Package evaluation of Turing on Julia 1.13.0-DEV.1039 (6568124d5b*) started at 2025-08-27T00:44:07.904 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 7.55s ################################################################################ # Installation # Installing Turing... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [fce5fe82] + Turing v0.40.2 Updating `~/.julia/environments/v1.13/Manifest.toml` [47edcb42] + ADTypes v1.17.0 [621f4979] + AbstractFFTs v1.5.0 [80f14c24] + AbstractMCMC v5.7.2 [7a57a42e] + AbstractPPL v0.13.0 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.3.0 [0bf59076] + AdvancedHMC v0.8.1 [5b7e9947] + AdvancedMH v0.8.8 [576499cb] + AdvancedPS v0.7.0 [b5ca4192] + AdvancedVI v0.4.1 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.5.0 [4fba245c] + ArrayInterface v7.19.0 [13072b0f] + AxisAlgorithms v1.1.0 [39de3d68] + AxisArrays v0.4.7 [198e06fe] + BangBang v0.4.4 [9718e550] + Baselet v0.1.1 [76274a88] + Bijectors v0.15.9 [082447d4] + ChainRules v1.72.5 [d360d2e6] + ChainRulesCore v1.26.0 [0ca39b1e] + Chairmarks v1.3.1 [9e997f8a] + ChangesOfVariables v0.1.10 [861a8166] + Combinatorics v1.0.3 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.18.0 [a33af91c] + CompositionsBase v0.1.2 [88cd18e8] + ConsoleProgressMonitor v0.1.2 [187b0558] + ConstructionBase v1.6.0 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 ⌅ [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [8bb1440f] + DelimitedFiles v1.9.1 [b429d917] + DensityInterface v0.4.0 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.7 [31c24e10] + Distributions v0.25.120 [ced4e74d] + DistributionsAD v0.6.58 [ffbed154] + DocStringExtensions v0.9.5 [366bfd00] + DynamicPPL v0.37.1 [cad2338a] + EllipticalSliceSampling v2.0.0 [4e289a0a] + EnumX v1.0.5 [e2ba6199] + ExprTools v0.1.10 [55351af7] + ExproniconLite v0.10.14 [7a1cc6ca] + FFTW v1.9.0 [9aa1b823] + FastClosures v0.3.2 [1a297f60] + FillArrays v1.13.0 [6a86dc24] + FiniteDiff v2.28.1 [f6369f11] + ForwardDiff v1.0.1 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [d9f16b24] + Functors v0.5.2 [46192b85] + GPUArraysCore v0.2.0 [34004b35] + HypergeometricFunctions v0.3.28 [22cec73e] + InitialValues v0.3.1 [a98d9a8b] + Interpolations v0.16.2 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [41ab1584] + InvertedIndices v1.3.1 [92d709cd] + IrrationalConstants v0.2.4 [c8e1da08] + IterTools v1.10.0 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.1 [682c06a0] + JSON v0.21.4 [ae98c720] + Jieko v0.2.1 [5ab0869b] + KernelDensity v0.6.10 [5be7bae1] + LBFGSB v0.4.1 [b964fa9f] + LaTeXStrings v1.4.0 [1d6d02ad] + LeftChildRightSiblingTrees v0.2.1 [6f1fad26] + Libtask v0.9.4 [d3d80556] + LineSearches v7.4.0 [6fdf6af0] + LogDensityProblems v2.1.2 [996a588d] + LogDensityProblemsAD v1.13.1 [2ab3a3ac] + LogExpFunctions v0.3.29 [e6f89c97] + LoggingExtras v1.1.0 [c7f686f2] + MCMCChains v7.2.0 [be115224] + MCMCDiagnosticTools v0.3.15 [e80e1ace] + MLJModelInterface v1.12.0 [1914dd2f] + MacroTools v0.5.16 [dbb5928d] + MappedArrays v0.4.2 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 [dbe65cb8] + MistyClosures v2.1.0 [2e0e35c7] + Moshi v0.3.7 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 [86f7a689] + NamedArrays v0.10.4 [c020b1a1] + NaturalSort v1.0.0 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.13.2 [3bd65402] + Optimisers v0.4.6 [7f7a1694] + Optimization v4.5.0 [bca83a33] + OptimizationBase v2.10.0 [36348300] + OptimizationOptimJL v0.4.3 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.35 [d96e819e] + Parameters v0.12.3 [69de0a69] + Parsers v2.8.3 [85a6dd25] + PositiveFactorizations v0.2.4 [d236fae5] + PreallocationTools v0.4.33 [aea7be01] + PrecompileTools v1.3.2 [21216c6a] + Preferences v1.5.0 ⌅ [08abe8d2] + PrettyTables v2.4.0 [33c8b6b6] + ProgressLogging v0.1.5 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [b3c3ace0] + RangeArrays v0.3.2 [c84ed2f1] + Ratios v0.4.5 [c1ae055f] + RealDot v0.1.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.37.1 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [f2b01f46] + Roots v2.2.10 [7e49a35a] + RuntimeGeneratedFunctions v0.5.15 ⌅ [26aad666] + SSMProblems v0.5.2 [0bca4576] + SciMLBase v2.112.0 [c0aeaf25] + SciMLOperators v1.6.0 [53ae85a6] + SciMLStructures v1.7.0 [30f210dd] + ScientificTypesBase v3.0.0 [efcf1570] + Setfield v1.1.2 [a2af1166] + SortingAlgorithms v1.2.2 [9f842d2f] + SparseConnectivityTracer v1.0.1 [dc90abb0] + SparseInverseSubset v0.1.2 [0a514795] + SparseMatrixColorings v0.4.21 [276daf66] + SpecialFunctions v2.5.1 [171d559e] + SplittablesBase v0.1.15 [90137ffa] + StaticArrays v1.9.14 [1e83bf80] + StaticArraysCore v1.4.3 [64bff920] + StatisticalTraits v3.5.0 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [4c63d2b9] + StatsFuns v1.5.0 [892a3eda] + StringManipulation v0.4.1 [09ab397b] + StructArrays v0.7.1 [2efcf032] + SymbolicIndexingInterface v0.3.43 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [5d786b92] + TerminalLoggers v0.1.7 [28d57a85] + Transducers v0.4.84 [fce5fe82] + Turing v0.40.2 [3a884ed6] + UnPack v1.0.2 [efce3f68] + WoodburyMatrices v1.0.0 [700de1a5] + ZygoteRules v0.2.7 [f5851436] + FFTW_jll v3.3.11+0 [1d5cc7b8] + IntelOpenMP_jll v2025.2.0+0 [81d17ec3] + L_BFGS_B_jll v3.0.1+0 [856f044c] + MKL_jll v2025.2.0+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [1317d2d5] + oneTBB_jll v2022.0.0+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [4af54fe1] + LazyArtifacts v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [3fa0cd96] + REPL v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.15.0+1 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.8.12 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.7+0 [458c3c95] + OpenSSL_jll v3.5.2+0 [efcefdf7] + PCRE2_jll v10.45.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.13.1+0 [8e850ede] + nghttp2_jll v1.66.0+0 [3f19e933] + p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.83s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 712.45s ################################################################################ # Testing # Testing Turing Status `/tmp/jl_izyjh3/Project.toml` [47edcb42] ADTypes v1.17.0 [80f14c24] AbstractMCMC v5.7.2 [7a57a42e] AbstractPPL v0.13.0 [5b7e9947] AdvancedMH v0.8.8 [576499cb] AdvancedPS v0.7.0 [b5ca4192] AdvancedVI v0.4.1 [4c88cf16] Aqua v0.8.14 [198e06fe] BangBang v0.4.4 [76274a88] Bijectors v0.15.9 [aaaa29a8] Clustering v0.15.8 [861a8166] Combinatorics v1.0.3 [31c24e10] Distributions v0.25.120 [ced4e74d] DistributionsAD v0.6.58 [bbc10e6e] DynamicHMC v3.5.1 [366bfd00] DynamicPPL v0.37.1 [26cc04aa] FiniteDifferences v0.12.32 [f6369f11] ForwardDiff v1.0.1 [09f84164] HypothesisTests v0.11.5 [6fdf6af0] LogDensityProblems v2.1.2 [996a588d] LogDensityProblemsAD v1.13.1 [c7f686f2] MCMCChains v7.2.0 [86f7a689] NamedArrays v0.10.4 [429524aa] Optim v1.13.2 [7f7a1694] Optimization v4.5.0 [3e6eede4] OptimizationBBO v0.4.1 [4e6fcdb7] OptimizationNLopt v0.3.2 [36348300] OptimizationOptimJL v0.4.3 [90014a1f] PDMats v0.11.35 [37e2e3b7] ReverseDiff v1.16.1 [276daf66] SpecialFunctions v2.5.1 [860ef19b] StableRNGs v1.0.3 [2913bbd2] StatsBase v0.34.6 [4c63d2b9] StatsFuns v1.5.0 [a759f4b9] TimerOutputs v0.5.29 [fce5fe82] Turing v0.40.2 [37e2e46d] LinearAlgebra v1.13.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_izyjh3/Manifest.toml` [47edcb42] ADTypes v1.17.0 [621f4979] AbstractFFTs v1.5.0 [80f14c24] AbstractMCMC v5.7.2 [7a57a42e] AbstractPPL v0.13.0 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [0bf59076] AdvancedHMC v0.8.1 [5b7e9947] AdvancedMH v0.8.8 [576499cb] AdvancedPS v0.7.0 [b5ca4192] AdvancedVI v0.4.1 [66dad0bd] AliasTables v1.1.3 [4c88cf16] Aqua v0.8.14 [dce04be8] ArgCheck v2.5.0 [4fba245c] ArrayInterface v7.19.0 [13072b0f] AxisAlgorithms v1.1.0 [39de3d68] AxisArrays v0.4.7 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 [76274a88] Bijectors v0.15.9 [a134a8b2] BlackBoxOptim v0.6.3 [fa961155] CEnum v0.5.0 [a9c8d775] CPUTime v1.0.0 [082447d4] ChainRules v1.72.5 [d360d2e6] ChainRulesCore v1.26.0 [0ca39b1e] Chairmarks v1.3.1 [9e997f8a] ChangesOfVariables v0.1.10 [aaaa29a8] Clustering v0.15.8 [861a8166] Combinatorics v1.0.3 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.18.0 [a33af91c] CompositionsBase v0.1.2 [88cd18e8] ConsoleProgressMonitor v0.1.2 [187b0558] ConstructionBase v1.6.0 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 ⌅ [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [8bb1440f] DelimitedFiles v1.9.1 [b429d917] DensityInterface v0.4.0 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [a0c0ee7d] DifferentiationInterface v0.7.7 [b4f34e82] Distances v0.10.12 [31c24e10] Distributions v0.25.120 [ced4e74d] DistributionsAD v0.6.58 [ffbed154] DocStringExtensions v0.9.5 [bbc10e6e] DynamicHMC v3.5.1 [366bfd00] DynamicPPL v0.37.1 [cad2338a] EllipticalSliceSampling v2.0.0 [4e289a0a] EnumX v1.0.5 [e2ba6199] ExprTools v0.1.10 [55351af7] ExproniconLite v0.10.14 [7a1cc6ca] FFTW v1.9.0 [9aa1b823] FastClosures v0.3.2 [1a297f60] FillArrays v1.13.0 [6a86dc24] FiniteDiff v2.28.1 [26cc04aa] FiniteDifferences v0.12.32 [f6369f11] ForwardDiff v1.0.1 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 [d9f16b24] Functors v0.5.2 [46192b85] GPUArraysCore v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [09f84164] HypothesisTests v0.11.5 [22cec73e] InitialValues v0.3.1 [a98d9a8b] Interpolations v0.16.2 [8197267c] IntervalSets v0.7.11 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.1 [682c06a0] JSON v0.21.4 [ae98c720] Jieko v0.2.1 [5ab0869b] KernelDensity v0.6.10 [5be7bae1] LBFGSB v0.4.1 [b964fa9f] LaTeXStrings v1.4.0 [1fad7336] LazyStack v0.1.3 [1d6d02ad] LeftChildRightSiblingTrees v0.2.1 [6f1fad26] Libtask v0.9.4 [d3d80556] LineSearches v7.4.0 [6fdf6af0] LogDensityProblems v2.1.2 [996a588d] LogDensityProblemsAD v1.13.1 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.1.0 [c7f686f2] MCMCChains v7.2.0 [be115224] MCMCDiagnosticTools v0.3.15 [e80e1ace] MLJModelInterface v1.12.0 [1914dd2f] MacroTools v0.5.16 [dbb5928d] MappedArrays v0.4.2 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [dbe65cb8] MistyClosures v2.1.0 [2e0e35c7] Moshi v0.3.7 [d41bc354] NLSolversBase v7.10.0 [76087f3c] NLopt v1.2.1 [77ba4419] NaNMath v1.1.3 [86f7a689] NamedArrays v0.10.4 [c020b1a1] NaturalSort v1.0.0 [b8a86587] NearestNeighbors v0.4.22 [6fe1bfb0] OffsetArrays v1.17.0 [429524aa] Optim v1.13.2 [3bd65402] Optimisers v0.4.6 [7f7a1694] Optimization v4.5.0 [3e6eede4] OptimizationBBO v0.4.1 [bca83a33] OptimizationBase v2.10.0 [4e6fcdb7] OptimizationNLopt v0.3.2 [36348300] OptimizationOptimJL v0.4.3 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.35 [65ce6f38] PackageExtensionCompat v1.0.2 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 [85a6dd25] PositiveFactorizations v0.2.4 [d236fae5] PreallocationTools v0.4.33 [aea7be01] PrecompileTools v1.3.2 [21216c6a] Preferences v1.5.0 ⌅ [08abe8d2] PrettyTables v2.4.0 [33c8b6b6] ProgressLogging v0.1.5 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [74087812] Random123 v1.7.1 [e6cf234a] RandomNumbers v1.6.0 [b3c3ace0] RangeArrays v0.3.2 [c84ed2f1] Ratios v0.4.5 [c1ae055f] RealDot v0.1.0 [3cdcf5f2] RecipesBase v1.3.4 [731186ca] RecursiveArrayTools v3.37.1 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [37e2e3b7] ReverseDiff v1.16.1 [708f8203] Richardson v1.4.2 [79098fc4] Rmath v0.8.0 [f2b01f46] Roots v2.2.10 [7e49a35a] RuntimeGeneratedFunctions v0.5.15 ⌅ [26aad666] SSMProblems v0.5.2 [0bca4576] SciMLBase v2.112.0 [c0aeaf25] SciMLOperators v1.6.0 [53ae85a6] SciMLStructures v1.7.0 [30f210dd] ScientificTypesBase v3.0.0 [efcf1570] Setfield v1.1.2 [a2af1166] SortingAlgorithms v1.2.2 [9f842d2f] SparseConnectivityTracer v1.0.1 [dc90abb0] SparseInverseSubset v0.1.2 [0a514795] SparseMatrixColorings v0.4.21 [d4ead438] SpatialIndexing v0.1.6 [276daf66] SpecialFunctions v2.5.1 [171d559e] SplittablesBase v0.1.15 [860ef19b] StableRNGs v1.0.3 [90137ffa] StaticArrays v1.9.14 [1e83bf80] StaticArraysCore v1.4.3 [64bff920] StatisticalTraits v3.5.0 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.6 [4c63d2b9] StatsFuns v1.5.0 [5e0ebb24] Strided v2.3.2 [4db3bf67] StridedViews v0.4.1 [892a3eda] StringManipulation v0.4.1 [09ab397b] StructArrays v0.7.1 [2efcf032] SymbolicIndexingInterface v0.3.43 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [02d47bb6] TensorCast v0.4.9 [5d786b92] TerminalLoggers v0.1.7 [a759f4b9] TimerOutputs v0.5.29 [28d57a85] Transducers v0.4.84 [24ddb15e] TransmuteDims v0.1.17 [9d95972d] TupleTools v1.6.0 [fce5fe82] Turing v0.40.2 [3a884ed6] UnPack v1.0.2 [efce3f68] WoodburyMatrices v1.0.0 [700de1a5] ZygoteRules v0.2.7 [f5851436] FFTW_jll v3.3.11+0 [1d5cc7b8] IntelOpenMP_jll v2025.2.0+0 [81d17ec3] L_BFGS_B_jll v3.0.1+0 [856f044c] MKL_jll v2025.2.0+0 [079eb43e] NLopt_jll v2.10.0+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [1317d2d5] oneTBB_jll v2022.0.0+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [1a1011a3] SharedArrays v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.15.0+1 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.8.12 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.45.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.66.0+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... [ Info: [Turing]: progress logging is disabled globally Precompiling packages... 34608.4 ms ✓ ReverseDiff 1 dependency successfully precompiled in 35 seconds. 32 already precompiled. Precompiling packages... 17441.8 ms ✓ DistributionsAD → DistributionsADReverseDiffExt 1 dependency successfully precompiled in 20 seconds. 91 already precompiled. Precompiling packages... 15310.1 ms ✓ Bijectors → BijectorsReverseDiffExt 1 dependency successfully precompiled in 18 seconds. 91 already precompiled. Precompiling packages... 9127.5 ms ✓ LogDensityProblemsAD → LogDensityProblemsADReverseDiffExt 1 dependency successfully precompiled in 10 seconds. 37 already precompiled. Precompiling packages... 7404.0 ms ✓ ArrayInterface → ArrayInterfaceReverseDiffExt 1 dependency successfully precompiled in 8 seconds. 39 already precompiled. Precompiling packages... 7838.9 ms ✓ PreallocationTools → PreallocationToolsReverseDiffExt 1 dependency successfully precompiled in 8 seconds. 42 already precompiled. Precompiling packages... 8934.2 ms ✓ SciMLBase → SciMLBaseReverseDiffExt 1 dependency successfully precompiled in 10 seconds. 86 already precompiled. Precompiling packages... 7678.2 ms ✓ DifferentiationInterface → DifferentiationInterfaceReverseDiffExt 7433.5 ms ✓ OptimizationBase → OptimizationReverseDiffExt 2 dependencies successfully precompiled in 16 seconds. 118 already precompiled. Precompiling packages... 14521.4 ms ✓ Bijectors → BijectorsReverseDiffChainRulesExt 1 dependency successfully precompiled in 18 seconds. 111 already precompiled. [ Info: Testing Gibbs AD with model=demo_dot_assume_observe, varnames=[s] [ Info: Running AD on demo_dot_assume_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe, varnames=[m] [ Info: Running AD on demo_dot_assume_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_index_observe, varnames=[s] [ Info: Running AD on demo_assume_index_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679435, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679435, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_index_observe, varnames=[m] [ Info: Running AD on demo_assume_index_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679435, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679435, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe, varnames=[s] [ Info: Running AD on demo_assume_multivariate_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe, varnames=[m] [ Info: Running AD on demo_assume_multivariate_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_index with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_index with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe, varnames=[s] [ Info: Running AD on demo_assume_dot_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe, varnames=[m] [ Info: Running AD on demo_assume_dot_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe_literal, varnames=[s] [ Info: Running AD on demo_assume_multivariate_observe_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe_literal, varnames=[m] [ Info: Running AD on demo_assume_multivariate_observe_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index_literal, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_index_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index_literal, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_index_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe_literal, varnames=[s] [ Info: Running AD on demo_assume_dot_observe_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe_literal, varnames=[m] [ Info: Running AD on demo_assume_dot_observe_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_observe_literal, varnames=[s] [ Info: Running AD on demo_assume_observe_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_observe_literal, varnames=[m] [ Info: Running AD on demo_assume_observe_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_submodel_observe_index_literal, varnames=[s] [ Info: Running AD on demo_assume_submodel_observe_index_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_assume_submodel_observe_index_literal, varnames=[m] [ Info: Running AD on demo_assume_submodel_observe_index_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_submodel, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_submodel with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_submodel, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_submodel with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_matrix_index, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_matrix_index with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_matrix_index, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_matrix_index with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_matrix_observe_matrix_index, varnames=[s] [ Info: Running AD on demo_assume_matrix_observe_matrix_index with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_matrix_observe_matrix_index, varnames=[m] [ Info: Running AD on demo_assume_matrix_observe_matrix_index with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe, varnames=[s] [ Info: Running AD on demo_dot_assume_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe, varnames=[m] [ Info: Running AD on demo_dot_assume_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_index_observe, varnames=[s] [ Info: Running AD on demo_assume_index_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679435, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_index_observe, varnames=[m] [ Info: Running AD on demo_assume_index_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679435, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe, varnames=[s] [ Info: Running AD on demo_assume_multivariate_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe, varnames=[m] [ Info: Running AD on demo_assume_multivariate_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_index with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_index with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe, varnames=[s] [ Info: Running AD on demo_assume_dot_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe, varnames=[m] [ Info: Running AD on demo_assume_dot_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe_literal, varnames=[s] [ Info: Running AD on demo_assume_multivariate_observe_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe_literal, varnames=[m] [ Info: Running AD on demo_assume_multivariate_observe_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index_literal, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_index_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index_literal, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_index_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe_literal, varnames=[s] [ Info: Running AD on demo_assume_dot_observe_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe_literal, varnames=[m] [ Info: Running AD on demo_assume_dot_observe_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_observe_literal, varnames=[s] [ Info: Running AD on demo_assume_observe_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_observe_literal, varnames=[m] [ Info: Running AD on demo_assume_observe_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_submodel_observe_index_literal, varnames=[s] [ Info: Running AD on demo_assume_submodel_observe_index_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_assume_submodel_observe_index_literal, varnames=[m] [ Info: Running AD on demo_assume_submodel_observe_index_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_submodel, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_submodel with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_submodel, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_submodel with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_matrix_index, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_matrix_index with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_matrix_index, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_matrix_index with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_matrix_observe_matrix_index, varnames=[s] [ Info: Running AD on demo_assume_matrix_observe_matrix_index with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_matrix_observe_matrix_index, varnames=[m] [ Info: Running AD on demo_assume_matrix_observe_matrix_index with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) constructor: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/essential/container.jl:20 Got exception outside of a @test FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{Main.ContainerTests.var"#test#test##0", DynamicPPL.Model{Main.ContainerTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ContainerTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ContainerTests.var"#test#test##0", DynamicPPL.Model{Main.ContainerTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ContainerTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ContainerTests.var"#test#test##0", DynamicPPL.Model{Main.ContainerTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{Main.ContainerTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/essential/container.jl:10 [13] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [14] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/essential/container.jl:21 [inlined] [15] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [16] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/essential/container.jl:25 [inlined] [17] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [18] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:33 [19] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [20] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:42 [inlined] [21] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [22] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:25 [inlined] [23] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [24] top-level scope @ none:6 [25] eval(m::Module, e::Any) @ Core ./boot.jl:489 [26] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [27] _start() @ Base ./client.jl:563 fork: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/essential/container.jl:38 Got exception outside of a @test FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{Main.ContainerTests.var"#normal#normal##0", DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ContainerTests.var"#normal#normal##0", DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ContainerTests.var"#normal#normal##0", DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/essential/container.jl:10 [13] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [14] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/essential/container.jl:39 [inlined] [15] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [16] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/essential/container.jl:51 [inlined] [17] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [18] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:33 [19] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [20] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:42 [inlined] [21] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [22] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:25 [inlined] [23] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [24] top-level scope @ none:6 [25] eval(m::Module, e::Any) @ Core ./boot.jl:489 [26] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [27] _start() @ Base ./client.jl:563 models: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:27 Got exception outside of a @test FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{Main.ParticleMCMCTests.var"#normal#normal##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#normal#normal##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#normal#normal##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] (::Turing.Inference.var"#62#63"{DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#62#63"{DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}) @ Base ./array.jl:803 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; nparticles::Int64, kwargs::@Kwargs{initial_params::Nothing}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:200 [16] kwcall(::@NamedTuple{initial_params::Nothing, nparticles::Int64}, ::typeof(DynamicPPL.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:186 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; initial_params::Nothing, kwargs::@Kwargs{nparticles::Int64}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:116 [18] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:0 [inlined] [19] (::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{nparticles::Int64}, Random.TaskLocalRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:134 [20] with_logstate(f::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{nparticles::Int64}, Random.TaskLocalRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [21] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [22] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:157 [23] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:133 [inlined] [24] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{nparticles::Int64}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:151 [25] kwcall(::@NamedTuple{chain_type::UnionAll, progress::Bool, nparticles::Int64}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:109 [26] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, progress::Bool, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:161 [27] sample @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:149 [inlined] [28] #sample#112 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:31 [inlined] [29] sample @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:22 [inlined] [30] #sample#111 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:19 [inlined] [31] sample(model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, alg::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:16 [32] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:13 [33] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [34] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:28 [inlined] [35] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [36] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:36 [inlined] [37] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [38] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:33 [39] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [40] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:46 [inlined] [41] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [42] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:25 [inlined] [43] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [44] top-level scope @ none:6 [45] eval(m::Module, e::Any) @ Core ./boot.jl:489 [46] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [47] _start() @ Base ./client.jl:563 chain log-density metadata: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:53 Got exception outside of a @test FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] (::Turing.Inference.var"#62#63"{DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#62#63"{DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}) @ Base ./array.jl:803 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; nparticles::Int64, kwargs::@Kwargs{initial_params::Nothing}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:200 [16] kwcall(::@NamedTuple{initial_params::Nothing, nparticles::Int64}, ::typeof(DynamicPPL.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:186 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; initial_params::Nothing, kwargs::@Kwargs{nparticles::Int64}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:116 [18] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:0 [inlined] [19] (::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{nparticles::Int64}, Random.TaskLocalRNG, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:134 [20] with_logstate(f::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{nparticles::Int64}, Random.TaskLocalRNG, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [21] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [22] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:157 [23] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:133 [inlined] [24] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{nparticles::Int64}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:151 [25] kwcall(::@NamedTuple{chain_type::UnionAll, progress::Bool, nparticles::Int64}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:109 [26] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, progress::Bool, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:161 [27] sample @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:149 [inlined] [28] #sample#112 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:31 [inlined] [29] sample @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:22 [inlined] [30] #sample#111 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:19 [inlined] [31] sample(model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, alg::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:16 [32] test_chain_logp_metadata(spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ Main.SamplerTestUtils ~/.julia/packages/Turing/Avpxw/test/test_utils/sampler.jl:18 [33] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:13 [34] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [35] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:54 [inlined] [36] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [37] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:54 [inlined] [38] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [39] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:33 [40] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [41] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:46 [inlined] [42] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [43] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:25 [inlined] [44] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [45] top-level scope @ none:6 [46] eval(m::Module, e::Any) @ Core ./boot.jl:489 [47] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [48] _start() @ Base ./client.jl:563 logevidence: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:57 Got exception outside of a @test FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{Main.ParticleMCMCTests.var"#test#test##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] (::Turing.Inference.var"#62#63"{DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#62#63"{DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}) @ Base ./array.jl:803 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; nparticles::Int64, kwargs::@Kwargs{initial_params::Nothing}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:200 [16] kwcall(::@NamedTuple{initial_params::Nothing, nparticles::Int64}, ::typeof(DynamicPPL.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:186 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; initial_params::Nothing, kwargs::@Kwargs{nparticles::Int64}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:116 [18] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:0 [inlined] [19] (::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{nparticles::Int64}, Random.TaskLocalRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:134 [20] with_logstate(f::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{nparticles::Int64}, Random.TaskLocalRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [21] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [22] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:157 [23] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:133 [inlined] [24] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{nparticles::Int64}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:151 [25] kwcall(::@NamedTuple{chain_type::UnionAll, progress::Bool, nparticles::Int64}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:109 [26] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, progress::Bool, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:161 [27] sample @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:149 [inlined] [28] #sample#112 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:31 [inlined] [29] sample @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:22 [inlined] [30] #sample#111 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:19 [inlined] [31] sample(model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, alg::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:16 [32] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:13 [33] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [34] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:58 [inlined] [35] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [36] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:70 [inlined] [37] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [38] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:33 [39] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [40] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:46 [inlined] [41] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [42] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:25 [inlined] [43] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [44] top-level scope @ none:6 [45] eval(m::Module, e::Any) @ Core ./boot.jl:489 [46] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [47] _start() @ Base ./client.jl:563 chain log-density metadata: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:99 Got exception outside of a @test FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] (::Turing.Inference.var"#68#69"{DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#68#69"{DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:803 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::Nothing}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:325 [16] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(DynamicPPL.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:312 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:116 [18] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:0 [inlined] [19] (::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:134 [20] with_logstate(f::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [21] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [22] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:157 [23] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:133 [inlined] [24] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:151 [25] kwcall(::@NamedTuple{chain_type::UnionAll, initial_state::Nothing}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:109 [26] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:93 [27] sample @ ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:83 [inlined] [28] #sample#112 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:31 [inlined] [29] sample @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:22 [inlined] [30] #sample#111 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:19 [inlined] [31] sample(model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, alg::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:16 [32] test_chain_logp_metadata(spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ Main.SamplerTestUtils ~/.julia/packages/Turing/Avpxw/test/test_utils/sampler.jl:18 [33] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:81 [34] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [35] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:100 [inlined] [36] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [37] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:100 [inlined] [38] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [39] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:33 [40] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [41] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:46 [inlined] [42] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [43] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:25 [inlined] [44] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [45] top-level scope @ none:6 [46] eval(m::Module, e::Any) @ Core ./boot.jl:489 [47] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [48] _start() @ Base ./client.jl:563 logevidence: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:103 Got exception outside of a @test FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{Main.ParticleMCMCTests.var"#test#test##1", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##1", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##1", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] (::Turing.Inference.var"#68#69"{DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#68#69"{DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:803 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::Nothing}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:325 [16] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(DynamicPPL.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:312 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:116 [18] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:0 [inlined] [19] (::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:134 [20] with_logstate(f::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [21] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [22] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:157 [23] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:133 [inlined] [24] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:151 [25] kwcall(::@NamedTuple{chain_type::UnionAll, initial_state::Nothing}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:109 [26] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:93 [27] sample @ ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:83 [inlined] [28] #sample#112 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:31 [inlined] [29] sample @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:22 [inlined] [30] #sample#111 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:19 [inlined] [31] sample(model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, alg::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:16 [32] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:81 [33] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [34] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:104 [inlined] [35] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [36] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:116 [inlined] [37] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [38] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:33 [39] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [40] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:46 [inlined] [41] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [42] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:25 [inlined] [43] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [44] top-level scope @ none:6 [45] eval(m::Module, e::Any) @ Core ./boot.jl:489 [46] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [47] _start() @ Base ./client.jl:563 reference particle: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:124 Got exception outside of a @test FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] (::Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:803 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::Nothing}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:325 [16] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(DynamicPPL.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:312 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:116 [18] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:0 [inlined] [19] (::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:134 [20] with_logstate(f::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [21] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [22] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:157 [23] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:133 [inlined] [24] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:151 [25] kwcall(::@NamedTuple{chain_type::UnionAll, initial_state::Nothing}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:109 [26] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:93 [27] sample @ ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:83 [inlined] [28] #sample#112 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:31 [inlined] [29] sample @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:22 [inlined] [30] #sample#111 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:19 [inlined] [31] sample(model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, alg::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:16 [32] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:81 [33] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [34] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:125 [inlined] [35] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [36] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:125 [inlined] [37] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [38] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:33 [39] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [40] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:46 [inlined] [41] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [42] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:25 [inlined] [43] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [44] top-level scope @ none:6 [45] eval(m::Module, e::Any) @ Core ./boot.jl:489 [46] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [47] _start() @ Base ./client.jl:563 addlogprob leads to reweighting: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:130 Got exception outside of a @test FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] (::Turing.Inference.var"#68#69"{DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#68#69"{DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:803 [15] initialstep(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::Nothing}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:325 [16] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(DynamicPPL.initialstep), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:312 [17] step(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:116 [18] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:0 [inlined] [19] (::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, StableRNGs.LehmerRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:134 [20] with_logstate(f::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, StableRNGs.LehmerRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [21] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [22] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:157 [23] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:133 [inlined] [24] mcmcsample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:151 [25] kwcall(::@NamedTuple{chain_type::UnionAll, initial_state::Nothing}, ::typeof(AbstractMCMC.mcmcsample), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:109 [26] sample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:93 [27] sample @ ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:83 [inlined] [28] #sample#112 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:31 [inlined] [29] sample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, alg::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:22 [30] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:81 [31] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [32] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:133 [inlined] [33] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [34] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/particle_mcmc.jl:143 [inlined] [35] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [36] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:33 [37] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [38] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:46 [inlined] [39] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [40] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:25 [inlined] [41] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [42] top-level scope @ none:6 [43] eval(m::Module, e::Any) @ Core ./boot.jl:489 [44] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [45] _start() @ Base ./client.jl:563 ┌ Warning: The model does not contain any parameters. └ @ DynamicPPL.DebugUtils ~/.julia/packages/DynamicPPL/bXCZJ/src/debug_utils.jl:305 [ Info: (symbol = :s, exact = 2.0416666666666665, evaluated = 2.0598561011023344) [ Info: (symbol = :m, exact = 1.1666666666666667, evaluated = 1.158304117994203) [ Info: Testing emcee with large number of iterations [ Info: (symbol = :s, exact = 2.0416666666666665, evaluated = 1.9758334846581072) [ Info: (symbol = :m, exact = 1.1666666666666667, evaluated = 1.176829569918974) [ Info: Starting ESS tests [ Info: Starting ESS inference tests [ Info: (symbol = :m, exact = 0.8, evaluated = 0.8172942592919593) [ Info: (symbol = "m[1]", exact = 0.0, evaluated = -0.02456171083886478) [ Info: (symbol = "m[2]", exact = 0.8, evaluated = 0.8075869528540663) gdemo with CSMC + ESS: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/ess.jl:55 Got exception outside of a @test FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] (::Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:803 [15] initialstep(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::Nothing}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:325 [16] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(DynamicPPL.initialstep), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:312 [17] step(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:116 [18] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(AbstractMCMC.step), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:99 [19] gibbs_initialstep_recursive(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:459 [20] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:429 [21] step(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:383 [22] step @ ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:371 [inlined] [23] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:171 [inlined] [24] (::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, StableRNGs.LehmerRNG, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:134 [25] with_logstate(f::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, StableRNGs.LehmerRNG, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [26] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [27] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:157 [28] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:133 [inlined] [29] mcmcsample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:151 [30] kwcall(::@NamedTuple{chain_type::UnionAll, initial_state::Nothing}, ::typeof(AbstractMCMC.mcmcsample), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:109 [31] sample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:93 [32] sample @ ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:83 [inlined] [33] #sample#112 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:31 [inlined] [34] sample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, alg::Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:22 [35] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/mcmc/ess.jl:14 [36] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [37] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/ess.jl:42 [inlined] [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/ess.jl:56 [inlined] [40] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [41] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/ess.jl:57 [inlined] [42] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [43] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:33 [44] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [45] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:46 [inlined] [46] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [47] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:25 [inlined] [48] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [49] top-level scope @ none:6 [50] eval(m::Module, e::Any) @ Core ./boot.jl:489 [51] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [52] _start() @ Base ./client.jl:563 MoGtest_default with CSMC + ESS: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/ess.jl:61 Got exception outside of a @test FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] (::Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:803 [15] initialstep(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::Nothing}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:325 [16] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(DynamicPPL.initialstep), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:312 [17] step(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:116 [18] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(AbstractMCMC.step), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:99 [19] gibbs_initialstep_recursive(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}, DynamicPPL.Sampler{Turing.Inference.ESS}}, vi::DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:459 [20] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}, DynamicPPL.Sampler{Turing.Inference.ESS}}, vi::DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:429 [21] step(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}, DynamicPPL.Sampler{Turing.Inference.ESS}}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:383 [22] step @ ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:371 [inlined] [23] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:171 [inlined] [24] (::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, StableRNGs.LehmerRNG, DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}, DynamicPPL.Sampler{Turing.Inference.ESS}}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:134 [25] with_logstate(f::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, StableRNGs.LehmerRNG, DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}, DynamicPPL.Sampler{Turing.Inference.ESS}}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [26] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [27] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:157 [28] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:133 [inlined] [29] mcmcsample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}, DynamicPPL.Sampler{Turing.Inference.ESS}}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:151 [30] kwcall(::@NamedTuple{chain_type::UnionAll, initial_state::Nothing}, ::typeof(AbstractMCMC.mcmcsample), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}, DynamicPPL.Sampler{Turing.Inference.ESS}}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:109 [31] sample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}, DynamicPPL.Sampler{Turing.Inference.ESS}}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:93 [32] sample @ ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:83 [inlined] [33] #sample#112 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:31 [inlined] [34] sample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, alg::Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}, DynamicPPL.Sampler{Turing.Inference.ESS}}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:22 [35] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/mcmc/ess.jl:14 [36] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [37] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/ess.jl:42 [inlined] [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/ess.jl:62 [inlined] [40] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [41] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/ess.jl:67 [inlined] [42] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [43] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:33 [44] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [45] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:46 [inlined] [46] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [47] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:25 [inlined] [48] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [49] top-level scope @ none:6 [50] eval(m::Module, e::Any) @ Core ./boot.jl:489 [51] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [52] _start() @ Base ./client.jl:563 ┌ Info: Found initial step size └ ϵ = 3.2 ┌ Info: Found initial step size └ ϵ = 3.2 WARNING: Method definition (::Type{GibbsTests.Wrapper{T} where T})(T) where {T<:Real} in module GibbsTests at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:38 overwritten at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:200. WARNING: Method definition (::Type{GibbsTests.Wrapper{T<:Real}})(Any) in module GibbsTests at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:38 overwritten at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:200. Sampler call order: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:137 Got exception outside of a @test FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{Main.GibbsTests.var"#test_model#test_model##1", DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Int64, DynamicPPL.TypeWrap{Vector{Float64}}}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.GibbsTests.var"#test_model#test_model##1", DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Int64, DynamicPPL.TypeWrap{Vector{Float64}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.GibbsTests.var"#test_model#test_model##1", DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Int64, DynamicPPL.TypeWrap{Vector{Float64}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] (::Turing.Inference.var"#68#69"{DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#68#69"{DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:803 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::Nothing}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:325 [16] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(DynamicPPL.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:312 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:116 [18] step @ ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:99 [inlined] [19] step(::Random.TaskLocalRNG, ::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, ::DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}; kwargs::@Kwargs{initial_params::Nothing}) @ Main.GibbsTests ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:183 [20] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(AbstractMCMC.step), ::Random.TaskLocalRNG, ::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, ::DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}) @ Main.GibbsTests ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:175 [21] gibbs_initialstep_recursive(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, samplers::Tuple{DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{Turing.Inference.MHState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, Float64}, Turing.Inference.MHState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, Float64}}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:459 ┌ [22] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, samplers::Tuple{DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{Turing.Inference.MHState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, Float64}, Turing.Inference.MHState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, Float64}}) │ @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:429 ├ [23] gibbs_initialstep_recursive(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, samplers::Tuple{DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{Turing.Inference.MHState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, Float64}}; initial_params::Nothing, kwargs::@Kwargs{}) │ @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:476 ╰───── repeated 2 times [26] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, samplers::Tuple{DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:xs, Accessors.IndexLens{Tuple{Int64}}}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:xs, Accessors.IndexLens{Tuple{Int64}}}}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:ys, Accessors.IndexLens{Tuple{Int64}}}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:ys, Accessors.IndexLens{Tuple{Int64}}}}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:429 [27] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.Gibbs{12, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, Tuple{DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:383 [28] step @ ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:371 [inlined] [29] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:171 [inlined] [30] (::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{12, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, Tuple{DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:134 [31] with_logstate(f::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{12, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, Tuple{DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [32] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [33] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:157 [34] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:133 [inlined] [35] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{12, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, Tuple{DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:151 [36] kwcall(::@NamedTuple{chain_type::UnionAll, initial_state::Nothing}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{12, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, Tuple{DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:109 [37] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{12, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, Tuple{DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:93 [38] sample @ ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:83 [inlined] [39] #sample#112 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:31 [inlined] [40] sample @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:22 [inlined] [41] #sample#111 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:19 [inlined] [42] sample(model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#759")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, alg::Turing.Inference.Gibbs{12, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, Tuple{DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, DynamicPPL.Sampler{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:16 [43] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:140 [44] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [45] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:246 [inlined] [46] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [47] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:33 [48] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [49] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:54 [inlined] [50] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [51] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:25 [inlined] [52] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [53] top-level scope @ none:6 [54] eval(m::Module, e::Any) @ Core ./boot.jl:489 [55] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [56] _start() @ Base ./client.jl:563 [ Info: Starting Gibbs tests Gibbs constructors: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:401 Test threw exception Expression: sample(gdemo_default, s2, N) isa MCMCChains.Chains FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}, AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}, AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}, AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}, AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}, AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}, AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] (::Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}, AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}, AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:803 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}, AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::Nothing}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:325 [16] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(DynamicPPL.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}, AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:312 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}, AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:116 [18] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(AbstractMCMC.step), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}, AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:99 [19] gibbs_initialstep_recursive(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:459 [20] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:429 [21] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.Gibbs{1, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:383 [22] step @ ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:371 [inlined] [23] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:171 [inlined] [24] (::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{1, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:134 [25] with_logstate(f::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{1, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [26] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [27] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:157 [28] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:133 [inlined] [29] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{1, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:151 [30] kwcall(::@NamedTuple{chain_type::UnionAll, initial_state::Nothing}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{1, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:109 [31] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{1, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:93 [32] sample @ ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:83 [inlined] [33] #sample#112 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:31 [inlined] [34] sample @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:22 [inlined] [35] #sample#111 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:19 [inlined] [36] sample(model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, alg::Turing.Inference.Gibbs{1, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:16 [37] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:374 [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:379 [inlined] [40] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [41] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:401 [inlined] [42] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:742 [inlined] Gibbs constructors: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:402 Test threw exception Expression: sample(gdemo_default, s3, N) isa MCMCChains.Chains FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] (::Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:803 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::Nothing}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:325 [16] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(DynamicPPL.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:312 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:116 [18] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(AbstractMCMC.step), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:99 [19] gibbs_initialstep_recursive(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMCDA{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:459 [20] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMCDA{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:429 [21] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMCDA{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:383 [22] step @ ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:371 [inlined] [23] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:171 [inlined] [24] (::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMCDA{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:134 [25] with_logstate(f::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMCDA{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [26] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [27] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:157 [28] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:133 [inlined] [29] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMCDA{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:151 [30] kwcall(::@NamedTuple{chain_type::UnionAll, initial_state::Nothing}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMCDA{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:109 [31] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMCDA{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:93 [32] sample @ ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:83 [inlined] [33] #sample#112 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:31 [inlined] [34] sample @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:22 [inlined] [35] #sample#111 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:19 [inlined] [36] sample(model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, alg::Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMCDA{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:16 [37] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:374 [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:379 [inlined] [40] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [41] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:402 [inlined] [42] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:742 [inlined] Gibbs constructors: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:404 Test threw exception Expression: sample(gdemo_default, s5, N) isa MCMCChains.Chains FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] (::Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:803 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::Nothing}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:325 [16] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(DynamicPPL.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:312 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:116 [18] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(AbstractMCMC.step), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:99 [19] gibbs_initialstep_recursive(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{Turing.Inference.HMCState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}, Turing.Inference.HMCState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}, Turing.Inference.HMCState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:459 [20] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{Turing.Inference.HMCState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}, Turing.Inference.HMCState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}, Turing.Inference.HMCState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:429 [21] gibbs_initialstep_recursive(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{Turing.Inference.HMCState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}, Turing.Inference.HMCState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:476 [22] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{Turing.Inference.HMCState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}, Turing.Inference.HMCState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:429 [23] gibbs_initialstep_recursive(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{Turing.Inference.HMCState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:476 [24] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{Turing.Inference.HMCState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:429 [25] gibbs_initialstep_recursive(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:476 [26] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:429 [27] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.Gibbs{5, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:383 [28] step @ ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:371 [inlined] [29] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:171 [inlined] [30] (::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{5, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:134 [31] with_logstate(f::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{5, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [32] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [33] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:157 [34] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:133 [inlined] [35] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{5, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:151 [36] kwcall(::@NamedTuple{chain_type::UnionAll, initial_state::Nothing}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{5, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:109 [37] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{5, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:93 [38] sample @ ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:83 [inlined] [39] #sample#112 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:31 [inlined] [40] sample @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:22 [inlined] [41] #sample#111 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:19 [inlined] [42] sample(model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, alg::Turing.Inference.Gibbs{5, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:16 [43] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:374 [44] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [45] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:379 [inlined] [46] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [47] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:404 [inlined] [48] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:742 [inlined] Gibbs constructors: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:405 Test threw exception Expression: sample(gdemo_default, s6, N) isa MCMCChains.Chains FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] (::Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:803 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::Nothing}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:325 [16] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(DynamicPPL.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:312 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:116 [18] step @ ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:99 [inlined] [19] #step#1 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/repeat_sampler.jl:46 [inlined] [20] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(AbstractMCMC.step), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, sampler::Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/repeat_sampler.jl:40 [21] gibbs_initialstep_recursive(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{Turing.Inference.HMCState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:459 [22] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{Turing.Inference.HMCState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), DynamicPPL.LogDensityFunction{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, typeof(DynamicPPL.getlogjoint_internal), DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, ADTypes.AutoForwardDiff{1, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:429 [23] gibbs_initialstep_recursive(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:476 [24] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:429 [25] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:383 [26] step @ ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:371 [inlined] [27] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:171 [inlined] [28] (::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:134 [29] with_logstate(f::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [30] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [31] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:157 [32] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:133 [inlined] [33] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:151 [34] kwcall(::@NamedTuple{chain_type::UnionAll, initial_state::Nothing}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:109 [35] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:93 [36] sample @ ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:83 [inlined] [37] #sample#112 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:31 [inlined] [38] sample @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:22 [inlined] [39] #sample#111 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:19 [inlined] [40] sample(model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, alg::Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, Turing.Inference.RepeatSampler{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}}}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:16 [41] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:374 [42] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [43] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:379 [inlined] [44] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [45] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:405 [inlined] [46] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:742 [inlined] Gibbs constructors: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:408 Test threw exception Expression: sample(gdemo_default, g, N) isa MCMCChains.Chains FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] (::Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:803 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::Nothing}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:325 [16] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(DynamicPPL.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:312 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:116 [18] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(AbstractMCMC.step), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:99 [19] gibbs_initialstep_recursive(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMCDA{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:459 [20] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMCDA{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:429 [21] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMCDA{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:383 [22] step @ ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:371 [inlined] [23] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:171 [inlined] [24] (::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMCDA{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:134 [25] with_logstate(f::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMCDA{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [26] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [27] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:157 [28] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:133 [inlined] [29] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMCDA{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:151 [30] kwcall(::@NamedTuple{chain_type::UnionAll, initial_state::Nothing}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMCDA{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:109 [31] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMCDA{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:93 [32] sample @ ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:83 [inlined] [33] #sample#19 @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:23 [inlined] [34] sample(model_or_logdensity::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMCDA{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, N_or_isdone::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:20 [35] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:374 [36] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [37] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:379 [inlined] [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:408 [inlined] [40] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:742 [inlined] CSMC and HMC on gdemo: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:414 Got exception outside of a @test FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] (::Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:803 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::Nothing}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:325 [16] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(DynamicPPL.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:312 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:116 [18] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(AbstractMCMC.step), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:99 [19] gibbs_initialstep_recursive(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:459 [20] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:429 [21] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:383 [22] step @ ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:371 [inlined] [23] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:171 [inlined] [24] (::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:134 [25] with_logstate(f::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [26] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [27] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:157 [28] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:133 [inlined] [29] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:151 [30] kwcall(::@NamedTuple{chain_type::UnionAll, initial_state::Nothing}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:109 [31] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:93 [32] sample @ ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:83 [inlined] [33] #sample#112 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:31 [inlined] [34] sample @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:22 [inlined] [35] #sample#111 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:19 [inlined] [36] sample(model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, alg::Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:16 [37] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:374 [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:414 [inlined] [40] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [41] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:415 [inlined] [42] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [43] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:416 [inlined] [44] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [45] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:33 [46] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [47] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:54 [inlined] [48] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [49] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:25 [inlined] [50] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [51] top-level scope @ none:6 [52] eval(m::Module, e::Any) @ Core ./boot.jl:489 [53] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [54] _start() @ Base ./client.jl:563 ┌ Info: Found initial step size └ ϵ = 1.6 [ Info: (symbol = :s, exact = 2.0416666666666665, evaluated = 2.084520957726516) [ Info: (symbol = :m, exact = 1.1666666666666667, evaluated = 1.186176744244979) CSMC and ESS on gdemo: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:428 Got exception outside of a @test FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] (::Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:803 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::Nothing}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:325 [16] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(DynamicPPL.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:312 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:116 [18] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(AbstractMCMC.step), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:99 [19] gibbs_initialstep_recursive(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:459 [20] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:429 [21] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:383 [22] step @ ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:371 [inlined] [23] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:171 [inlined] [24] (::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:134 [25] with_logstate(f::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [26] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [27] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:157 [28] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:133 [inlined] [29] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:151 [30] kwcall(::@NamedTuple{chain_type::UnionAll, initial_state::Nothing}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:109 [31] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:93 [32] sample @ ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:83 [inlined] [33] #sample#112 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:31 [inlined] [34] sample @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:22 [inlined] [35] #sample#111 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:19 [inlined] [36] sample(model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, alg::Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.ESS}}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:16 [37] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:374 [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:414 [inlined] [40] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [41] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:429 [inlined] [42] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [43] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:430 [inlined] [44] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [45] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:33 [46] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [47] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:54 [inlined] [48] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [49] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:25 [inlined] [50] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [51] top-level scope @ none:6 [52] eval(m::Module, e::Any) @ Core ./boot.jl:489 [53] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [54] _start() @ Base ./client.jl:563 CSMC on gdemo: Error During Test at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:435 Got exception outside of a @test FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.DefaultContext, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] (::Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:803 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::Nothing}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:325 [16] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(DynamicPPL.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:312 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:116 [18] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:0 [inlined] [19] (::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:134 [20] with_logstate(f::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [21] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [22] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:157 [23] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:133 [inlined] [24] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:151 [25] kwcall(::@NamedTuple{chain_type::UnionAll, initial_state::Nothing}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:109 [26] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:93 [27] sample @ ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:83 [inlined] [28] #sample#112 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:31 [inlined] [29] sample @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:22 [inlined] [30] #sample#111 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:19 [inlined] [31] sample(model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, alg::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:16 [32] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:374 [33] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [34] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:414 [inlined] [35] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [36] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:436 [inlined] [37] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [38] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:437 [inlined] [39] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [40] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:33 [41] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [42] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:54 [inlined] [43] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [44] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:25 [inlined] [45] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [46] top-level scope @ none:6 [47] eval(m::Module, e::Any) @ Core ./boot.jl:489 [48] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [49] _start() @ Base ./client.jl:563 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 335 running 1 of 1 signal (10): User defined signal 1 _ZNK4llvm6Module13getModuleFlagENS_9StringRefE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZNK4llvm6Module24getSemanticInterpositionEv at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZNK4llvm11GlobalValue14isInterposableEv at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN12_GLOBAL__N_18Verifier13visitCallBaseERN4llvm8CallBaseE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN12_GLOBAL__N_18Verifier13visitCallInstERN4llvm8CallInstE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN12_GLOBAL__N_18Verifier6verifyERKN4llvm8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm12verifyModuleERKNS_6ModuleEPNS_11raw_ostreamEPb at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) verifyLLVMIR at /source/src/pipeline.cpp:878 run at /source/src/llvm-remove-addrspaces.cpp:431 run at /source/src/llvm-remove-addrspaces.cpp:455 run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm11PassManagerINS_6ModuleENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/src/pipeline.cpp:791 operator() at /source/src/jitlayers.cpp:1510 withModuleDo<(anonymous namespace)::sizedOptimizerT::operator()(llvm::orc::ThreadSafeModule) [with long unsigned int N = 4]:: > at /source/usr/include/llvm/ExecutionEngine/Orc/ThreadSafeModule.h:136 [inlined] operator() at /source/src/jitlayers.cpp:1471 [inlined] operator() at /source/src/jitlayers.cpp:1623 [inlined] addModule at /source/src/jitlayers.cpp:2080 jl_compile_codeinst_now at /source/src/jitlayers.cpp:682 jl_compile_codeinst_impl at /source/src/jitlayers.cpp:873 jl_compile_method_internal at /source/src/gf.c:3535 _jl_invoke at /source/src/gf.c:3993 [inlined] ijl_apply_generic at /source/src/gf.c:4198 #sample#56 at /home/pkgeval/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:93 sample at /home/pkgeval/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:83 [inlined] #sample#112 at /home/pkgeval/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:31 [inlined] sample at /home/pkgeval/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:22 [inlined] #sample#111 at /home/pkgeval/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:19 [inlined] sample at /home/pkgeval/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:16 unknown function (ip: 0x76653e59de6b) at (unknown file) _jl_invoke at /source/src/gf.c:4001 [inlined] ijl_apply_generic at /source/src/gf.c:4198 jl_apply at /source/src/julia.h:2378 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_eval_module_expr at /source/src/toplevel.c:196 [inlined] jl_toplevel_eval_flex at /source/src/toplevel.c:658 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 include_string at ./loading.jl:2863 _jl_invoke at /source/src/gf.c:3985 [inlined] ijl_apply_generic at /source/src/gf.c:4198 _include at ./loading.jl:2923 include at ./Base.jl:309 IncludeInto at ./Base.jl:310 unknown function (ip: 0x766558811fd2) at (unknown file) _jl_invoke at /source/src/gf.c:3985 [inlined] ijl_apply_generic at /source/src/gf.c:4198 jl_apply at /source/src/julia.h:2378 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:708 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 include_string at ./loading.jl:2863 _jl_invoke at /source/src/gf.c:3985 [inlined] ijl_apply_generic at /source/src/gf.c:4198 _include at ./loading.jl:2923 include at ./Base.jl:309 IncludeInto at ./Base.jl:310 jfptr_IncludeInto_73519.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3985 [inlined] ijl_apply_generic at /source/src/gf.c:4198 jl_apply at /source/src/julia.h:2378 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:708 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 exec_options at ./client.jl:296 _start at ./client.jl:563 jfptr__start_44071.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3985 [inlined] ijl_apply_generic at /source/src/gf.c:4198 jl_apply at /source/src/julia.h:2378 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x766559bae249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point ============================================================== PG and HMC on MoGtest_default ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1200 wait_forever at ./task.jl:1137 jfptr_wait_forever_74938.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3985 [inlined] ijl_apply_generic at /source/src/gf.c:4198 jl_apply at /source/src/julia.h:2378 [inlined] start_task at /source/src/task.c:1253 unknown function (ip: (nil)) at (unknown file) : ============================================================== Profile collected. A report will print at the next yield point ============================================================== Error During Test┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x0000795930d10c40 Total snapshots: 510. Utilization: 0% ╎510 @Base/task.jl:1137 wait_forever() 509╎ 510 @Base/task.jl:1200 wait() ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 at Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x000076653f800010 Total snapshots: 16. Utilization: 100% ╎14 @Base/client.jl:563 _start() ╎ 14 @Base/client.jl:296 exec_options(opts::Base.JLOptions) ╎ 14 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ 14 @Base/Base.jl:310 (::Base.IncludeInto)(fname::String) ╎ 14 @Base/Base.jl:309 include(mapexpr::Function, mod::Module, _path::Str… ╎ 14 @Base/loading.jl:2923 _include(mapexpr::Function, mod::Module, _pat… ╎ ╎ 14 @Base/loading.jl:2863 include_string(mapexpr::typeof(identity), mo… ╎ ╎ 14 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ 14 @Base/Base.jl:310 (::Base.IncludeInto)(fname::String) ╎ ╎ 14 @Base/Base.jl:309 include(mapexpr::Function, mod::Module, _path… ╎ ╎ 14 @Base/loading.jl:2923 _include(mapexpr::Function, mod::Module,… ╎ ╎ ╎ 14 @Base/loading.jl:2863 include_string(mapexpr::typeof(identity… ╎ ╎ ╎ 14 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ ╎ 14 @Turing/…actmcmc.jl:16 sample(model::DynamicPPL.Model{typeo… ╎ ╎ ╎ 14 @Turing/…actmcmc.jl:19 #sample#111 ╎ ╎ ╎ 14 @Turing/…ctmcmc.jl:22 sample ╎ ╎ ╎ ╎ 14 @Turing/…ctmcmc.jl:31 #sample#112 ╎ ╎ ╎ ╎ 14 @DynamicPPL/…er.jl:83 sample 13╎ ╎ ╎ ╎ 14 @DynamicPPL/…r.jl:93 sample(rng::Random.TaskLocalRNG, … /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:441 Got exception outside of a @test FieldError: type Compiler.IRCode has no field `linetable`, available fields: `stmts`, `argtypes`, `sptypes`, `debuginfo`, `cfg`, `new_nodes`, `meta`, `valid_worlds` Stacktrace: [1] getproperty @ ./Base_compiler.jl:57 [inlined] [2] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode, new_blocks::Vector{Libtask.BasicBlockCode.BBlock}) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:152 [3] Libtask.BasicBlockCode.BBCode(ir::Compiler.IRCode) @ Libtask.BasicBlockCode ~/.julia/packages/Libtask/Sf4tJ/src/bbcode.jl:289 [4] build_callable(sig::Type{Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:89 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:282 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/Sf4tJ/src/copyable_task.jl:279 [7] #TapedTask#58 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:95 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:94 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, sampler::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:510 [12] (::Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#68#69"{DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:803 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::Nothing}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:325 [16] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(DynamicPPL.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, vi::DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/particle_mcmc.jl:312 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:116 [18] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(AbstractMCMC.step), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:99 [19] gibbs_initialstep_recursive(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, vi::DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:459 [20] kwcall(::@NamedTuple{initial_params::Nothing}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}}, samplers::Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}, vi::DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:429 [21] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}; initial_params::Nothing, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:383 [22] step @ ~/.julia/packages/Turing/Avpxw/src/mcmc/gibbs.jl:371 [inlined] [23] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:171 [inlined] [24] (::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:134 [25] with_logstate(f::AbstractMCMC.var"#25#26"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [26] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [27] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:157 [28] macro expansion @ ~/.julia/packages/AbstractMCMC/7f1oY/src/logging.jl:133 [inlined] [29] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:151 [30] kwcall(::@NamedTuple{chain_type::UnionAll, initial_state::Nothing}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/7f1oY/src/sample.jl:109 [31] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, kwargs::@Kwargs{}) @ DynamicPPL ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:93 [32] sample @ ~/.julia/packages/DynamicPPL/bXCZJ/src/sampler.jl:83 [inlined] [33] #sample#112 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:31 [inlined] [34] sample @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:22 [inlined] [35] #sample#111 @ ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:19 [inlined] [36] sample(model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, alg::Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}}, Tuple{DynamicPPL.Sampler{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, DynamicPPL.Sampler{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/Avpxw/src/mcmc/abstractmcmc.jl:16 [37] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:374 [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:414 [inlined] [40] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [41] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:442 [inlined] [42] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [43] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:446 [inlined] [44] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [45] top-level scope @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:33 [46] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [47] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:54 [inlined] [48] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1962 [inlined] [49] macro expansion @ ~/.julia/packages/Turing/Avpxw/test/runtests.jl:25 [inlined] [50] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:309 [51] top-level scope @ none:6 [52] eval(m::Module, e::Any) @ Core ./boot.jl:489 [53] exec_options(opts::Base.JLOptions) @ Base ./client.jl:296 [54] _start() @ Base ./client.jl:563 [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1200 wait_forever at ./task.jl:1137 jfptr_wait_forever_74938.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3985 [inlined] ijl_apply_generic at /source/src/gf.c:4198 jl_apply at /source/src/julia.h:2378 [inlined] start_task at /source/src/task.c:1253 unknown function (ip: (nil)) at (unknown file) Allocations: 26077026 (Pool: 26076361; Big: 665); GC: 23 [335] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/Turing/Avpxw/test/mcmc/gibbs.jl:373 apply_type_nothrow at ./range.jl:0 _builtin_nothrow at ./../usr/share/julia/Compiler/src/tfuncs.jl:2307 builtin_nothrow at ./../usr/share/julia/Compiler/src/tfuncs.jl:2781 [inlined] builtin_effects at ./../usr/share/julia/Compiler/src/tfuncs.jl:2692 abstract_call_known at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:2685 abstract_call at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:2903 abstract_call at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:2896 [inlined] abstract_call at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:3056 abstract_eval_call at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:3074 [inlined] abstract_eval_statement_expr at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:3430 abstract_eval_basic_statement at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:3857 [inlined] abstract_eval_basic_statement at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:3814 [inlined] typeinf_local at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:4363 jfptr_typeinf_local_86820.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3985 [inlined] ijl_apply_generic at /source/src/gf.c:4198 typeinf at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:4521 typeinf_ext at ./../usr/share/julia/Compiler/src/typeinfer.jl:1385 typeinf_ext_toplevel at ./../usr/share/julia/Compiler/src/typeinfer.jl:1568 [inlined] typeinf_ext_toplevel at ./../usr/share/julia/Compiler/src/typeinfer.jl:1577 jfptr_typeinf_ext_toplevel_85993.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3985 [inlined] ijl_apply_generic at /source/src/gf.c:4198 jl_apply at /source/src/julia.h:2378 [inlined] jl_type_infer at /source/src/gf.c:462 jl_compile_method_internal at /source/src/gf.c:3523 _jl_invoke at /source/src/gf.c:3993 [inlined] ijl_apply_generic at /source/src/gf.c:4198 jl_apply at /source/src/julia.h:2378 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_eval_module_expr at /source/src/toplevel.c:196 [inlined] jl_toplevel_eval_flex at /source/src/toplevel.c:658 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 include_string at ./loading.jl:2863 _jl_invoke at /source/src/gf.c:3985 [inlined] ijl_apply_generic at /source/src/gf.c:4198 _include at ./loading.jl:2923 include at ./Base.jl:309 IncludeInto at ./Base.jl:310 unknown function (ip: 0x766558811fd2) at (unknown file) _jl_invoke at /source/src/gf.c:3985 [inlined] ijl_apply_generic at /source/src/gf.c:4198 jl_apply at /source/src/julia.h:2378 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:708 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 include_string at ./loading.jl:2863 _jl_invoke at /source/src/gf.c:3985 [inlined] ijl_apply_generic at /source/src/gf.c:4198 _include at ./loading.jl:2923 include at ./Base.jl:309 IncludeInto at ./Base.jl:310 jfptr_IncludeInto_73519.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3985 [inlined] ijl_apply_generic at /source/src/gf.c:4198 jl_apply at /source/src/julia.h:2378 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:708 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 exec_options at ./client.jl:296 _start at ./client.jl:563 jfptr__start_44071.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3985 [inlined] ijl_apply_generic at /source/src/gf.c:4198 jl_apply at /source/src/julia.h:2378 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x766559bae249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 1231964144 (Pool: 1231957240; Big: 6904); GC: 245 PkgEval terminated after 2723.88s: test duration exceeded the time limit