Package evaluation of MatrixProductBP on Julia 1.13.0-DEV.974 (7bbb213719*) started at 2025-08-13T01:37:48.793 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.79s ################################################################################ # Installation # Installing MatrixProductBP... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [3d39929c] + MatrixProductBP v0.9.0 Updating `~/.julia/environments/v1.13/Manifest.toml` [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.3.0 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.5.0 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.19.0 [198e06fe] + BangBang v0.4.4 [9718e550] + Baselet v0.1.1 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] + CPUSummary v0.2.7 [49dc2e85] + Calculus v0.5.2 [217fe2f1] + CavityTools v1.3.2 [d360d2e6] + ChainRulesCore v1.26.0 [fb6a15b2] + CloseOpenIntervals v0.1.13 [f70d9fcc] + CommonWorldInvalidations v1.0.0 [34da2185] + Compat v4.18.0 [a33af91c] + CompositionsBase v0.1.2 [187b0558] + ConstructionBase v1.6.0 [6add18c4] + ContextVariablesX v0.1.3 [adafc99b] + CpuId v0.3.1 [9a962f9c] + DataAPI v1.16.0 ⌅ [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [b552c78f] + DiffRules v1.15.1 [31c24e10] + Distributions v0.25.120 [ffbed154] + DocStringExtensions v0.9.5 [cc61a311] + FLoops v0.2.2 [b9860ae5] + FLoopsBase v0.1.1 [9aa1b823] + FastClosures v0.3.2 [1a297f60] + FillArrays v1.13.0 [9c68100b] + FoldsThreads v0.1.2 [069b7b12] + FunctionWrappers v1.1.3 [46192b85] + GPUArraysCore v0.2.0 [86223c79] + Graphs v1.13.0 [f0d1745a] + HalfIntegers v1.6.0 [3e5b6fbb] + HostCPUFeatures v0.1.17 [34004b35] + HypergeometricFunctions v0.3.28 [615f187c] + IfElse v0.1.1 [8a731c18] + IndexedGraphs v0.6.1 [d25df0c9] + Inflate v0.1.5 [22cec73e] + InitialValues v0.3.1 [18e54dd8] + IntegerMathUtils v0.1.3 [3587e190] + InverseFunctions v0.1.17 [41ab1584] + InvertedIndices v1.3.1 [92d709cd] + IrrationalConstants v0.2.4 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.1 [b14d175d] + JuliaVariables v0.2.4 [2c470bb0] + Kronecker v0.5.5 ⌅ [0b1a1467] + KrylovKit v0.8.3 [8ac3fa9e] + LRUCache v1.6.2 [10f19ff3] + LayoutPointers v0.1.17 [50d2b5c4] + Lazy v0.15.1 [1fad7336] + LazyStack v0.1.3 [2ab3a3ac] + LogExpFunctions v0.3.29 [aa2f6b4e] + LogarithmicNumbers v1.4.1 [e6f89c97] + LoggingExtras v1.1.0 [bdcacae8] + LoopVectorization v0.12.172 ⌅ [33e6dc65] + MKL v0.7.0 [d8e11817] + MLStyle v0.4.17 ⌅ [bb1c41ca] + MPSKit v0.11.6 [1914dd2f] + MacroTools v0.5.16 [d125e4d3] + ManualMemory v0.1.8 [3d39929c] + MatrixProductBP v0.9.0 [eff96d63] + Measurements v2.14.0 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 [77ba4419] + NaNMath v1.1.3 [71a1bf82] + NameResolution v0.1.5 [356022a1] + NamedDims v1.2.3 [6fe1bfb0] + OffsetArrays v1.17.0 ⌅ [77e91f04] + OptimKit v0.3.1 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.35 [65ce6f38] + PackageExtensionCompat v1.0.2 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.2 [21216c6a] + Preferences v1.5.0 [8162dcfd] + PrettyPrint v0.2.0 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.10.4 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [308eb6b3] + RationalRoots v0.2.1 [3cdcf5f2] + RecipesBase v1.3.4 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 [efcf1570] + Setfield v1.1.2 [699a6c99] + SimpleTraits v0.9.5 [a2af1166] + SortingAlgorithms v1.2.2 [276daf66] + SpecialFunctions v2.5.1 [171d559e] + SplittablesBase v0.1.15 [aedffcd0] + Static v1.2.0 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.14 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [4c63d2b9] + StatsFuns v1.5.0 [5e0ebb24] + Strided v2.3.2 [4db3bf67] + StridedViews v0.4.1 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [02d47bb6] + TensorCast v0.4.9 ⌅ [07d1fe3e] + TensorKit v0.12.0 ⌃ [11fa318c] + TensorKitManifolds v0.6.2 ⌅ [6aa20fa7] + TensorOperations v4.0.6 [89893e69] + TensorTrains v0.12.1 [8290d209] + ThreadingUtilities v0.5.5 [d94bfb22] + TrackingHeaps v0.1.0 [28d57a85] + Transducers v0.4.84 [24ddb15e] + TransmuteDims v0.1.17 [bc48ee85] + Tullio v0.3.8 [9d95972d] + TupleTools v1.6.0 [3a884ed6] + UnPack v1.0.2 [41fe7b60] + Unzip v0.2.0 ⌅ [409d34a3] + VectorInterface v0.4.9 [3d5dd08c] + VectorizationBase v0.21.71 [9f57e263] + WignerSymbols v2.0.0 ⌅ [1d5cc7b8] + IntelOpenMP_jll v2024.2.1+0 ⌅ [856f044c] + MKL_jll v2024.2.0+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [1317d2d5] + oneTBB_jll v2022.0.0+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [4af54fe1] + LazyArtifacts v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.15.0+1 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.7.15 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.5+0 [458c3c95] + OpenSSL_jll v3.5.2+0 [efcefdf7] + PCRE2_jll v10.45.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.13.1+0 [8e850ede] + nghttp2_jll v1.65.0+0 [3f19e933] + p7zip_jll v17.5.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Installation completed after 5.79s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 321.3s ################################################################################ # Testing # Testing MatrixProductBP Status `/tmp/jl_ZY1hkX/Project.toml` [4c88cf16] Aqua v0.8.14 [31c24e10] Distributions v0.25.120 [86223c79] Graphs v1.13.0 [8a731c18] IndexedGraphs v0.6.1 [3d39929c] MatrixProductBP v0.9.0 [89893e69] TensorTrains v0.12.1 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_ZY1hkX/Manifest.toml` [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 [4c88cf16] Aqua v0.8.14 [dce04be8] ArgCheck v2.5.0 [ec485272] ArnoldiMethod v0.4.0 [4fba245c] ArrayInterface v7.19.0 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] CPUSummary v0.2.7 [49dc2e85] Calculus v0.5.2 [217fe2f1] CavityTools v1.3.2 [d360d2e6] ChainRulesCore v1.26.0 [fb6a15b2] CloseOpenIntervals v0.1.13 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.0 [a33af91c] CompositionsBase v0.1.2 [187b0558] ConstructionBase v1.6.0 [6add18c4] ContextVariablesX v0.1.3 [adafc99b] CpuId v0.3.1 [9a962f9c] DataAPI v1.16.0 ⌅ [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [b552c78f] DiffRules v1.15.1 [31c24e10] Distributions v0.25.120 [ffbed154] DocStringExtensions v0.9.5 [cc61a311] FLoops v0.2.2 [b9860ae5] FLoopsBase v0.1.1 [9aa1b823] FastClosures v0.3.2 [1a297f60] FillArrays v1.13.0 [9c68100b] FoldsThreads v0.1.2 [069b7b12] FunctionWrappers v1.1.3 [46192b85] GPUArraysCore v0.2.0 [86223c79] Graphs v1.13.0 [f0d1745a] HalfIntegers v1.6.0 [3e5b6fbb] HostCPUFeatures v0.1.17 [34004b35] HypergeometricFunctions v0.3.28 [615f187c] IfElse v0.1.1 [8a731c18] IndexedGraphs v0.6.1 [d25df0c9] Inflate v0.1.5 [22cec73e] InitialValues v0.3.1 [18e54dd8] IntegerMathUtils v0.1.3 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.4 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.1 [b14d175d] JuliaVariables v0.2.4 [2c470bb0] Kronecker v0.5.5 ⌅ [0b1a1467] KrylovKit v0.8.3 [8ac3fa9e] LRUCache v1.6.2 [10f19ff3] LayoutPointers v0.1.17 [50d2b5c4] Lazy v0.15.1 [1fad7336] LazyStack v0.1.3 [2ab3a3ac] LogExpFunctions v0.3.29 [aa2f6b4e] LogarithmicNumbers v1.4.1 [e6f89c97] LoggingExtras v1.1.0 [bdcacae8] LoopVectorization v0.12.172 ⌅ [33e6dc65] MKL v0.7.0 [d8e11817] MLStyle v0.4.17 ⌅ [bb1c41ca] MPSKit v0.11.6 [1914dd2f] MacroTools v0.5.16 [d125e4d3] ManualMemory v0.1.8 [3d39929c] MatrixProductBP v0.9.0 [eff96d63] Measurements v2.14.0 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [77ba4419] NaNMath v1.1.3 [71a1bf82] NameResolution v0.1.5 [356022a1] NamedDims v1.2.3 [6fe1bfb0] OffsetArrays v1.17.0 ⌅ [77e91f04] OptimKit v0.3.1 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.35 [65ce6f38] PackageExtensionCompat v1.0.2 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.2 [21216c6a] Preferences v1.5.0 [8162dcfd] PrettyPrint v0.2.0 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.10.4 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [308eb6b3] RationalRoots v0.2.1 [3cdcf5f2] RecipesBase v1.3.4 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 [efcf1570] Setfield v1.1.2 [699a6c99] SimpleTraits v0.9.5 [a2af1166] SortingAlgorithms v1.2.2 [276daf66] SpecialFunctions v2.5.1 [171d559e] SplittablesBase v0.1.15 [aedffcd0] Static v1.2.0 [0d7ed370] StaticArrayInterface v1.8.0 [90137ffa] StaticArrays v1.9.14 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.6 [4c63d2b9] StatsFuns v1.5.0 [5e0ebb24] Strided v2.3.2 [4db3bf67] StridedViews v0.4.1 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [02d47bb6] TensorCast v0.4.9 ⌅ [07d1fe3e] TensorKit v0.12.0 ⌃ [11fa318c] TensorKitManifolds v0.6.2 ⌅ [6aa20fa7] TensorOperations v4.0.6 [89893e69] TensorTrains v0.12.1 [8290d209] ThreadingUtilities v0.5.5 [d94bfb22] TrackingHeaps v0.1.0 [28d57a85] Transducers v0.4.84 [24ddb15e] TransmuteDims v0.1.17 [bc48ee85] Tullio v0.3.8 [9d95972d] TupleTools v1.6.0 [3a884ed6] UnPack v1.0.2 [41fe7b60] Unzip v0.2.0 ⌅ [409d34a3] VectorInterface v0.4.9 [3d5dd08c] VectorizationBase v0.21.71 [9f57e263] WignerSymbols v2.0.0 ⌅ [1d5cc7b8] IntelOpenMP_jll v2024.2.1+0 ⌅ [856f044c] MKL_jll v2024.2.0+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [1317d2d5] oneTBB_jll v2022.0.0+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [1a1011a3] SharedArrays v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.15.0+1 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.7.15 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.5+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.45.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.65.0+0 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... Test Summary: | Pass Total Time Aqua | 11 11 2m50.2s Running PopDyn: iter 3 Time: 0:00:00 it: 3/100 ε: 0.003768244502756/1.0e-15     Running PopDyn: iter 8 Time: 0:00:00 it: 8/100 ε: 0.011805414050383/1.0e-15     Running PopDyn: iter 11 Time: 0:00:00 it: 11/100 ε: 0.016428569425078/1.0e-15     Running PopDyn: iter 13 Time: 0:00:00 it: 13/100 ε: 0.027392743009756/1.0e-15     Running PopDyn: iter 16 Time: 0:00:00 it: 16/100 ε: 0.070582710494435/1.0e-15     Running PopDyn: iter 20 Time: 0:00:01 it: 20/100 ε: 0.191497493564757/1.0e-15     Running PopDyn: iter 24 Time: 0:00:01 it: 24/100 ε: 0.503024878240559/1.0e-15     Running PopDyn: iter 27 Time: 0:00:01 it: 27/100 ε: 0.873121367581734/1.0e-15     Running PopDyn: iter 30 Time: 0:00:01 it: 30/100 ε: 1.471391296107333/1.0e-15     Running PopDyn: iter 33 Time: 0:00:01 it: 33/100 ε: 2.055870408472208/1.0e-15     Running PopDyn: iter 36 Time: 0:00:01 it: 36/100 ε: 2.352489190264614/1.0e-15     Running PopDyn: iter 39 Time: 0:00:01 it: 39/100 ε: 2.558533939936968/1.0e-15     Running PopDyn: iter 42 Time: 0:00:01 it: 42/100 ε: 2.590011633833914/1.0e-15     Running PopDyn: iter 45 Time: 0:00:01 it: 45/100 ε: 2.604262274310948/1.0e-15     Running PopDyn: iter 48 Time: 0:00:02 it: 48/100 ε: 2.605806608824243/1.0e-15     Running PopDyn: iter 51 Time: 0:00:02 it: 51/100 ε: 2.60647740458959/1.0e-15     Running PopDyn: iter 54 Time: 0:00:02 it: 54/100 ε: 2.606548769866594/1.0e-15     Running PopDyn: iter 57 Time: 0:00:02 it: 57/100 ε: 2.606579391684839/1.0e-15     Running PopDyn: iter 60 Time: 0:00:02 it: 60/100 ε: 2.606582638664568/1.0e-15     Running PopDyn: iter 63 Time: 0:00:02 it: 63/100 ε: 2.606584034127062/1.0e-15     Running PopDyn: iter 66 Time: 0:00:02 it: 66/100 ε: 2.606584181582672/1.0e-15     Running PopDyn: iter 69 Time: 0:00:02 it: 69/100 ε: 2.606584244688521/1.0e-15     Running PopDyn: iter 72 Time: 0:00:03 it: 72/100 ε: 2.606584251392302/1.0e-15     Running PopDyn: iter 75 Time: 0:00:03 it: 75/100 ε: 2.60658425425076/1.0e-15     Running PopDyn: iter 78 Time: 0:00:03 it: 78/100 ε: 2.606584254553781/1.0e-15     Running PopDyn: iter 81 Time: 0:00:03 it: 81/100 ε: 2.606584254683685/1.0e-15     Running PopDyn: iter 84 Time: 0:00:03 it: 84/100 ε: 2.606584254697453/1.0e-15     Running PopDyn: iter 87 Time: 0:00:03 it: 87/100 ε: 2.606584254703357/1.0e-15     Running PopDyn: iter 90 Time: 0:00:03 it: 90/100 ε: 2.606584254704/1.0e-15     Running PopDyn: iter 93 Time: 0:00:03 it: 93/100 ε: 2.606584254704274/1.0e-15     Running PopDyn: iter 96 Time: 0:00:03 it: 96/100 ε: 2.60658425470431/1.0e-15     Running PopDyn: iter 99 Time: 0:00:04 it: 99/100 ε: 2.606584254704319/1.0e-15  ┌ Warning: Population dynamics did not converge. Error 2.6065842547043188 └ @ MatrixProductBP.Models ~/.julia/packages/MatrixProductBP/Hhmig/src/Models/glauber/equilibrium.jl:113 Test Summary: | Pass Total Time Equilibrium | 1 1 0.4s WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in tile_halves(F, Type{T}, Tuple, Tuple, Tuple, Any, Any) where {F<:Function, T} at /home/pkgeval/.julia/packages/Tullio/2zyFP/src/threads.jl WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in _turbo_!(Base.Val{var"#UNROLL#"}, Base.Val{var"#OPS#"}, Base.Val{var"#ARF#"}, Base.Val{var"#AM#"}, Base.Val{var"#LPSYM#"}, Base.Val{Tuple{var"#LB#", var"#V#"}}, Vararg{Any, var"#num#vargs#"}) where {var"#UNROLL#", var"#OPS#", var"#ARF#", var"#AM#", var"#LPSYM#", var"#LB#", var"#V#", var"#num#vargs#"} at /home/pkgeval/.julia/packages/LoopVectorization/ImqiY/src/reconstruct_loopset.jl WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in _turbo_manyarg!(Base.Val{var"#UNROLL#"}, Base.Val{var"#OPS#"}, Base.Val{var"#ARF#"}, Base.Val{var"#AM#"}, Base.Val{var"#LPSYM#"}, Base.Val{Tuple{var"#LB#", var"#V#"}}, Tuple{Vararg{Any, var"#num#vargs#"}}) where {var"#UNROLL#", var"#OPS#", var"#ARF#", var"#AM#", var"#LPSYM#", var"#LB#", var"#V#", var"#num#vargs#"} at /home/pkgeval/.julia/packages/LoopVectorization/ImqiY/src/reconstruct_loopset.jl Running MPBP: iter 2 Time: 0:03:01 Δ: 0.49331867668762497 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 5 Time: 0:03:02 Δ: 0.05686943164939273 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 7 Time: 0:03:02 Δ: 0.023412461045960065 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 9 Time: 0:03:02 Δ: 0.01735050296733953 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 11 Time: 0:03:02 Δ: 0.008249678113050551 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 13 Time: 0:03:02 Δ: 0.0034664624869109595 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 15 Time: 0:03:02 Δ: 0.0018440320571646573 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 17 Time: 0:03:02 Δ: 0.000675886801395853 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 19 Time: 0:03:02 Δ: 0.0004864868516909482 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 21 Time: 0:03:03 Δ: 0.00024224243956161295 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 23 Time: 0:03:03 Δ: 8.48983005234949e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 25 Time: 0:03:03 Δ: 5.1430143049868704e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 27 Time: 0:03:03 Δ: 2.3622494090602686e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 29 Time: 0:03:03 Δ: 1.3485689384751254e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 31 Time: 0:03:03 Δ: 6.795000653925243e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 33 Time: 0:03:03 Δ: 1.8645818355977894e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 35 Time: 0:03:04 Δ: 1.6203037362938488e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 37 Time: 0:03:04 Δ: 7.539254451849331e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 39 Time: 0:03:04 Δ: 3.542401421086083e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 41 Time: 0:03:04 Δ: 1.821545196900587e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 43 Time: 0:03:04 Δ: 6.225356941058635e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 45 Time: 0:03:04 Δ: 4.8031763455469445e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 47 Time: 0:03:04 Δ: 2.2666477805799445e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 49 Time: 0:03:04 Δ: 8.666092066178521e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 51 Time: 0:03:05 Δ: 5.082484433316381e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 53 Time: 0:03:05 Δ: 2.172785062981575e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 55 Time: 0:03:05 Δ: 1.3466214809909616e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 57 Time: 0:03:05 Δ: 6.474187852489877e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 59 Time: 0:03:05 Δ: 1.9153900687740588e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 61 Time: 0:03:05 Δ: 1.6039791717048502e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 63 Time: 0:03:05 Δ: 7.014877567712574e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 65 Time: 0:03:05 Δ: 3.559730288316132e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 67 Time: 0:03:06 Δ: 1.758815315611173e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 69 Time: 0:03:06 Δ: 5.553779658384883e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 71 Time: 0:03:06 Δ: 4.774847184307873e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 73 Time: 0:03:06 Δ: 2.135847054773876e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 75 Time: 0:03:06 Δ: 8.786305016883489e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 77 Time: 0:03:06 Δ: 5.015987625256457e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 79 Time: 0:03:06 Δ: 1.9872992140790302e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 81 Time: 0:03:07 Δ: 1.383337888682945e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 83 Time: 0:03:07 Δ: 6.039613253960852e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 85 Time: 0:03:07 Δ: 2.0872192862952943e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 87 Time: 0:03:07 Δ: 1.5987211554602254e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 89 Time: 0:03:07 Δ: 5.10702591327572e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 91 Time: 0:03:07 Δ: 3.552713678800501e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 93 Time: 0:03:07 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 95 Time: 0:03:08 Δ: 3.552713678800501e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 97 Time: 0:03:08 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 99 Time: 0:03:08 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 101 Time: 0:03:08 Δ: 6.661338147750939e-16 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 102 Time: 0:03:18 Δ: 0.48881301730494986 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 103 Time: 0:03:18 Δ: 0.5260864054144496 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 104 Time: 0:03:18 Δ: 0.05525748603286007 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 105 Time: 0:03:19 Δ: 0.04494394963084636 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 106 Time: 0:03:19 Δ: 0.013056834336794276 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 107 Time: 0:03:19 Δ: 0.009702139975970026 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 108 Time: 0:03:19 Δ: 0.0020283160543936862 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 109 Time: 0:03:20 Δ: 0.0016775718997110722 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 110 Time: 0:03:20 Δ: 0.00039163536039610314 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 111 Time: 0:03:20 Δ: 0.00035063028113291317 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 112 Time: 0:03:20 Δ: 6.882256652374075e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 113 Time: 0:03:21 Δ: 6.112898798393829e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 114 Time: 0:03:21 Δ: 1.2951035045061232e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 115 Time: 0:03:21 Δ: 1.2519248069553512e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 116 Time: 0:03:22 Δ: 2.4629264565589892e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 117 Time: 0:03:22 Δ: 2.23020803624685e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 118 Time: 0:03:22 Δ: 4.461819436141212e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 119 Time: 0:03:22 Δ: 4.398875894651155e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 120 Time: 0:03:23 Δ: 8.513967086898333e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 121 Time: 0:03:23 Δ: 7.963854509185353e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 122 Time: 0:03:23 Δ: 1.5516957052597036e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 123 Time: 0:03:23 Δ: 1.5274034037560114e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 124 Time: 0:03:24 Δ: 2.934748444261004e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 125 Time: 0:03:24 Δ: 2.8276758712308947e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 126 Time: 0:03:24 Δ: 6.112603756491808e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 127 Time: 0:03:24 Δ: 5.283451454118904e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 128 Time: 0:03:25 Δ: 1.2120238146451356e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 129 Time: 0:03:25 Δ: 1.000204363776902e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 130 Time: 0:03:25 Δ: 2.5909718814887128e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 131 Time: 0:03:25 Δ: 1.8525625478105212e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 132 Time: 0:03:26 Δ: 5.192957175381707e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 133 Time: 0:03:26 Δ: 3.5147440513583206e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 134 Time: 0:03:26 Δ: 1.071143174158351e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 135 Time: 0:03:26 Δ: 6.530331830845171e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 136 Time: 0:03:27 Δ: 2.1582735598713043e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 137 Time: 0:03:27 Δ: 1.2323475573339238e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 138 Time: 0:03:27 Δ: 4.1744385725905886e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 139 Time: 0:03:27 Δ: 2.220446049250313e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 140 Time: 0:03:28 Δ: 9.992007221626409e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 141 Time: 0:03:28 Δ: 4.440892098500626e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 142 Time: 0:03:28 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 143 Time: 0:03:29 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 144 Time: 0:03:29 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 145 Time: 0:03:29 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 146 Time: 0:03:29 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 147 Time: 0:03:30 Δ: 8.881784197001252e-16 trunc: ("SVD tolerance", "0.0")  Test Summary: | Pass Total Time Glauber infinite graph | 2 2 3m35.3s Running MPBP: iter 2 Time: 0:00:01 Δ: 0.37742576912570946 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 3 Time: 0:00:01 Δ: 0.04609225183478327 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 5 Time: 0:00:01 Δ: 0.00031583402928192505 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 7 Time: 0:00:01 Δ: 3.912362683378134e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 9 Time: 0:00:01 Δ: 9.947785928332564e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 11 Time: 0:00:02 Δ: 3.9729153300527287e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 13 Time: 0:00:02 Δ: 1.9901857939430556e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 15 Time: 0:00:02 Δ: 2.6423307986078726e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 17 Time: 0:00:02 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 19 Time: 0:00:02 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 21 Time: 0:00:02 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 23 Time: 0:00:03 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 25 Time: 0:00:03 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 27 Time: 0:00:03 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 29 Time: 0:00:03 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 31 Time: 0:00:03 Δ: 5.995204332975845e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 32 Time: 0:00:03 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 34 Time: 0:00:04 Δ: 5.773159728050814e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 36 Time: 0:00:04 Δ: 4.218847493575595e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 38 Time: 0:00:04 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 40 Time: 0:00:04 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 42 Time: 0:00:04 Δ: 8.881784197001252e-16 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 43 Time: 0:00:06 Δ: 0.48142175118638675 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 45 Time: 0:00:06 Δ: 0.045793239685443465 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 46 Time: 0:00:06 Δ: 0.004817938416088907 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 47 Time: 0:00:06 Δ: 0.00046555842672058034 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 48 Time: 0:00:06 Δ: 1.4981102885558428e-5 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 49 Time: 0:00:07 Δ: 4.123516242238168e-6 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 50 Time: 0:00:07 Δ: 6.65003033084588e-7 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 51 Time: 0:00:07 Δ: 4.5314400676232935e-8 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 52 Time: 0:00:07 Δ: 1.9680994611803726e-9 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 53 Time: 0:00:07 Δ: 6.826248455382711e-10 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 54 Time: 0:00:07 Δ: 8.015788033333138e-11 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 55 Time: 0:00:08 Δ: 3.362421452379749e-12 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 56 Time: 0:00:08 Δ: 4.4075854077618715e-13 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 57 Time: 0:00:08 Δ: 9.969802761133906e-14 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 58 Time: 0:00:08 Δ: 9.992007221626409e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 59 Time: 0:00:08 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 60 Time: 0:00:09 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 61 Time: 0:00:09 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 62 Time: 0:00:09 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 63 Time: 0:00:09 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 64 Time: 0:00:09 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 65 Time: 0:00:09 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 66 Time: 0:00:10 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 67 Time: 0:00:10 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 68 Time: 0:00:10 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 69 Time: 0:00:10 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 70 Time: 0:00:10 Δ: 3.774758283725532e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 71 Time: 0:00:10 Δ: 3.1086244689504383e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 72 Time: 0:00:11 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 73 Time: 0:00:11 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 74 Time: 0:00:11 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 75 Time: 0:00:11 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 76 Time: 0:00:11 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 77 Time: 0:00:12 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 78 Time: 0:00:12 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 79 Time: 0:00:12 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 80 Time: 0:00:12 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 81 Time: 0:00:12 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 82 Time: 0:00:12 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 83 Time: 0:00:13 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 84 Time: 0:00:13 Δ: 3.1086244689504383e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 85 Time: 0:00:13 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 86 Time: 0:00:13 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 87 Time: 0:00:13 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 88 Time: 0:00:13 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 89 Time: 0:00:13 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 90 Time: 0:00:14 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 91 Time: 0:00:14 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 92 Time: 0:00:14 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 93 Time: 0:00:14 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 94 Time: 0:00:14 Δ: 1.1102230246251565e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 95 Time: 0:00:14 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 96 Time: 0:00:15 Δ: 3.552713678800501e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 97 Time: 0:00:15 Δ: 3.1086244689504383e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 98 Time: 0:00:15 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 99 Time: 0:00:15 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 100 Time: 0:00:15 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 101 Time: 0:00:15 Δ: 1.3322676295501878e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 102 Time: 0:00:16 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 103 Time: 0:00:16 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 104 Time: 0:00:16 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 105 Time: 0:00:16 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 106 Time: 0:00:16 Δ: 3.9968028886505635e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 107 Time: 0:00:16 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 108 Time: 0:00:17 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 109 Time: 0:00:17 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 110 Time: 0:00:17 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 111 Time: 0:00:17 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 112 Time: 0:00:17 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 113 Time: 0:00:17 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 114 Time: 0:00:18 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 115 Time: 0:00:18 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 116 Time: 0:00:18 Δ: 3.3306690738754696e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 117 Time: 0:00:18 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 118 Time: 0:00:18 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 119 Time: 0:00:18 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 120 Time: 0:00:19 Δ: 1.9984014443252818e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 121 Time: 0:00:19 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 122 Time: 0:00:19 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 123 Time: 0:00:19 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 124 Time: 0:00:19 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 125 Time: 0:00:19 Δ: 3.1086244689504383e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 126 Time: 0:00:20 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 127 Time: 0:00:20 Δ: 3.9968028886505635e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 128 Time: 0:00:20 Δ: 3.552713678800501e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 129 Time: 0:00:20 Δ: 2.4424906541753444e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 130 Time: 0:00:20 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 131 Time: 0:00:20 Δ: 3.1086244689504383e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 132 Time: 0:00:21 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 133 Time: 0:00:21 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 134 Time: 0:00:21 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 135 Time: 0:00:21 Δ: 1.7763568394002505e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 136 Time: 0:00:21 Δ: 3.1086244689504383e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 137 Time: 0:00:21 Δ: 2.886579864025407e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 138 Time: 0:00:22 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 139 Time: 0:00:22 Δ: 3.774758283725532e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 140 Time: 0:00:22 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 141 Time: 0:00:22 Δ: 4.218847493575595e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 142 Time: 0:00:22 Δ: 2.6645352591003757e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 143 Time: 0:00:22 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 144 Time: 0:00:23 Δ: 1.5543122344752192e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 145 Time: 0:00:23 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 146 Time: 0:00:23 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 147 Time: 0:00:23 Δ: 2.220446049250313e-15 trunc: ("SVD tolerance", "0.0")     Running MPBP: iter 148 Time: 0:00:23 Δ: 6.661338147750939e-16 trunc: ("SVD tolerance", "0.0")  Test Summary: | Pass Total Time Glauber infinite bipartite graph | 2 2 26.1s Computing joint probability 0%| | ETA: 7:04:11 Computing joint probability 35%|████████▍ | ETA: 0:00:02 Computing joint probability 72%|█████████████████▍ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:01 Computing exact marginals 2%|▌ | ETA: 0:00:06 Computing exact marginals 23%|██████ | ETA: 0:00:01 Computing exact marginals 44%|███████████▋ | ETA: 0:00:00 Computing exact marginals 66%|█████████████████▏ | ETA: 0:00:00 Computing exact marginals 87%|██████████████████████▌ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 15%|████ | ETA: 0:00:01 Computing exact marginals 37%|█████████▋ | ETA: 0:00:00 Computing exact marginals 58%|███████████████ | ETA: 0:00:00 Computing exact marginals 78%|████████████████████▎ | ETA: 0:00:00 Computing exact marginals 98%|█████████████████████████▌| ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 34%|████████▎ | ETA: 0:00:00 Computing joint probability 66%|████████████████ | ETA: 0:00:00 Computing joint probability 99%|███████████████████████▊| ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 18%|████▌ | ETA: 0:00:00 Computing exact marginals 36%|█████████▌ | ETA: 0:00:00 Computing exact marginals 55%|██████████████▍ | ETA: 0:00:00 Computing exact marginals 74%|███████████████████▎ | ETA: 0:00:00 Computing exact marginals 93%|████████████████████████▏ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Test Summary: | Pass Total Time Glauber ±J small tree | 13 13 1m28.4s Computing joint probability 0%| | ETA: 1:04:06 Computing joint probability 89%|█████████████████████▍ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 20%|█████▏ | ETA: 0:00:00 Computing exact marginals 76%|███████████████████▊ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 61%|███████████████▉ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 80%|███████████████████▏ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 58%|███████████████▏ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 92%|██████████████████████▏ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 0%| | ETA: 1:34:08 Computing exact pair marginals 2%|▍ | ETA: 0:00:25 Computing exact pair marginals 4%|▊ | ETA: 0:00:15 Computing exact pair marginals 5%|█▏ | ETA: 0:00:12 Computing exact pair marginals 7%|█▌ | ETA: 0:00:10 Computing exact pair marginals 9%|█▉ | ETA: 0:00:09 Computing exact pair marginals 10%|██▎ | ETA: 0:00:09 Computing exact pair marginals 12%|██▌ | ETA: 0:00:08 Computing exact pair marginals 14%|██▉ | ETA: 0:00:08 Computing exact pair marginals 16%|███▎ | ETA: 0:00:07 Computing exact pair marginals 17%|███▋ | ETA: 0:00:07 Computing exact pair marginals 19%|████ | ETA: 0:00:07 Computing exact pair marginals 21%|████▍ | ETA: 0:00:06 Computing exact pair marginals 22%|████▊ | ETA: 0:00:06 Computing exact pair marginals 24%|█████▏ | ETA: 0:00:06 Computing exact pair marginals 26%|█████▌ | ETA: 0:00:06 Computing exact pair marginals 28%|█████▉ | ETA: 0:00:05 Computing exact pair marginals 30%|██████▎ | ETA: 0:00:05 Computing exact pair marginals 31%|██████▋ | ETA: 0:00:05 Computing exact pair marginals 33%|███████ | ETA: 0:00:05 Computing exact pair marginals 35%|███████▍ | ETA: 0:00:05 Computing exact pair marginals 37%|███████▊ | ETA: 0:00:05 Computing exact pair marginals 38%|████████▏ | ETA: 0:00:04 Computing exact pair marginals 40%|████████▌ | ETA: 0:00:04 Computing exact pair marginals 42%|████████▊ | ETA: 0:00:04 Computing exact pair marginals 43%|█████████▏ | ETA: 0:00:04 Computing exact pair marginals 45%|█████████▌ | ETA: 0:00:04 Computing exact pair marginals 47%|█████████▊ | ETA: 0:00:04 Computing exact pair marginals 48%|██████████▏ | ETA: 0:00:04 Computing exact pair marginals 50%|██████████▌ | ETA: 0:00:03 Computing exact pair marginals 51%|██████████▊ | ETA: 0:00:03 Computing exact pair marginals 53%|███████████▏ | ETA: 0:00:03 Computing exact pair marginals 55%|███████████▌ | ETA: 0:00:03 Computing exact pair marginals 56%|███████████▉ | ETA: 0:00:03 Computing exact pair marginals 58%|████████████▎ | ETA: 0:00:03 Computing exact pair marginals 60%|████████████▌ | ETA: 0:00:03 Computing exact pair marginals 62%|████████████▉ | ETA: 0:00:03 Computing exact pair marginals 63%|█████████████▎ | ETA: 0:00:03 Computing exact pair marginals 65%|█████████████▋ | ETA: 0:00:02 Computing exact pair marginals 67%|██████████████ | ETA: 0:00:02 Computing exact pair marginals 68%|██████████████▍ | ETA: 0:00:02 Computing exact pair marginals 70%|██████████████▊ | ETA: 0:00:02 Computing exact pair marginals 72%|███████████████▏ | ETA: 0:00:02 Computing exact pair marginals 74%|███████████████▌ | ETA: 0:00:02 Computing exact pair marginals 76%|███████████████▉ | ETA: 0:00:02 Computing exact pair marginals 77%|████████████████▎ | ETA: 0:00:01 Computing exact pair marginals 79%|████████████████▋ | ETA: 0:00:01 Computing exact pair marginals 81%|█████████████████ | ETA: 0:00:01 Computing exact pair marginals 83%|█████████████████▍ | ETA: 0:00:01 Computing exact pair marginals 84%|█████████████████▊ | ETA: 0:00:01 Computing exact pair marginals 86%|██████████████████▏ | ETA: 0:00:01 Computing exact pair marginals 88%|██████████████████▌ | ETA: 0:00:01 Computing exact pair marginals 90%|██████████████████▉ | ETA: 0:00:01 Computing exact pair marginals 91%|███████████████████▏ | ETA: 0:00:01 Computing exact pair marginals 93%|███████████████████▌ | ETA: 0:00:00 Computing exact pair marginals 95%|███████████████████▉ | ETA: 0:00:00 Computing exact pair marginals 97%|████████████████████▎| ETA: 0:00:00 Computing exact pair marginals 98%|████████████████████▋| ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:06 Computing joint probability 88%|█████████████████████▏ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 2%|▍ | ETA: 0:00:06 Computing exact pair marginals 3%|▊ | ETA: 0:00:06 Computing exact pair marginals 5%|█▏ | ETA: 0:00:06 Computing exact pair marginals 7%|█▌ | ETA: 0:00:05 Computing exact pair marginals 9%|█▉ | ETA: 0:00:05 Computing exact pair marginals 10%|██▏ | ETA: 0:00:05 Computing exact pair marginals 12%|██▌ | ETA: 0:00:05 Computing exact pair marginals 14%|██▉ | ETA: 0:00:05 Computing exact pair marginals 16%|███▎ | ETA: 0:00:05 Computing exact pair marginals 17%|███▋ | ETA: 0:00:05 Computing exact pair marginals 19%|████ | ETA: 0:00:05 Computing exact pair marginals 21%|████▍ | ETA: 0:00:05 Computing exact pair marginals 22%|████▊ | ETA: 0:00:05 Computing exact pair marginals 24%|█████▏ | ETA: 0:00:05 Computing exact pair marginals 26%|█████▍ | ETA: 0:00:05 Computing exact pair marginals 28%|█████▊ | ETA: 0:00:04 Computing exact pair marginals 29%|██████▏ | ETA: 0:00:04 Computing exact pair marginals 31%|██████▌ | ETA: 0:00:04 Computing exact pair marginals 33%|██████▉ | ETA: 0:00:04 Computing exact pair marginals 34%|███████▎ | ETA: 0:00:04 Computing exact pair marginals 36%|███████▋ | ETA: 0:00:04 Computing exact pair marginals 38%|███████▉ | ETA: 0:00:04 Computing exact pair marginals 39%|████████▎ | ETA: 0:00:04 Computing exact pair marginals 41%|████████▋ | ETA: 0:00:04 Computing exact pair marginals 43%|█████████ | ETA: 0:00:04 Computing exact pair marginals 45%|█████████▍ | ETA: 0:00:03 Computing exact pair marginals 46%|█████████▊ | ETA: 0:00:03 Computing exact pair marginals 48%|██████████▏ | ETA: 0:00:03 Computing exact pair marginals 50%|██████████▌ | ETA: 0:00:03 Computing exact pair marginals 51%|██████████▊ | ETA: 0:00:03 Computing exact pair marginals 53%|███████████▏ | ETA: 0:00:03 Computing exact pair marginals 55%|███████████▌ | ETA: 0:00:03 Computing exact pair marginals 57%|███████████▉ | ETA: 0:00:03 Computing exact pair marginals 58%|████████████▎ | ETA: 0:00:03 Computing exact pair marginals 60%|████████████▋ | ETA: 0:00:02 Computing exact pair marginals 62%|█████████████ | ETA: 0:00:02 Computing exact pair marginals 63%|█████████████▍ | ETA: 0:00:02 Computing exact pair marginals 65%|█████████████▋ | ETA: 0:00:02 Computing exact pair marginals 67%|██████████████ | ETA: 0:00:02 Computing exact pair marginals 68%|██████████████▍ | ETA: 0:00:02 Computing exact pair marginals 70%|██████████████▊ | ETA: 0:00:02 Computing exact pair marginals 72%|███████████████▏ | ETA: 0:00:02 Computing exact pair marginals 74%|███████████████▌ | ETA: 0:00:02 Computing exact pair marginals 76%|███████████████▉ | ETA: 0:00:01 Computing exact pair marginals 77%|████████████████▎ | ETA: 0:00:01 Computing exact pair marginals 79%|████████████████▋ | ETA: 0:00:01 Computing exact pair marginals 81%|█████████████████ | ETA: 0:00:01 Computing exact pair marginals 83%|█████████████████▍ | ETA: 0:00:01 Computing exact pair marginals 84%|█████████████████▊ | ETA: 0:00:01 Computing exact pair marginals 86%|██████████████████▏ | ETA: 0:00:01 Computing exact pair marginals 88%|██████████████████▌ | ETA: 0:00:01 Computing exact pair marginals 90%|██████████████████▉ | ETA: 0:00:01 Computing exact pair marginals 91%|███████████████████▎ | ETA: 0:00:01 Computing exact pair marginals 93%|███████████████████▋ | ETA: 0:00:00 Computing exact pair marginals 95%|████████████████████ | ETA: 0:00:00 Computing exact pair marginals 97%|████████████████████▍| ETA: 0:00:00 Computing exact pair marginals 99%|████████████████████▊| ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:06 Computing joint probability 87%|█████████████████████ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 2%|▍ | ETA: 0:00:06 Computing exact pair marginals 3%|▋ | ETA: 0:00:06 Computing exact pair marginals 5%|█ | ETA: 0:00:06 Computing exact pair marginals 7%|█▍ | ETA: 0:00:06 Computing exact pair marginals 8%|█▊ | ETA: 0:00:06 Computing exact pair marginals 10%|██▏ | ETA: 0:00:05 Computing exact pair marginals 12%|██▌ | ETA: 0:00:06 Computing exact pair marginals 13%|██▉ | ETA: 0:00:06 Computing exact pair marginals 15%|███▏ | ETA: 0:00:06 Computing exact pair marginals 17%|███▌ | ETA: 0:00:05 Computing exact pair marginals 18%|███▉ | ETA: 0:00:05 Computing exact pair marginals 20%|████▎ | ETA: 0:00:05 Computing exact pair marginals 22%|████▋ | ETA: 0:00:05 Computing exact pair marginals 24%|█████ | ETA: 0:00:05 Computing exact pair marginals 25%|█████▍ | ETA: 0:00:05 Computing exact pair marginals 27%|█████▊ | ETA: 0:00:04 Computing exact pair marginals 29%|██████▏ | ETA: 0:00:04 Computing exact pair marginals 31%|██████▌ | ETA: 0:00:04 Computing exact pair marginals 33%|██████▉ | ETA: 0:00:04 Computing exact pair marginals 35%|███████▍ | ETA: 0:00:04 Computing exact pair marginals 37%|███████▊ | ETA: 0:00:04 Computing exact pair marginals 39%|████████▏ | ETA: 0:00:04 Computing exact pair marginals 41%|████████▌ | ETA: 0:00:04 Computing exact pair marginals 42%|████████▉ | ETA: 0:00:03 Computing exact pair marginals 44%|█████████▎ | ETA: 0:00:03 Computing exact pair marginals 46%|█████████▋ | ETA: 0:00:03 Computing exact pair marginals 48%|██████████▏ | ETA: 0:00:03 Computing exact pair marginals 50%|██████████▌ | ETA: 0:00:03 Computing exact pair marginals 52%|██████████▉ | ETA: 0:00:03 Computing exact pair marginals 54%|███████████▎ | ETA: 0:00:03 Computing exact pair marginals 56%|███████████▋ | ETA: 0:00:03 Computing exact pair marginals 58%|████████████▏ | ETA: 0:00:03 Computing exact pair marginals 59%|████████████▌ | ETA: 0:00:02 Computing exact pair marginals 61%|████████████▉ | ETA: 0:00:02 Computing exact pair marginals 63%|█████████████▏ | ETA: 0:00:02 Computing exact pair marginals 65%|█████████████▋ | ETA: 0:00:02 Computing exact pair marginals 66%|██████████████ | ETA: 0:00:02 Computing exact pair marginals 68%|██████████████▍ | ETA: 0:00:02 Computing exact pair marginals 70%|██████████████▊ | ETA: 0:00:02 Computing exact pair marginals 72%|███████████████▏ | ETA: 0:00:02 Computing exact pair marginals 74%|███████████████▌ | ETA: 0:00:02 Computing exact pair marginals 76%|███████████████▉ | ETA: 0:00:01 Computing exact pair marginals 77%|████████████████▎ | ETA: 0:00:01 Computing exact pair marginals 79%|████████████████▋ | ETA: 0:00:01 Computing exact pair marginals 81%|█████████████████ | ETA: 0:00:01 Computing exact pair marginals 83%|█████████████████▍ | ETA: 0:00:01 Computing exact pair marginals 85%|█████████████████▊ | ETA: 0:00:01 Computing exact pair marginals 87%|██████████████████▎ | ETA: 0:00:01 Computing exact pair marginals 88%|██████████████████▋ | ETA: 0:00:01 Computing exact pair marginals 90%|███████████████████ | ETA: 0:00:01 Computing exact pair marginals 92%|███████████████████▍ | ETA: 0:00:00 Computing exact pair marginals 94%|███████████████████▉ | ETA: 0:00:00 Computing exact pair marginals 96%|████████████████████▎| ETA: 0:00:00 Computing exact pair marginals 98%|████████████████████▋| ETA: 0:00:00 Computing exact pair marginals 99%|█████████████████████| ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:05 Computing joint probability 85%|████████████████████▌ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 67%|█████████████████▎ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 31%|███████▉ | ETA: 0:00:00 Computing exact marginals 99%|██████████████████████████| ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 91%|█████████████████████▉ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 68%|█████████████████▊ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 92%|██████████████████████▎ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 2%|▍ | ETA: 0:00:07 Computing exact pair marginals 3%|▋ | ETA: 0:00:07 Computing exact pair marginals 5%|█ | ETA: 0:00:06 Computing exact pair marginals 6%|█▎ | ETA: 0:00:10 Computing exact pair marginals 8%|█▋ | ETA: 0:00:09 Computing exact pair marginals 9%|██ | ETA: 0:00:08 Computing exact pair marginals 11%|██▍ | ETA: 0:00:07 Computing exact pair marginals 13%|██▊ | ETA: 0:00:07 Computing exact pair marginals 15%|███▏ | ETA: 0:00:06 Computing exact pair marginals 17%|███▌ | ETA: 0:00:06 Computing exact pair marginals 18%|███▉ | ETA: 0:00:06 Computing exact pair marginals 20%|████▎ | ETA: 0:00:06 Computing exact pair marginals 22%|████▋ | ETA: 0:00:06 Computing exact pair marginals 24%|█████ | ETA: 0:00:05 Computing exact pair marginals 25%|█████▎ | ETA: 0:00:05 Computing exact pair marginals 27%|█████▋ | ETA: 0:00:05 Computing exact pair marginals 28%|██████ | ETA: 0:00:05 Computing exact pair marginals 30%|██████▎ | ETA: 0:00:07 Computing exact pair marginals 32%|██████▋ | ETA: 0:00:06 Computing exact pair marginals 33%|███████ | ETA: 0:00:06 Computing exact pair marginals 35%|███████▍ | ETA: 0:00:06 Computing exact pair marginals 37%|███████▊ | ETA: 0:00:06 Computing exact pair marginals 38%|████████ | ETA: 0:00:05 Computing exact pair marginals 40%|████████▍ | ETA: 0:00:05 Computing exact pair marginals 42%|████████▊ | ETA: 0:00:05 Computing exact pair marginals 43%|█████████▏ | ETA: 0:00:05 Computing exact pair marginals 45%|█████████▍ | ETA: 0:00:05 Computing exact pair marginals 47%|█████████▊ | ETA: 0:00:04 Computing exact pair marginals 48%|██████████▏ | ETA: 0:00:04 Computing exact pair marginals 50%|██████████▌ | ETA: 0:00:04 Computing exact pair marginals 52%|██████████▉ | ETA: 0:00:04 Computing exact pair marginals 53%|███████████▎ | ETA: 0:00:04 Computing exact pair marginals 55%|███████████▌ | ETA: 0:00:04 Computing exact pair marginals 57%|███████████▉ | ETA: 0:00:03 Computing exact pair marginals 58%|████████████▎ | ETA: 0:00:03 Computing exact pair marginals 60%|████████████▋ | ETA: 0:00:03 Computing exact pair marginals 62%|████████████▉ | ETA: 0:00:03 Computing exact pair marginals 63%|█████████████▎ | ETA: 0:00:03 Computing exact pair marginals 65%|█████████████▋ | ETA: 0:00:03 Computing exact pair marginals 67%|██████████████ | ETA: 0:00:03 Computing exact pair marginals 68%|██████████████▍ | ETA: 0:00:02 Computing exact pair marginals 70%|██████████████▋ | ETA: 0:00:02 Computing exact pair marginals 71%|███████████████ | ETA: 0:00:02 Computing exact pair marginals 73%|███████████████▍ | ETA: 0:00:02 Computing exact pair marginals 75%|███████████████▊ | ETA: 0:00:02 Computing exact pair marginals 76%|████████████████ | ETA: 0:00:02 Computing exact pair marginals 78%|████████████████▍ | ETA: 0:00:02 Computing exact pair marginals 80%|████████████████▊ | ETA: 0:00:02 Computing exact pair marginals 81%|█████████████████ | ETA: 0:00:01 Computing exact pair marginals 83%|█████████████████▍ | ETA: 0:00:01 Computing exact pair marginals 84%|█████████████████▊ | ETA: 0:00:01 Computing exact pair marginals 86%|██████████████████ | ETA: 0:00:01 Computing exact pair marginals 88%|██████████████████▍ | ETA: 0:00:01 Computing exact pair marginals 89%|██████████████████▊ | ETA: 0:00:01 Computing exact pair marginals 91%|███████████████████▏ | ETA: 0:00:01 Computing exact pair marginals 93%|███████████████████▌ | ETA: 0:00:01 Computing exact pair marginals 95%|███████████████████▉ | ETA: 0:00:00 Computing exact pair marginals 96%|████████████████████▎| ETA: 0:00:00 Computing exact pair marginals 98%|████████████████████▋| ETA: 0:00:00 Computing exact pair marginals 99%|████████████████████▉| ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:07 Computing joint probability 89%|█████████████████████▍ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact pair marginals 2%|▍ | ETA: 0:00:06 Computing exact pair marginals 3%|▊ | ETA: 0:00:06 Computing exact pair marginals 5%|█ | ETA: 0:00:06 Computing exact pair marginals 7%|█▍ | ETA: 0:00:06 Computing exact pair marginals 8%|█▊ | ETA: 0:00:06 Computing exact pair marginals 10%|██ | ETA: 0:00:06 Computing exact pair marginals 11%|██▍ | ETA: 0:00:06 Computing exact pair marginals 13%|██▋ | ETA: 0:00:06 Computing exact pair marginals 15%|███ | ETA: 0:00:06 Computing exact pair marginals 16%|███▍ | ETA: 0:00:06 Computing exact pair marginals 18%|███▊ | ETA: 0:00:05 Computing exact pair marginals 20%|████▏ | ETA: 0:00:05 Computing exact pair marginals 21%|████▍ | ETA: 0:00:05 Computing exact pair marginals 23%|████▊ | ETA: 0:00:05 Computing exact pair marginals 24%|█████▏ | ETA: 0:00:05 Computing exact pair marginals 26%|█████▍ | ETA: 0:00:05 Computing exact pair marginals 28%|█████▊ | ETA: 0:00:05 Computing exact pair marginals 29%|██████▏ | ETA: 0:00:05 Computing exact pair marginals 31%|██████▌ | ETA: 0:00:04 Computing exact pair marginals 32%|██████▉ | ETA: 0:00:04 Computing exact pair marginals 34%|███████▏ | ETA: 0:00:04 Computing exact pair marginals 36%|███████▌ | ETA: 0:00:04 Computing exact pair marginals 37%|███████▉ | ETA: 0:00:04 Computing exact pair marginals 39%|████████▎ | ETA: 0:00:04 Computing exact pair marginals 41%|████████▋ | ETA: 0:00:04 Computing exact pair marginals 42%|████████▉ | ETA: 0:00:04 Computing exact pair marginals 44%|█████████▎ | ETA: 0:00:04 Computing exact pair marginals 46%|█████████▋ | ETA: 0:00:04 Computing exact pair marginals 47%|█████████▉ | ETA: 0:00:03 Computing exact pair marginals 49%|██████████▎ | ETA: 0:00:03 Computing exact pair marginals 51%|██████████▋ | ETA: 0:00:03 Computing exact pair marginals 52%|███████████ | ETA: 0:00:03 Computing exact pair marginals 54%|███████████▍ | ETA: 0:00:03 Computing exact pair marginals 56%|███████████▊ | ETA: 0:00:03 Computing exact pair marginals 57%|████████████▏ | ETA: 0:00:03 Computing exact pair marginals 59%|████████████▍ | ETA: 0:00:03 Computing exact pair marginals 61%|████████████▊ | ETA: 0:00:03 Computing exact pair marginals 62%|█████████████▏ | ETA: 0:00:02 Computing exact pair marginals 64%|█████████████▍ | ETA: 0:00:02 Computing exact pair marginals 65%|█████████████▊ | ETA: 0:00:02 Computing exact pair marginals 67%|██████████████▏ | ETA: 0:00:02 Computing exact pair marginals 69%|██████████████▍ | ETA: 0:00:02 Computing exact pair marginals 70%|██████████████▊ | ETA: 0:00:02 Computing exact pair marginals 72%|███████████████▏ | ETA: 0:00:02 Computing exact pair marginals 74%|███████████████▌ | ETA: 0:00:02 Computing exact pair marginals 76%|███████████████▉ | ETA: 0:00:02 Computing exact pair marginals 77%|████████████████▎ | ETA: 0:00:01 Computing exact pair marginals 79%|████████████████▋ | ETA: 0:00:01 Computing exact pair marginals 81%|█████████████████ | ETA: 0:00:01 Computing exact pair marginals 82%|█████████████████▍ | ETA: 0:00:01 Computing exact pair marginals 84%|█████████████████▋ | ETA: 0:00:01 Computing exact pair marginals 86%|██████████████████ | ETA: 0:00:01 Computing exact pair marginals 87%|██████████████████▎ | ETA: 0:00:01 Computing exact pair marginals 89%|██████████████████▋ | ETA: 0:00:01 Computing exact pair marginals 91%|███████████████████ | ETA: 0:00:01 Computing exact pair marginals 92%|███████████████████▍ | ETA: 0:00:01 Computing exact pair marginals 94%|███████████████████▊ | ETA: 0:00:00 Computing exact pair marginals 96%|████████████████████▏| ETA: 0:00:00 Computing exact pair marginals 97%|████████████████████▌| ETA: 0:00:00 Computing exact pair marginals 99%|████████████████████▊| ETA: 0:00:00 Computing exact pair marginals 100%|█████████████████████| Time: 0:00:06 Computing joint probability 88%|█████████████████████▎ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 55%|██████████████▍ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 62%|████████████████▏ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 92%|██████████████████████▏ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 59%|███████████████▍ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Test Summary: | Pass Total Time Glauber small tree | 20 20 1m35.9s Computing joint probability 0%|▏ | ETA: 0:00:43 Computing joint probability 100%|████████████████████████| Time: 0:00:00 WARNING: Method definition f(Any, Any) in module Main at /home/pkgeval/.julia/packages/MatrixProductBP/Hhmig/test/glauber_small_tree.jl:213 overwritten at /home/pkgeval/.julia/packages/MatrixProductBP/Hhmig/test/glauber_small_tree.jl:267. ┌ Warning: #= /home/pkgeval/.julia/packages/Tullio/2zyFP/src/macro.jl:1093 =#: │ `LoopVectorization.check_args` on your inputs failed; running fallback `@inbounds @fastmath` loop instead. │ Use `warn_check_args=false`, e.g. `@turbo warn_check_args=false ...`, to disable this warning. └ @ MatrixProductBP ~/.julia/packages/LoopVectorization/ImqiY/src/condense_loopset.jl:1166 ┌ Warning: Verbosity logging macros are deprecated as they are not compatible with juliac-compiled programs │ caller = withlevel at verbosity.jl:107 [inlined] └ @ Core ~/.julia/packages/LoggingExtras/cFgEq/src/verbosity.jl:107 ┌ Warning: Verbosity logging macros are deprecated as they are not compatible with juliac-compiled programs │ caller = ip:0x0 └ @ Core :-1 ┌ Warning: Verbosity logging macros are deprecated as they are not compatible with juliac-compiled programs │ caller = withlevel at verbosity.jl:107 [inlined] └ @ Core ~/.julia/packages/LoggingExtras/cFgEq/src/verbosity.jl:107 Running MPBP: iter 2 Time: 0:03:49 ( 1.91 m/it) Δ: 0.2952053902480951 trunc: VUMPS truncation to bond size m'=12     Running MPBP: iter 3 Time: 0:03:49 (76.64 s/it) Δ: 0.16966782956317905 trunc: VUMPS truncation to bond size m'=12     Running MPBP: iter 4 Time: 0:03:50 (57.53 s/it) Δ: 4.440892098500626e-16 trunc: VUMPS truncation to bond size m'=12  Test Summary: | Pass Total Time IntegerGlauber small tree | 17 17 5m04.5s Test Summary: | Pass Total Time MPEM1 | 1 1 4.4s Test Summary: | Pass Total Time MPEM2 | 1 1 2.4s Test Summary: | Pass Total Time MPEM3 | 1 1 1.7s Test Summary: | Pass Total Time periodic MPEM2 | 1 1 7.0s Test Summary: | Pass Total Time periodic MPEM3 | 1 1 6.7s Running MPBP: iter 2 Time: 0:00:01 Δ: 0.2701242092526397 trunc: ("SVD tolerance", "1.0e-6")  Test Summary: | Pass Total Time Message normaliz | 1 1 6.6s Computing joint probability 83%|████████████████████ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing joint probability 83%|████████████████████ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 58%|███████████████ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 79%|███████████████████ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 59%|███████████████▎ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 79%|██████████████████▉ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing joint probability 78%|██████████████████▊ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 64%|████████████████▊ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 83%|████████████████████ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 59%|███████████████▎ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Test Summary: | Pass Total Time Pair observations | 6 6 10.1s Computing joint probability 77%|██████████████████▌ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 58%|███████████████ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 62%|████████████████▏ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 73%|█████████████████▌ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 65%|████████████████▉ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Running MPBP: iter 2 Time: 0:00:04 Δ: 0.827537732830183 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 3 Time: 0:00:05 Δ: 0.07562392704808762 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 4 Time: 0:00:05 Δ: 0.0031725915295284235 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 5 Time: 0:00:06 Δ: 0.0054201130483380044 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 6 Time: 0:00:06 Δ: 0.001890245468956886 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 7 Time: 0:00:07 Δ: 0.00042848604222789355 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 8 Time: 0:00:07 Δ: 0.0003367675931691405 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 9 Time: 0:00:08 Δ: 5.1468520214204005e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 10 Time: 0:00:08 Δ: 6.798955026687814e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 11 Time: 0:00:08 Δ: 1.0075183077828953e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 12 Time: 0:00:09 Δ: 1.2932455663028364e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 13 Time: 0:00:09 Δ: 1.9497300316473343e-6 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 14 Time: 0:00:10 Δ: 2.415440407688152e-6 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 15 Time: 0:00:10 Δ: 3.732224524988226e-7 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 16 Time: 0:00:11 Δ: 4.4382504538198475e-7 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 17 Time: 0:00:11 Δ: 7.038065641395974e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 18 Time: 0:00:12 Δ: 8.03850010999696e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 19 Time: 0:00:12 Δ: 1.30865855929585e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 20 Time: 0:00:13 Δ: 1.4346824839250871e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 21 Time: 0:00:13 Δ: 2.4560207201318462e-9 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 22 Time: 0:00:14 Δ: 2.520906150493829e-9 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 23 Time: 0:00:14 Δ: 5.80596015709034e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 24 Time: 0:00:15 Δ: 4.354003824147412e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 25 Time: 0:00:15 Δ: 1.2911849367469586e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 26 Time: 0:00:16 Δ: 7.373879284955365e-11 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 27 Time: 0:00:16 Δ: 2.7544633240950134e-11 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 28 Time: 0:00:16 Δ: 1.2200240817605845e-11 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 29 Time: 0:00:17 Δ: 5.696776383956603e-12 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 30 Time: 0:00:17 Δ: 1.9606538614880265e-12 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 31 Time: 0:00:18 Δ: 1.149080830487037e-12 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 32 Time: 0:00:18 Δ: 3.035349749325178e-13 trunc: ("SVD Matrix size", "10")   Running MPBP: iter 2 Time: 0:00:03 Δ: 0.5904090881073827 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 3 Time: 0:00:05 Δ: 0.005182253953519567 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 4 Time: 0:00:07 Δ: 0.0019861702763006583 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 5 Time: 0:00:09 Δ: 0.0004411448853991473 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 6 Time: 0:00:11 Δ: 6.137698970598571e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 7 Time: 0:00:12 Δ: 1.056234863328065e-5 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 8 Time: 0:00:14 Δ: 1.496602811013048e-6 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 9 Time: 0:00:16 Δ: 5.665023230516653e-7 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 10 Time: 0:00:18 Δ: 1.5173912393251499e-7 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 11 Time: 0:00:20 Δ: 2.1871710886856022e-8 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 12 Time: 0:00:22 Δ: 2.7337097030510904e-9 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 13 Time: 0:00:23 Δ: 7.381704136832923e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 14 Time: 0:00:25 Δ: 2.570410551072655e-10 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 15 Time: 0:00:27 Δ: 4.153410948504188e-11 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 16 Time: 0:00:29 Δ: 5.1814108559256056e-12 trunc: ("SVD Matrix size", "10")     Running MPBP: iter 17 Time: 0:00:31 Δ: 9.114931032172535e-13 trunc: ("SVD Matrix size", "10")   Computing joint probability 70%|████████████████▊ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 58%|███████████████ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing exact marginals 62%|████████████████▎ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Computing joint probability 74%|█████████████████▊ | ETA: 0:00:00 Computing joint probability 100%|████████████████████████| Time: 0:00:00 Computing exact marginals 56%|██████████████▌ | ETA: 0:00:00 Computing exact marginals 100%|██████████████████████████| Time: 0:00:00 Test Summary: | Pass Total Time Periodic | 12 12 1m31.4s Marginals from Soft Margin 50%|████████████▌ | ETA: 0:00:03 Marginals from Soft Margin 100%|█████████████████████████| Time: 0:00:02 Pair marginals from Soft Margin 33%|██████▋ | ETA: 0:00:05 Pair marginals from Soft Margin 100%|████████████████████| Time: 0:00:02 Autocorrelations from Soft Margin 50%|█████████ | ETA: 0:00:02 Autocorrelations from Soft Margin 100%|██████████████████| Time: 0:00:01 sampling - Gillespie - reproducibility: Error During Test at /home/pkgeval/.julia/packages/MatrixProductBP/Hhmig/test/sampling.jl:40 Got exception outside of a @test UndefVarError: `ExponentialQueue` not defined in `MatrixProductBP` Suggestion: this global was defined as `CavityTools.ExponentialQueue` but not assigned a value. Stacktrace: [1] continuous_sis_sampler(sis::SIS{2, 4, Float64}, T::Int64, λ::Float64, ρ::Float64; α::Float64, nsamples::Int64, sites::Int64, Δt::Float64, discard_dead_epidemics::Bool, rng::MersenneTwister) @ MatrixProductBP ~/.julia/packages/MatrixProductBP/Hhmig/src/sampling.jl:276 [2] kwcall(::@NamedTuple{α::Float64, nsamples::Int64, sites::Int64, discard_dead_epidemics::Bool, rng::MersenneTwister}, ::typeof(continuous_sis_sampler), sis::SIS{2, 4, Float64}, T::Int64, λ::Float64, ρ::Float64) @ MatrixProductBP ~/.julia/packages/MatrixProductBP/Hhmig/src/sampling.jl:260 [3] top-level scope @ ~/.julia/packages/MatrixProductBP/Hhmig/test/sampling.jl:3 [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1929 [inlined] [5] macro expansion @ ~/.julia/packages/MatrixProductBP/Hhmig/test/sampling.jl:41 [inlined] [6] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1929 [inlined] [7] macro expansion @ ~/.julia/packages/MatrixProductBP/Hhmig/test/sampling.jl:41 [inlined] [8] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:312 [9] top-level scope @ ~/.julia/packages/MatrixProductBP/Hhmig/test/runtests.jl:20 [10] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:312 [11] top-level scope @ none:6 [12] eval(m::Module, e::Any) @ Core ./boot.jl:489 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:286 [14] _start() @ Base ./client.jl:553 Test Summary: | Pass Error Total Time Sampling | 6 1 7 32.2s sampling - SoftMargin | 3 3 0.7s sampling - Gillespie - reproducibility | 1 1 4.8s RNG of the outermost testset: Xoshiro(0xae3ca4fe95d8df0b, 0xcc032b89ef8487b6, 0x1e264c159db539a0, 0xc1e8f3b66bcb7f95, 0xf6644e056b811360) ERROR: LoadError: Some tests did not pass: 6 passed, 0 failed, 1 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/MatrixProductBP/Hhmig/test/sampling.jl:1 in expression starting at /home/pkgeval/.julia/packages/MatrixProductBP/Hhmig/test/runtests.jl:20 Testing failed after 1113.75s ERROR: LoadError: Package MatrixProductBP errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2672 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2521 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:515 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:157 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [9] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [12] include(mod::Module, _path::String) @ Base ./Base.jl:311 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:320 [14] _start() @ Base ./client.jl:553 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 1472.8s: package tests unexpectedly errored