -4.6124104535749666e-11, 1.494309120886328e-10, 3.4150460237469815e-12] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [1.835642748915234e-12, -6.578293465508978e-11, -2.5461743824450878e-11, 7.492451103985331e-12, 6.165290500348419e-12, 5.840128380896203e-11, 9.676148771120552e-11, 1.3640200080544673e-11, -1.390878523466199e-10, -5.690103943578606e-11, 1.109934366638754e-11, -1.2631895529580106e-11, 1.173865449288769e-10, 1.9275492313397535e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-4.617772830783906e-11, 6.671441177275028e-11, 4.382405549563373e-11, 9.694045566277509e-11, 1.0336664857391042e-10, 2.2284396550276142e-12, -3.2612357259154123e-11, -1.0418821361213304e-10, 1.319033771096656e-10, 7.467626517154713e-11, 1.9078916224657405e-10, 2.1858559406950917e-10, 1.6433521210501567e-12, -6.211231529107408e-11] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [-1.2922996006636822e-13, -7.13996639589709e-11, -3.531475112339422e-11, 3.5947023135918243e-11, 4.6668668929328305e-11, -5.7826299304508666e-11, -1.2617129563352592e-11, 8.200107259881406e-13, -1.47269640926595e-10, -7.03165303761466e-11, 7.186007344728296e-11, 9.496958774946052e-11, -1.2059175880096973e-10, -1.985567266160615e-11, -2.9969360326731476e-12] QuasiNewtonMethods.optimum(state) .- 1 = [8.236566984010096e-11, -5.827116567047597e-11, 1.0601231004159217e-10, 7.445355443280732e-11, 1.0490652790906552e-10, 8.910183701971164e-11, -1.2262202364610175e-10, 1.5738721437230652e-10, -1.0380207804416841e-10, 1.8872348128695648e-10, 1.3506817886366207e-10, 2.1567436725433708e-10, 1.7926793383082895e-10, -2.268448762166031e-10, 3.497202527569243e-12] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [9.50119982690012e-11, 5.6426419092758806e-11, 7.10984604523901e-11, 4.9499737642122454e-11, -5.4370286051153016e-11, 5.668310265605214e-11, -9.331169170678777e-11, 4.655453800239684e-11, 1.890430034734436e-10, 1.1909540020837994e-10, 1.4522827385121673e-10, 9.175593618238054e-11, -1.159432549968642e-10, 1.1428213930742004e-10, -1.9284152052989612e-10, 9.041012383192992e-11] QuasiNewtonMethods.optimum(state) .- 1 = [6.313816136582773e-11, 6.882117098427898e-11, -4.1972092468256506e-11, -3.018929550790972e-11, -1.6151846526923919e-10, -6.637734806247408e-11, 4.267253217449252e-11, 5.944933434420818e-11, 1.2411183192284625e-10, 1.3507239771115565e-10, -8.294998021796118e-11, -5.889722043406209e-11, -3.3456681869381555e-10, -1.3082535055275457e-10, 8.289879893652596e-11, 1.099591528941346e-10] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [-9.552103552579183e-11, 3.235764989284462e-10, 7.198663887209023e-11, -2.724958036992575e-10, -1.292688178722301e-11, -1.4455547869829388e-11, -2.969422485676887e-10, -1.0885803369831137e-10, -1.9478063606470641e-10, 6.536653440747386e-10, 1.4685075377940393e-10, -5.548043136016645e-10, -2.6266655517304116e-11, -3.418454408432581e-11, -5.859510654460109e-10, -2.0571166992056078e-10, 1.0835998764946453e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-7.511546940008884e-11, 6.558242837684247e-11, -6.291500653787807e-11, -9.346967644319193e-11, -2.4090285322131422e-11, -2.5018098703810665e-11, 2.3981039376508306e-11, -6.031297683506409e-11, -1.4511969403940839e-10, 1.2571210739054095e-10, -1.3814493993180577e-10, -1.893933898600153e-10, -4.232225681022328e-11, -4.8091086668478056e-11, 4.889044724620817e-11, -1.1803613642058508e-10, 7.319700401353657e-12] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [9.275336054770378e-11, 2.0758061936021477e-11, 1.3448797631099296e-11, 6.317746326089946e-11, 3.709921259087423e-12, -6.831812893182132e-11, -1.6282386550159345e-10, -3.002431636645042e-11, -3.8471892338520775e-11, 1.937674465324335e-10, 4.4405146226722536e-11, 1.972200180944128e-11, 1.3304823909265906e-10, 8.590239630734686e-12, -1.322780773804766e-10, -3.354013733414263e-10, -5.7578275480807406e-11, -7.81772424574001e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.3822787359174527e-10, 2.8872326751638866e-10, 1.5731393965268126e-10, 3.121307656783756e-10, 1.3845591340100327e-11, 8.821565700145584e-11, 1.2065659582560784e-10, 3.4407188209684136e-10, 1.0828293817155554e-10, 2.7024826820820635e-10, 5.804869918080158e-10, 3.100717460569058e-10, 6.172300448525903e-10, 2.2322144133113397e-11, 1.7879098201944998e-10, 2.3537927162919914e-10, 6.735785262890204e-10, 2.268658594317685e-10] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [-7.700462489879101e-11, 7.362954690393053e-11, -7.92488297207683e-12, 1.8289592063069904e-11, -2.0050627824730327e-11, 6.653877449025458e-11, -2.8564484111370803e-11, -2.2885471295808202e-11, 2.1077140033298747e-11, -1.5539947106901764e-10, 1.5146928156184458e-10, -2.9089730624320964e-11, 3.712963270174896e-11, -4.729028280081593e-11, 1.3418266497922104e-10, -5.774647426903812e-11, -4.1817105334018834e-11, 4.0367043041555917e-11, -2.3546720129274945e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.8460122319652328e-11, 2.4957591548968594e-11, -1.5213608151043445e-11, -1.57800439382072e-11, -1.6293411064793872e-11, 3.19317905450589e-11, -7.333245122254084e-12, -1.0776601833129007e-11, -8.27837798311748e-12, 3.446976037935201e-11, 5.3997251114878964e-11, -3.020306227341507e-11, -2.9682034607958485e-11, -3.3122615761271845e-11, 6.320166612283629e-11, -1.3801404463720246e-11, -2.0937473976800902e-11, -1.5601964165057325e-11, 8.903988657493755e-13] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [-3.4535707627014745e-12, -4.480116277960633e-11, -1.6291745730256935e-11, -2.779521057760803e-11, -4.9138804136816816e-11, 6.6058269965196814e-12, -4.787270579953429e-11, 1.2703194052221534e-10, -8.623657343775903e-12, 1.1764145213533084e-11, -7.78233033571496e-12, -8.991274391689785e-11, -3.431188666525031e-11, -5.525302437803248e-11, -1.0448464315970796e-10, 1.5508039297174037e-11, -9.749689944271722e-11, 2.5392599134477223e-10, -1.9853785282464287e-11, 2.3544055594015845e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.0754241941413056e-10, -1.2870182697355403e-10, -1.7076484670752734e-10, -2.3772095403273852e-11, -3.996825093111056e-11, -9.952005886049164e-11, 1.304423236092589e-11, 7.852918315620627e-11, -6.684208742058217e-11, -9.32171007050897e-11, 2.121236519769809e-10, -2.46653919511175e-10, -3.348664678881619e-10, -4.64761562568583e-11, -7.411060654050061e-11, -2.10193751293275e-10, 2.7138291613937326e-11, 1.615714229075138e-10, -1.3242629215426405e-10, -1.8000079204938402e-10] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [5.046651985196604e-11, -3.363087586194524e-12, -1.3717271762914152e-10, -6.631839521986649e-11, -3.692268712995883e-12, 5.3649529263566365e-11, -5.415112802609201e-12, 3.5267344600242723e-12, 7.254197242900773e-11, 6.803224650298034e-12, 1.0111089743247703e-10, -7.601475005003522e-12, -2.76448419711528e-10, -1.3500278672751165e-10, -5.856759521805088e-12, 1.075888267365599e-10, -9.865663841424066e-12, 6.779687922175981e-12, 1.4306911211292572e-10, 1.0858425270043881e-11, 2.0869972416903693e-12] QuasiNewtonMethods.optimum(state) .- 1 = [5.385469847851709e-12, 2.6481483672569084e-11, -1.1759482276829658e-12, 1.4948264848158033e-11, -8.414269281331599e-12, -5.335731856348502e-12, -8.466949363850063e-11, 1.4989787189279014e-11, 3.856071018049079e-11, -8.861689160255537e-12, 1.1185719017703377e-11, 5.378786305243466e-11, -1.1888268147686176e-12, 2.9920288469043044e-11, -1.6902479416103233e-11, -1.0321188348427768e-11, -1.672578742173414e-10, 2.777311713941799e-11, 7.51425588418897e-11, -1.638944535642395e-11, 3.2112090764258028e-12] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-7.310685390393701e-11, -1.0163869745838383e-11, 3.8357539366984383e-11, -6.191969159630162e-11, 8.778799909237023e-11, 2.9829472225628706e-12, 5.99702509873623e-11, 6.394240692486619e-11, 8.016365349305943e-11, 8.651790395219905e-11, 4.9832582504905076e-11, -1.4316459129304349e-10, -1.9876988943678953e-11, 6.973643884577996e-11, -1.2092704615440653e-10, 1.7134094143500533e-10, 3.432365502931134e-12, 1.1964074175807582e-10, 1.3130296849794831e-10, 1.6413714831742254e-10, 1.6724199802808926e-10, 9.8196561992836e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.373996472153749e-10, -1.6358248089431981e-10, -1.0525111893144867e-9, -4.135135789340438e-9, -1.88280679935815e-9, 1.4211920529305644e-10, 1.2006721394897113e-8, -1.6271731739792017e-9, -2.9936164658295183e-10, -1.972151220108742e-9, 4.0646530585775054e-10, 2.8226887494042785e-10, -3.294350348070907e-10, -2.108570540393373e-9, -8.281416885580484e-9, -3.769932699348999e-9, 2.8500179993784513e-10, 2.4050267555253413e-8, -3.2593970855643306e-9, -5.994537088938046e-10, -3.949830462701698e-9, 8.148444141653499e-10] QuasiNewtonMethods.jl: Test Failed at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:49 Expression: all((x->begin #= /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:49 =# x ≈ 1 end), QuasiNewtonMethods.optimum(state)) Evaluated: all(var"#5#6"(), [1.0000000001373996, 0.9999999998364175, 0.9999999989474888, 0.9999999958648642, 0.9999999981171932, 1.0000000001421192, 1.0000000120067214, 0.9999999983728268, 0.9999999997006384, 0.9999999980278488 … 0.999999999670565, 0.9999999978914295, 0.9999999917185831, 0.9999999962300673, 1.0000000002850018, 1.0000000240502676, 0.9999999967406029, 0.9999999994005463, 0.9999999960501695, 1.0000000008148444]) Stacktrace: [1] top-level scope @ ~/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:36 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [3] macro expansion @ ~/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:49 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [1.564157692257595e-10, -7.505795984741326e-11, 9.183764859699295e-11, -1.4032996986657054e-11, 8.073564039534631e-11, -2.2190704829228025e-10, 3.3433700252771814e-11, -3.6394554037144644e-11, 5.858646900946951e-12, -1.326604381901575e-10, 5.5926374642467636e-12, 3.1488922580535927e-10, -1.6155055071465085e-10, 1.7363888105137448e-10, -2.4925062014347077e-11, 1.549893546837211e-10, -4.47907377854051e-10, 6.536904351150952e-11, -6.98245905539352e-11, 1.1759704321434583e-11, -2.7434388094604856e-10, 9.382050691897348e-12, -1.083455547501444e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.5976331368960928e-11, 6.942335595283566e-11, -7.124856260531942e-12, -6.824529830140591e-11, -1.3684053890017367e-11, -7.569056492684467e-12, 5.7578164458504943e-11, 4.45095071910373e-11, 3.310907104037142e-11, -5.254296997492247e-11, 1.0750955681260166e-11, 4.049738322464691e-11, 1.4232770517708104e-10, -4.8941961594550776e-12, -1.3081202787645907e-10, -2.8084534697825347e-11, -1.7219004000423865e-11, 1.0961609397952543e-10, 9.137512968493411e-11, 6.412670394695397e-11, -1.0451772780584179e-10, 2.425659673122027e-11, 1.5367707106861417e-12] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [1.681543793097262e-12, 5.058398144797138e-12, -1.823519113486327e-10, 5.823808102434214e-11, -2.2420731937700111e-10, 4.194045111205469e-11, -2.5492608024535457e-11, 5.54771784067043e-11, 1.0418332863082469e-11, 5.3473447891860815e-11, 1.8913892674277122e-10, 2.039244328955192e-10, 2.4786839247781245e-12, 1.5724088697766092e-11, -3.5422031974263746e-10, 1.1033463032106283e-10, -4.716328438902906e-10, 1.0626965973870028e-10, -5.715306006237597e-11, 9.800094069589704e-11, 2.984590352639316e-11, 1.0336864697535475e-10, 3.908560142207307e-10, 4.1364889291628515e-10] QuasiNewtonMethods.optimum(state) .- 1 = [3.5788261243396846e-11, -4.622313642954623e-11, -1.2741496746571102e-10, -6.369071936518367e-11, 1.3400236476002192e-10, -4.281519583315685e-11, 6.536993168992922e-12, 8.26454460423065e-11, -5.076838949236162e-11, 1.127853366256204e-11, -4.681222076641234e-11, 2.53523868565253e-11, 7.359579612398193e-11, -8.568823428589667e-11, -2.435466273098541e-10, -1.2740364319085984e-10, 2.50464315953991e-10, -7.86505305327978e-11, 9.621414776006532e-12, 1.6767498500769307e-10, -1.038844565925956e-10, 3.390665526126213e-11, -8.835221443348473e-11, 4.995182045774982e-11] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 147 2 149 4m14.4s Method ambiguity | 1 1 10.0s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 7.1s Compat bounds | 3 1 4 10.7s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.5s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.0s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 53.8s RNG of the outermost testset: Random.Xoshiro(0x6999894e986c6d75, 0x518b005f2bcc8bb2, 0x9d36615e47b5955f, 0x46d7f6e58e2303f7, 0x6032318a65531727) ERROR: LoadError: Some tests did not pass: 147 passed, 2 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 280.35s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2673 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2522 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:515 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:157 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:308 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:330 [14] _start() @ Base ./client.jl:563 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 569.18s: package has test failures