Package evaluation of QuasiNewtonMethods on Julia 1.13.0-DEV.1095 (0679da10f9*) started at 2025-09-07T16:55:25.329 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.97s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.3.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 3.87s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 204.82s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_adMgnd/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_adMgnd/Manifest.toml` [79e6a3ab] Adapt v4.3.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.15.0+1 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.8.12 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.67.0+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [7.60980167768821e-11, 1.4516965407551652e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.0032530362025227e-11, -2.1129431537758592e-11] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [2.5721447194371194e-10, 4.948257359416175e-10, 5.213607323639735e-11] QuasiNewtonMethods.optimum(state) .- 1 = [3.957518757147227e-10, 8.064080514458283e-10, -5.830662619388249e-10] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [-6.494815796287412e-11, -1.2312306729711509e-10, -1.2919521008569745e-10, -2.4350232941117156e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.531885729377791e-12, -5.319966689398825e-12, -4.1912029402624285e-12, -1.0722533971829762e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [1.829603135661273e-11, -1.507871605355149e-11, 3.8995695561538923e-11, -3.1638469621952936e-11, -5.760725230175012e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-4.785261076278857e-11, -7.352840558638718e-11, -1.1340983707697205e-10, -1.6093859578347747e-10, -2.23265850252119e-12] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [2.6520785567640814e-11, -6.738953839402484e-11, -5.4105830926687304e-11, 5.608713493643336e-11, -1.439159902361098e-10, -1.232935975536975e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-9.186540417260858e-12, -5.253686374828703e-12, -1.6204815267428785e-12, -1.833355689484506e-11, -1.1338485705891799e-11, -2.809752430721346e-12] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [6.776801342311956e-13, -4.5639936274710635e-11, 4.213873694425274e-11, 7.929212841872868e-13, -9.221901020595169e-11, 7.802403168000183e-11, -4.2770165187278053e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.653299719350798e-11, 7.242650923444671e-12, 2.7000623958883807e-13, -3.4439562313082206e-11, 1.5286438781458855e-11, 2.922107000813412e-13, -6.039613253960852e-14] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-1.3964285283663003e-10, -2.8297031384738602e-11, -1.9031409781433695e-10, -1.531441640167941e-11, -2.7915891820384786e-10, -6.132061525221388e-11, -3.8059810858470655e-10, -2.8956503861365945e-11] QuasiNewtonMethods.optimum(state) .- 1 = [4.0200953677071993e-11, -6.376810191000004e-11, -4.156719413117571e-11, 3.7494451987640787e-11, 7.436717908149149e-11, -1.2555922968005007e-10, -8.054001909840736e-11, 7.21966930683493e-11] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [1.2772671809102576e-10, -5.430822458407647e-11, -1.5114720586240082e-10, -1.0104095338192565e-10, 2.5637203471262637e-10, -1.0925493842961487e-10, -3.2240465852595435e-10, -2.2304402769179887e-10, -5.521916257578141e-12] QuasiNewtonMethods.optimum(state) .- 1 = [4.672262576832509e-12, 8.393286066166183e-12, 1.894751022746277e-11, -1.0990541809974275e-11, 9.868328376683166e-12, 1.5872858583065863e-11, 3.764255573912578e-11, -2.121625097828428e-11, -4.505285033928885e-13] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [-1.8308687899093457e-12, 1.1862955062724723e-11, 9.742651130295599e-12, -5.35194111250803e-12, 3.786526647786559e-12, -2.2801760479751465e-12, 2.4220625505222415e-11, 1.8827606140803255e-11, -1.0260126082073384e-11, 7.717826377984238e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-2.6095792193814304e-11, -5.098421684834875e-11, 2.936451082291569e-11, -4.306588419211721e-11, 2.3890445177698894e-11, -5.50420820033537e-11, -1.0104372893948721e-10, 6.236944294357727e-11, -8.811917862061591e-11, 4.9832582504905076e-11] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [1.5658585539313208e-11, 7.889289221907347e-11, -2.9076185903420537e-11, 5.580114148528992e-11, 1.5189849378316467e-11, 2.41113795595993e-11, 1.55013335501053e-10, -5.735345531832081e-11, 1.0681278084234691e-10, 3.634270662189465e-11, 3.6768366129535934e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-4.532685338176634e-11, -8.412659457945892e-11, -5.7738036574050966e-11, -7.733025331191357e-11, -1.0806289196807484e-10, -9.51698719831029e-11, -1.7541990082747816e-10, -1.2009937488954847e-10, -1.7064494262086782e-10, -2.2030499646774615e-10, -6.178280109736534e-12] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [-6.700140442461588e-11, -2.470368354323682e-11, 1.1799450305716164e-12, 2.4238389073616418e-11, -5.398481661700316e-11, 1.8791412870200475e-11, -1.2740475341388446e-10, -4.760358773836515e-11, 5.936140468065787e-12, 5.451261664290996e-11, -1.0891909596466576e-10, 3.747113730412366e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.216560185923754e-10, -1.243536384976096e-10, 5.4827475892693656e-11, -1.1875900263191852e-10, -5.360734078863061e-11, 1.720157349893725e-11, -2.4831803280278564e-10, -2.377938956854564e-10, 1.0733569588694536e-10, -2.2457635751038652e-10, -9.683032153873228e-11, 5.104383582477112e-11] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [-3.7508440797751064e-11, -3.8022252013547586e-11, 6.23749940587004e-11, 1.0718093079731261e-12, 2.7201352281736035e-11, 9.188649841007646e-12, -7.321609984956012e-11, -8.43259906346816e-11, 1.1941203581500304e-10, -3.421374294987345e-12, 5.974354344573385e-11, 2.212363625631042e-11, -1.051103648563867e-11] QuasiNewtonMethods.optimum(state) .- 1 = [2.134825649591221e-11, 7.469802554282978e-12, 2.4300117473785576e-11, -3.4996894271444035e-11, -1.2360557022361718e-11, -3.338895826487942e-11, 4.275646503515418e-11, 1.1133982624755845e-11, 5.0990101030379265e-11, -7.390055234424153e-11, -2.4609536630748607e-11, -6.672085106629311e-11, -3.858025010572419e-13] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [3.775313395237845e-11, -3.4937275295021664e-11, -6.228728643975501e-11, 1.5909495942878493e-11, -2.3493429424092938e-11, -4.5086157030027607e-13, 3.186806374344542e-11, 7.865907925008742e-11, -7.220335440649706e-11, -1.2598233567473471e-10, 3.114619673283414e-11, -4.598754710372077e-11, 2.1007640071957212e-12, 6.159295296015443e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.0402345651527867e-11, -6.951994535597805e-12, 2.1499468871866156e-11, 1.9271251261443467e-12, 1.484923295436147e-11, -2.779998453661392e-13, -2.0682455748044504e-11, 1.9622303781829942e-11, -1.1252665466088274e-11, 4.235500838944972e-11, 6.115996598055062e-12, 2.848588032122734e-11, -2.219779915435538e-12, -4.286249133400588e-11] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [1.2744472144277097e-11, 3.743139131984208e-11, -1.0415335260915981e-11, -1.261046822520484e-11, -1.6724399642953358e-12, 4.5823567162983636e-11, 1.513211778103596e-11, 2.7712498962273457e-11, 7.655165390474394e-11, -1.7374768290778775e-11, -2.3435586804509967e-11, -2.5632829192545614e-12, 9.132139489054225e-11, 3.3045788327967784e-11, 5.231370892033738e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.2712053631958042e-11, 1.745048550105821e-12, 9.299228054260311e-13, -1.5253465157627488e-11, -3.685429739164192e-11, 1.06430420032666e-11, -2.4244384277949393e-11, 2.3849144881182838e-11, 4.097611139286528e-12, 1.2616574451840279e-12, -3.0750513246857736e-11, -7.182909822489592e-11, 2.202571458553848e-11, -4.738698322626078e-11, 4.960032384815349e-12] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [-4.2730263771773025e-11, 9.79261116640373e-12, 2.7867264051906204e-11, -5.3999027471718364e-11, -1.6957324433519716e-11, 3.244760016229975e-11, 3.756861488568575e-11, -5.549016801609241e-11, -8.69507799095004e-11, 1.4546142068638801e-11, 5.892397680895556e-11, -1.1232692553875268e-10, -3.8200220764395e-11, 6.34643448904626e-11, 7.594103124120011e-11, -1.0929201987863735e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.929734150252216e-11, -4.929245900342494e-11, -3.6027847372110955e-12, 4.546807375049866e-12, -9.936496070395151e-12, -3.373312740251322e-11, 2.958744360626042e-11, 7.894795928109488e-12, -4.0290659697461706e-11, -1.0024914232076299e-10, -5.722977647337757e-12, 4.43489689416765e-12, -2.3081203615049617e-11, -7.187184181134398e-11, 5.801137348271368e-11, 1.4666934333718018e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [-1.514863789964238e-10, 6.905587213168474e-14, -6.273448427407402e-11, 1.058502174799969e-10, -5.3613780082173434e-12, 1.840017027632257e-11, 7.427614079347222e-12, 1.909705726887978e-10, -3.0710645138043446e-10, -1.442734820500391e-12, -1.2240353175485552e-10, 2.2128099352869413e-10, -2.8311353261756267e-11, 3.3360425533146554e-11, 1.797695325933546e-11, 3.8457526052582125e-10, 6.383116257779875e-12] QuasiNewtonMethods.optimum(state) .- 1 = [9.21795972885775e-12, -1.855293696451099e-12, 2.3164581364198966e-11, -1.0003342598707832e-10, -1.785951386779061e-10, -1.265898497138096e-11, -3.470290721452329e-11, -1.3966938716691857e-11, 1.8594237261027047e-11, -2.1809221095736575e-12, 4.824651789192558e-11, -2.097687579194485e-10, -3.630031830681446e-10, -2.419220379579201e-11, -7.686773439985473e-11, -6.5916161418044794e-12, 2.1798118865490324e-12] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [1.0469181077610301e-11, -8.32588442634119e-11, -6.326716928128917e-12, -2.0969337377607644e-11, 1.6721068973879483e-11, 1.0138334616272004e-11, -7.319589379051195e-11, 8.399370088341129e-11, 3.544164961510887e-11, 1.847832997725618e-11, -1.5707757317073856e-10, -9.44655464962807e-12, -4.5148218497104153e-11, 3.539346593584014e-11, 1.851674369390821e-11, -1.397868487629239e-10, 1.6674284175621779e-10, 6.480860292867874e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.3182344105189259e-11, 1.8522960942846112e-11, -3.6035285866375943e-11, -1.484179446009648e-11, -8.026868059118897e-11, 1.5246603979335305e-10, -1.859701281858861e-11, -1.7419599096513139e-10, -1.9296220177267287e-10, -2.2284951661788455e-11, 4.045763724036533e-11, -7.424783010634428e-11, -3.147193616825916e-11, -1.5152767929293987e-10, 3.0559532682161716e-10, -1.8718582239785064e-11, -3.5200309334015856e-10, -4.014106824712371e-10] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [9.21964726785518e-11, 2.263857989959206e-10, -1.1016609846592473e-10, -8.229994463704315e-11, 8.36992697372807e-11, -1.0033296415912218e-10, -2.4408963739119827e-10, -5.5480176008870785e-11, -1.278654959691039e-10, 1.8774448662384202e-10, 4.691038668624969e-10, -2.0773760489589677e-10, -1.5426593336087535e-10, 1.5587264812211288e-10, -1.9087142977269878e-10, -4.90833262922763e-10, -9.621148322480622e-11, -2.356900230537917e-10, -1.7500445537166343e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.294186979805545e-10, 9.507639120442946e-11, -7.540346125267661e-11, -5.0220050340499256e-11, -1.0971279440497028e-10, -2.4449331448295197e-12, -1.6868273444714532e-10, 7.53235251949036e-11, -2.5035751249902205e-11, 2.5355628707757205e-10, 1.8921197941779155e-10, -1.5122270102807533e-10, -1.0610246015119174e-10, -2.2418411571578645e-10, -5.604183783702865e-12, -3.231668266323595e-10, 1.5406453890420835e-10, -5.449707352056521e-11, 6.374012428977949e-12] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [-2.3721680175725623e-10, -2.762701178937732e-11, 3.7103875527577657e-10, -3.4285019268054384e-11, -1.5005174880400318e-10, 5.86883874831301e-11, 2.5614199650192404e-10, 5.525535584638419e-11, -1.166339247404835e-10, 1.3646173080417157e-10, -4.804338038510991e-10, -6.204781133334336e-11, 7.360734244343803e-10, -7.081935038399934e-11, -3.0070179679597686e-10, 1.1479839301387074e-10, 5.074256570480884e-10, 1.1212764050583246e-10, -2.2973656310654178e-10, 2.7247470946178964e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-2.4350743643708483e-11, 2.0145352053191345e-10, -1.6285672810312235e-10, 7.01820823678645e-11, -7.305600568940918e-11, 1.662381343692232e-11, -2.267219745277771e-11, 7.537837021232008e-11, -1.561921703086e-10, -1.182783870845583e-10, -5.834666083615048e-11, 3.980504814649066e-10, -3.2532831983900223e-10, 1.4674705894890394e-10, -1.641571323318658e-10, 2.8070434865412608e-11, -4.750033699707501e-11, 1.6105028421975476e-10, -3.141593651889707e-10, -2.3358026624009653e-10] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [7.925815559417515e-11, -5.847444750628483e-11, 5.49849055175855e-11, -2.0264234734668207e-11, 7.380096533893266e-12, -9.409129031467955e-11, -5.852351936397326e-11, -1.5212830994926207e-11, 1.2362955104094908e-10, -3.5825786781629176e-12, 1.759516976562736e-10, -1.2308309926822858e-10, 1.0929901428369249e-10, -3.875055831770169e-11, 1.1775247443779335e-11, -1.8435453164045157e-10, -1.17101883745363e-10, -2.8237523430618694e-11, 2.3915203151148035e-10, -1.4455103780619538e-12, -1.5650813978140832e-12] QuasiNewtonMethods.optimum(state) .- 1 = [2.4037882795369114e-11, -5.983102902007431e-11, -2.4431567879901195e-11, -3.84694498478666e-11, 1.7663426277181316e-11, 7.510880806194109e-11, -2.949207544844512e-11, 6.322764534161252e-11, -1.1526335441658375e-11, -4.518596607994141e-11, 4.748668125387212e-11, -1.2570577911930059e-10, -4.7605586139809475e-11, -8.144407370735962e-11, 3.508282553355002e-11, 1.440305652522511e-10, -5.835742999948934e-11, 1.217552725307769e-10, -3.002642579019721e-11, -9.045930671192082e-11, -1.3395951015127139e-12] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-7.151390590820483e-12, 4.048805735124006e-11, 3.975553219959238e-11, 3.237388135346464e-11, -4.4723336145580106e-11, 1.4063417097531783e-11, -1.4201584352946384e-10, -1.1450840275983865e-12, 1.0188716537129494e-10, -1.0934175787014055e-10, -3.4872882359593405e-11, -1.4874546039322922e-11, 8.750822289016469e-11, 7.134870472214061e-11, 6.379741179785015e-11, -9.135991962949674e-11, 2.30611085783039e-11, -2.891434869312093e-10, -4.973021994203464e-12, 2.2060997473261068e-10, -2.1935431249175963e-10, -6.966904830818521e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.946154348786422e-11, 7.843237170845896e-11, 1.138578120674083e-11, 2.120703612717989e-11, -8.804956763697191e-12, 9.374501175329897e-12, -1.03747010982147e-10, -6.611833303082904e-11, -3.230327116909848e-11, -5.700551142240329e-12, 4.546585330444941e-12, 3.5299096978747e-11, 1.5677481535192328e-10, 1.91526794424135e-11, 4.427369582060692e-11, -1.2874257215855778e-11, 1.095989965449462e-11, -2.1409873873778906e-10, -1.4075762777565615e-10, -6.17204065633814e-11, -2.5082602661541387e-11, 1.1401324329085583e-11] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [2.579654267975684e-10, 8.286793473644138e-11, 2.5373703138598103e-10, -1.7806756069660423e-10, -2.367412932358093e-10, 3.4854341635082164e-12, -2.7878011010784576e-10, 3.9527492390334373e-11, -6.374978323009373e-11, 9.423883895465224e-11, 2.5164093031548873e-11, 5.186731044659609e-10, 1.630120483042674e-10, 5.129687785654369e-10, -3.6504343992049826e-10, -4.81036765975773e-10, 9.220402219511925e-12, -5.618042697719261e-10, 8.084710678701867e-11, -1.3927015096726336e-10, 1.8676793445138173e-10, 4.532241248966784e-11, -3.826827743580452e-12] QuasiNewtonMethods.optimum(state) .- 1 = [5.790923296444817e-13, 1.290478834903297e-11, 7.535305712735862e-12, -1.1540546296373577e-11, -1.3215539773625551e-11, -1.6606382935435704e-11, -2.559474854280097e-11, 9.7506447360729e-12, -1.7043366717928166e-11, -9.918288412791298e-12, 1.871303112466194e-11, 1.2563283746658271e-12, 2.563926848608844e-11, 1.7281953645920112e-11, -2.374067609167696e-11, -2.6341595571466314e-11, -3.4155789307988016e-11, -5.440048411742282e-11, 1.9022783348532357e-11, -3.326616759835588e-11, -1.759736800721612e-11, 3.552358407432621e-11, 1.0951239914902544e-12] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [-1.0328515820390294e-11, -2.6652235973756433e-11, -2.1004531447488262e-11, -1.574962382733247e-11, -1.6891044118949594e-11, -4.6489478933153805e-12, -2.6840751843337785e-12, 1.3996293013462946e-10, -3.5142999621484705e-12, 2.69606559299973e-12, -3.3702485247033565e-11, -3.7328029556249476e-11, -2.063149651121421e-11, -5.324463092648557e-11, -4.2112424658569125e-11, -3.199307485601821e-11, -3.4391933745325787e-11, -9.176215343131844e-12, -5.277445147555682e-12, 2.805438104047653e-10, -7.212452857174867e-12, 5.389244606135435e-12, -6.758593684708103e-11, -7.56531504109148e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.0044209908244284e-10, -8.077272184436879e-11, 1.1470202565533327e-10, 2.378608421338413e-11, -4.4549985922515134e-10, -7.425793313586837e-11, -6.009193143086122e-12, 1.692674889142154e-10, 7.365419385507721e-11, 7.485767561377088e-11, -7.997191797670666e-11, 2.390503350824247e-10, 2.0461410343841635e-10, -1.6161028071337569e-10, 2.4701751755173973e-10, 4.609335135796755e-11, -8.973094489661548e-10, -1.5483037074659478e-10, -1.1351919404489763e-11, 3.3720248815427567e-10, 1.5373968764720303e-10, 1.4835110917488237e-10, -1.451223585746675e-10, 4.766922412358099e-10] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 3m52.2s Method ambiguity | 1 1 9.2s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.3s Stale dependencies | 1 1 5.4s Compat bounds | 3 1 4 8.1s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.5s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 7.5s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 47.5s RNG of the outermost testset: Random.Xoshiro(0x413223c8b56cb1f8, 0x796c0b4f2026e9f7, 0x179968824826d116, 0xa418cc1382383d81, 0xa022e4ca0e2d33d2) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 260.49s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2673 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2522 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:515 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:157 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:308 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:330 [14] _start() @ Base ./client.jl:563 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 499.25s: package has test failures