Package evaluation of QuasiNewtonMethods on Julia 1.13.0-DEV.1125 (fd1c6fd302*) started at 2025-09-16T02:02:14.766 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.54s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.3.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 3.78s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 205.34s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_VoKTaE/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_VoKTaE/Manifest.toml` [79e6a3ab] Adapt v4.3.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.67.0+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [-1.3309908730718689e-11, -2.7564173166183537e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-6.417089082333405e-14, -8.804068585277491e-14] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [-5.0851545196906045e-12, -1.156408302449563e-11, -7.601697049608447e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.0213185852592233e-10, 2.0120038968229892e-10, -3.468425546770959e-11] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [-2.6150193122020937e-12, 2.6774138461860275e-12, -5.06905628583354e-12, 5.8189009166653705e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.6933565660792738e-11, 1.802202831413524e-11, 4.049738322464691e-11, 4.452660462561653e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [1.074051958482869e-11, -8.871792189779626e-13, 2.2835733304304995e-11, -2.4550361743536087e-12, -4.8909654104534184e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.379318881333802e-11, -8.223977054910847e-12, -2.8522961770249822e-11, -1.993338827332991e-11, -2.0834445280115688e-12] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [-8.247291738427975e-12, 2.568334434016606e-10, 2.255644560023029e-10, -3.5823566335579926e-12, 5.129294766703651e-10, 4.5845904850239094e-10] QuasiNewtonMethods.optimum(state) .- 1 = [9.481526674903762e-12, -8.334555268163513e-12, -2.8484214986690404e-11, 1.680700023598547e-11, -2.0582424653525777e-11, -5.7395976860163955e-11] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [1.2865930543171089e-11, 2.2161827928357525e-11, -6.1700644593543075e-12, 2.467137605322023e-11, 4.436784273309513e-11, -1.2404077764927024e-11, -8.099076964640517e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-5.826061855174203e-11, 4.6034953626872266e-11, -5.473332898020544e-11, -1.1809786482075424e-10, 9.305578529961167e-11, -1.1653644715892142e-10, 4.9320547645947954e-12] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-3.4732017262228965e-10, -6.243927597182619e-11, 1.7585710665457555e-11, 1.415627615131143e-10, -7.136715662880988e-10, -1.3837009316119975e-10, 3.9602099377589184e-11, 2.6377700024227124e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-2.319866521105496e-11, -6.010636433018135e-11, -5.31876764853223e-11, 5.4395377091509545e-11, -4.849476376023176e-11, -1.1947476341589436e-10, -1.0715239806557975e-10, 1.1303802338602509e-10] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [1.7515300321235827e-10, -4.907796391506736e-11, 4.8163917298893466e-11, -3.83160170258634e-11, 3.5902236739104865e-10, -9.66193791640535e-11, 9.711764725750527e-11, -6.834599552973941e-11, 2.644551244657123e-13] QuasiNewtonMethods.optimum(state) .- 1 = [1.2712231267641982e-10, 6.31423802133213e-11, 4.4846792945918423e-11, 2.938160825749492e-11, 2.6516966400436104e-10, 1.2707102037268214e-10, 9.294542913096393e-11, 6.644462757776637e-11, 9.973133430207781e-12] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [1.9824408781232705e-10, -1.1131573440792408e-10, -2.2178947567397245e-10, 1.0574141562358363e-10, -6.855327416843693e-11, 3.837079542989841e-10, -2.1149981765944403e-10, -4.443271306442398e-10, 2.0927592991881738e-10, -1.5431489419626132e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.687538997430238e-14, 5.146771897557301e-12, -1.3108514274051686e-11, 1.3572476476042539e-11, -6.4293015356042815e-12, -7.55506768257419e-13, 1.0623946167243048e-11, -2.6207036540881745e-11, 2.6488589099926685e-11, -1.1237677455255835e-11] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [4.924283203422419e-12, -1.6332268870655753e-11, -4.5109471713544735e-12, 9.647616039387685e-12, 4.001909914563839e-12, 9.50750589367999e-12, -3.11892733861896e-11, -8.90110207762973e-12, 1.9332091483192926e-11, 8.256506589532364e-12, 1.5543122344752192e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-3.2018387940979665e-11, -3.196831688256907e-11, -7.725087236565287e-11, 1.567945773217616e-11, -3.556543948235458e-11, -6.819245168543375e-11, -6.606970526235045e-11, -1.480355837912839e-10, 2.8395064077813004e-11, -6.768952065527856e-11, 1.8991919148447778e-11] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [-3.754707655900802e-11, -1.1215361972460869e-10, 3.4585667663122877e-11, -4.1856518251393027e-11, -1.0813394624165085e-10, -7.251044209510837e-11, -7.810874169678073e-11, -2.2645574304647198e-10, 6.428035881356209e-11, -8.396461304016611e-11, -2.0698087688231226e-10, -1.5169410172433118e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-7.801448376199005e-11, 2.9762858844151197e-12, 1.0116463222686889e-10, 9.086065233532281e-13, -5.0645043714325766e-11, 1.0297318553398327e-11, -1.6166867844447097e-10, 7.454481476543151e-12, 2.0995671867751753e-10, 2.440492252731019e-12, -1.0507394954117899e-10, 1.9332535572402776e-11] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [-7.967804194208838e-11, 4.191536007169816e-12, -7.793399259270473e-11, 1.3726708658623465e-10, 4.653966101386686e-11, -1.3334000570353055e-11, -1.6059586993577568e-10, 1.0285772233942225e-11, -1.5541889997194858e-10, 2.7753821463250006e-10, 9.900613662239266e-11, -2.7357560661300795e-11, 3.3151259515307174e-13] QuasiNewtonMethods.optimum(state) .- 1 = [2.0104118370056767e-10, -2.5457635999259765e-11, 2.3594015630123977e-11, -1.7784362871253734e-10, -2.2118051834496555e-10, -6.593037227276e-11, 4.0198666617641265e-10, -4.31026325742323e-11, 5.374589662210383e-11, -3.375634216595813e-10, -4.550465559916006e-10, -1.4703849249286804e-10, -3.2107649872159527e-13] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [-3.902100864650038e-12, -2.14483986127334e-12, -9.616751839303106e-13, -1.871391930308164e-11, 4.7278181369847516e-11, 3.2828628704351104e-11, 2.6380453377328195e-11, -4.8935300256403025e-12, -1.6791013024430868e-12, 5.242473122279989e-13, -3.7858938206625226e-11, 9.611444973245398e-11, 6.005951291854217e-11, 5.2280624274203547e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.269040593778527e-11, -1.9359069902691317e-11, -4.061906366814583e-11, -9.47516509697266e-11, 1.3072476434672353e-10, -1.962974227609493e-11, 8.286926700407093e-12, -7.088130082877342e-11, -3.0523139571414504e-11, -7.979805705105036e-11, -1.815756434098148e-10, 2.5595769947983626e-10, -3.7508884886960914e-11, 1.1076028982870412e-11] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [9.373124498779362e-11, -5.765776744937057e-11, -5.0366932846657164e-11, -8.548173280331639e-11, 1.697784135501479e-10, 6.621903025916254e-11, 9.839107306675032e-11, 1.848001751625361e-10, -1.2366041524103366e-10, -8.941536400186578e-11, -1.7981283129131498e-10, 3.3289304646189066e-10, 1.3594858572218982e-10, 2.020410505565451e-10, -2.295474921254481e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.4849899088176244e-11, 7.607470209336498e-11, 9.29611942979136e-12, -3.0115909765981996e-12, 2.4575452783892615e-11, 5.4893645184961315e-11, 2.931632714364696e-11, 3.024847039512224e-11, 1.51331835951396e-10, 2.1256107984868322e-11, -6.5503158452884236e-12, 4.632427774708958e-11, 1.088360512824238e-10, 6.336442481824633e-11, 2.2304380564719395e-12] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [9.894951524813678e-11, -4.803779596329605e-11, 1.4357515176754987e-10, -1.1884460082711712e-10, 9.851564009011327e-11, 3.8251180001225293e-11, -4.2459258331462024e-11, 4.0753622698730396e-11, 2.0162227443165648e-10, -7.801959078790333e-11, 2.920685915341892e-10, -2.2262836019137922e-10, 1.877460409360765e-10, 7.222311637633538e-11, -7.726486117576314e-11, 8.527956119053215e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.6399770430552962e-11, -4.233646766493848e-11, 2.2373658481456005e-11, -1.3520073949280231e-11, -2.6883606452088316e-11, 3.3089531115138016e-11, -2.7071012098645042e-11, -9.617862062327731e-12, 3.347588872770757e-11, -8.800182804691303e-11, 3.67139652013293e-11, -2.5998758701462066e-11, -6.220934878342632e-11, 6.995892753991484e-11, -5.7719051760329876e-11, -3.22795123963715e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [2.8210545011120303e-11, 6.052403023204533e-11, -9.047729232491974e-11, -2.816802346927716e-11, -5.393585578161719e-11, 1.5090817484519903e-11, 6.003841868107429e-11, -2.3102630919424882e-11, 5.897082822059474e-11, 1.1624745610561149e-10, -1.7308721123043824e-10, -4.921307805716424e-11, -1.0700107466732334e-10, 3.401923187595912e-11, 1.241406977214865e-10, -4.800126962578588e-11, -5.6412652327253454e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.9055645950061262e-11, -4.311084822461453e-11, 5.049161089232257e-11, -8.737821577398108e-11, 1.589262055290419e-11, -5.742839537248301e-11, -1.2995293730000412e-10, 1.3445911051235271e-11, 5.35567146187077e-11, -8.590039790590254e-11, 9.579514959057178e-11, -1.6928747292865864e-10, 3.197198061855033e-11, -1.261032389621164e-10, -2.636080242979233e-10, 3.594413655605422e-11, 8.695710818074076e-12] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [-7.16049441962241e-11, -9.565181979809267e-11, -1.6313950190749438e-11, -4.629774341680104e-11, -2.5797586289399987e-11, -5.847877737608087e-11, -5.618727705325455e-12, 4.3913539471418517e-11, -8.548595165080997e-11, -1.440166874644433e-10, -1.989097775378923e-10, -3.578581875274267e-11, -9.588185800879501e-11, -4.8168691257899354e-11, -1.2032608243117693e-10, -1.3249845665086468e-11, 8.768652470791949e-11, -1.8095647202898135e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-7.920297750985128e-11, -7.167466620217056e-11, 3.1709701531212886e-10, 5.913336487139986e-11, 7.002309843073817e-11, 9.477552076475604e-11, -1.0053347043736949e-10, -1.861727438878802e-10, 2.1508794745273008e-11, -1.597108001405445e-10, -1.4124934555326263e-10, 6.351481562916206e-10, 1.0839706909848701e-10, 1.5720535984087292e-10, 1.8021251158018003e-10, -2.0508239551020324e-10, -3.5418545873966423e-10, 4.60866900198198e-11] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [-9.638623232888222e-11, 1.9792589789346948e-10, -1.5405010600488822e-11, -2.7163826743503705e-11, 5.934652769212789e-11, 1.8736345808179067e-11, 2.9499735987315034e-11, -3.2362224011706076e-11, -2.3863688802805427e-11, -1.9533508144320422e-10, 3.9079783853424033e-10, -3.4209524102379874e-11, -6.017863984908445e-11, 1.1854917048026437e-10, 3.7192027235732894e-11, 5.834888128219973e-11, -6.264500029828923e-11, -4.737865655357609e-11, -3.4872105203476167e-13] QuasiNewtonMethods.optimum(state) .- 1 = [2.2507773422830724e-11, -1.9004242624021117e-11, 4.990297064466631e-11, -4.3535730576138576e-11, 1.0314860077187404e-11, 1.472755251086255e-11, -8.798517470154366e-13, -1.7577383992772866e-11, -4.817812815360867e-12, 4.4905190677013707e-11, -3.625988398425761e-11, 9.735723338621938e-11, -8.895961745025716e-11, 2.2350343797938876e-11, 3.2232883029337245e-11, -2.5442981055334712e-12, -3.371991574852018e-11, -9.672929124349139e-12, -2.3029356199799622e-12] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [1.1028511437416455e-10, 3.2706060082432487e-11, -1.708766461661071e-11, -1.667554982986985e-13, 1.478972500024156e-11, 5.296874050486622e-11, -5.0960125008714385e-11, -9.307721260398694e-11, 2.8335112034483245e-11, 5.484968035318616e-11, 2.1491386448246885e-10, 6.429745624814132e-11, -3.00418578902395e-11, -2.5295321393059567e-12, 3.476463561469245e-11, 1.0554401796980528e-10, -9.47667500028615e-11, -1.969756580066928e-10, 4.85882445389052e-11, 1.1272049960098229e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-2.1095192259679152e-10, -5.79565284652972e-11, 1.9959034425198752e-10, -2.967543988319221e-10, 1.9924906169421774e-10, -2.756567196726678e-10, -6.424991649822687e-10, -9.440248582848199e-11, -1.5615608806029968e-10, 9.542056034206325e-10, -4.097743255826458e-10, -1.167314023220456e-10, 3.874089937738745e-10, -5.927535129401917e-10, 3.821691851868536e-10, -5.425931925984173e-10, -1.3083989447437716e-9, -1.7810808383700305e-10, -3.3462188575583696e-10, 1.908935898242703e-9] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [1.855673392725521e-10, -2.546333144337609e-10, -1.9979495835542593e-10, 3.244600144114429e-10, 1.9222645697425378e-10, -6.313061184926028e-12, -1.7412626895918493e-11, 1.1493073159840606e-10, -1.0946477058126902e-10, 1.2710388297421105e-10, 3.744640153513501e-10, -5.080282861058549e-10, -4.1890824142853944e-10, 6.606093450045591e-10, 3.747018251232248e-10, -7.536193891155563e-12, -2.906130891489056e-11, 2.1956281237578423e-10, -2.1249790815858205e-10, 2.46403564219122e-10, -2.1527224447481785e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-6.986888845261774e-11, -1.4325385322422335e-10, 7.959410908142672e-12, 3.3534464094486793e-10, 2.395259546261741e-10, 1.3630097051020584e-10, 8.245248928062665e-11, 5.78285641594789e-10, -1.9566381848079573e-10, 2.45449882640969e-10, -1.4609458087733174e-10, -2.9126068223916945e-10, 2.6422863896868876e-11, 6.473819258445701e-10, 4.913387474658748e-10, 2.7326252372006365e-10, 1.7368306792775456e-10, 1.1623781936975774e-9, -3.76244368993639e-10, 5.001101754942283e-10, 1.1326051208015997e-11] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-4.5925485636644225e-12, 1.4592282937542222e-10, -9.425782376837333e-11, -5.367983835213863e-11, 1.0619594092986517e-10, -2.140732036082227e-12, 5.597522445555114e-11, 8.083644864598227e-11, -5.188449669901729e-11, 2.1888424406313334e-10, -1.2366130341945336e-10, -4.505729123138735e-12, 2.930571341153154e-10, -1.8341617114003839e-10, -9.972067616104141e-11, 2.0769563846556593e-10, -1.9400037132299985e-12, 1.1771872365784475e-10, 1.5696954847044253e-10, -1.0239398218203632e-10, 4.237450390576214e-10, -2.473934390678778e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.247801861836706e-10, 3.3960168011049063e-11, -5.402012170918624e-12, -2.743105742553098e-11, -7.648104372037778e-12, -9.285572311057422e-11, 3.898881217878625e-11, -5.80545611583716e-11, 1.1482370609883219e-11, 1.2613177169384926e-10, -3.4369396217925896e-11, 2.50055531836324e-10, 7.156186754286864e-11, -1.1076251027475337e-11, -5.578137951545159e-11, -1.5290768651254893e-11, -1.8596324480313342e-10, 7.755462938519031e-11, -1.1579470715616935e-10, 2.25182095192622e-11, 2.5431190486813193e-10, -6.788414275149535e-11] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [-3.0219160507272136e-12, 4.487965554744733e-12, -1.1155965040643423e-11, 4.2408521139236655e-11, -1.1355694162773489e-11, 3.079536625705259e-11, 1.7155166176507919e-12, 4.182942880959217e-11, 4.239097961544758e-11, 2.741340487943944e-11, 2.089417527884052e-11, 7.37854222165879e-13, 7.498446308318307e-12, -2.5248581003722848e-11, 8.486078506564354e-11, -3.184696950597754e-11, 6.214895265088671e-11, 9.428235969721754e-12, 8.206457735582262e-11, 8.349898550363832e-11, 5.621836329794405e-11, 5.16042764076019e-11, -1.6321832774224276e-11] QuasiNewtonMethods.optimum(state) .- 1 = [2.0019319535435898e-11, -1.3910494978119914e-10, 5.682343484636476e-12, 2.7496893650891252e-11, 2.1544988015875788e-12, -1.8488355291168546e-10, -6.459077717124728e-11, -3.17454951215268e-11, 1.457833853635293e-11, -1.0024592267399157e-10, 9.054756944237852e-12, 4.834621591953692e-11, -2.8226110337925547e-10, 1.819988604268019e-11, 5.487410525972791e-11, 1.2674306049120787e-12, -3.8769554233653025e-10, -1.1815681766336184e-10, -6.216416270632408e-11, 2.4946267274117417e-11, -2.0600621208899383e-10, 2.365374562884881e-11, -1.6895818077955482e-11] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [2.711613156236581e-10, 1.7359047532750083e-10, -3.18302051383057e-11, 8.969291975802207e-11, 2.9881874752391013e-11, -3.687071759017613e-10, 4.5837733608777853e-10, -1.1452150339152922e-10, -3.3544145239261525e-10, 4.1806114126075045e-11, 1.3657630582031288e-10, 7.294298498550233e-11, 5.281697301739996e-10, 3.4848413044130666e-10, -7.524758594001923e-11, 1.8583778960135078e-10, 5.893507903920181e-11, -7.411413704971892e-10, 8.95832519276496e-10, -2.35789943126008e-10, -6.567107968535879e-10, 8.702594200826752e-11, 2.9339441987019654e-10, 1.6476442432633576e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-6.756462056500823e-11, 5.209055409238772e-11, -1.4095580258555174e-10, -5.4543258798389616e-11, -1.5222445526319461e-10, 1.3386047825747482e-10, -1.162435703250253e-10, -1.5545631448787844e-10, 6.926259565886994e-11, 1.7547563402331434e-10, -2.4630630868216485e-11, -3.731004394325055e-11, -1.3767009754417359e-10, 1.0254774807094691e-10, -2.7404944979991797e-10, -1.1245426811967718e-10, -3.125901759659655e-10, 2.625879513828977e-10, -2.2467339100273875e-10, -3.122865299687305e-10, 1.4406031922931106e-10, 3.6805181125032504e-10, -4.913902618142174e-11, -7.1165406900775e-11] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 3m30.4s Method ambiguity | 1 1 10.3s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 6.8s Compat bounds | 3 1 4 11.1s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.4s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 52.1s RNG of the outermost testset: Random.Xoshiro(0x44d9efc36b21c53e, 0x74de557e6f42d0fe, 0x7f06f68124d20d5e, 0x836a57205b19ab47, 0xb68022a6eeb829ff) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 229.73s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2673 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2522 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:515 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:157 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:308 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:330 [14] _start() @ Base ./client.jl:563 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 471.59s: package has test failures