Package evaluation of QuasiNewtonMethods on Julia 1.13.0-DEV.1099 (5c93bf20fd*) started at 2025-09-09T16:53:34.017 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.75s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.3.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 3.73s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 167.39s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_mNQqwe/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_mNQqwe/Manifest.toml` [79e6a3ab] Adapt v4.3.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.15.0+1 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.8.12 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.67.0+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [8.061928902236559e-11, 1.7791701445446506e-10] QuasiNewtonMethods.optimum(state) .- 1 = [4.647746632002736e-10, 9.095462161212708e-10] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [2.1630586211074387e-10, 4.2041081727006713e-10, 3.492144351469051e-10] QuasiNewtonMethods.optimum(state) .- 1 = [9.048028992708623e-11, 1.9019630315142422e-10, -2.0413049028888963e-10] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [-1.0874812161887348e-10, -3.1438340819534005e-10, -2.3173762908612616e-10, -6.298086496769884e-10] QuasiNewtonMethods.optimum(state) .- 1 = [8.47832914985247e-12, 8.397060824449909e-12, 1.734945520581732e-11, 1.8226087306061345e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [2.8133051444001467e-12, -1.2394973936125098e-11, 6.4650507169972116e-12, -2.4067081660916756e-11, 1.4563905637032803e-12] QuasiNewtonMethods.optimum(state) .- 1 = [2.244004981832859e-11, -1.3627099448854096e-11, 4.3124392945514955e-11, -2.7936097879432964e-11, -2.0576540471495264e-11] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [-7.626577147590297e-11, -1.3177758884097557e-10, 1.3557910349959457e-10, -1.5842915868091723e-10, -2.5275714854444686e-10, 2.65966582091437e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-5.020206472750033e-12, -1.3851697566735766e-11, 2.166777868239933e-11, -6.3186123000491534e-12, -2.883582261858919e-11, 4.123212882234384e-11] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [1.2189582676569444e-11, 2.452194003410568e-10, 8.797185202524815e-12, 2.0494050900765615e-11, 4.744515891275114e-10, 2.9530600187399614e-11, -4.881650639276813e-13] QuasiNewtonMethods.optimum(state) .- 1 = [5.209765951974532e-11, -1.9795620698204175e-10, -7.547740210611664e-12, 1.0152034768395879e-10, -3.9000724871840475e-10, -2.5262458791530662e-11, 1.1507195196713838e-10] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [6.751710301955427e-12, 6.220357562369827e-12, 2.395861287141088e-13, 7.631006937458551e-12, 8.748113344836383e-12, 1.0362821711851211e-11, -1.5207834991315394e-12, 1.4350298727094923e-11] QuasiNewtonMethods.optimum(state) .- 1 = [3.6034508710258706e-11, -3.4552793959363726e-10, 3.449485141970854e-11, -5.7331028813223384e-11, 5.7684079735054183e-11, -7.021562220543842e-10, 6.448352962706849e-11, -1.2430323437229163e-10] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [-3.73415742771499e-11, 2.9314328742202633e-12, 6.814104835939361e-11, -5.4832249851699544e-11, -6.978684297109794e-11, 7.0456973588761684e-12, 1.3276890697966337e-10, -1.0524414673085403e-10, 6.8969274735763975e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.230771040638956e-11, 1.0160672303527463e-10, 7.256995004922828e-11, -9.808798218102766e-11, 1.5513368367692237e-11, 1.9880497248436768e-10, 1.469773192042112e-10, -1.9970425313431406e-10, -2.3503421431314564e-13] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [2.6202151559573394e-11, 6.20352658131651e-11, 6.030953514368775e-12, 6.717981726467315e-11, 6.934408602887743e-11, 5.484568355029751e-11, 1.267148608263824e-10, 8.47166781170472e-12, 1.4045942187124183e-10, 1.3026979495123214e-10] QuasiNewtonMethods.optimum(state) .- 1 = [2.8318680733718793e-11, 2.3414825633949476e-11, -2.9781843657872287e-11, 9.763656549921507e-11, -5.964251315049296e-11, 7.284839398380427e-11, 5.169864536469504e-11, -4.9278581215617123e-11, 2.0415891199832004e-10, -1.2859957543298606e-10] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-1.052771203546854e-10, 8.932632411529084e-12, 1.3513834495881838e-10, 1.1664114119014357e-10, 1.998723409002423e-10, -2.3044843810993143e-10, 2.6546542741812118e-11, 2.8849167499345185e-10, 2.3035151563988165e-10, 4.0300762726985795e-10, 8.887557356729303e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.1477041539365018e-11, -6.222622417340062e-11, 1.7139845098768092e-11, 2.4947377497142043e-11, 1.0677703166095398e-10, -2.3026469619935597e-11, -1.2272727278883622e-10, 3.5146108245953656e-11, 6.209455172268008e-11, 2.1824941853765267e-10, -4.1133096928547275e-11] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [-3.7827629917330796e-11, -2.4386159758194026e-11, -7.602862783784303e-11, -1.1122658349904668e-11, -1.9224954961316598e-11, -1.925610781938758e-10, -8.540257390166062e-11, -4.877220849408559e-11, -1.434420360268973e-10, -9.06041908166344e-12, -3.8340886021615006e-11, -3.779708768192336e-10] QuasiNewtonMethods.optimum(state) .- 1 = [3.295919093204702e-11, -2.2040658187449935e-10, 3.472311327357147e-11, 4.780931206482819e-11, 2.5413893212089533e-11, 9.736567108120653e-11, 7.085776410065137e-11, -4.338480685817103e-10, 6.817701958539146e-11, 1.0086798063468905e-10, 5.4401150251237596e-11, 1.9008816742882573e-10] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [1.4148393567836592e-10, 2.3223556411267055e-10, -6.672074004399065e-11, -1.587153741766656e-10, 3.7661651575149335e-11, 3.028528539061881e-10, 2.939253285205723e-10, 4.664966191114672e-10, -1.2733458731872815e-10, -3.2467017963000444e-10, 7.449818539839725e-11, 6.11206418810184e-10, 5.860198992735377e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-5.1664006406326735e-11, 4.0190073491430667e-13, -2.174149749123444e-11, 4.2015280143914424e-12, -2.3665847059817224e-11, -4.370837025646779e-12, -1.0618128598594012e-10, 1.7748025271657752e-12, -4.2595260651978606e-11, 8.557821118415632e-12, -4.77743400395525e-11, -6.806666341674372e-12, -7.034373084024992e-13] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [6.483924508415839e-12, 1.7641221816688812e-11, 6.700684451743655e-11, -1.5082490811835214e-11, -9.926426347561801e-11, 8.115708105549402e-11, -2.7537749858197458e-11, 1.6053824936079764e-11, 3.4819924721318785e-11, 1.3479484195499936e-10, -2.373268248589966e-11, -2.0023838143146122e-10, 1.7652168615711616e-10, -4.507827444655277e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-4.5352610555937645e-12, -4.6792680841178935e-11, -5.567868388567376e-11, -9.029688108341816e-11, 1.3208545368570412e-11, 7.802758439368063e-11, -2.9030777781713368e-11, -6.753486658794827e-13, -9.520595423140321e-11, -1.1617451445289362e-10, -1.714705044619791e-10, 2.4647395235888325e-11, 1.6235923716578782e-10, -5.883460385547323e-11] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [-5.21338527903481e-12, 1.639133273556581e-11, -4.298383871059741e-11, -1.8948509428184934e-11, 6.909361971452199e-12, 2.0421220270350204e-11, -2.9283575564420516e-11, -9.568568160034374e-12, 3.118438840488125e-11, -7.993850026366545e-11, -3.6849190365728646e-11, 8.891554159617954e-12, 3.8299807769703875e-11, -5.572342587356616e-11, -9.420242363944453e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-2.78668310649266e-10, 4.9505066712640655e-11, -2.1504353853174507e-10, 3.5504044149092806e-11, -1.785409597943044e-10, 1.5831336241944882e-11, -1.4851031515661361e-10, -5.68015523505494e-10, 7.933587120589891e-11, -4.3899717194761934e-10, 7.340439367453655e-11, -3.4166991458306484e-10, 3.256972469500852e-11, -2.939712917537918e-10, -2.5451862839531714e-12] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [6.086997572651853e-11, -3.533884296302858e-11, 1.9482193636122247e-11, 2.1531221250370436e-11, 3.8412384384400866e-11, 2.0083268381654307e-11, -3.052480490595144e-11, 3.0237146120271063e-11, 1.1710699077127629e-10, -7.165268378628298e-11, 3.4000358084540494e-11, 4.4723336145580106e-11, 7.751621566853828e-11, 4.3047565512210895e-11, -5.807843095340104e-11, 6.486522430293462e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.191757886293999e-11, -3.570865825253122e-11, -2.1420087925605458e-11, -4.892575233839125e-11, -1.0217049428717928e-11, -1.0963874252922778e-10, 1.829336682135363e-11, -1.4353407351563874e-11, -4.468081460373696e-11, -6.472700153636879e-11, -4.556033328384501e-11, -8.859057931687175e-11, -1.4397261161036568e-11, -2.1792367910222765e-10, 3.078781674048514e-11, -3.386069202804265e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [-2.2168822333412663e-11, 1.0592415833343694e-11, 2.7815971748168522e-11, -2.8905211557628263e-11, 2.2817525646701142e-11, -2.0975443604243083e-12, 1.4229284417410781e-11, -2.059097337081539e-11, -4.3752446110545407e-11, 1.8532286816252963e-11, 5.5804472154363793e-11, -5.6178284246755084e-11, 4.8664405838394487e-11, -4.885869486770389e-12, 2.8504087978831194e-11, -4.021283306343548e-11, 8.943956686380261e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-7.003697621854599e-11, 5.0827786424179067e-11, 4.667866093654993e-11, 1.0292788843457856e-10, -5.393974156220338e-11, -3.95179444723226e-11, -1.5333023739572127e-10, 2.1507240433038533e-11, -1.3271117538238286e-10, 1.0205081224512469e-10, 1.0504153102885994e-10, 2.0235235709264998e-10, -1.0763001601077349e-10, -8.187683864235851e-11, -3.012680105385357e-10, 4.609868042848575e-11, -2.803035581422364e-11] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [5.036882022579903e-11, -6.989020473469054e-11, -9.868994510497942e-11, -4.6808779075036e-11, 4.965139410728625e-12, 1.6674439606845226e-11, 8.573008969392504e-11, -1.0576206577184166e-11, 4.574118861455645e-12, 8.573763921049249e-11, -1.3964096545748816e-10, -2.0705781533791878e-10, -8.062617240511827e-11, 1.0577316800208791e-11, 3.303379791930183e-11, 1.721736087034742e-10, -2.851885394505871e-11, 3.9535041906901824e-12] QuasiNewtonMethods.optimum(state) .- 1 = [3.1610269957127457e-12, 2.1307400288606004e-11, -1.2733814003240695e-11, 3.459543762573958e-11, 7.0314865041609664e-12, -8.641598547853846e-11, -2.688027578301444e-11, 4.357780802877187e-11, -1.2980172492405018e-11, 7.0174976940506895e-12, 4.320632740473229e-11, -3.059885678169394e-11, 7.228750931176364e-11, 1.2905454482847745e-11, -1.6724521767486067e-10, -5.027112059963201e-11, 9.193734662460429e-11, -2.4962143463369557e-11] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [4.763744954061622e-12, -2.1796564553255848e-11, -7.761791209759394e-12, 3.8058445284150366e-13, -1.1323386672756897e-11, 8.44346814687924e-12, -1.2819745265346683e-12, 1.3387957409349838e-11, -8.183342892209566e-12, 9.594103289600753e-12, -4.285005683613008e-11, -1.680167116546727e-11, 3.879119248040297e-13, -2.3501756096777626e-11, 1.6961765325618217e-11, -2.981503932630858e-12, 2.7072344366274592e-11, -1.735334098640351e-11, 1.2088108292118704e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.1713185976702789e-11, -3.70536934468646e-12, 2.878142169038256e-12, -4.391154106997419e-12, 1.4787282509587385e-11, -2.2020607559625205e-11, 1.4979129048242612e-11, -9.270695322527445e-12, 1.4104273304837989e-12, -2.622313477473881e-11, -8.115397243102507e-12, 5.948352921336664e-12, -9.841349957184775e-12, 2.988742586751414e-11, -4.511457873945801e-11, 2.9370061938038816e-11, -1.8660295530992244e-11, 2.7322588636025102e-12, -4.392486374626969e-12] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [5.524469770534779e-12, 1.3184120462028659e-11, 1.3530954134921558e-11, 4.9324988538046455e-12, 1.6666890090277775e-11, -2.6883162362878466e-11, -3.185496311175484e-11, -3.290689942758718e-11, 1.261968307630923e-11, -2.239464169662142e-11, 1.0724088284064237e-11, 2.8366864412987525e-11, 2.567679402432077e-11, 6.524336626512195e-12, 3.340216991887246e-11, -5.700262484253926e-11, -5.708866712694771e-11, -6.63455956839698e-11, 2.8051783118598905e-11, -4.806643971733138e-11] QuasiNewtonMethods.optimum(state) .- 1 = [7.811640223565064e-11, 1.0736123101651174e-10, -1.8636647780567728e-11, 2.740851989813109e-11, -8.772871318285524e-12, 1.2034973018160144e-10, -2.407781751756488e-10, 1.3087753103491195e-10, -1.0349310297641523e-10, 2.9575231152989545e-11, 1.5545031928354547e-10, 2.1157564589202593e-10, -3.6093239508261377e-11, 5.6743276743986826e-11, -1.8367196652491202e-11, 2.491480355359954e-10, -4.849425305764044e-10, 2.6161961486081964e-10, -2.1090262869449816e-10, 6.368483518315315e-11] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [2.6021029775336046e-10, 4.271982767534155e-11, 1.0712919440436508e-10, -2.4206614490651646e-10, 2.9112201538339377e-10, -9.430578540303713e-11, 3.0941649242777203e-10, -1.0851153309232586e-10, -5.665766744655798e-10, 2.7894397902628043e-10, 5.140929904001723e-10, 8.646283689017764e-11, 2.1367285718554285e-10, -4.833271560755747e-10, 5.842895056673569e-10, -1.7745205305175205e-10, 6.234612826006014e-10, -2.1710910846906017e-10, -1.134853433448768e-9, 5.584723794527235e-10, -1.6266987756807794e-11] QuasiNewtonMethods.optimum(state) .- 1 = [9.971579117973306e-12, 1.049427211796683e-11, 3.160383066358463e-11, 5.129185964847238e-11, -9.502287845464252e-12, -3.83723053332119e-11, 2.3965496254163554e-11, 2.1939783323432493e-11, 2.099564966329126e-11, 1.0722756016434687e-11, 1.9165558029499152e-11, 1.9626078540113667e-11, 6.131206653492427e-11, 1.0328249366864384e-10, -1.9792278926900053e-11, -7.778866439878129e-11, 4.759392879805091e-11, 4.1996850441705647e-11, 3.931255321276694e-11, 2.0406565326425152e-11, 2.3143709171336013e-12] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [6.920952699829286e-11, -4.844302736728423e-11, -2.435274204515281e-12, -4.5767500900240066e-11, -2.9637847731578404e-11, -8.225375935921875e-11, -1.9306445331324085e-11, 1.2648304625884066e-10, 4.52307080678338e-11, 1.0037148889807668e-10, -1.8292323211710482e-10, 1.413844596953595e-10, -1.0716727505410972e-10, -2.626454609355733e-12, -9.546430312923349e-11, -6.013800568638317e-11, -1.702620266996746e-10, -3.4543257143582196e-11, 2.563536050104176e-10, 8.92159679466431e-11, 2.100044582675764e-10, -3.579683216514695e-10] QuasiNewtonMethods.optimum(state) .- 1 = [3.669486936530575e-11, -1.3203316218124428e-10, -1.3511858298898005e-11, 1.7220225245750953e-11, 2.54255505538481e-10, -4.223854599416654e-11, 6.635891836026531e-11, -4.379674400922795e-11, 9.504819153960398e-11, -2.72210032292719e-11, -3.521161140440654e-11, 7.089839826335265e-11, -2.7008240088832736e-10, -3.1268210243240446e-11, 2.930966580549921e-11, 5.134310754328908e-10, -8.552503150127677e-11, 1.2482170852479157e-10, -9.088629848719165e-11, 1.8758949948960435e-10, -5.190026186596697e-11, -7.541156588075637e-11] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [4.593969649135943e-11, -2.8376190286394376e-12, 1.41886502547095e-12, 1.2147394201633688e-11, 7.462608309083407e-11, -1.3631018536131023e-10, -2.745659255509736e-11, 3.506017698384767e-11, -3.933897652075302e-11, 3.874678355941796e-12, -1.027938845155063e-10, 8.901412940076625e-11, -7.78899167386271e-12, 3.1366020891709923e-12, 2.489697337182406e-11, 1.5112955331630928e-10, -2.762425843627625e-10, -5.2862714206014516e-11, 7.067479934619314e-11, -7.999234608035977e-11, 9.162448577626492e-12, -2.0721824256497712e-10, -4.002798092983539e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.8887114094923163e-12, -1.67710734189086e-10, 3.6917136014835705e-12, -1.1193712623480678e-11, -2.9197899653610193e-10, -1.7576384792050703e-11, 1.584710140889456e-11, -2.2762014495469884e-11, 4.941003162173274e-11, 8.56579251973244e-11, 1.0073963885304238e-10, -2.578492974691926e-12, -3.237062840000249e-10, 7.170486426844036e-12, -2.489475292577481e-11, -5.984186479679465e-10, -3.929601088970003e-11, 3.0243807458418814e-11, -3.866851283618189e-11, 9.351786012246066e-11, 1.7350809677907364e-10, 1.9180590449252577e-10, 6.290079568316287e-11] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [4.888778271094907e-11, -3.50272033600163e-11, -1.8444690219610038e-11, 2.4485524718897977e-11, 2.9918068022993793e-11, -6.861855528228489e-11, 1.06332720406499e-11, -3.502265144561534e-11, -2.16222595383897e-11, -4.022560062821867e-11, -1.193167786794902e-11, 4.1625147773061144e-11, 1.0521539195451624e-10, -7.109002275740295e-11, -3.423406003122409e-11, 5.0351500746614875e-11, 6.454703438407705e-11, -1.4362733224970725e-10, 1.4485301846889342e-11, -6.754863335345362e-11, -4.0993208827444505e-11, -8.222467151597357e-11, -2.2898016815986466e-11, 8.574518872705994e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.1406098288091471e-10, 1.1430256741107314e-10, 8.122813532907003e-11, -7.26960713848257e-11, -4.9930060086467165e-11, 4.9989123951377223e-11, 1.446442965402639e-11, 6.58062493386069e-11, -5.749456466475067e-11, -1.8741919127762685e-10, -3.005529158883746e-11, -1.9066859202609976e-11, -2.290967415774503e-10, 2.2237256480650558e-10, 1.668298832413484e-10, -1.4946544002469864e-10, -1.0195966293480296e-10, 1.0685363704965312e-10, 1.9228396652692936e-11, 1.255999748650538e-10, -1.1499490248922939e-10, -3.566097417362357e-10, -5.7545523901580964e-11, -3.541911208770898e-11] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 3m57.3s Method ambiguity | 1 1 9.2s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 6.3s Compat bounds | 3 1 4 11.1s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.4s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 56.1s RNG of the outermost testset: Random.Xoshiro(0xde3f6548e025629b, 0x3d713afb2692e2d8, 0xb71d099bf6d7fe01, 0x99d21ecd924ced0f, 0x5ee31de526307c91) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 260.15s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2673 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2522 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:515 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:157 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:308 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:330 [14] _start() @ Base ./client.jl:563 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 469.09s: package has test failures