Package evaluation of QuasiNewtonMethods on Julia 1.13.0-DEV.1072 (de815ed1fa*) started at 2025-09-03T15:33:48.829 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.86s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.3.0 [4fba245c] + ArrayInterface v7.20.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.18.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.72 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 3.8s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 206.15s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_nDCB9T/Project.toml` [4c88cf16] Aqua v0.8.14 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_nDCB9T/Manifest.toml` [79e6a3ab] Adapt v4.3.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.20.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 ⌃ [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.18.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.72 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.11 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.15.0+1 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.8.12 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.46.0+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.66.0+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:744 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1945 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/MCcFg/src/deps_compat.jl:45 n = 2 QuasiNewtonMethods.optimum(state) .- 1 = [1.166600149815622e-11, 2.447286817641725e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.6223467841646197e-12, -4.6627146588207324e-12] n = 3 QuasiNewtonMethods.optimum(state) .- 1 = [4.5643488988389436e-12, 1.0660583527055678e-11, 4.0458747463389955e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.3335221815680143e-11, -3.6428082772488324e-11, -7.691722814229252e-10] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [-4.9041215532952265e-11, 3.346434240825147e-12, -1.0997669441792368e-10, -5.556333171341521e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-2.3774870960835415e-11, -8.72146799224538e-12, -4.905964523516104e-11, -1.8368084830910902e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [9.410250356722827e-12, -1.2647660696529783e-11, 1.7595036538864406e-11, -2.6051605317434223e-11, -2.602718041089247e-11] QuasiNewtonMethods.optimum(state) .- 1 = [2.638467222482177e-11, -2.954206879124399e-10, 6.048361811394898e-11, -5.989105877901579e-10, -2.007375377033327e-10] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [1.1536349653340494e-10, -1.1546574807397292e-10, -6.594647050661706e-11, 2.2614865535786066e-10, -2.0671397926719237e-10, -1.246839298474356e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-8.397693651573945e-11, -3.2586378040377895e-11, -4.7817860782117805e-11, -1.565487739441096e-10, -6.284972542403011e-11, -1.0174849851551926e-10] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [-7.135469992647359e-11, 6.787992390400177e-11, 3.7084335602344254e-11, -1.5037060485667553e-10, 1.3817813560024206e-10, 6.103673122481723e-11, 2.8843594179761567e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-2.4664714715072478e-12, 8.184786182141579e-12, 3.807620885254437e-12, -6.000977492703896e-12, 1.568434271348451e-11, 8.317124766676898e-12, 5.706546346573305e-14] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-2.981725977235783e-12, 2.929656517380863e-11, 4.1633585468048295e-11, 7.294742587760084e-11, -3.2012170692041764e-12, 6.283817910457401e-11, 8.498135528611783e-11, 1.4600676223608389e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.103059865670275e-10, -4.9601767138085506e-11, 3.38558070467343e-11, 1.02331254581145e-10, -2.3208779342809294e-10, -9.775735776429428e-11, 7.530887025097854e-11, 2.157001244285084e-10] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [-2.495502693378171e-10, -1.1305767433356095e-10, 2.7680457925782775e-10, 4.0607850415597113e-10, -5.136545633277478e-10, -2.3101742741005182e-10, 5.600440111663829e-10, 8.058111955477898e-10, 1.326272425217212e-12] QuasiNewtonMethods.optimum(state) .- 1 = [3.4031666373834923e-11, -3.9067749035837096e-11, 6.743405833731231e-11, -3.5111247242980426e-11, 5.831091165475755e-11, -7.691680625754316e-11, 1.2626744094745845e-10, -7.397471524228649e-11, 1.4277468096679513e-13] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [3.4767744239161402e-12, -6.1158855757526e-12, -1.8207657603852567e-14, 4.796829600195451e-12, -2.546052257912379e-11, 8.947509400059062e-12, -1.0033751607352315e-11, 6.348255254806645e-13, 9.332978834208916e-12, -5.296540983579234e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.8731660667015149e-10, 3.184341679229874e-12, -3.716001950593295e-10, 5.133671265866724e-13, 1.1296608093402938e-10, 3.538034309968907e-10, 2.2289281531584493e-11, -7.577385385815205e-10, 9.998002425959385e-12, 2.1483481660311554e-10] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-7.690537096038952e-11, -9.606271333950644e-11, 7.474465490986404e-12, 1.6850965067760626e-11, 1.2706569130216394e-10, -1.5792467333852755e-10, -1.9642132365049747e-10, 6.91424695276055e-12, 3.8198333385253136e-11, 2.378315322459912e-10, 7.1096462050945775e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.8469514806440657e-10, -1.1079637207700443e-10, -1.4144652116243606e-10, -1.1001266564392154e-10, 5.458877794239925e-11, -3.8158676218813525e-10, -2.2664448096065826e-10, -2.708701041242989e-10, -2.3202284538115237e-10, 1.0953904450161644e-10, -1.301736496372996e-11] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [1.1382894626876805e-10, -2.2071233729548112e-13, -1.3220124994717253e-10, 2.5621504917694438e-11, 6.452482992358455e-11, 7.382539024547441e-12, 2.347093630561403e-10, -3.2466251909113453e-12, -2.5302915318548003e-10, 4.675149156696534e-11, 1.2978085273118722e-10, 1.4220624677818705e-11] QuasiNewtonMethods.optimum(state) .- 1 = [1.4177548024463249e-11, -1.6902090838044614e-10, 8.901479553458103e-11, -2.6864954705274613e-11, 6.972156185724998e-11, 1.2368239765692124e-10, 3.5060399028452593e-11, -3.435995932221658e-10, 1.8735968332350694e-10, -5.966405147717069e-11, 1.31659350088853e-10, 2.5174951012729707e-10] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [-2.519662256617039e-11, -5.053457652337556e-11, -5.199163322089362e-11, 3.803402037760861e-12, -7.451073091857552e-11, 1.3588241642992216e-11, -5.630917954135839e-11, -1.0942302619554312e-10, -1.1144318801115105e-10, 5.2022830487885585e-12, -1.5438583744753487e-10, 2.361000284167858e-11, -2.778322016894208e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.8144043479348966e-11, 2.4584756452838974e-10, -2.8038815713671283e-10, 7.785172506658e-11, -1.799845827932245e-10, 1.43536293961688e-10, -8.419809294224478e-11, 4.937614761502118e-10, -5.855961271450383e-10, 1.671847105200186e-10, -3.5869118786280296e-10, 2.975817370298728e-10, 1.298250396075673e-11] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [6.002753849543296e-11, -5.050626583624762e-12, 8.944178730985186e-12, -1.5713985668242003e-11, 3.7408742770139725e-11, 9.876743867209825e-11, -7.279377101099271e-11, 1.2706657948058364e-10, -1.1044720693575982e-11, 1.9137358364673673e-11, -2.8582691768974655e-11, 7.525402523356206e-11, 2.000160037596288e-10, -1.4301138051564521e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-5.864730923121897e-11, 2.916622499071764e-11, -7.329992168791932e-11, -2.7145174996690002e-11, -2.4004909171537747e-11, 3.214895016867558e-11, 9.188716454389123e-11, -1.1852174797155612e-10, 4.175881862522601e-11, -1.3292000833331485e-10, -5.1374460241504494e-11, -5.123268476125986e-11, 6.077094383272197e-11, 1.854991715788401e-10] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [7.705502902410899e-11, -1.6274437353303028e-10, -3.17437187646874e-11, 2.8530511286817273e-11, -1.8318202510414494e-10, 5.794875690412482e-11, -1.2878087485290735e-10, 1.4945200632610067e-10, -3.3490976658612226e-10, -6.532863139341316e-11, 5.836486849375433e-11, -3.477814702890214e-10, 1.0669576333555142e-10, -2.6517965601158267e-10, -8.536504836342829e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-3.0421221097753914e-12, -4.876876680270925e-12, -1.0797251981387035e-11, -1.5917489548655794e-11, 6.984191003311935e-12, -6.23945339839338e-13, -2.9665270240286645e-11, -4.606648396077162e-12, -1.1250778086946411e-11, -2.6829760635393995e-11, -3.049127617060776e-11, 1.478839273261201e-11, -2.4668045384146353e-12, -5.788391987948671e-11, -2.7544633240950134e-13] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [6.413980457864454e-11, -2.9538804735551594e-10, -1.2426504270024452e-10, -6.808265062829832e-11, 9.185630034380665e-11, -1.2528256210231348e-10, -5.047925411005849e-10, 3.224021050129977e-10, 1.3224643602427477e-10, -5.74872260905579e-10, -2.3772683821476903e-10, -1.5680545750740293e-10, 1.9956414298860636e-10, -2.5848567730690775e-10, -1.0177377829378997e-9, 6.657194795423038e-10] QuasiNewtonMethods.optimum(state) .- 1 = [3.728350961296201e-11, -5.330380581369809e-11, 1.0288747631648221e-10, -1.0904477321105333e-10, 8.86402062860725e-11, -1.7193912960067337e-11, -2.98857605329772e-11, 1.1451439796417162e-10, 7.653278011332532e-11, -1.002067318012223e-10, 1.9954993213389116e-10, -2.2531287946492284e-10, 1.8684964686599415e-10, -3.5841551948578854e-11, -5.4957260964272336e-11, 2.330200477018707e-10] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [1.0927747595701476e-10, -8.302947218652434e-11, -2.6632585026220568e-11, -1.343308797530085e-10, 4.2337466865660645e-11, -2.85556023271738e-11, -1.766364832178624e-11, -2.1297186236779453e-11, 2.1394530591578587e-10, -1.730390275511695e-10, -5.2754467461113563e-11, -2.875185645123679e-10, 9.067346873337101e-11, -5.994615914772794e-11, -2.771882723351382e-11, -3.2935987270832356e-11, -6.854516954035716e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-4.352829208187359e-11, 1.2053691378355325e-10, 3.2900571156346814e-11, 1.4008683102417763e-10, 1.211859501637491e-10, 1.5613399462210964e-10, 9.15045816896054e-11, -1.225146650796205e-10, -9.122769206726389e-11, 2.462368087208233e-10, 5.792566426521262e-11, 2.822844180627726e-10, 2.586175718022332e-10, 3.117270885866219e-10, 1.8784618305289769e-10, -2.36676900300381e-10, 3.869060627437193e-11] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [5.5711435464900205e-11, 6.07747185910057e-11, -9.577727499987532e-11, 3.7840397482113985e-11, -5.254385815334217e-11, -5.445865980391318e-11, 5.200728736554083e-11, 1.3493406392228735e-10, -7.934608525772546e-11, 1.0858780541411761e-10, 1.2314504971300266e-10, -1.96375360417278e-10, 7.077582964143403e-11, -1.0177569897962258e-10, -1.0681877604667989e-10, 1.0153233809262474e-10, 2.7978264149908227e-10, -1.6401158209333744e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-9.445233484228766e-11, -7.148281966351533e-12, 1.0289102903016101e-10, 9.712697313091212e-11, -5.262057456434377e-11, 8.27793389390763e-11, -2.1983526110602725e-12, -2.1328316890389942e-10, -9.008760404327631e-11, -1.893605272584864e-10, -1.3473999693758287e-11, 2.0262591604591762e-10, 1.9585244537267954e-10, -1.065882937467677e-10, 1.6506618294442887e-10, -6.023737064708712e-12, -4.297492361970967e-10, -1.7594881107640958e-10] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [-4.105438211610135e-11, 1.2244427693985926e-11, 2.3060886533698977e-11, -4.14712708618481e-11, -4.4176107216742366e-11, 2.7202684549365586e-12, -1.6422307957952853e-11, 3.920952451608173e-11, -1.2515655178901852e-11, -8.254075201108435e-11, 2.4272805987379797e-11, 5.4777515856585524e-11, -7.96240851030916e-11, -8.731193545941096e-11, 4.022338018216942e-12, -3.43853834294805e-11, 7.782707811543332e-11, -2.2006174660305078e-11, 1.0340617251358708e-12] QuasiNewtonMethods.optimum(state) .- 1 = [8.386402683413507e-11, 6.709321986875239e-11, -3.117750502212857e-11, 5.1307402770817134e-11, 7.4442674247166e-12, 1.217232981076677e-10, -5.4738769073026106e-11, -6.924461004587101e-12, -2.8105073823780913e-11, 1.608786437401477e-10, 1.3642798002422296e-10, -5.71808156379916e-11, 1.0134093564317936e-10, 1.917332959067153e-11, 2.4665225417663805e-10, -1.098522384168632e-10, -7.182032746300138e-12, -6.132250263135575e-11, -5.2773896364044504e-11] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [-5.9252602824244605e-12, 1.2860601472652888e-11, -8.232969861410311e-12, 1.5760726057578722e-12, -1.6437851080297605e-11, 2.2174262426233327e-11, 4.46966907929891e-11, -3.7189029633566406e-11, 1.3963274980710594e-11, -5.230893496133149e-11, -1.2486234268749286e-11, 2.762834405700687e-11, -1.6043277817345825e-11, 4.5632386758143184e-12, -3.220579358753639e-11, 4.48527881502514e-11, 8.947975693729404e-11, -7.443445859678377e-11, 2.7936986057852664e-11, -1.0525702531793968e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.8414603175642696e-11, 5.1233683961982024e-11, 2.992495140574647e-12, -6.457123724601388e-11, -9.539913303768799e-11, -9.050682425737477e-11, 4.459899116682209e-11, -6.824640852443054e-11, -7.590328365836285e-11, -1.7049139877656216e-11, 3.011701998900662e-11, 9.430278780087065e-11, -2.071232074740692e-12, -1.2672929372570252e-10, -1.9083923330498465e-10, -1.8555113001639256e-10, 9.811573775664328e-11, -1.4642220769189862e-10, -1.5997181357363388e-10, -4.643896378553336e-11] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [2.3634427748220332e-11, 5.419975579457059e-11, -2.9391811207091223e-10, -9.228617869894151e-11, 7.08784142489094e-11, -1.6877188535602272e-10, -1.1344147843317387e-11, 8.742895296620645e-11, 1.4844236950750656e-10, -2.452525960094931e-10, 4.813682785709261e-11, 1.1194134508230036e-10, -5.84118864388472e-10, -1.796471860160409e-10, 1.388056336537602e-10, -3.406833704033829e-10, -2.361089102009828e-11, 1.7478218872213347e-10, 3.0322566679785723e-10, -5.041118633641872e-10, 1.6084689136164343e-11] QuasiNewtonMethods.optimum(state) .- 1 = [2.7414071013254215e-11, 1.1770873165062312e-10, 2.8573365895567804e-11, 6.860334522684752e-11, 4.5449644048289883e-11, 1.853872610979579e-11, -3.181654939510281e-11, -3.934741421574017e-11, 6.10311801096941e-11, 2.94408941670099e-12, 5.081601806011804e-11, 2.37707631356443e-10, 5.334177544114027e-11, 1.3860379510788334e-10, 9.052580907109586e-11, 4.0649927868230407e-11, -6.013933795401272e-11, -8.110034865893567e-11, 1.3628875805693497e-10, 1.3892220707134584e-11, 1.8941515023129796e-11] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-1.2679857164243913e-11, 1.822186845856777e-11, 6.106226635438361e-14, 3.3757663331357435e-11, 5.895128829536134e-11, -8.544154272982496e-11, 2.02216021705226e-11, 2.181343994323015e-11, -2.928757236730917e-11, -1.1888379169988639e-11, -2.016109501568053e-11, -2.442868130003717e-11, 3.327760289550952e-11, 1.2605472221594027e-12, 6.785105810536152e-11, 1.1851186698663696e-10, -1.615616529448971e-10, 4.235456430023987e-11, 4.673550435541074e-11, -5.714895223718486e-11, -1.976041552609331e-11, -3.860933794896937e-11] QuasiNewtonMethods.optimum(state) .- 1 = [9.123368727159686e-12, 1.7078849445795186e-10, 4.046873947061158e-11, 6.686207143502543e-11, -5.969602590027989e-11, 1.404831806439688e-11, -6.698586130227113e-11, 1.2924772363476222e-11, -1.4227707900715814e-10, -7.995948347883086e-11, -6.343525704721742e-11, 1.1403766819739758e-11, 3.3963010181992104e-10, 8.482614610727524e-11, 1.336544208641044e-10, -1.2307221908258725e-10, 3.041833451788989e-11, -1.3021739242446984e-10, 2.57063259567758e-11, -2.7513924472089e-10, -1.426320173081308e-10, -1.301647678531026e-10] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [3.198774578550001e-12, -9.467537864793485e-12, -1.1360024032569527e-11, 1.8699708448366437e-11, -2.5211832621607755e-11, -4.956479671136549e-12, -4.09772216158899e-11, -2.3852919639466563e-11, -3.363664902167329e-11, -3.772659962208991e-11, -1.9605761458763027e-11, 1.2156942119645464e-12, -2.3189339337648107e-11, -1.610833688658886e-11, 3.906963641497896e-11, -5.098332866992905e-11, -1.0396905558707203e-11, -7.738054641492909e-11, -4.941025366633767e-11, -5.625977461676257e-11, -6.943445818308192e-11, -4.3444137176607e-11, 1.5913936834976994e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-6.371103644653431e-11, 5.1766368969197174e-11, -4.854672219778422e-12, -9.514877774563502e-11, -1.4659784497439432e-10, -2.1029289420937403e-11, -1.2248879688314673e-10, 5.815214976223615e-11, -3.521860580946168e-11, 1.4100454137633278e-10, -7.04252212102574e-11, -1.231224011633003e-10, 1.0647593917667564e-10, -9.137246514967501e-12, -1.9239598803011404e-10, -2.9294278114377903e-10, -5.533740132790399e-11, -2.4551882749079823e-10, 1.2105605406986797e-10, -7.141209845684671e-11, 2.8200197732530796e-10, -1.3858481029416225e-10, 2.644551244657123e-13] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [5.244671363868747e-11, -2.8314461886225217e-11, -7.336231622190326e-11, 1.6462231577918374e-10, -1.6603474151111186e-10, 1.433120289107137e-11, -2.2443935598914777e-11, -9.697020963983505e-11, 9.482148399797552e-11, 1.23760113268645e-10, 7.090106279861175e-11, -1.4879786291999153e-10, 9.639800069294324e-11, -4.713285317592408e-11, -1.512210356935384e-10, 3.257525360567115e-10, -3.161851891420042e-10, 3.750222354881316e-11, -5.0644155535906066e-11, -2.1376911352177785e-10, 1.982098929431686e-10, 2.2501867036339718e-10, 1.3651235697409447e-10, -2.998380432828185e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-3.069422493950924e-11, 1.514721681417086e-11, 4.384714813454593e-11, -2.4133361975486878e-11, 5.5525584130577954e-11, 7.157829884363309e-12, -5.836575667217403e-11, 4.289080202113382e-11, -1.0924372517706615e-11, -6.4792615717124136e-12, -5.67412783425425e-12, -3.692912642350166e-11, -5.978861850053363e-11, 3.473532572684235e-11, 8.801448458939376e-11, -4.51424453373761e-11, 1.1156542356616228e-10, 1.3564926959475088e-11, -1.1710288294608517e-10, 8.303269183329576e-11, -2.117661601630516e-11, -1.3323675496224041e-11, -1.0092149338447598e-11, -7.38852312665017e-11] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 4m09.4s Method ambiguity | 1 1 9.2s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 6.8s Compat bounds | 3 1 4 10.8s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.5s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 10.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 51.3s RNG of the outermost testset: Random.Xoshiro(0xe289f9a91d9419e3, 0x4dc5c664d833f335, 0xa6812b4e4410d06f, 0xc93f29e2b4ee15e4, 0x8d1b4a91ed069ee9) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 278.18s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2673 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2522 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:515 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:157 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:308 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:330 [14] _start() @ Base ./client.jl:563 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 539.1s: package has test failures