Package evaluation of QuasiNewtonMethods on Julia 1.13.0-DEV.1114 (7de5585024*) started at 2025-09-14T01:53:36.294 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.74s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.3.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 3.73s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 204.16s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_SFHa9q/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_SFHa9q/Manifest.toml` [79e6a3ab] Adapt v4.3.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.67.0+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [6.69187372182023e-10, 1.3267587029019978e-9] QuasiNewtonMethods.optimum(state) .- 1 = [-3.960842764882955e-11, -8.277867280526152e-11] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [5.433047345348996e-10, 1.1124674514917388e-9, -2.2285839840208155e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.3556933353697787e-12, -2.7182700534922333e-12, 9.590750416066385e-11] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [7.505553956121958e-10, 1.068270139015226e-9, 1.4968482009436457e-9, 2.1536221694873348e-9] QuasiNewtonMethods.optimum(state) .- 1 = [1.5936141295469497e-12, -6.804556917927584e-13, 3.263389558583185e-12, -1.4266365866433262e-12] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [6.813438702124586e-12, -1.6853185513809876e-13, 1.2757350731362749e-11, 2.1183055309847987e-13, 1.7548185127225224e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.3417267297199942e-11, 1.569921970201449e-11, -2.585465175286572e-11, 3.0502489423156476e-11, 3.0771163395115764e-11] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [-2.3014812278177033e-11, -2.381084218683327e-11, 2.1199708655217364e-11, -4.545175347203667e-11, -4.6002646136855674e-11, 4.292188826582333e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-5.863554086715794e-11, -1.4905310319335285e-10, 4.398303943276005e-11, -1.2796808057657927e-10, -2.961100253884297e-10, 9.034017978137854e-11] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [-6.90005830250584e-11, -1.845490427143659e-10, 9.13209508013324e-11, -1.378388514439166e-10, -3.6964942218276065e-10, 1.71190839282076e-10, 3.042011087472929e-13] QuasiNewtonMethods.optimum(state) .- 1 = [6.234768257229462e-11, 9.886780283352437e-11, 5.776068512375332e-11, 1.0873857370086171e-10, 1.9211765511784051e-10, 1.168347640856382e-10, 5.527578395003729e-12] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-3.0869196088190165e-11, -5.1710857817965916e-11, 9.816725210498589e-11, -9.03823682563143e-11, -5.876810149629819e-11, -1.2461287557385958e-10, 1.8928103528992324e-10, -1.702818996918154e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.7886248038223584e-11, -9.864664640701903e-12, -4.163780431554187e-11, -4.1001091410919344e-11, -3.652278479648885e-11, -2.1812773809415376e-11, -8.234035675513951e-11, -7.446510075226342e-11] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [-1.071143174158351e-11, -4.066158520998897e-11, 2.7199575924896635e-11, 2.0872192862952943e-14, -2.194444626013592e-11, -8.080536240129277e-11, 5.517231116414223e-11, -1.6818768600046496e-12, -5.91732218779839e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.913558283523798e-11, 7.422951142643797e-12, -5.5887516836605755e-12, 3.419708960450407e-12, -5.794353885590908e-11, 1.3357759343080033e-11, -1.0670686556579767e-11, 5.03508346128001e-12, 1.0291101304460426e-11] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [-1.509592451043318e-11, 3.173261653444115e-11, -7.219469466690498e-11, -2.948108424050133e-11, 8.857381494919991e-11, -2.90771851041427e-11, 6.966449639378425e-11, -1.3943834975549407e-10, -7.53812567921841e-11, 1.778366343074822e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.6191159524225895e-11, 1.290478834903297e-11, -1.4198087150418814e-11, -1.922018100231071e-11, 2.0821122603820186e-12, -3.161393369310872e-11, 2.6041835354817522e-11, -2.3364421508631494e-11, -3.558597860831014e-11, 5.092370969350668e-12] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-2.2336965610492143e-10, 2.0412471712916158e-10, -3.025569794701255e-10, 2.9250557531668164e-10, -2.4741431126074076e-10, -4.471257808447149e-10, 4.2276537826069216e-10, -6.081799508450558e-10, 5.793885371474516e-10, -4.811552267725006e-10, -1.617594946878853e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-9.943013079549701e-11, -1.1015632850330803e-11, -1.1398659793826482e-11, -9.687983748563056e-11, 1.494027124238073e-11, -2.028081036442586e-10, -2.5751956123087894e-11, -1.4853340779552582e-11, -1.963649243208465e-10, 3.328137765379324e-11, -4.001243780749064e-13] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [9.422573832296166e-11, 6.921263562276181e-11, 5.331890484683299e-11, 3.749422994303586e-11, -1.8244739052875047e-11, 1.1866507776403523e-11, 1.8750423436131314e-10, 1.351829759244083e-10, 1.1182743619997382e-10, 7.378941901947655e-11, -3.526401393116885e-11, 2.2530421972533077e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.467741483907048e-10, 4.991855817593205e-10, -8.640022031158878e-11, -1.615385603059849e-10, -4.5055448261166475e-10, 5.152454018997332e-10, 2.8197866264179083e-10, 1.0055227761540664e-9, -1.5840695422042472e-10, -3.060629527595893e-10, -9.108173104621642e-10, 1.0302498854031228e-9] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [7.76823050330222e-12, -3.4119485015082773e-11, 1.5324852498110886e-11, 3.319122754419368e-11, 3.473599186065712e-11, 1.3037571022778138e-11, 1.5408119224957773e-11, -6.647604688936326e-11, 2.805422560925308e-11, 6.229328164408798e-11, 6.658407158965929e-11, 2.5154767158142022e-11, -6.431521981653532e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-3.4687031025271153e-11, -6.773515082159065e-11, -2.6737168035140257e-11, 4.75290917734128e-11, 5.00040009399072e-11, 4.120526142514791e-11, -5.917477619021838e-11, -1.3501377793545544e-10, -5.4137694327494046e-11, 9.082090635104123e-11, 9.617018292829016e-11, 8.500933290633839e-11, -4.9437121063533596e-12] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [-1.4612533405511385e-11, -8.376965787704194e-12, 3.3901104146139005e-11, -7.666756118851481e-12, 1.3328671499834854e-11, -5.460176755178736e-11, -1.3426704192909256e-11, -2.992062153595043e-11, -2.2641000185785742e-11, 6.496270188449671e-11, -1.3469891868567174e-11, 2.6291635535358182e-11, -1.067754773487195e-10, -1.951627748297824e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-4.866107516932061e-13, 3.3332225868321075e-11, 9.902079156631771e-12, 1.3733458814613186e-11, -2.67672550791076e-11, 1.0800027538948598e-11, 1.0514700221619933e-11, -3.9968028886505635e-15, 6.621436732245911e-11, 1.8666179713022757e-11, 2.7316593431692127e-11, -5.2851167886558414e-11, 2.2004620348070603e-11, 2.0795587474253807e-11] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [-2.980615754211158e-11, -9.344858220572405e-12, 1.626543344457332e-11, 3.2167157826279436e-11, 1.8557821945819342e-11, -5.945932635142981e-11, 8.61786197958736e-11, -6.558331655526217e-11, -2.2265633781159977e-11, 3.0150770768955226e-11, 6.590106238490989e-11, 3.650879598637857e-11, -1.1898870777571346e-10, 1.6895729260113512e-10, -3.1344926654242045e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-2.8123725570594615e-11, 1.3675505172727753e-11, 7.16307013703954e-11, 4.784417306780142e-11, 3.307043527911446e-11, 4.076761150884067e-11, -4.349165472206096e-11, -5.667022406896649e-11, 2.584976677155737e-11, 1.5219403515231988e-10, 9.300249459442966e-11, 6.677081110240124e-11, 8.432321507712004e-11, -8.707734533430767e-11, 1.9236612303075162e-11] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [3.9757530601036706e-11, 3.0480062918059048e-12, 6.528666496308233e-11, 3.5111247242980426e-11, 8.746581237062401e-11, -4.5167758422337556e-11, -4.074263149078661e-11, 9.78808145646326e-11, 7.789613398756501e-11, 3.495648215334768e-12, 1.3863155068349897e-10, 6.319877954297226e-11, 1.7469892199528658e-10, -9.015765911613016e-11, -8.125078387877238e-11, 2.038826885097933e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.596489607180729e-11, 2.1440405006956098e-11, 3.642175450124796e-11, -2.5588753338467995e-11, 2.0198287487005473e-11, 4.3551162676180866e-11, -1.9444446053284992e-11, -2.798050680041797e-11, -3.176958696116117e-11, 4.5432546613710656e-11, 7.203504459596388e-11, -5.535916169918664e-11, 4.284883559080299e-11, 8.38660252355794e-11, -3.7001846031614605e-11, -5.5718984981467656e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [9.776979226217009e-11, -1.3949019717074407e-10, -9.133271916539343e-11, -1.0926048954473799e-10, -5.713396422635242e-11, 1.8531620682438188e-11, -6.05072658643735e-11, 9.690026558928366e-12, 2.1009638473401537e-10, -2.9413393942689936e-10, -1.8389856304423802e-10, -2.0854851179308298e-10, -1.189592868655609e-10, 4.59421389820136e-11, -1.1623757512069233e-10, 1.3596235248769517e-11, -2.780664587476167e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.37131306310323e-10, 1.0453127252674221e-10, -6.962930232390363e-11, 1.035393992765421e-12, -1.7979329136608158e-10, -3.5173619572503867e-10, -6.552069997667331e-11, 9.504530495973995e-11, -2.610134330893743e-10, 2.2007951017144478e-10, -1.3710987900594773e-10, 1.5640377881709355e-11, -3.432589767982108e-10, -6.908745797673532e-10, -1.2702150442578386e-10, 1.975144492405434e-10, -2.511546526307029e-12] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [1.6795231871924443e-11, 6.8045569179275844e-12, -1.0031975250512914e-12, -8.764100556390986e-13, -2.1901369606780463e-12, -1.315725306483273e-12, 5.004885395010206e-12, 3.596900555180582e-12, -3.13986614486339e-11, 3.310085538998919e-11, 1.5248025064806825e-11, -2.415512234676953e-12, 2.6778579353958776e-13, -4.704792111454026e-12, -1.198596777385319e-12, 1.3987477842647422e-11, 5.1885162832832066e-12, -6.42942366013699e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.3760771955826385e-11, -6.102340854852173e-12, 2.2585044945344634e-11, 3.266209525065733e-11, -3.438493934027065e-11, 3.969491402244785e-12, 3.1283198254072886e-11, -1.4721002195017263e-11, 6.1026739217595605e-12, -6.82633949367073e-11, -9.53881418297442e-12, 4.1425307628628616e-11, 7.014944181094052e-11, -7.329936657640701e-11, 1.0243805803611394e-11, 6.445044498093466e-11, -2.6382118711865132e-11, 1.2315926056771787e-11] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [8.062661649432812e-12, -5.0183857069896476e-11, -7.911726829235022e-11, -9.777756382334246e-11, -5.820421922209107e-11, -4.8150150533388114e-11, -3.44022588194548e-11, 3.163647122050861e-11, 7.37232497272089e-12, 1.294631069015395e-11, -1.0274836537149667e-10, -1.6107437605938912e-10, -1.95212845888193e-10, -1.1118228560036414e-10, -1.1286971357549191e-10, -7.283929015500235e-11, 6.340838965002149e-11, 4.5141668181258865e-12, 6.547473674345383e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.0233813796389768e-11, -3.267053294564448e-12, 2.4029001011172113e-11, -3.312017327061767e-11, 4.653033514046001e-11, 2.0292878488703536e-11, -2.6098900818283255e-11, -1.280109351853298e-11, 3.817013372042766e-11, 2.0675461342989365e-11, -8.854694755200399e-12, 4.3968162444230074e-11, -6.248512818274321e-11, 9.455369820443593e-11, 4.221267779769278e-11, -5.120714963169348e-11, -2.966604739640388e-11, 7.494715958955567e-11, -3.6341596398870024e-11] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [8.351541680440278e-12, -1.988043063505529e-11, 4.543476705975991e-12, -5.024014537724497e-11, -6.396105867167989e-12, 3.318367802762623e-11, 5.236922007156863e-12, 2.7674751379436202e-11, 1.252264958395699e-11, 1.8323120798413584e-12, 1.662026072324352e-11, -3.822464567093675e-11, 1.0431877583982896e-11, -1.0252754201189873e-10, -1.0525580407261259e-11, 6.636824423367216e-11, 1.1547873768336103e-11, 5.882427878134422e-11, 2.6399549213351747e-11, 3.085975919248085e-12] QuasiNewtonMethods.optimum(state) .- 1 = [5.172329231584172e-11, 2.0226265107226027e-10, 2.596856063519226e-11, 1.234532476246386e-10, -6.471645441763485e-11, 8.306910714850346e-12, 6.747269409856926e-11, -6.836720078950975e-11, -2.3897994694266345e-11, 2.0455459548429644e-10, 1.0135448036407979e-10, 4.0774450482672364e-10, 5.052069873556775e-11, 2.4773449958104266e-10, -1.27641563985037e-10, 1.176880815023651e-11, 1.463342780283483e-10, -1.3990131275676276e-10, -4.5788706160010406e-11, 4.016587062949384e-10] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [-5.600520047721602e-12, -4.610967163642954e-11, 1.1514345032992424e-11, -1.0053291532585718e-11, 2.150279954094003e-12, 4.675548836985399e-11, -5.942835112904277e-11, -1.25857102517557e-11, -1.3720580227527535e-11, -1.41895384331292e-11, -1.1642131703126779e-11, -8.173839383118775e-11, 2.230104989564552e-11, -2.075339899931805e-11, 6.24300611207218e-12, 9.973200043589259e-11, -1.2078738009790868e-10, -2.5088153776664512e-11, -2.878508542636382e-11, -3.196964915019862e-11, 6.825651155395462e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-4.4650949604374546e-11, -3.8640424193658873e-11, -2.1170953878879573e-11, 3.7122749318996284e-11, -5.60218538225854e-11, -6.124989404554526e-12, -7.941303170611036e-11, 2.0719648219369446e-11, 2.297761980685209e-11, 3.3303582114285746e-11, -9.486100793765218e-11, -7.05591141070272e-11, -4.243072559972916e-11, 7.871903129341717e-11, -1.1280110179257008e-10, -1.1083578499437863e-11, -1.6342294184568118e-10, 3.7514658046688965e-11, 4.627787042466025e-11, 6.419331732843148e-11, -1.9196866318793582e-11] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-2.976707769164477e-11, -5.788591828093104e-12, 5.2706061737239907e-11, -1.4162004902118497e-12, 4.355849014814339e-12, 1.468469790211202e-11, -1.0299538999447577e-11, 5.601963337653615e-12, 3.9726222311742276e-11, 7.288392112059228e-12, -1.0305201136873166e-11, -5.9463212132016e-11, -1.478883682182186e-11, 1.0610978762315426e-10, -2.745803584502937e-12, 8.75766126284816e-12, 2.8697932918930746e-11, -2.0312307391634477e-11, 1.131295057632542e-11, 7.986078465194169e-11, 1.432232110687437e-11, -1.937727756029517e-11] QuasiNewtonMethods.optimum(state) .- 1 = [3.911337920214919e-11, -2.3906432389253496e-12, -1.902067392478557e-10, 5.2839732589404775e-11, 1.2226442080986999e-11, -5.202027697492895e-11, 8.894462943942472e-11, -8.881395618942634e-11, -4.3890890921716164e-11, -1.0704548358830834e-10, 2.523530273634833e-10, 8.181633148751644e-11, -3.5323965974498606e-12, -3.863391828673457e-10, 9.271117207276802e-11, 2.6913582473753195e-11, -1.0673750772127732e-10, 1.7821122355599073e-10, -1.719849818115904e-10, -8.405254270371643e-11, -2.1720514276069025e-10, 4.962086297410906e-10] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [3.3405056498736485e-11, -2.2780888286888512e-11, -9.105272091858296e-12, 1.6626700016786344e-12, -1.67589275790192e-11, 1.9684254226604025e-11, 3.405564719116683e-11, -1.872546562253774e-11, 1.0738143707555992e-10, 1.676592198407434e-11, -2.8566482512815128e-11, 6.206390956720043e-11, -4.6425085997725546e-11, -1.7145729280798605e-11, -4.3731684939984916e-13, -3.148847849132608e-11, 4.276490273014133e-11, 6.571942989808122e-11, -4.0603076456591225e-11, 2.1769808178362382e-10, 3.410516313806511e-11, -5.382971846046303e-11, -1.8088863740217676e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-8.077094548752939e-11, 2.2967316937183568e-10, 1.893729617563622e-11, 1.1499579066764909e-10, 7.392952916518425e-11, 2.019826528254498e-10, 1.1332179639111928e-10, -1.5277412668268653e-10, -2.0804358236148346e-10, 7.87636622590071e-11, 3.8298031412864475e-11, -1.529347759543498e-10, 4.6063330927381685e-10, 2.6887159165767116e-11, 2.1495139002070118e-10, 1.636755175837834e-10, 4.040876522282133e-10, 2.380382557731764e-10, -2.976024982004333e-10, -4.331474068308694e-10, 1.4853829277683417e-10, 7.045164451824348e-11, -1.484579126298513e-11] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [-1.985736020060358e-10, -2.823531408679969e-10, -6.21457330041153e-11, -5.186628904141344e-12, -6.862033163912429e-11, -4.5342063437203706e-11, -2.8975466470626543e-10, 3.044031693377747e-11, 7.534106671869267e-11, 1.5330359204313027e-10, -4.0163539161142126e-11, -7.633593757105928e-11, -3.968170236845481e-10, -5.620172105480492e-10, -1.2189749210023137e-10, -1.5448753387659053e-12, -1.256154069650961e-10, -9.154565994151653e-11, -5.896855226339426e-10, 5.554667836804583e-11, 1.424613760292459e-10, 3.048556962426119e-10, -8.073997026514235e-11, -1.4150514093813626e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.2466028209701108e-11, -1.5841772338376359e-10, -2.1732282640130052e-10, -1.5516665730075374e-10, -8.44213587924969e-11, 5.5714100000159306e-11, -1.199683685726427e-10, -1.524776971351116e-10, 7.538147883678903e-11, 1.941791172299645e-10, 2.6950663922775675e-11, 7.789702216598471e-11, 3.33439942323821e-11, -3.095486089677024e-10, -4.260516384135826e-10, -3.0933522410236947e-10, -1.7277479447130872e-10, 1.1670042709965855e-10, -2.4364865680581715e-10, -3.0409053053404023e-10, 1.4682521864983755e-10, 3.888223076842223e-10, 5.909917000224141e-11, 1.601005994444904e-10] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 3m41.3s Method ambiguity | 1 1 9.7s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 6.9s Compat bounds | 3 1 4 10.8s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.5s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 51.5s RNG of the outermost testset: Random.Xoshiro(0x87a0468f4a94489d, 0x10ea709abaef26fd, 0x4e76a65000dd2b69, 0x9da4fad21fb2a660, 0x9233b3ae5d962341) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 250.98s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2673 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2522 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:515 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:157 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:308 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:330 [14] _start() @ Base ./client.jl:563 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 515.22s: package has test failures