Package evaluation of EvoTrees on Julia 1.13.0-DEV.974 (7bbb213719*) started at 2025-08-12T17:59:39.844 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.92s ################################################################################ # Installation # Installing EvoTrees... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [f6006082] + EvoTrees v0.17.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [fbb218c0] + BSON v0.3.9 [324d7699] + CategoricalArrays v1.0.1 [34da2185] + Compat v4.18.0 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.0 [e2d170a0] + DataValueInterfaces v1.0.0 [31c24e10] + Distributions v0.25.120 [ffbed154] + DocStringExtensions v0.9.5 [f6006082] + EvoTrees v0.17.4 [411431e0] + Extents v0.1.6 [1a297f60] + FillArrays v1.13.0 [5c1252a2] + GeometryBasics v0.5.10 [34004b35] + HypergeometricFunctions v0.3.28 [92d709cd] + IrrationalConstants v0.2.4 [c8e1da08] + IterTools v1.10.0 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 [e80e1ace] + MLJModelInterface v1.12.0 [e1d29d7a] + Missings v1.2.0 [46757867] + NetworkLayout v0.4.10 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.35 [aea7be01] + PrecompileTools v1.3.2 [21216c6a] + Preferences v1.5.0 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [3cdcf5f2] + RecipesBase v1.3.4 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [30f210dd] + ScientificTypesBase v3.0.0 [a2af1166] + SortingAlgorithms v1.2.2 [276daf66] + SpecialFunctions v2.5.1 [90137ffa] + StaticArrays v1.9.14 [1e83bf80] + StaticArraysCore v1.4.3 [64bff920] + StatisticalTraits v3.5.0 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [4c63d2b9] + StatsFuns v1.5.0 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [5ae413db] + EarCut_jll v2.2.4+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [3fa0cd96] + REPL v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.15.0+1 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.7.15 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.5+0 [458c3c95] + OpenSSL_jll v3.5.2+0 [efcefdf7] + PCRE2_jll v10.45.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.13.1+0 [8e850ede] + nghttp2_jll v1.65.0+0 [3f19e933] + p7zip_jll v17.5.0+2 Installation completed after 4.94s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Warning: Could not use exact versions of packages in manifest, re-resolving └ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:76 Precompiling package dependencies... Precompilation completed after 440.87s ################################################################################ # Testing # Testing EvoTrees Test Could not use exact versions of packages in manifest, re-resolving. Note: if you do not check your manifest file into source control, then you can probably ignore this message. However, if you do check your manifest file into source control, then you probably want to pass the `allow_reresolve = false` kwarg when calling the `Pkg.test` function. Updating `/tmp/jl_tHEkpb/Project.toml` [052768ef] + CUDA v5.8.3 ⌅ [324d7699] ↓ CategoricalArrays v1.0.1 ⇒ v0.10.8 [a93c6f00] + DataFrames v1.7.0 [f6006082] + EvoTrees v0.17.4 [a7f614a8] + MLJBase v1.8.2 [72560011] + MLJTestInterface v0.2.9 [8dfed614] ~ Test ⇒ v1.11.0 Updating `/tmp/jl_tHEkpb/Manifest.toml` [621f4979] + AbstractFFTs v1.5.0 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.3.0 [dce04be8] + ArgCheck v2.5.0 [a9b6321e] + Atomix v1.1.2 [ab4f0b2a] + BFloat16s v0.5.1 [198e06fe] + BangBang v0.4.4 [9718e550] + Baselet v0.1.1 [fa961155] + CEnum v0.5.0 [052768ef] + CUDA v5.8.3 [1af6417a] + CUDA_Runtime_Discovery v1.0.0 ⌅ [324d7699] ↓ CategoricalArrays v1.0.1 ⇒ v0.10.8 [af321ab8] + CategoricalDistributions v0.1.15 [d360d2e6] + ChainRulesCore v1.26.0 [3da002f7] + ColorTypes v0.12.1 [5ae59095] + Colors v0.13.1 [a33af91c] + CompositionsBase v0.1.2 [ed09eef8] + ComputationalResources v0.3.2 [187b0558] + ConstructionBase v1.6.0 [6add18c4] + ContextVariablesX v0.1.3 [a8cc5b0e] + Crayons v4.1.1 [a93c6f00] + DataFrames v1.7.0 ⌅ [864edb3b] ↓ DataStructures v0.19.0 ⇒ v0.18.22 [244e2a9f] + DefineSingletons v0.1.2 [8bb1440f] + DelimitedFiles v1.9.1 [f6006082] + EvoTrees v0.17.4 [e2ba6199] + ExprTools v0.1.10 [cc61a311] + FLoops v0.2.2 [b9860ae5] + FLoopsBase v0.1.1 [53c48c17] + FixedPointNumbers v0.8.5 [0c68f7d7] + GPUArrays v11.2.3 [46192b85] + GPUArraysCore v0.2.0 [61eb1bfa] + GPUCompiler v1.6.1 [096a3bc2] + GPUToolbox v0.3.0 [076d061b] + HashArrayMappedTries v0.2.0 [22cec73e] + InitialValues v0.3.1 [842dd82b] + InlineStrings v1.4.4 [3587e190] + InverseFunctions v0.1.17 [41ab1584] + InvertedIndices v1.3.1 [b14d175d] + JuliaVariables v0.2.4 [63c18a36] + KernelAbstractions v0.9.38 [929cbde3] + LLVM v9.4.2 [8b046642] + LLVMLoopInfo v1.0.0 [b964fa9f] + LaTeXStrings v1.4.0 [92ad9a40] + LearnAPI v1.0.1 [c2834f40] + MLCore v1.0.0 [a7f614a8] + MLJBase v1.8.2 [72560011] + MLJTestInterface v0.2.9 [d8e11817] + MLStyle v0.4.17 [f1d291b0] + MLUtils v0.4.8 [1914dd2f] + MacroTools v0.5.16 [128add7d] + MicroCollections v0.2.0 [872c559c] + NNlib v0.9.31 [5da4648a] + NVTX v1.0.1 [71a1bf82] + NameResolution v0.1.5 [d96e819e] + Parameters v0.12.3 [2dfb63ee] + PooledArrays v1.4.3 [8162dcfd] + PrettyPrint v0.2.0 [08abe8d2] + PrettyTables v2.4.0 [92933f4c] + ProgressMeter v1.10.4 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [321657f4] + ScientificTypes v3.1.1 [7e506255] + ScopedValues v1.4.0 [6c6a2e73] + Scratch v1.3.0 [91c51154] + SentinelArrays v1.4.8 [efcf1570] + Setfield v1.1.2 [605ecd9f] + ShowCases v0.1.0 [699a6c99] + SimpleTraits v0.9.5 [171d559e] + SplittablesBase v0.1.15 [c062fc1d] + StatisticalMeasuresBase v0.1.3 [892a3eda] + StringManipulation v0.4.1 [e689c965] + Tracy v0.1.5 [28d57a85] + Transducers v0.4.84 [3a884ed6] + UnPack v1.0.2 [013be700] + UnsafeAtomics v0.3.0 [d1e2174e] + CUDA_Compiler_jll v0.2.0+1 [4ee394cb] + CUDA_Driver_jll v13.0.0+0 [76a88914] + CUDA_Runtime_jll v0.19.0+0 [9c1d0b0a] + JuliaNVTXCallbacks_jll v0.2.1+0 [dad2f222] + LLVMExtra_jll v0.0.37+2 [ad6e5548] + LibTracyClient_jll v0.9.1+6 [e98f9f5b] + NVTX_jll v3.2.2+0 [1e29f10c] + demumble_jll v1.3.0+0 [8ba89e20] + Distributed v1.11.0 [4af54fe1] + LazyArtifacts v1.11.0 [a63ad114] + Mmap v1.11.0 [8dfed614] ~ Test ⇒ v1.11.0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Test Successfully re-resolved Status `/tmp/jl_tHEkpb/Project.toml` [fbb218c0] BSON v0.3.9 [052768ef] CUDA v5.8.3 ⌅ [324d7699] CategoricalArrays v0.10.8 [a93c6f00] DataFrames v1.7.0 [31c24e10] Distributions v0.25.120 [f6006082] EvoTrees v0.17.4 [a7f614a8] MLJBase v1.8.2 [e80e1ace] MLJModelInterface v1.12.0 [72560011] MLJTestInterface v0.2.9 [46757867] NetworkLayout v0.4.10 [3cdcf5f2] RecipesBase v1.3.4 [10745b16] Statistics v1.11.1 [2913bbd2] StatsBase v0.34.6 [bd369af6] Tables v1.12.1 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_tHEkpb/Manifest.toml` [621f4979] AbstractFFTs v1.5.0 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 [a9b6321e] Atomix v1.1.2 [ab4f0b2a] BFloat16s v0.5.1 [fbb218c0] BSON v0.3.9 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 [fa961155] CEnum v0.5.0 [052768ef] CUDA v5.8.3 [1af6417a] CUDA_Runtime_Discovery v1.0.0 ⌅ [324d7699] CategoricalArrays v0.10.8 [af321ab8] CategoricalDistributions v0.1.15 [d360d2e6] ChainRulesCore v1.26.0 [3da002f7] ColorTypes v0.12.1 [5ae59095] Colors v0.13.1 [34da2185] Compat v4.18.0 [a33af91c] CompositionsBase v0.1.2 [ed09eef8] ComputationalResources v0.3.2 [187b0558] ConstructionBase v1.6.0 [6add18c4] ContextVariablesX v0.1.3 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [a93c6f00] DataFrames v1.7.0 ⌅ [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [8bb1440f] DelimitedFiles v1.9.1 [31c24e10] Distributions v0.25.120 [ffbed154] DocStringExtensions v0.9.5 [f6006082] EvoTrees v0.17.4 [e2ba6199] ExprTools v0.1.10 [411431e0] Extents v0.1.6 [cc61a311] FLoops v0.2.2 [b9860ae5] FLoopsBase v0.1.1 [1a297f60] FillArrays v1.13.0 [53c48c17] FixedPointNumbers v0.8.5 [0c68f7d7] GPUArrays v11.2.3 [46192b85] GPUArraysCore v0.2.0 [61eb1bfa] GPUCompiler v1.6.1 [096a3bc2] GPUToolbox v0.3.0 [5c1252a2] GeometryBasics v0.5.10 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [22cec73e] InitialValues v0.3.1 [842dd82b] InlineStrings v1.4.4 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.1 [b14d175d] JuliaVariables v0.2.4 [63c18a36] KernelAbstractions v0.9.38 [929cbde3] LLVM v9.4.2 [8b046642] LLVMLoopInfo v1.0.0 [b964fa9f] LaTeXStrings v1.4.0 [92ad9a40] LearnAPI v1.0.1 [2ab3a3ac] LogExpFunctions v0.3.29 [c2834f40] MLCore v1.0.0 [a7f614a8] MLJBase v1.8.2 [e80e1ace] MLJModelInterface v1.12.0 [72560011] MLJTestInterface v0.2.9 [d8e11817] MLStyle v0.4.17 [f1d291b0] MLUtils v0.4.8 [1914dd2f] MacroTools v0.5.16 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [872c559c] NNlib v0.9.31 [5da4648a] NVTX v1.0.1 [71a1bf82] NameResolution v0.1.5 [46757867] NetworkLayout v0.4.10 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.35 [d96e819e] Parameters v0.12.3 [2dfb63ee] PooledArrays v1.4.3 [aea7be01] PrecompileTools v1.3.2 [21216c6a] Preferences v1.5.0 [8162dcfd] PrettyPrint v0.2.0 [08abe8d2] PrettyTables v2.4.0 [92933f4c] ProgressMeter v1.10.4 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [74087812] Random123 v1.7.1 [e6cf234a] RandomNumbers v1.6.0 [3cdcf5f2] RecipesBase v1.3.4 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [321657f4] ScientificTypes v3.1.1 [30f210dd] ScientificTypesBase v3.0.0 [7e506255] ScopedValues v1.4.0 [6c6a2e73] Scratch v1.3.0 [91c51154] SentinelArrays v1.4.8 [efcf1570] Setfield v1.1.2 [605ecd9f] ShowCases v0.1.0 [699a6c99] SimpleTraits v0.9.5 [a2af1166] SortingAlgorithms v1.2.2 [276daf66] SpecialFunctions v2.5.1 [171d559e] SplittablesBase v0.1.15 [90137ffa] StaticArrays v1.9.14 [1e83bf80] StaticArraysCore v1.4.3 [c062fc1d] StatisticalMeasuresBase v0.1.3 [64bff920] StatisticalTraits v3.5.0 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.6 [4c63d2b9] StatsFuns v1.5.0 [892a3eda] StringManipulation v0.4.1 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [e689c965] Tracy v0.1.5 [28d57a85] Transducers v0.4.84 [3a884ed6] UnPack v1.0.2 [013be700] UnsafeAtomics v0.3.0 [d1e2174e] CUDA_Compiler_jll v0.2.0+1 [4ee394cb] CUDA_Driver_jll v13.0.0+0 [76a88914] CUDA_Runtime_jll v0.19.0+0 [5ae413db] EarCut_jll v2.2.4+0 [9c1d0b0a] JuliaNVTXCallbacks_jll v0.2.1+0 [dad2f222] LLVMExtra_jll v0.0.37+2 [ad6e5548] LibTracyClient_jll v0.9.1+6 [e98f9f5b] NVTX_jll v3.2.2+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [1e29f10c] demumble_jll v1.3.0+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.15.0+1 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.7.15 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.5+0 [458c3c95] OpenSSL_jll v3.5.2+0 [efcefdf7] PCRE2_jll v10.45.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.65.0+0 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ┌ Info: initialization └ metric = 0.12850541855989803 ┌ Info: iter 25 └ metric = 0.0218534840818225 ┌ Info: iter 50 └ metric = 0.020308791952156183 ┌ Info: iter 75 └ metric = 0.020313633117741006 ┌ Info: iter 100 └ metric = 0.02053429553996752 ┌ Info: initialization └ metric = 0.6720977827906609 ┌ Info: iter 25 └ metric = 0.4854209664463997 ┌ Info: iter 50 └ metric = 0.4371707334369421 ┌ Info: iter 75 └ metric = 0.42108118496835234 ┌ Info: iter 100 └ metric = 0.41446558825671675 ┌ Info: initialization └ metric = 1.4709549355506897 ┌ Info: iter 25 └ metric = 0.34493750214576724 ┌ Info: iter 50 └ metric = 0.30455422043800356 ┌ Info: iter 75 └ metric = 0.2981378662586212 ┌ Info: iter 100 └ metric = 0.30318266987800596 ┌ Info: initialization └ metric = 0.5471089428663254 ┌ Info: iter 25 └ metric = 0.1568716686964035 ┌ Info: iter 50 └ metric = 0.11345964685082435 ┌ Info: iter 75 └ metric = 0.10337476193904876 ┌ Info: iter 100 └ metric = 0.10000559814274311 ┌ Info: initialization └ metric = 0.32020851522684096 ┌ Info: iter 25 └ metric = 0.12922271866351365 ┌ Info: iter 50 └ metric = 0.10199518817476928 ┌ Info: iter 75 └ metric = 0.09919940970372408 ┌ Info: iter 100 └ metric = 0.0991425906540826 ┌ Info: initialization └ metric = 0.16010425761342048 ┌ Info: iter 25 └ metric = 0.060825394783169034 ┌ Info: iter 50 └ metric = 0.049247815741691736 ┌ Info: iter 75 └ metric = 0.04860964736551978 ┌ Info: iter 100 └ metric = 0.04866470103792381 ┌ Info: initialization └ metric = 0.2957647952437401 ┌ Info: iter 25 └ metric = 0.09982108637690544 ┌ Info: iter 50 └ metric = 0.07062815807759762 ┌ Info: iter 75 └ metric = 0.0608156019821763 ┌ Info: iter 100 └ metric = 0.05664134617894888 ┌ Info: initialization └ metric = 0.5254025399684906 ┌ Info: iter 25 └ metric = 1.6643243443965912 ┌ Info: iter 50 └ metric = 1.7553918981552123 ┌ Info: iter 75 └ metric = 1.6366464787721633 ┌ Info: iter 100 └ metric = 1.527500919699669 ┌ Info: initialization └ metric = -1.7957830564654431 ┌ Info: iter 25 └ metric = -0.11804731893353164 ┌ Info: iter 50 └ metric = -0.2167155128903687 ┌ Info: iter 75 └ metric = -0.3314145844290033 ┌ Info: iter 100 └ metric = -0.33276243005879225 ┌ Info: initialization └ metric = 0.5254025399684906 ┌ Info: iter 25 └ metric = 1.6643243443965912 ┌ Info: iter 50 └ metric = 1.7553918981552123 ┌ Info: iter 75 └ metric = 1.6366464787721633 ┌ Info: iter 100 └ metric = 1.527500919699669 ┌ Info: initialization └ metric = 0.12850541855989803 ┌ Info: iter 25 └ metric = 0.0423259663949284 ┌ Info: iter 50 └ metric = 0.029923325241811655 ┌ Info: iter 75 └ metric = 0.025185474146319962 ┌ Info: iter 100 └ metric = 0.02273554716364629 ┌ Info: iter 125 └ metric = 0.021428670910092932 ┌ Info: iter 150 └ metric = 0.020671600587487547 ┌ Info: iter 175 └ metric = 0.020286477897562917 ┌ Info: iter 200 └ metric = 0.02007343324829222 ┌ Info: initialization └ metric = 0.6720977827906609 ┌ Info: iter 25 └ metric = 0.48906796604394914 ┌ Info: iter 50 └ metric = 0.45056863233447075 ┌ Info: iter 75 └ metric = 0.4339840408042073 ┌ Info: iter 100 └ metric = 0.42426158741116526 ┌ Info: iter 125 └ metric = 0.41806680407375096 ┌ Info: iter 150 └ metric = 0.41389062194153664 ┌ Info: iter 175 └ metric = 0.4110515335574746 ┌ Info: iter 200 └ metric = 0.4090116586722434 ┌ Info: initialization └ metric = 0.16010425761342048 ┌ Info: iter 25 └ metric = 0.08159953819587827 ┌ Info: iter 50 └ metric = 0.06353082546032965 ┌ Info: iter 75 └ metric = 0.05730581597425043 ┌ Info: iter 100 └ metric = 0.05306666763499379 ┌ Info: iter 125 └ metric = 0.050234638033434746 ┌ Info: iter 150 └ metric = 0.04865887098945677 ┌ Info: iter 175 └ metric = 0.0479407334595453 ┌ Info: iter 200 └ metric = 0.047474883199320174 ┌ Info: initialization └ metric = 0.32020851522684096 ┌ Info: iter 25 └ metric = 0.1865524584800005 ┌ Info: iter 50 └ metric = 0.14815250769257546 ┌ Info: iter 75 └ metric = 0.13184949912130833 ┌ Info: iter 100 └ metric = 0.12151799038052559 ┌ Info: iter 125 └ metric = 0.11525779008865357 ┌ Info: iter 150 └ metric = 0.1107572434656322 ┌ Info: iter 175 └ metric = 0.10741648390889168 ┌ Info: iter 200 └ metric = 0.1050634808279574 ┌ Info: initialization └ metric = 1.4709549355506897 ┌ Info: iter 25 └ metric = 0.49673894643783567 ┌ Info: iter 50 └ metric = 0.4472580850124359 ┌ Info: iter 75 └ metric = 0.4267463994026184 ┌ Info: iter 100 └ metric = 0.4109067535400391 ┌ Info: iter 125 └ metric = 0.3999123275279999 ┌ Info: iter 150 └ metric = 0.3913017475605011 ┌ Info: iter 175 └ metric = 0.3847887325286865 ┌ Info: iter 200 └ metric = 0.3801265645027161 ┌ Info: initialization └ metric = 0.5471089428663254 ┌ Info: iter 25 └ metric = 0.21913841038942336 ┌ Info: iter 50 └ metric = 0.13720423802733422 ┌ Info: iter 75 └ metric = 0.11385027751326561 ┌ Info: iter 100 └ metric = 0.10443447336554527 ┌ Info: iter 125 └ metric = 0.09951980963349343 ┌ Info: iter 150 └ metric = 0.09702852010726928 ┌ Info: iter 175 └ metric = 0.09551732912659645 ┌ Info: iter 200 └ metric = 0.094958426207304 ┌ Info: initialization └ metric = 0.2957647952437401 ┌ Info: iter 25 └ metric = 0.07575521223247052 ┌ Info: iter 50 └ metric = 0.055389644242823124 ┌ Info: iter 75 └ metric = 0.04930419464595616 ┌ Info: iter 100 └ metric = 0.04735164218582213 ┌ Info: iter 125 └ metric = 0.04671690450981259 ┌ Info: iter 150 └ metric = 0.04653070217464119 ┌ Info: iter 175 └ metric = 0.046541841465514155 ┌ Info: iter 200 └ metric = 0.04664113273145631 ┌ Info: initialization └ metric = 0.5254025399684906 ┌ Info: iter 25 └ metric = 1.2444885614514352 ┌ Info: iter 50 └ metric = 1.5074850124120713 ┌ Info: iter 75 └ metric = 1.6780072042346001 ┌ Info: iter 100 └ metric = 1.7726103961467743 ┌ Info: iter 125 └ metric = 1.8351438862085343 ┌ Info: iter 150 └ metric = 1.8794235858321189 ┌ Info: iter 175 └ metric = 1.9026350170373916 ┌ Info: iter 200 └ metric = 1.9192887452244758 ┌ Info: initialization └ metric = -1.7957830564654431 ┌ Info: iter 25 └ metric = -0.5233324768813327 ┌ Info: iter 50 └ metric = -0.3126774764340371 ┌ Info: iter 75 └ metric = -0.1482080158177996 ┌ Info: iter 100 └ metric = -0.08164310291409492 ┌ Info: iter 125 └ metric = -0.04318209574557841 ┌ Info: iter 150 └ metric = -0.03685651195701212 ┌ Info: iter 175 └ metric = -0.03313629071228206 ┌ Info: iter 200 └ metric = -0.041607066886499525 ┌ Info: initialization └ metric = 0.6875359496474266 ┌ Info: iter 50 └ metric = 0.298640475012362 ┌ Info: iter 100 └ metric = 0.2744265696126968 ┌ Info: initialization └ metric = 0.12692690002214477 ┌ Info: iter 25 └ metric = 0.035449535256672104 ┌ Info: iter 50 └ metric = 0.022091049771033867 ┌ Info: iter 75 └ metric = 0.019839464080984897 ┌ Info: iter 100 └ metric = 0.019345529151084194 ┌ Info: initialization └ metric = 0.12692690002214477 ┌ Info: iter 25 └ metric = 0.03533317220291012 ┌ Info: iter 50 └ metric = 0.021854105652548982 ┌ Info: iter 75 └ metric = 0.019633157023992282 ┌ Info: iter 100 └ metric = 0.01929916271276106 ┌ Info: initialization └ metric = 0.020358958927368376 ┌ Info: iter 25 └ metric = 0.004361602189505604 ┌ Info: iter 50 └ metric = 0.0013782550718356656 ┌ Info: iter 75 └ metric = 0.000822369201089872 ┌ Info: iter 100 └ metric = 0.0007169724630985339 ┌ Info: iter 125 └ metric = 0.000697192498014724 ┌ Info: iter 150 └ metric = 0.0006930728099176076 ┌ Info: iter 175 └ metric = 0.0006917962010436209 ┌ Info: iter 200 └ metric = 0.0006918942449952894 ┌ Info: initialization └ metric = 0.020358958927368376 ┌ Info: iter 25 └ metric = 0.0024131638495896064 ┌ Info: iter 50 └ metric = 0.0024127923751441054 ┌ Info: iter 75 └ metric = 0.0024143452895525356 ┌ Info: iter 100 └ metric = 0.0024144685438429506 ┌ Info: iter 125 └ metric = 0.0024142454706221946 ┌ Info: iter 150 └ metric = 0.00241333997505191 ┌ Info: iter 175 └ metric = 0.0024134418835719505 ┌ Info: iter 200 └ metric = 0.0024133667874534693 ┌ Info: initialization └ metric = 0.40619069431722166 ┌ Info: iter 25 └ metric = 0.34405948795750735 ┌ Info: iter 50 └ metric = 0.33176836168952284 ┌ Info: iter 75 └ metric = 0.328082158215344 ┌ Info: iter 100 └ metric = 0.3265756065798923 ┌ Info: iter 125 └ metric = 0.32582493518106637 ┌ Info: iter 150 └ metric = 0.3254002459323965 ┌ Info: iter 175 └ metric = 0.32513588516507297 ┌ Info: iter 200 └ metric = 0.3249636071003042 ┌ Info: initialization └ metric = 0.40619069431722166 ┌ Info: iter 25 └ metric = 0.3523449128419161 ┌ Info: iter 50 └ metric = 0.34380327036231756 ┌ Info: iter 75 └ metric = 0.34201818084344265 ┌ Info: iter 100 └ metric = 0.3415592436958104 ┌ Info: iter 125 └ metric = 0.34141718253679576 ┌ Info: iter 150 └ metric = 0.3413602010793984 ┌ Info: iter 175 └ metric = 0.34133762077614666 ┌ Info: iter 200 └ metric = 0.34132483863271773 [ Info: The following kwargs are not supported and will be ignored: [:metric]. ┌ Info: initialization └ metric = 1.4467687221169472 ┌ Info: iter 25 └ metric = 2.3832271227240565 ┌ Info: iter 50 └ metric = 2.996125996410847 ┌ Info: iter 75 └ metric = 3.403247866272926 ┌ Info: iter 100 └ metric = 3.639958354651928 ┌ Info: iter 125 └ metric = 3.7699330707788468 ┌ Info: iter 150 └ metric = 3.842245651423931 ┌ Info: iter 175 └ metric = 3.8804836964011193 ┌ Info: iter 200 └ metric = 3.891482799530029 ┌ Info: initialization └ metric = 1.4467687221169472 ┌ Info: iter 25 └ metric = 2.6959541272521017 ┌ Info: iter 50 └ metric = 2.696875432550907 ┌ Info: iter 75 └ metric = 2.696397373497486 ┌ Info: iter 100 └ metric = 2.696485609412193 ┌ Info: iter 125 └ metric = 2.6961648224592207 ┌ Info: iter 150 └ metric = 2.6968972423672675 ┌ Info: iter 175 └ metric = 2.6965816232562063 ┌ Info: iter 200 └ metric = 2.6968879861831665 ┌ Info: initialization └ metric = 0.006764594764525853 Precompiling packages... 5011.4 ms ✓ NNlib → NNlibSpecialFunctionsExt 63452.4 ms ✓ MLUtils 5067.3 ms ✓ Distributions → DistributionsChainRulesCoreExt 10060.8 ms ✓ ScientificTypes 21012.6 ms ✓ StatisticalMeasuresBase 8335.9 ms ✓ CategoricalDistributions 31027.1 ms ✓ MLJBase 7 dependencies successfully precompiled in 147 seconds. 139 already precompiled. Precompiling packages... 12437.3 ms ✓ BangBang → BangBangDataFramesExt 1 dependency successfully precompiled in 13 seconds. 47 already precompiled. Precompiling packages... 7409.8 ms ✓ Transducers → TransducersDataFramesExt 1 dependency successfully precompiled in 8 seconds. 63 already precompiled. Precompiling packages... 18049.3 ms ✓ MLJTestInterface 1 dependency successfully precompiled in 20 seconds. 164 already precompiled. ┌ Info: Training machine(EvoTreeRegressor │ - loss: logloss │ - metric: logloss │ - nrounds: 10 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.05 │ - max_depth: 5 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Updating machine(EvoTreeRegressor │ - loss: logloss │ - metric: logloss │ - nrounds: 20 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.05 │ - max_depth: 5 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 2004, 1002, 908)) │ - device: cpu └ , …). ┌ Info: Training machine(EvoTreeClassifier │ - loss: mlogloss │ - metric: mlogloss │ - nrounds: 10 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.05 │ - max_depth: 4 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Updating machine(EvoTreeClassifier │ - loss: mlogloss │ - metric: mlogloss │ - nrounds: 60 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.05 │ - max_depth: 4 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 1002, 0, 510)) │ - device: cpu └ , …). [ Info: The following kwargs are not supported and will be ignored: [:loss, :metric]. ┌ Info: Training machine(EvoTreeCount │ - loss: poisson │ - metric: poisson │ - nrounds: 10 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Updating machine(EvoTreeCount │ - loss: poisson │ - metric: poisson │ - nrounds: 20 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 3006, 2004, 106)) │ - device: cpu └ , …). ┌ Info: Training machine(EvoTreeGaussian │ - loss: gaussian_mle │ - metric: gaussian_mle │ - nrounds: 10 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Updating machine(EvoTreeGaussian │ - loss: gaussian_mle │ - metric: gaussian_mle │ - nrounds: 20 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 3006, 2004, 106)) │ - device: cpu └ , …). ┌ Info: Training machine(EvoTreeMLE │ - loss: logistic_mle │ - metric: logistic_mle │ - nrounds: 10 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 1.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 32.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Updating machine(EvoTreeMLE │ - loss: logistic_mle │ - metric: logistic_mle │ - nrounds: 20 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 1.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 32.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 3006, 2004, 106)) │ - device: cpu └ , …). ┌ Info: Training machine(EvoTreeClassifier │ - loss: mlogloss │ - metric: mlogloss │ - nrounds: 100 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Training machine(EvoTreeRegressor │ - loss: mse │ - metric: mse │ - nrounds: 100 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Training machine(EvoTreeRegressor │ - loss: logloss │ - metric: logloss │ - nrounds: 10 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 1.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 32.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Updating machine(EvoTreeRegressor │ - loss: logloss │ - metric: logloss │ - nrounds: 20 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 1.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 32.0 │ - rowsample: 0.5 │ - colsample: 0.5 │ - nbins: 32 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 3006, 2004, 106)) │ - device: cpu └ , …). ┌ Info: Training machine(EvoTreeRegressor │ - loss: mse │ - metric: mse │ - nrounds: 100 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Not retraining machine(EvoTreeRegressor │ - loss: mse │ - metric: mse │ - nrounds: 100 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 18036, 17034, 866)) │ - device: cpu └ , …). Use `force=true` to force. ┌ Info: Training machine(EvoTreeRegressor │ - loss: mse │ - metric: mse │ - nrounds: 100 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). ┌ Info: Not retraining machine(EvoTreeRegressor │ - loss: mse │ - metric: mse │ - nrounds: 100 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - monotone_constraints: Dict{Int64, Int64}() │ - tree_type: binary │ - rng: MersenneTwister(123, (0, 18036, 17034, 866)) │ - device: cpu └ , …). Use `force=true` to force. ┌ Info: Training machine(EvoTreeClassifier │ - loss: mlogloss │ - metric: mlogloss │ - nrounds: 100 │ - bagging_size: 1 │ - early_stopping_rounds: 9223372036854775807 │ - L2: 1.0 │ - lambda: 0.0 │ - gamma: 0.0 │ - eta: 0.1 │ - max_depth: 6 │ - min_weight: 1.0 │ - rowsample: 1.0 │ - colsample: 1.0 │ - nbins: 64 │ - alpha: 0.5 │ - tree_type: binary │ - rng: MersenneTwister(123) │ - device: cpu └ , …). Test Summary: | Pass Total Time EvoTrees | 87 87 14m08.0s Testing EvoTrees tests passed Testing completed after 872.53s PkgEval succeeded after 1360.23s