Package evaluation of GaussianMixtures on Julia 1.13.0-DEV.994 (f4af91db49*) started at 2025-08-17T17:37:49.993 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.89s ################################################################################ # Installation # Installing GaussianMixtures... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [cc18c42c] + GaussianMixtures v0.3.13 Updating `~/.julia/environments/v1.13/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [7d9fca2a] + Arpack v0.5.4 [aaaa29a8] + Clustering v0.15.8 [34da2185] + Compat v4.18.0 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.0 [8bb1440f] + DelimitedFiles v1.9.1 [b4f34e82] + Distances v0.10.12 [31c24e10] + Distributions v0.25.120 [ffbed154] + DocStringExtensions v0.9.5 [5789e2e9] + FileIO v1.17.0 [1a297f60] + FillArrays v1.13.0 [cc18c42c] + GaussianMixtures v0.3.13 [076d061b] + HashArrayMappedTries v0.2.0 [34004b35] + HypergeometricFunctions v0.3.28 [92d709cd] + IrrationalConstants v0.2.4 [033835bb] + JLD2 v0.5.15 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 [e1d29d7a] + Missings v1.2.0 [b8a86587] + NearestNeighbors v0.4.22 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.35 [aea7be01] + PrecompileTools v1.3.2 [21216c6a] + Preferences v1.5.0 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [6e75b9c4] + ScikitLearnBase v0.5.0 [7e506255] + ScopedValues v1.4.0 [a2af1166] + SortingAlgorithms v1.2.2 [276daf66] + SpecialFunctions v2.5.1 [90137ffa] + StaticArrays v1.9.14 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [4c63d2b9] + StatsFuns v1.5.0 [3bb67fe8] + TranscodingStreams v0.11.3 ⌅ [68821587] + Arpack_jll v3.5.1+1 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.15.0+1 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.8.12 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.5+0 [458c3c95] + OpenSSL_jll v3.5.2+0 [efcefdf7] + PCRE2_jll v10.45.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.13.1+0 [8e850ede] + nghttp2_jll v1.65.0+0 [3f19e933] + p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.98s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 158.0s ################################################################################ # Testing # Testing GaussianMixtures Status `/tmp/jl_s7AYT7/Project.toml` [7d9fca2a] Arpack v0.5.4 [aaaa29a8] Clustering v0.15.8 [34da2185] Compat v4.18.0 [8bb1440f] DelimitedFiles v1.9.1 [31c24e10] Distributions v0.25.120 [5789e2e9] FileIO v1.17.0 [cc18c42c] GaussianMixtures v0.3.13 [033835bb] JLD2 v0.5.15 [90014a1f] PDMats v0.11.35 [ce6b1742] RDatasets v0.7.7 [6e75b9c4] ScikitLearnBase v0.5.0 [276daf66] SpecialFunctions v2.5.1 [10745b16] Statistics v1.11.1 [2913bbd2] StatsBase v0.34.6 [8ba89e20] Distributed v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_s7AYT7/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [7d9fca2a] Arpack v0.5.4 [336ed68f] CSV v0.10.15 ⌅ [324d7699] CategoricalArrays v0.10.8 [aaaa29a8] Clustering v0.15.8 [944b1d66] CodecZlib v0.7.8 [34da2185] Compat v4.18.0 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 ⌃ [a93c6f00] DataFrames v1.5.0 [864edb3b] DataStructures v0.19.0 [e2d170a0] DataValueInterfaces v1.0.0 [8bb1440f] DelimitedFiles v1.9.1 [b4f34e82] Distances v0.10.12 [31c24e10] Distributions v0.25.120 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 [5789e2e9] FileIO v1.17.0 [48062228] FilePathsBase v0.9.24 [1a297f60] FillArrays v1.13.0 [cc18c42c] GaussianMixtures v0.3.13 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [842dd82b] InlineStrings v1.4.4 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.4 [82899510] IteratorInterfaceExtensions v1.0.0 [033835bb] JLD2 v0.5.15 [692b3bcd] JLLWrappers v1.7.1 [b964fa9f] LaTeXStrings v1.4.0 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [e1d29d7a] Missings v1.2.0 [78c3b35d] Mocking v0.8.1 [b8a86587] NearestNeighbors v0.4.22 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.35 [69de0a69] Parsers v2.8.3 [2dfb63ee] PooledArrays v1.4.3 [aea7be01] PrecompileTools v1.3.2 [21216c6a] Preferences v1.5.0 [08abe8d2] PrettyTables v2.4.0 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 ⌅ [df47a6cb] RData v0.8.3 [ce6b1742] RDatasets v0.7.7 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [6e75b9c4] ScikitLearnBase v0.5.0 [7e506255] ScopedValues v1.4.0 [6c6a2e73] Scratch v1.3.0 [91c51154] SentinelArrays v1.4.8 [66db9d55] SnoopPrecompile v1.0.3 [a2af1166] SortingAlgorithms v1.2.2 [276daf66] SpecialFunctions v2.5.1 [90137ffa] StaticArrays v1.9.14 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.6 [4c63d2b9] StatsFuns v1.5.0 [892a3eda] StringManipulation v0.4.1 [dc5dba14] TZJData v1.5.0+2025b [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [f269a46b] TimeZones v1.22.0 [3bb67fe8] TranscodingStreams v0.11.3 [ea10d353] WeakRefStrings v1.4.2 [76eceee3] WorkerUtilities v1.6.1 ⌅ [68821587] Arpack_jll v3.5.1+1 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.15.0+1 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.8.12 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.5+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.45.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.65.0+0 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... Precompiling packages... 62645.3 ms ✓ GaussianMixtures 1 dependency successfully precompiled in 66 seconds. 85 already precompiled. Precompiling packages... 32176.0 ms ✓ PrettyTables 34068.4 ms ✓ CSV 82272.3 ms ✓ DataFrames 23043.7 ms ✓ RData 21906.9 ms ✓ RDatasets 5 dependencies successfully precompiled in 195 seconds. 72 already precompiled. (100000, -2.57672004538144e6, [98056.7285755207, 1943.2714244793247], [-1053.0426609551487 -4492.344487904475 1068.4596986283893; 1008.6867609195207 4563.016020848962 -591.739156456904], [[97049.54261383114 -1143.8578058380965 617.4623385628056; -1143.8578058380963 89506.13057595142 969.9442290578563; 617.4623385628056 969.9442290578563 98416.22492252957], [2539.032463299467 2047.237044884615 -226.6478610862482; 2047.237044884615 11025.192317539866 -1266.05186510994; -226.6478610862482 -1266.05186510994 1386.0629400391415]]) Test Summary: | Pass Total Time data.jl | 8 8 4m37.4s [ Info: Initializing GMM, 2 Gaussians diag covariance 1 dimensions using 272 data points K-means converged with 3 iterations (objv = 8855.79069767458) ┌ Info: K-means with 272 data points using 3 iterations └ 68.0 data points per parameter [ Info: Initializing GMM, 8 Gaussians diag covariance 2 dimensions using 272 data points K-means converged with 7 iterations (objv = 796.9919632639658) ┌ Info: K-means with 272 data points using 7 iterations └ 11.3 data points per parameter ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = lowerbound(vg::VGMM{Float64}, N::Vector{Float64}, mx::Matrix{Float64}, S::Vector{Matrix{Float64}}, Elogπ::Vector{Float64}, ElogdetΛ::Vector{Float64}, ElogpZπqZ::Float64) at bayes.jl:221 └ @ Core ~/.julia/packages/GaussianMixtures/RYvNa/src/bayes.jl:221 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = lowerbound(vg::VGMM{Float64}, N::Vector{Float64}, mx::Matrix{Float64}, S::Vector{Matrix{Float64}}, Elogπ::Vector{Float64}, ElogdetΛ::Vector{Float64}, ElogpZπqZ::Float64) at bayes.jl:221 └ @ Core ~/.julia/packages/GaussianMixtures/RYvNa/src/bayes.jl:221 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = _broadcast_getindex_evalf at broadcast.jl:701 [inlined] └ @ Core ./broadcast.jl:701 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = lowerbound(vg::VGMM{Float64}, N::Vector{Float64}, mx::Matrix{Float64}, S::Vector{Matrix{Float64}}, Elogπ::Vector{Float64}, ElogdetΛ::Vector{Float64}, ElogpZπqZ::Float64) at bayes.jl:230 └ @ Core ~/.julia/packages/GaussianMixtures/RYvNa/src/bayes.jl:230 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = _broadcast_getindex_evalf at broadcast.jl:701 [inlined] └ @ Core ./broadcast.jl:701 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = _broadcast_getindex_evalf at broadcast.jl:701 [inlined] └ @ Core ./broadcast.jl:701 History[Sun Aug 17 17:52:17 2025: Initializing GMM, 8 Gaussians diag covariance 2 dimensions using 272 data points , Sun Aug 17 17:52:18 2025: K-means with 272 data points using 7 iterations 11.3 data points per parameter , Sun Aug 17 17:52:18 2025: EM with 272 data points 0 iterations avll -2.055667 5.8 data points per parameter , Sun Aug 17 17:52:27 2025: GMM converted to Variational GMM , Sun Aug 17 17:52:37 2025: iteration 1, lowerbound -3.768004 , Sun Aug 17 17:52:37 2025: iteration 2, lowerbound -3.633695 , Sun Aug 17 17:52:37 2025: iteration 3, lowerbound -3.489728 , Sun Aug 17 17:52:37 2025: iteration 4, lowerbound -3.328028 , Sun Aug 17 17:52:37 2025: iteration 5, lowerbound -3.161740 , Sun Aug 17 17:52:37 2025: iteration 6, lowerbound -3.007736 , Sun Aug 17 17:52:38 2025: dropping number of Gaussions to 7 , Sun Aug 17 17:52:38 2025: iteration 7, lowerbound -2.873250 , Sun Aug 17 17:52:38 2025: dropping number of Gaussions to 5 , Sun Aug 17 17:52:38 2025: iteration 8, lowerbound -2.750292 , Sun Aug 17 17:52:38 2025: dropping number of Gaussions to 4 , Sun Aug 17 17:52:38 2025: iteration 9, lowerbound -2.626541 , Sun Aug 17 17:52:38 2025: iteration 10, lowerbound -2.521273 , Sun Aug 17 17:52:38 2025: iteration 11, lowerbound -2.445480 , Sun Aug 17 17:52:38 2025: dropping number of Gaussions to 3 , Sun Aug 17 17:52:38 2025: iteration 12, lowerbound -2.391524 , Sun Aug 17 17:52:38 2025: iteration 13, lowerbound -2.350526 , Sun Aug 17 17:52:38 2025: iteration 14, lowerbound -2.323922 , Sun Aug 17 17:52:38 2025: iteration 15, lowerbound -2.309391 , Sun Aug 17 17:52:38 2025: iteration 16, lowerbound -2.308662 , Sun Aug 17 17:52:38 2025: dropping number of Gaussions to 2 , Sun Aug 17 17:52:38 2025: iteration 17, lowerbound -2.302915 , Sun Aug 17 17:52:38 2025: iteration 18, lowerbound -2.299259 , Sun Aug 17 17:52:38 2025: iteration 19, lowerbound -2.299256 , Sun Aug 17 17:52:38 2025: iteration 20, lowerbound -2.299254 , Sun Aug 17 17:52:38 2025: iteration 21, lowerbound -2.299254 , Sun Aug 17 17:52:38 2025: iteration 22, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 23, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 24, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 25, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 26, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 27, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 28, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 29, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 30, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 31, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 32, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 33, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 34, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 35, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 36, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 37, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 38, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 39, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 40, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 41, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 42, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 43, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 44, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 45, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 46, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 47, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 48, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 49, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: iteration 50, lowerbound -2.299253 , Sun Aug 17 17:52:38 2025: 50 variational Bayes EM-like iterations using 272 data points, final lowerbound -2.299253 ] α = [95.95490777398612, 178.04509222601388] β = [95.95490777398612, 178.04509222601388] m = [2.00022925777537 53.85198717246129; 4.25030073326991 79.28686694436183] ν = [97.95490777398612, 180.04509222601388] W = LinearAlgebra.UpperTriangular{Float64, Matrix{Float64}}[[0.3758763611948389 -0.008953123827345982; 0.0 0.01274866477740943], [0.18404155547484816 -0.007644049042327565; 0.0 0.00858170516633351]] Test Summary: | Pass Total Time bayes.jl | 3 3 2m11.6s Kind: diag, size256 nx: 100000 sum(zeroth order stats): 100000.00000000001 avll from stats: -0.9962016338114889 avll from llpg: -0.996201633811496 avll direct: -0.9962016338114961 sum posterior: 100000.0 Kind: full, size16 nx: 100000 sum(zeroth order stats): 100000.00000000001 avll from stats: -0.9707760282787326 avll from llpg: -0.9707760282787328 avll direct: -0.9707760282787328 sum posterior: 100000.0 kind diag, method split ┌ Info: 0: avll = └ tll[1] = -1.388653271777054 ┌ Info: 1 │ avll = │ 50-element Vector{Float64}: │ -1.388716246027658 │ -1.3886501305339478 │ -1.387881586078522 │ -1.378578420998251 │ ⋮ │ -1.342796463159692 │ -1.3427958668580093 └ -1.3427954330613554 ┌ Info: 2 │ avll = │ 50-element Vector{Float64}: │ -1.3429070880876275 │ -1.3427753253957444 │ -1.34176231388143 │ -1.3340225770688683 │ ⋮ │ -1.299688748803876 │ -1.299595784385558 └ -1.2994991471288313 ┌ Info: 3 │ avll = │ 50-element Vector{Float64}: │ -1.299546550545617 │ -1.2992564704436154 │ -1.2981268545512579 │ -1.289044012746643 │ ⋮ │ -1.2382471695504356 │ -1.2382457163594056 └ -1.2382443572152881 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 11 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 11 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 8 │ 11 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 11 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 11 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 8 │ 11 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 11 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 11 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Info: 4 │ avll = │ 50-element Vector{Float64}: │ -1.2384350477980066 │ -1.2382031148211021 │ -1.236676308708737 │ -1.2213527480528363 │ ⋮ │ -1.14301604425757 │ -1.1329573942823445 └ -1.137793675031378 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 15 │ 16 │ 21 │ 22 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 15 │ 16 │ 21 │ 22 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 3 │ 4 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 1 │ 15 │ 16 │ 21 │ 22 │ 25 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 2 │ 3 │ 4 │ 6 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 4 │ 15 │ 16 │ 21 │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 3 │ 4 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 2 │ 4 │ 6 │ 15 │ 16 │ 21 │ 22 │ 25 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 3 │ 4 │ 13 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 1 │ 4 │ 15 │ 16 │ 21 │ 22 │ 25 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 2 │ 3 │ 4 │ 27 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 6 │ 15 │ 16 │ 21 │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 3 │ 4 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 2 │ 4 │ 15 │ 16 │ 21 │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 3 │ 4 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 4 │ 6 │ 13 │ ⋮ │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 2 │ 3 │ 4 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 4 │ 15 │ 16 │ 21 │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 3 │ 4 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 2 │ 4 │ 6 │ 15 │ ⋮ │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 3 │ 4 │ 13 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 4 │ 15 │ 16 │ 21 │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 2 │ 3 │ 4 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 4 │ 6 │ 15 │ 16 │ 21 │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 1 │ 3 │ 4 │ 13 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 2 │ 4 │ 15 │ 16 │ 21 │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 3 │ 4 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 4 │ 6 │ 15 │ ⋮ │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 2 │ 3 │ 4 │ 13 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 4 │ 15 │ 16 │ 21 │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 3 │ 4 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 2 │ 4 │ 6 │ 15 │ ⋮ │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 3 │ 4 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 4 │ 13 │ 15 │ ⋮ │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 2 │ 3 │ 4 │ 6 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 4 │ 15 │ 16 │ 21 │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 3 │ 4 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 2 │ 4 │ 15 │ 16 │ 21 │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 3 │ 4 │ 6 │ 13 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 4 │ 15 │ 16 │ 21 │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 2 │ 3 │ 4 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 4 │ 15 │ 16 │ 21 │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 1 │ 3 │ 4 │ 6 │ 13 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 2 │ 4 │ 15 │ 16 │ 21 │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 3 │ 4 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 4 │ 15 │ 16 │ 21 │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 2 │ 3 │ 4 │ 6 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 4 │ 13 │ 15 │ 16 │ 21 │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Info: 5 │ avll = │ 50-element Vector{Float64}: │ -1.1288671949761295 │ -1.1211633507947367 │ -1.127450562973606 │ -1.1062727702207176 │ ⋮ │ -1.0178917058353436 │ -1.033516766681597 └ -1.0322832506434272 ┌ Info: Total log likelihood: │ tll = │ 251-element Vector{Float64}: │ -1.388653271777054 │ -1.388716246027658 │ -1.3886501305339478 │ -1.387881586078522 │ ⋮ │ -1.0178917058353436 │ -1.033516766681597 └ -1.0322832506434272 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 3 │ 4 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 1 │ 3 │ 4 │ 6 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 1 │ 3 │ 4 │ 6 │ 13 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 1 │ 3 │ 4 │ 6 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 1 │ 3 │ 4 │ 6 │ 13 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 22 │ 25 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 kind diag, method kmeans [ Info: Initializing GMM, 32 Gaussians diag covariance 26 dimensions using 100000 data points K-means converged with 44 iterations (objv = 572299.3394323632) ┌ Info: K-means with 32000 data points using 44 iterations └ 37.0 data points per parameter ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 10 │ 15 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 9 │ 11 │ 23 │ 24 │ 25 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 2 │ 3 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 10 │ 15 │ 21 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 11 │ 17 │ 23 │ 24 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 9 │ 25 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 2 │ 3 │ 10 │ 14 │ 15 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 11 │ 17 │ 21 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 9 │ 23 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 10 │ 15 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 11 │ 17 │ 25 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 2 │ 3 │ 9 │ 21 │ 23 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 10 │ 14 │ 15 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 11 │ 17 │ 18 │ 23 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 2 │ 3 │ 9 │ 10 │ 15 │ 21 │ 25 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 14 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 3 │ 10 │ 11 │ 15 │ ⋮ │ 23 │ 24 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 2 │ 9 │ 25 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 10 │ 18 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 2 │ 9 │ 11 │ 14 │ ⋮ │ 23 │ 24 │ 25 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 3 │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 15 │ 17 │ 23 │ 24 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 2 │ 9 │ 11 │ 18 │ 21 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 10 │ 25 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 3 │ 15 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 11 │ 14 │ 17 │ 23 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 2 │ 9 │ 10 │ 18 │ 21 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 15 │ 25 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 3 │ 10 │ 11 │ 17 │ 21 │ 23 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 2 │ 14 │ 15 │ 18 │ 25 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 10 │ 11 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 15 │ 17 │ 18 │ 21 │ 23 │ 24 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 2 │ 3 │ 9 │ 25 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 10 │ 11 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 14 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 2 │ 3 │ 9 │ 15 │ 17 │ 21 │ 23 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 10 │ 11 │ 25 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 3 │ 15 │ 23 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 2 │ 10 │ 11 │ 17 │ 21 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 2 │ 9 │ 10 │ 11 │ ⋮ │ 24 │ 25 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 2 │ 3 │ 10 │ 11 │ ⋮ │ 24 │ 25 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 2 │ 9 │ 10 │ 11 │ 14 │ 17 │ 21 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 2 │ 10 │ 11 │ 17 │ 21 │ 24 │ 25 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 14-element Vector{Int64}: │ 2 │ 3 │ 9 │ 10 │ ⋮ │ 24 │ 25 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 2 │ 10 │ 11 │ 17 │ 21 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 2 │ 9 │ 10 │ 11 │ ⋮ │ 24 │ 25 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 2 │ 3 │ 10 │ 11 │ ⋮ │ 24 │ 25 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 2 │ 9 │ 10 │ 11 │ 14 │ 17 │ 21 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 kind full, method split ┌ Info: 0: avll = └ tll[1] = -1.4157574641835131 ┌ Info: 1 │ avll = │ 50-element Vector{Float64}: │ -1.415784265193986 │ -1.415729986867056 │ -1.4156885618165458 │ -1.4156153175433979 │ ⋮ │ -1.4096893418701144 │ -1.409689163277714 └ -1.409689007683244 ┌ Info: 2 │ avll = │ 50-element Vector{Float64}: │ -1.409714355778502 │ -1.4096580261898375 │ -1.4096162598517081 │ -1.409549565106469 │ ⋮ │ -1.4020146475957183 │ -1.4019712197966465 └ -1.401895516861966 ┌ Info: 3 │ avll = │ 50-element Vector{Float64}: │ -1.4017863521397496 │ -1.4013438991391673 │ -1.4004581915914809 │ -1.398564257942538 │ ⋮ │ -1.3696076417125338 │ -1.368839660465018 └ -1.3673667801640226 ┌ Info: 4 │ avll = │ 50-element Vector{Float64}: │ -1.3650412919064079 │ -1.3618223402768312 │ -1.3574075711056282 │ -1.3523356985704977 │ ⋮ │ -1.307661459610713 │ -1.3076580849029198 └ -1.3076550602148265 ┌ Info: 5 │ avll = │ 50-element Vector{Float64}: │ -1.3077206481499866 │ -1.30740720012163 │ -1.3070633663120736 │ -1.3066599579384908 │ ⋮ │ -1.2909540351694915 │ -1.2909212608360134 └ -1.2908908746463588 ┌ Info: Total log likelihood: │ tll = │ 251-element Vector{Float64}: │ -1.4157574641835131 │ -1.415784265193986 │ -1.415729986867056 │ -1.4156885618165458 │ ⋮ │ -1.2909540351694915 │ -1.2909212608360134 └ -1.2908908746463588 kind full, method kmeans [ Info: Initializing GMM, 32 Gaussians diag covariance 26 dimensions using 100000 data points K-means terminated without convergence after 50 iterations (objv = 676851.8412760026) ┌ Info: K-means with 32000 data points using 50 iterations └ 37.0 data points per parameter Test Summary: | Broken Total Time train.jl | 1 1 9m03.1s [ Info: Initializing GMM, 2 Gaussians diag covariance 2 dimensions using 900 data points K-means converged with 2 iterations (objv = 7869.867369234178) ┌ Info: K-means with 900 data points using 2 iterations └ 150.0 data points per parameter Test Summary: | Pass Total Time ScikitLearnBase | 1 1 2.7s Testing GaussianMixtures tests passed Testing completed after 1258.14s PkgEval succeeded after 1447.95s