Package evaluation of QuasiNewtonMethods on Julia 1.13.0-DEV.1080 (ed57414aec*) started at 2025-09-04T16:44:48.190 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.52s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.3.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 3.81s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 199.65s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_W0Tosl/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_W0Tosl/Manifest.toml` [79e6a3ab] Adapt v4.3.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.15.0+1 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.8.12 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.67.0+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:751 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1952 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [3.441691376337985e-14, -1.5987211554602254e-14] QuasiNewtonMethods.optimum(state) .- 1 = [1.234168323094309e-11, 2.4446222823826247e-11] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [5.622391441306718e-12, 1.1387779608185156e-11, -2.627120743170508e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.4661161173989967e-11, 3.7666980645667536e-11, 1.031952301389083e-11] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [-1.6090474508345665e-9, 8.133145268374165e-10, -3.2465671262471574e-9, 1.6291212823205115e-9] QuasiNewtonMethods.optimum(state) .- 1 = [-2.679634292235278e-12, 9.21884790727745e-12, -6.279088360372498e-12, 1.7955414932657732e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [5.28749044548249e-10, 6.851423872689111e-10, 1.0590148757927409e-9, 1.3792016417824016e-9, -4.885225557416106e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-8.955636232599318e-11, -1.105228131237368e-10, -1.7072743219159747e-10, -2.2283408451784226e-10, 4.567590750070849e-11] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [-2.2442936398192614e-11, 3.476730014995155e-11, -1.376410097009284e-11, -4.241973439178537e-11, 6.362110838153967e-11, -2.5120572288983567e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-1.576994090868311e-11, -6.935563234833353e-12, -1.1585066239661046e-11, -3.193245667887368e-11, -1.2535528171042642e-11, -2.5160318273265148e-11] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [1.4026113603904378e-11, -2.6956559207036435e-10, -7.420597469831591e-11, 4.2345460471437946e-11, -5.582585504981807e-10, -1.407515215490207e-10, -1.343140043630342e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-4.512856754956829e-11, -6.831857302103117e-11, 3.730793451950376e-11, -8.248257632459399e-11, -1.3486656236239014e-10, 8.747802482389488e-11, -8.200107259881406e-13] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-3.640843182495246e-11, 5.1322945893161886e-11, -4.899514127743032e-11, -6.997347146153743e-11, -6.878519975828112e-11, 1.061908339039519e-10, -1.0243028647494157e-10, -1.4451795316006155e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-5.540701231154799e-11, 9.28634946717466e-12, -8.630207659621192e-12, 1.7132073537595716e-11, -1.1356304785437032e-10, 1.9075629964504515e-11, -1.7293499965376213e-11, 3.52786688750939e-11] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [3.8190339779475835e-11, -8.814726726313893e-12, 1.0629275237761249e-11, -3.395750347578996e-11, 7.127343160107102e-11, -1.8319235017827395e-11, 2.307420920999448e-11, -6.368550131696793e-11, 5.06816810741384e-12] QuasiNewtonMethods.optimum(state) .- 1 = [3.1245028786486273e-10, -2.456146397378234e-10, 1.2939871396611125e-10, -1.2551149008999118e-10, 6.150322473530423e-10, -4.957710908470858e-10, 2.471840510054335e-10, -2.702528201226073e-10, 3.8061709339842764e-10] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [2.8912428007288327e-12, -3.456235297960575e-12, -4.934053166039121e-12, 5.693223670277803e-13, -3.8338221486355906e-12, 5.685452109105427e-12, -6.860623180671155e-12, -1.0410783346515018e-11, 1.1650680420416393e-12, -7.211897745662554e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-4.34130509319175e-12, -2.502650309210708e-10, -1.776162550370941e-10, 2.2568169555370332e-11, 8.304423815275186e-11, -9.460210392830959e-12, -4.834660449759554e-10, -3.5830327593799893e-10, 4.5558223860098224e-11, 1.610844790889132e-10] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-1.3548384636408173e-11, -2.8390401141109578e-11, -6.346034808757395e-12, -4.0986214422389367e-11, -2.5109803125644703e-11, -3.434796891355063e-11, -4.7844839201616196e-11, -1.481392786217839e-11, -8.26759771754837e-11, -4.799716180059477e-11, -1.49750212230515e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-8.062672751663058e-11, -2.0177193249537595e-11, 1.509548042122333e-11, -7.642364519000466e-11, 5.522227120025036e-11, -1.6926948731565972e-10, -4.2554182400067475e-11, 2.7037705407906287e-11, -1.4915124690872972e-10, 9.643108533907707e-11, 1.2824630246655033e-11] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [7.117662015332371e-11, 1.6887158338363406e-11, -8.852474309151148e-12, 1.8206325336223017e-11, -8.905431947425768e-12, 5.981792838838373e-11, 1.4244738721913563e-10, 3.431877004800299e-11, -1.9766188685821362e-11, 3.0826452501742097e-11, -1.648303715739985e-11, 1.2007550509451903e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.1009548828155857e-10, -7.856815198437062e-11, 8.530709472154285e-11, -8.659228889484893e-11, 1.102500313265864e-10, 1.5638845773935373e-10, 2.2113066933115988e-10, -1.474500521680966e-10, 1.7747980862736767e-10, -1.7089307746687155e-10, 2.456166381392677e-10, 3.223366018545448e-10] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [-1.3861689573957392e-11, 8.509326576700005e-11, 1.1885825657032001e-11, -6.937905805415312e-11, -2.705546897630029e-11, -6.982892042373123e-11, -2.6190272173209905e-11, 1.7642665106620825e-10, 2.670152987604979e-11, -1.3496814776914334e-10, -4.675460019143429e-11, -1.3869827508727894e-10, -1.1081136008783687e-12] QuasiNewtonMethods.optimum(state) .- 1 = [2.822142519676163e-11, 2.970912404975934e-11, -4.1031622544096535e-11, -7.447487071488013e-12, -8.016032282398555e-12, 7.198042162315232e-11, 4.976952183710637e-11, 6.396150276088974e-11, -8.851130939291352e-11, -2.43841613567497e-11, -1.4088397115585849e-11, 1.478412947619745e-10, 1.9317880628477724e-13] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [-1.0669665151397112e-10, -1.768838409077489e-10, 1.832176632632354e-10, -1.1271894528874782e-10, 1.0996581423228236e-10, 4.94495555614094e-11, 8.019562791616863e-11, -2.0040447079594514e-10, -3.6715142037735404e-10, 3.6131808656136855e-10, -2.140329025124288e-10, 2.1689916529510356e-10, 8.922329541860563e-11, 1.5642620532219098e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.7289725207092488e-11, -1.5556445021047693e-11, 8.425593556182776e-11, 2.4553026278795187e-11, 5.157541060896165e-11, 4.142020060271534e-12, -7.233658116945207e-11, 3.517719449064316e-11, -2.8268387630703273e-11, 1.6847168105016408e-10, 4.9896087261913635e-11, 1.0850986775778892e-10, 9.142464563183239e-12, -1.5038748024664983e-10] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [1.7834622667578515e-11, -3.112110569247761e-11, 1.1434408975219412e-11, -1.494548929059647e-11, 7.347455976969286e-13, -1.9640955528643644e-11, -3.793854119749085e-12, 3.38611361172525e-11, -6.247802275538561e-11, 2.1421309170932545e-11, -3.194267073070023e-11, 1.5187850976872141e-12, -3.8106962030326486e-11, -8.843814569559072e-12, 1.3549383837130335e-11] QuasiNewtonMethods.optimum(state) .- 1 = [2.1991808374366428e-10, -1.4506063017449833e-10, -1.7266010843286494e-10, 1.4704903961160198e-10, -1.1619871731483045e-10, -2.0177404191912274e-10, 1.1812151257117876e-10, 4.4145687105867637e-10, -2.7854196726906366e-10, -3.258529002181376e-10, 2.7604185603991027e-10, -2.209641358774661e-10, -4.0496184183780315e-10, 2.2521873255243463e-10, 2.8461233370080663e-11] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [2.811328947416314e-10, -2.1156310037184767e-10, -7.250566813610249e-11, -5.877176523227945e-11, 2.7144420045033257e-10, 2.493074635623316e-10, 1.197106858086272e-10, -6.361433602108946e-11, 5.815727899260992e-10, -4.2232561892063814e-10, -1.3724665848258155e-10, -1.0498324432006712e-10, 5.615741205389213e-10, 5.057678720277181e-10, 2.3000912285908726e-10, -1.520908954333322e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-6.669720331586859e-11, -1.4350087784720245e-10, -4.501732320250085e-11, -6.434985877490362e-11, -1.1633816132672337e-10, 1.992139786466396e-10, 6.749045766696327e-12, 3.541900106540652e-11, -1.3151846278702806e-10, -3.009851257118612e-10, -8.510769866632018e-11, -1.2883294431276227e-10, -2.3447432884182717e-10, 3.997959741042223e-10, 1.4554801808230877e-11, 7.560863046762734e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [7.869482843148035e-12, -2.9092284137277602e-11, -5.42494937860738e-11, 8.062439604827887e-13, -5.960820725903204e-11, -3.080757871032347e-12, 1.28034027824242e-10, 3.2506886071814733e-11, 1.8610002427976724e-11, -5.5944915366978876e-11, -1.0895606639138578e-10, 2.7908786393027185e-12, -1.1841028157988376e-10, -8.04667443787821e-12, 2.507758445347008e-10, 6.37871977460236e-11, -4.3507419889010635e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-3.7966518817711403e-11, -2.2778223751629412e-11, -3.0087599078854055e-11, 6.59472476627343e-13, 4.269207209972592e-11, -2.9734548157023255e-11, -9.446887716535457e-13, 4.547695553469566e-11, -7.636447030279214e-11, -4.7429282723499e-11, -6.562861365466688e-11, 2.4913404672588513e-13, 8.404898999003763e-11, -6.125466800455115e-11, -2.479683125500287e-12, 8.961342778945891e-11, 1.6044943151882762e-12] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [3.668709780413337e-11, 1.0217382495625316e-11, -8.700240528014547e-11, 6.251821282887704e-11, -4.328337688264128e-11, 2.1872281763535284e-11, -4.5983772345437046e-11, -6.823330789273996e-11, -9.820355639789113e-11, 5.929390312076066e-11, 2.7657653944856975e-11, -1.7554901976524206e-10, 1.2307399543942665e-10, -8.816558594304524e-11, 4.351918825307166e-11, -9.62029345075166e-11, -1.3738943316354835e-10, -1.926324655343592e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-6.610711977828032e-12, -3.0531133177191805e-12, -6.0607074914287296e-12, -1.0369261005394037e-11, -1.2454370867942544e-11, 3.5710545631673085e-11, 1.781108593945646e-11, -1.8647861033116442e-11, 1.1896927887278252e-11, -1.0044520770691179e-11, -5.257017043902579e-12, -1.3007372956508334e-11, -1.8701817872113224e-11, -2.1129431537758592e-11, 7.095812826207748e-11, 3.387046199065935e-11, -3.609568199891555e-11, 2.272382282342278e-11] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [-2.97190050346785e-11, 1.7647261429942773e-10, -6.01378946640807e-11, -7.566325344043889e-11, 2.940869769929577e-11, -1.393352100365064e-11, 8.389378081119503e-11, 9.283684931915559e-12, -1.4695911154660735e-11, -6.536726715467012e-11, 3.4808134152797265e-10, -1.2551304440222566e-10, -1.4233714207279036e-10, 6.257483420313292e-11, -3.288724848005131e-11, 1.70648828401454e-10, 2.1486146195570655e-11, -2.541544752432401e-11, 1.7474910407599964e-12] QuasiNewtonMethods.optimum(state) .- 1 = [8.08952904662874e-12, 8.562017761448715e-11, -1.4387102620361247e-10, -1.9884660584779112e-10, -4.108202666941452e-11, -9.580869431147221e-11, 1.5048695622965624e-10, 1.014592854176044e-10, 1.0568146358025388e-10, 3.2525981907838286e-11, 1.698690077489573e-10, -2.9618352215265986e-10, -3.7431158173006907e-10, -7.904144005976832e-11, -1.8127632728237586e-10, 2.9228375275636154e-10, 2.153746070376883e-10, 2.0706414360915915e-10, 1.794475679162133e-11] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [-4.342859405426225e-11, 6.921951900551448e-11, 5.236544531328491e-11, 4.487543669995375e-11, -9.160561198484629e-12, -1.210465061518562e-11, -1.0220235768798602e-10, -2.2921220477201132e-11, 7.895950560055098e-11, 7.954548131294814e-11, -9.459599770167415e-11, 1.3675283128122828e-10, 1.0831335828243027e-10, 8.463207912257076e-11, -2.039768354222815e-11, -2.949729349666086e-11, -2.0095347608162228e-10, -3.6873060160758087e-11, 1.645599212451998e-10, 1.699391738441136e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-5.208355968733258e-11, -1.9457102595765718e-10, -1.6049495066283725e-10, -1.0811296302648543e-10, 1.435620511358593e-10, 2.006350641181598e-11, -1.6111922906958398e-10, 3.448885621537556e-11, -1.029778484706867e-10, -4.232947325988334e-12, -1.0342582346112295e-10, -3.7915270922894706e-10, -3.028652884040639e-10, -2.414363153846466e-10, 2.8097391080450507e-10, 3.6251224244665536e-11, -3.3175484581704495e-10, 7.178702077226262e-11, -2.1737001087984709e-10, -1.2383982728181309e-11] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [-1.3168022228171594e-11, -6.128553220463573e-11, 9.0436547139916e-12, 2.1744828160308316e-12, 1.0126566252210978e-11, 5.4966031726166875e-11, -9.821199409287829e-11, 2.5131896563834744e-11, 4.1106229531351346e-11, -1.4322876218386682e-11, -3.151146010793582e-11, -1.2570222640562179e-10, 1.7876589097909346e-11, 4.3443026953582375e-12, 1.9753532143340635e-11, 1.1325829163411072e-10, -1.9772972148501822e-10, 5.0536907991727276e-11, 7.896527876027903e-11, -3.104594359371049e-11, -4.860112312599085e-12] QuasiNewtonMethods.optimum(state) .- 1 = [4.620281934819559e-11, -7.752520847503774e-11, 1.0540590622554191e-10, 1.5367707106861417e-12, -3.4461100639759934e-11, -4.1950443119276315e-11, -1.7425505483004144e-11, -1.1671574817739838e-10, -3.2448710385324375e-11, 1.237139279908206e-10, 9.599387951197969e-11, -1.556927919921236e-10, 2.0479618001445488e-10, 1.963318396747127e-12, -6.61424248704634e-11, -9.03465080526189e-11, -3.483879851273741e-11, -2.388147457565992e-10, -6.232803162475875e-11, 2.46356268718273e-10, 8.844036614163997e-12] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [9.171108317218568e-12, -5.522871049379319e-11, 2.474376259442579e-11, 1.581152986318557e-10, -1.3778533869412968e-11, -5.38161737395626e-11, 1.4911449852661463e-10, 1.3728107539634493e-10, -1.4585976870762352e-10, -9.702827430402294e-11, -9.685130475389769e-11, 3.93352017624693e-12, -1.227877799436783e-10, 5.7839510958501705e-11, 3.132494263979879e-10, -3.6974423522906363e-11, -9.758926999836603e-11, 2.798981046936433e-10, 2.556732603409273e-10, -3.053666208785444e-10, -2.1411605821697322e-10, -1.9629364800266558e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.3489764860707965e-11, 3.834665918134306e-11, 2.3144597349755713e-11, -4.598799119293062e-11, -6.678180231034503e-11, 3.869060627437193e-11, -2.9294566772364306e-11, 2.0373036591081473e-11, -4.85855800036461e-12, -3.6323166696661247e-12, -4.895328586940195e-11, -2.4041990620560227e-11, 7.651590472335101e-11, 4.7082560072908564e-11, -9.14385234196402e-11, -1.3122614106464425e-10, 8.160383480060318e-11, -5.687716964075662e-11, 4.120037644383956e-11, -9.867995309775779e-12, -6.304512467636414e-12, -9.144351942325102e-11] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [1.1648459974367142e-11, 3.211142463044325e-11, -6.067391034036973e-11, -5.5568882828538335e-11, -4.4134140786411535e-11, 7.849276784099857e-11, -2.0415558132924616e-11, -4.668487818548783e-13, 1.4376366763713122e-10, -6.563627419353679e-11, -4.1994629995656396e-11, 1.8693935288638386e-11, 6.374811789555679e-11, -1.217199674385938e-10, -1.1156542356616228e-10, -8.632872194880292e-11, 1.4820256133418752e-10, -4.8322346124507476e-11, 3.377298440909726e-12, 2.872546644994145e-10, -1.3906908957750375e-10, -8.134826146033447e-11, 4.603872838515599e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.2483547529029693e-10, 5.382849721513594e-11, -1.440048080780798e-11, 3.215361310537901e-11, 3.661959624423616e-12, -1.119249137815359e-11, 3.972422391029795e-11, 1.1121992216089893e-11, -9.26582144344934e-11, 1.2432499474357428e-11, -2.5751178966970656e-11, -2.580519131711867e-10, 1.1200840255298772e-10, -4.358169380935806e-11, 5.4538817906291115e-11, 5.6703530759705245e-12, -2.4611757076797858e-11, 7.232592302841567e-11, 2.121636200058674e-11, -1.857639597702132e-10, 3.562061756667845e-11, -5.924261081702298e-11, 5.679900993982301e-12] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [1.3951284572044642e-11, -3.232147882670233e-11, -8.509648541377146e-11, -1.09724007657519e-10, -3.4361846701358445e-11, -8.457901046199368e-12, 1.0454037635554414e-10, 3.1948665935033205e-11, 6.748090974895149e-11, -5.08196817960993e-11, -1.1153300505384323e-12, -7.611555830067118e-11, 2.681854738284528e-11, -6.673872565698957e-11, -1.6650802958650956e-10, -2.1937551775152997e-10, -6.821387898980902e-11, -1.6312395878514963e-11, 2.0899060260148872e-10, 6.354050618995188e-11, 1.3718803870688134e-10, -9.588718707931321e-11, -5.906386491005833e-12, -1.4880441323583682e-10] QuasiNewtonMethods.optimum(state) .- 1 = [3.1195712679732424e-11, 4.6034953626872266e-11, 2.458189207743544e-11, -2.7622792941883745e-11, -7.214118191711805e-11, -2.3487656264364887e-11, 3.265854253697853e-11, -2.0190515925833097e-11, -6.95390411920016e-11, -3.868871889523007e-11, -2.962408096607305e-11, 9.227663078092974e-11, 6.278821906846588e-11, 8.835265852269458e-11, 4.257105779004178e-11, -5.886735543469968e-11, -1.4544232485036446e-10, -4.4462433734793194e-11, 6.942890706795879e-11, -3.4469982423956935e-11, -1.443377639631649e-10, -7.533007551074888e-11, -6.082190306955226e-11, 1.7798318374673272e-10] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 3m39.1s Method ambiguity | 1 1 9.2s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.5s Stale dependencies | 1 1 6.3s Compat bounds | 3 1 4 9.5s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.5s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 8.9s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 48.0s RNG of the outermost testset: Random.Xoshiro(0xf4cd89b84f992f5b, 0xb3b1f6695d8a7497, 0x4f58575942983b54, 0xced5e48e86e7c053, 0x447661986587f809) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 242.76s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2673 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2522 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:515 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:157 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:308 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:330 [14] _start() @ Base ./client.jl:563 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 483.5s: package has test failures