Package evaluation of StructuralIdentifiability on Julia 1.13.0-DEV.971 (04e26c5eae*) started at 2025-08-10T15:00:45.543 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.81s ################################################################################ # Installation # Installing StructuralIdentifiability... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [220ca800] + StructuralIdentifiability v0.5.15 Updating `~/.julia/environments/v1.13/Manifest.toml` ⌅ [c3fe647b] + AbstractAlgebra v0.44.13 [a9b6321e] + Atomix v1.1.1 [861a8166] + Combinatorics v1.0.3 [34da2185] + Compat v4.18.0 ⌅ [864edb3b] + DataStructures v0.18.22 [e2ba6199] + ExprTools v0.1.10 [0b43b601] + Groebner v0.9.5 [18e54dd8] + IntegerMathUtils v0.1.3 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [1914dd2f] + MacroTools v0.5.16 ⌅ [2edaba10] + Nemo v0.49.5 [bac558e1] + OrderedCollections v1.8.1 [3e851597] + ParamPunPam v0.5.2 [aea7be01] + PrecompileTools v1.3.2 [21216c6a] + Preferences v1.4.3 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.10.4 [fb686558] + RandomExtensions v0.4.4 [220ca800] + StructuralIdentifiability v0.5.15 [a759f4b9] + TimerOutputs v0.5.29 [013be700] + UnsafeAtomics v0.3.0 ⌅ [e134572f] + FLINT_jll v300.200.201+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.6s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 215.0s ################################################################################ # Testing # Testing StructuralIdentifiability Status `/tmp/jl_PY86sg/Project.toml` ⌅ [c3fe647b] AbstractAlgebra v0.44.13 [4c88cf16] Aqua v0.8.14 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 ⌅ [864edb3b] DataStructures v0.18.22 [0b43b601] Groebner v0.9.5 [c8e1da08] IterTools v1.10.0 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.49.5 [3e851597] ParamPunPam v0.5.2 [aea7be01] PrecompileTools v1.3.2 [27ebfcd6] Primes v0.5.7 [276daf66] SpecialFunctions v2.5.1 [220ca800] StructuralIdentifiability v0.5.15 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_PY86sg/Manifest.toml` ⌅ [c3fe647b] AbstractAlgebra v0.44.13 [4c88cf16] Aqua v0.8.14 [a9b6321e] Atomix v1.1.1 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.0 [adafc99b] CpuId v0.3.1 ⌅ [864edb3b] DataStructures v0.18.22 [ab62b9b5] DeepDiffs v1.2.0 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 [0b43b601] Groebner v0.9.5 [615f187c] IfElse v0.1.1 [18e54dd8] IntegerMathUtils v0.1.3 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.49.5 [bac558e1] OrderedCollections v1.8.1 [3e851597] ParamPunPam v0.5.2 [aea7be01] PrecompileTools v1.3.2 [21216c6a] Preferences v1.4.3 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.10.4 [fb686558] RandomExtensions v0.4.4 [276daf66] SpecialFunctions v2.5.1 [aedffcd0] Static v1.2.0 [220ca800] StructuralIdentifiability v0.5.15 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [013be700] UnsafeAtomics v0.3.0 ⌅ [e134572f] FLINT_jll v300.200.201+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.15.0+1 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.2+0 [14a3606d] MozillaCACerts_jll v2025.7.15 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.5+0 [458c3c95] OpenSSL_jll v3.5.1+0 [efcefdf7] PCRE2_jll v10.45.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.65.0+0 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Precompiling packages... 8134.7 ms ✓ AbstractAlgebra → TestExt 1 dependency successfully precompiled in 9 seconds. 18 already precompiled. Resolving package versions... Installed ModelingToolkit ─ v10.16.0 Updating `/tmp/jl_PY86sg/Project.toml` [961ee093] + ModelingToolkit v10.16.0 Updating `/tmp/jl_PY86sg/Manifest.toml` [47edcb42] + ADTypes v1.16.0 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.3.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.19.0 [4c555306] + ArrayLayouts v1.11.2 [e2ed5e7c] + Bijections v0.2.2 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] + BlockArrays v1.7.0 [70df07ce] + BracketingNonlinearSolve v1.3.0 [d360d2e6] + ChainRulesCore v1.26.0 [fb6a15b2] + CloseOpenIntervals v0.1.13 [a80b9123] + CommonMark v0.9.1 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 [187b0558] + ConstructionBase v1.6.0 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [e2d170a0] + DataValueInterfaces v1.0.0 [2b5f629d] + DiffEqBase v6.183.0 [459566f4] + DiffEqCallbacks v4.9.0 [77a26b50] + DiffEqNoiseProcess v5.24.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.4 [8d63f2c5] + DispatchDoctor v0.4.26 [31c24e10] + Distributions v0.25.120 [5b8099bc] + DomainSets v0.7.16 [7c1d4256] + DynamicPolynomials v0.6.2 [06fc5a27] + DynamicQuantities v1.8.0 [4e289a0a] + EnumX v1.0.5 [f151be2c] + EnzymeCore v0.8.12 [55351af7] + ExproniconLite v0.10.14 [7034ab61] + FastBroadcast v0.3.5 [9aa1b823] + FastClosures v0.3.2 [a4df4552] + FastPower v1.1.3 [1a297f60] + FillArrays v1.13.0 [64ca27bc] + FindFirstFunctions v1.4.1 [6a86dc24] + FiniteDiff v2.27.0 [1fa38f19] + Format v1.3.7 [f6369f11] + ForwardDiff v1.0.1 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [d9f16b24] + Functors v0.5.2 [46192b85] + GPUArraysCore v0.2.0 [c27321d9] + Glob v1.3.1 [86223c79] + Graphs v1.13.0 [34004b35] + HypergeometricFunctions v0.3.28 ⌅ [3263718b] + ImplicitDiscreteSolve v0.1.3 [d25df0c9] + Inflate v0.1.5 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [82899510] + IteratorInterfaceExtensions v1.0.0 [ae98c720] + Jieko v0.2.1 [98e50ef6] + JuliaFormatter v2.1.6 ⌅ [70703baa] + JuliaSyntax v0.4.10 [ccbc3e58] + JumpProcesses v9.16.1 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.8 [10f19ff3] + LayoutPointers v0.1.17 [87fe0de2] + LineSearch v0.1.4 [d3d80556] + LineSearches v7.4.0 [d8e11817] + MLStyle v0.4.17 [d125e4d3] + ManualMemory v0.1.8 [bb5d69b7] + MaybeInplace v0.1.4 [e1d29d7a] + Missings v1.2.0 [961ee093] + ModelingToolkit v10.16.0 [2e0e35c7] + Moshi v0.3.7 [46d2c3a1] + MuladdMacro v0.2.4 [102ac46a] + MultivariatePolynomials v0.5.9 [d8a4904e] + MutableArithmetics v1.6.4 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 [be0214bd] + NonlinearSolveBase v1.14.0 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.13.2 [bbf590c4] + OrdinaryDiffEqCore v1.28.0 [90014a1f] + PDMats v0.11.35 [d96e819e] + Parameters v0.12.3 [e409e4f3] + PoissonRandom v0.4.6 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [85a6dd25] + PositiveFactorizations v0.2.4 [08abe8d2] + PrettyTables v2.4.0 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.36.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [ae5879a3] + ResettableStacks v1.1.1 [79098fc4] + Rmath v0.8.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.15 [9dfe8606] + SCCNonlinearSolve v1.4.0 [94e857df] + SIMDTypes v0.1.0 [0bca4576] + SciMLBase v2.108.0 [19f34311] + SciMLJacobianOperators v0.1.8 [c0aeaf25] + SciMLOperators v1.4.0 [431bcebd] + SciMLPublic v1.0.0 [53ae85a6] + SciMLStructures v1.7.0 [efcf1570] + Setfield v1.1.2 [727e6d20] + SimpleNonlinearSolve v2.7.0 [699a6c99] + SimpleTraits v0.9.5 [ce78b400] + SimpleUnPack v1.1.0 [a2af1166] + SortingAlgorithms v1.2.2 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.14 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [4c63d2b9] + StatsFuns v1.5.0 [7792a7ef] + StrideArraysCore v0.5.7 [892a3eda] + StringManipulation v0.4.1 [2efcf032] + SymbolicIndexingInterface v0.3.42 [19f23fe9] + SymbolicLimits v0.2.2 [d1185830] + SymbolicUtils v3.30.0 [0c5d862f] + Symbolics v6.49.0 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [ed4db957] + TaskLocalValues v0.1.3 [8ea1fca8] + TermInterface v2.0.0 [1c621080] + TestItems v1.0.0 [8290d209] + ThreadingUtilities v0.5.5 [410a4b4d] + Tricks v0.1.12 [781d530d] + TruncatedStacktraces v1.4.0 [5c2747f8] + URIs v1.6.1 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.24.0 [a7c27f48] + Unityper v0.1.6 [f50d1b31] + Rmath_jll v0.5.1+0 [9fa8497b] + Future v1.11.0 [a63ad114] + Mmap v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [4607b0f0] + SuiteSparse Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Resolving package versions... Updating `/tmp/jl_PY86sg/Project.toml` [0c5d862f] + Symbolics v6.49.0 No packages added to or removed from `/tmp/jl_PY86sg/Manifest.toml` Precompiling packages... 1063.1 ms ✓ PoissonRandom 6267.9 ms ✓ Latexify 2438.0 ms ✓ SimpleTraits 3323.8 ms ✓ DispatchDoctor 2053.7 ms ✓ TruncatedStacktraces 2506.4 ms ✓ Accessors → UnitfulExt 1256.9 ms ✓ MaybeInplace 13530.3 ms ✓ CommonMark 5286.8 ms ✓ Static 1235.7 ms ✓ Rmath_jll 3578.5 ms ✓ SciMLOperators 1390.2 ms ✓ FiniteDiff → FiniteDiffStaticArraysExt 1313.7 ms ✓ ResettableStacks 22277.3 ms ✓ ArrayLayouts 1445.3 ms ✓ DifferentiationInterface → DifferentiationInterfaceStaticArraysExt 1558.0 ms ✓ Accessors → StaticArraysExt 4157.3 ms ✓ SymbolicIndexingInterface 4025.4 ms ✓ SpecialFunctions → SpecialFunctionsChainRulesCoreExt 2673.6 ms ✓ HypergeometricFunctions 9128.7 ms ✓ ForwardDiff 2308.9 ms ✓ Latexify → SparseArraysExt 9052.6 ms ✓ Graphs 1613.1 ms ✓ DispatchDoctor → DispatchDoctorChainRulesCoreExt 945.4 ms ✓ DispatchDoctor → DispatchDoctorEnzymeCoreExt 12390.5 ms ✓ DynamicQuantities 1272.4 ms ✓ MaybeInplace → MaybeInplaceSparseArraysExt 57926.6 ms ✓ JuliaFormatter 923.7 ms ✓ BitTwiddlingConvenienceFunctions 8911.7 ms ✓ StaticArrayInterface 2291.8 ms ✓ CPUSummary 1668.0 ms ✓ Rmath 1064.1 ms ✓ SciMLOperators → SciMLOperatorsStaticArraysCoreExt 1603.5 ms ✓ SciMLOperators → SciMLOperatorsSparseArraysExt 3230.8 ms ✓ ArrayLayouts → ArrayLayoutsSparseArraysExt 4564.3 ms ✓ BlockArrays 5362.7 ms ✓ RecursiveArrayTools 83300.9 ms ✓ SymbolicUtils 3978.2 ms ✓ ForwardDiff → ForwardDiffStaticArraysExt 3294.6 ms ✓ FastPower → FastPowerForwardDiffExt 3429.6 ms ✓ DifferentiationInterface → DifferentiationInterfaceForwardDiffExt 2906.3 ms ✓ Unitful → ForwardDiffExt 1717.3 ms ✓ DynamicQuantities → DynamicQuantitiesLinearAlgebraExt 4019.4 ms ✓ DynamicQuantities → DynamicQuantitiesUnitfulExt 1049.4 ms ✓ StaticArrayInterface → StaticArrayInterfaceOffsetArraysExt 1599.7 ms ✓ StaticArrayInterface → StaticArrayInterfaceStaticArraysExt 1079.4 ms ✓ CloseOpenIntervals 1293.3 ms ✓ LayoutPointers 1789.4 ms ✓ PolyesterWeave 3313.8 ms ✓ StatsFuns 3177.3 ms ✓ BlockArrays → BlockArraysAdaptExt 3261.7 ms ✓ RecursiveArrayTools → RecursiveArrayToolsSparseArraysExt 3387.1 ms ✓ RecursiveArrayTools → RecursiveArrayToolsForwardDiffExt 29533.0 ms ✓ SciMLBase 11140.2 ms ✓ SymbolicLimits 4645.3 ms ✓ NLSolversBase 2080.6 ms ✓ StrideArraysCore 3823.2 ms ✓ StatsFuns → StatsFunsChainRulesCoreExt 1290.5 ms ✓ StatsFuns → StatsFunsInverseFunctionsExt 11483.8 ms ✓ Distributions 3832.4 ms ✓ SciMLBase → SciMLBaseChainRulesCoreExt 4755.1 ms ✓ SciMLBase → SciMLBaseMLStyleExt 11392.2 ms ✓ SciMLJacobianOperators 4006.7 ms ✓ SCCNonlinearSolve 6472.3 ms ✓ LineSearches 2144.1 ms ✓ Polyester 4008.2 ms ✓ Distributions → DistributionsTestExt 5826.7 ms ✓ Distributions → DistributionsChainRulesCoreExt 11197.7 ms ✓ LineSearch 15762.1 ms ✓ NonlinearSolveBase 11059.1 ms ✓ Optim 2872.6 ms ✓ FastBroadcast 187353.5 ms ✓ Symbolics 4240.0 ms ✓ LineSearch → LineSearchLineSearchesExt 4713.1 ms ✓ NonlinearSolveBase → NonlinearSolveBaseSparseArraysExt 3682.1 ms ✓ NonlinearSolveBase → NonlinearSolveBaseLineSearchExt 35127.2 ms ✓ NonlinearSolveBase → NonlinearSolveBaseForwardDiffExt 9093.7 ms ✓ BracketingNonlinearSolve 3151.7 ms ✓ RecursiveArrayTools → RecursiveArrayToolsFastBroadcastExt 14200.7 ms ✓ Symbolics → SymbolicsForwardDiffExt 11311.1 ms ✓ DifferentiationInterface → DifferentiationInterfaceSymbolicsExt 4413.2 ms ✓ BracketingNonlinearSolve → BracketingNonlinearSolveForwardDiffExt 9800.0 ms ✓ DiffEqBase 4326.1 ms ✓ BracketingNonlinearSolve → BracketingNonlinearSolveChainRulesCoreExt 44062.4 ms ✓ SimpleNonlinearSolve 4908.2 ms ✓ DiffEqBase → DiffEqBaseSparseArraysExt 5566.3 ms ✓ DiffEqBase → DiffEqBaseUnitfulExt 5949.3 ms ✓ DiffEqBase → DiffEqBaseChainRulesCoreExt 9030.3 ms ✓ DiffEqBase → DiffEqBaseForwardDiffExt 5960.5 ms ✓ DiffEqBase → DiffEqBaseDistributionsExt 11440.0 ms ✓ OrdinaryDiffEqCore 12312.5 ms ✓ DiffEqCallbacks 4143.2 ms ✓ NonlinearSolveBase → NonlinearSolveBaseDiffEqBaseExt 5065.9 ms ✓ SimpleNonlinearSolve → SimpleNonlinearSolveDiffEqBaseExt 4662.4 ms ✓ SimpleNonlinearSolve → SimpleNonlinearSolveChainRulesCoreExt 17577.8 ms ✓ DiffEqNoiseProcess 4724.2 ms ✓ OrdinaryDiffEqCore → OrdinaryDiffEqCoreEnzymeCoreExt 27757.0 ms ✓ JumpProcesses 7961.5 ms ✓ ImplicitDiscreteSolve Info Given ModelingToolkit was explicitly requested, output will be shown live  WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in var"#bareiss_update_virtual_colswap_mtk!#1396"(Any, typeof(ModelingToolkit.bareiss_update_virtual_colswap_mtk!), Any, ModelingToolkit.SparseMatrixCLIL{T, Ti} where Ti<:Integer where T, Any, Any, Any, Any) at /home/pkgeval/.julia/packages/ModelingToolkit/TVfJX/src/systems/sparsematrixclil.jl 496690.9 ms ✓ ModelingToolkit 99 dependencies successfully precompiled in 1438 seconds. 171 already precompiled. 2 dependencies had output during precompilation: ┌ OrdinaryDiffEqCore │ WARNING: method definition for #__init#52 at /home/pkgeval/.julia/packages/OrdinaryDiffEqCore/ShicW/src/solve.jl:11 declares type variable recompile_flag but does not use it. └ ┌ ModelingToolkit │ [Output was shown above] └ Precompiling packages... 8867.4 ms ✓ Groebner → GroebnerDynamicPolynomialsExt 1 dependency successfully precompiled in 9 seconds. 44 already precompiled. Precompiling packages... Info Given SymbolicsNemoExt was explicitly requested, output will be shown live  [ Info: Assuming ((1//128)*(√((5120//1)*(a^4)) - (80//1)*(a^2))) != 0 [ Info: Assuming ((1//128)*(√((5120//1)*(a^4)) - (80//1)*(a^2))) != 0 101811.0 ms ✓ Symbolics → SymbolicsNemoExt 1 dependency successfully precompiled in 104 seconds. 159 already precompiled. 1 dependency had output during precompilation: ┌ Symbolics → SymbolicsNemoExt │ [Output was shown above] └ Precompiling packages... 21513.1 ms ✓ Symbolics → SymbolicsGroebnerExt 1 dependency successfully precompiled in 23 seconds. 164 already precompiled. Precompiling packages... 46641.8 ms ✓ ModelingToolkit → MTKDeepDiffsExt 1 dependency successfully precompiled in 51 seconds. 271 already precompiled. Precompiling packages... 62614.2 ms ✓ StructuralIdentifiability → ModelingToolkitSIExt 1 dependency successfully precompiled in 66 seconds. 288 already precompiled. [ Info: Testing started [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y ┌ Warning: New variable c, treating as a scalar parameter └ @ StructuralIdentifiability ~/.julia/packages/StructuralIdentifiability/Tp10P/src/pb_representation.jl:94 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: a [ Info: Parameters: b [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: a, b [ Info: Parameters: k1, k2 [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y 1.912900 seconds (925.95 k allocations: 50.120 MiB, 5.03% gc time, 99.48% compilation time) 0.001602 seconds (7.11 k allocations: 323.977 KiB) 0.001221 seconds (10.83 k allocations: 488.719 KiB) 0.001257 seconds (10.79 k allocations: 482.594 KiB) 0.001582 seconds (14.56 k allocations: 638.836 KiB) 0.001197 seconds (7.97 k allocations: 363.086 KiB) 0.000617 seconds (7.49 k allocations: 302.680 KiB) 13.080134 seconds (6.41 M allocations: 345.865 MiB, 0.75% gc time, 99.78% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.330735 seconds (110.61 k allocations: 6.248 MiB, 98.10% compilation time) [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.013224 seconds (9.49 k allocations: 537.680 KiB, 91.02% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b [ Info: Inputs: u [ Info: Outputs: y Coefficient extraction for rational functions: Test Failed at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/test/extract_coefficients.jl:27 Expression: Set(C) == Set([x // 1, (y + 3) // 1, y ^ 2 // 1, one(R) // 1, 3 * one(R) // 1, -((x ^ 2 + y ^ 2)) // 1]) Evaluated: Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[1//3, -1//3*x^2 - 1//3*y^2, 1//3*y^2, 1//3*x, 1, 1//3*y + 1]) == Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[y^2, 3, y + 3, 1, x, -x^2 - y^2]) Stacktrace: [1] top-level scope @ ~/.julia/packages/StructuralIdentifiability/Tp10P/test/extract_coefficients.jl:2 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1929 [inlined] [3] macro expansion @ ~/.julia/packages/StructuralIdentifiability/Tp10P/test/extract_coefficients.jl:27 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:745 [inlined] [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 IOEQS: Dict{QQMPolyRingElem, QQMPolyRingElem}(y2(t)_1 => -a*y2(t)_0 + a*u(t)_0 + y2(t)_1 - u(t)_1, y1(t)_2 => -y1(t)_0 + y1(t)_2) [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a, b, c, d [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, I, W, R [ Info: Parameters: a, bi, bw, gam, k, mu, xi [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a01, a12, a13, a21, a31 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, In [ Info: Parameters: N, a, b, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002865372 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.128794196 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.070278547 seconds [ Info: Global identifiability assessed in 8.051314493 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001981801 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Global identifiability assessed in 0.803757869 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Global identifiability assessed in 4.484e-5 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.034564864 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.525590293 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.56e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:13 ✓ # Computing specializations.. Time: 0:00:15 [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 4 specializations in 14.334711242 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings ⌜ # Computing specializations.. Time: 0:00:22 ✓ # Computing specializations.. Time: 0:00:22 [ Info: Computed Groebner bases in 28.889483554 seconds [ Info: Inclusion checked with probability 0.9955 in 0.024762079 seconds [ Info: Global identifiability assessed in 136.703769486 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.278745171 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 1.109764526 seconds [ Info: Dimensions of the Wronskians [676] [ Info: Ranks of the Wronskians computed in 0.070560613 seconds [ Info: Global identifiability assessed in 23.501341887 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009806355 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.020866067 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000198088 seconds [ Info: Global identifiability assessed in 0.073769052 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Note: the input model has nontrivial submodels. If the computation for the full model will be too heavy, you may want to try to first analyze one of the submodels. They can be produced using function `find_submodels` [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 10.13109008 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002533245 seconds [ Info: Dimensions of the Wronskians [2, 3, 2] [ Info: Ranks of the Wronskians computed in 1.993e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.140086225 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.006227049 seconds [ Info: Inclusion checked with probability 0.9955 in 0.000895172 seconds [ Info: Global identifiability assessed in 11.303031976 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001404717 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00098994 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.419e-5 seconds [ Info: Global identifiability assessed in 0.003903522 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001652183 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001223848 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.3939e-5 seconds [ Info: Global identifiability assessed in 0.004684365 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003249989 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002637065 seconds [ Info: Dimensions of the Wronskians [6] [ Info: Ranks of the Wronskians computed in 1.311e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 5 variables [ Info: Used 9 specializations in 0.138237614 seconds, found 11 relations [ Info: Computing 6 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.20023506 seconds [ Info: Inclusion checked with probability 0.9955 in 0.001781713 seconds [ Info: Global identifiability assessed in 1.152678893 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005011991 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002731454 seconds [ Info: Dimensions of the Wronskians [2, 5] [ Info: Ranks of the Wronskians computed in 1.48e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 5 specializations in 0.001697173 seconds, found 7 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.034760901 seconds [ Info: Inclusion checked with probability 0.9955 in 0.001428026 seconds [ Info: Global identifiability assessed in 0.065450423 seconds [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: V_m, c, k01, k_m [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k1, k2, k3, k4 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: s, i, r, x1, x2 [ Info: Parameters: M, b0, b1, g, mu, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, E, I, R, Q [ Info: Parameters: beta, gamma, psi, v [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: k01, k12, k13, k14, k21, k31, k41 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x5, x7, x4, x6 [ Info: Parameters: k10, k5, k6, k7, k8, k9 [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, In, L, Q [ Info: Parameters: Ninv, a, b, e, g, s [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, R, W [ Info: Parameters: Dd, T, a, d, dr, e, g, r, rR [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: P3, P0, P5, P4, P1, P2 [ Info: Parameters: Ks, M, Mar, alpa, beta, beta_SA, beta_SI, phi, siga1, siga2 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: C, α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR [ Info: Parameters: EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1 [ Info: Inputs: pro_EGFR [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio [ Info: Parameters: kOHbeta10, kbeta, kbeta10, kcryOH, kcrybeta, kzea [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: EpoR_A, k1, k2, k3, k5, k6, k7 [ Info: Inputs: [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, U, I [ Info: Parameters: N, a, b, d, g [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: alpha [ Info: Inputs: [ Info: Outputs: y [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001061929 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000834871 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.411e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000411796 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.000823682 seconds [ Info: The search for identifiable functions concluded in 1.351471276 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000844722 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000714733 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.279e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000327877 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.004834483 seconds [ Info: Inclusion checked with probability 0.995 in 0.000521474 seconds [ Info: The search for identifiable functions concluded in 0.010225211 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001166869 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000777613 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.298e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: The search for identifiable functions concluded in 0.002486886 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001162699 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000752333 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.224e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: The search for identifiable functions concluded in 0.002300667 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001455226 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000873302 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.295e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: The search for identifiable functions concluded in 0.004542236 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001265538 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000852252 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.197e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: The search for identifiable functions concluded in 0.004264548 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.233782923 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001145959 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.36e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000408906 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.000532914 seconds [ Info: The search for identifiable functions concluded in 0.240726385 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001572145 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00107492 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.5019e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000375146 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.004590185 seconds [ Info: Inclusion checked with probability 0.995 in 0.000471716 seconds [ Info: The search for identifiable functions concluded in 0.011091202 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000929271 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001358406 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.54e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 5 specializations in 0.001579714 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001153869 seconds [ Info: The search for identifiable functions concluded in 0.012362799 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000919981 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000947541 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.463e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 5 specializations in 0.001490415 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.027842298 seconds [ Info: Inclusion checked with probability 0.995 in 0.001286158 seconds [ Info: The search for identifiable functions concluded in 0.04109075 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000888422 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000779812 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.338e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.146044278 seconds, found 2 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001054089 seconds [ Info: The search for identifiable functions concluded in 0.86440302 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000891311 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000742683 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.3799e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.000816032 seconds, found 2 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.014992434 seconds [ Info: Inclusion checked with probability 0.995 in 0.000889311 seconds [ Info: The search for identifiable functions concluded in 0.023145934 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001377136 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00099933 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.164e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.0010346 seconds, found 3 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.000953811 seconds [ Info: The search for identifiable functions concluded in 0.011727926 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001541845 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001172239 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.201e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.00105118 seconds, found 3 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.028926219 seconds [ Info: Inclusion checked with probability 0.995 in 0.000962101 seconds [ Info: The search for identifiable functions concluded in 0.04108887 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001755863 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001281888 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.526e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 4 specializations in 0.001622564 seconds, found 6 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001415796 seconds [ Info: The search for identifiable functions concluded in 0.016302802 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001772412 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001328888 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.376e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 4 specializations in 0.001627384 seconds, found 6 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.031549153 seconds [ Info: Inclusion checked with probability 0.995 in 0.001225158 seconds [ Info: The search for identifiable functions concluded in 0.047665895 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011179401 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003138329 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.061e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 1 specializations in 0.130141372 seconds, found 6 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.002182189 seconds [ Info: The search for identifiable functions concluded in 0.86222514 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004660284 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003289588 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.149e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 1 specializations in 0.000735243 seconds, found 6 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.044808173 seconds [ Info: Inclusion checked with probability 0.995 in 0.00214474 seconds [ Info: The search for identifiable functions concluded in 0.072403375 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0030171 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001939601 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.3389e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 1 specializations in 0.000570615 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001220558 seconds [ Info: The search for identifiable functions concluded in 0.014861095 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002954651 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001933561 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.636e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 1 specializations in 0.000569795 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.024394103 seconds [ Info: Inclusion checked with probability 0.995 in 0.001257028 seconds [ Info: The search for identifiable functions concluded in 0.039889721 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00309045 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001825482 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.407e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 3 specializations in 0.001335517 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001167349 seconds [ Info: The search for identifiable functions concluded in 0.018725948 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002888002 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001838382 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.337e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 3 specializations in 0.001259368 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.047065791 seconds [ Info: Inclusion checked with probability 0.995 in 0.001211578 seconds [ Info: The search for identifiable functions concluded in 0.065987987 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001580735 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001218948 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.206e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 3 specializations in 0.00109258 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001088889 seconds [ Info: The search for identifiable functions concluded in 0.012192641 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001576145 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001227418 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.075e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 3 specializations in 0.0010644 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.025045117 seconds [ Info: Inclusion checked with probability 0.995 in 0.00108655 seconds [ Info: The search for identifiable functions concluded in 0.037093078 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009510467 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.020669718 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000213468 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 [ Info: Computing normal forms of degree 2 in 7 variables ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 43 running 1 of 1 signal (10): User defined signal 1 _ZNK4llvm13AttributeList9hasFnAttrENS_9Attribute8AttrKindE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm21canConstantFoldCallToEPKNS_8CallBaseEPKNS_8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZL19tryConstantFoldCallPN4llvm8CallBaseEPNS_5ValueENS_8ArrayRefIS3_EERKNS_13SimplifyQueryE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm12simplifyCallEPNS_8CallBaseEPNS_5ValueENS_8ArrayRefIS3_EERKNS_13SimplifyQueryE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZL31simplifyInstructionWithOperandsPN4llvm11InstructionENS_8ArrayRefIPNS_5ValueEEERKNS_13SimplifyQueryEj at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm19simplifyInstructionEPNS_11InstructionERKNS_13SimplifyQueryE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm7GVNPass18processInstructionEPNS_11InstructionE.part.0 at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm7GVNPass12processBlockEPNS_10BasicBlockE.part.0 at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm7GVNPass17iterateOnFunctionERNS_8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm7GVNPass7runImplERNS_8FunctionERNS_15AssumptionCacheERNS_13DominatorTreeERKNS_17TargetLibraryInfoERNS_9AAResultsEPNS_23MemoryDependenceResultsERNS_8LoopInfoEPNS_25OptimizationRemarkEmitterEPNS_9MemorySSAE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm7GVNPass3runERNS_8FunctionERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm11PassManagerINS_8FunctionENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm27ModuleToFunctionPassAdaptor3runERNS_6ModuleERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm11PassManagerINS_6ModuleENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/src/pipeline.cpp:791 operator() at /source/src/jitlayers.cpp:1510 withModuleDo<(anonymous namespace)::sizedOptimizerT::operator()(llvm::orc::ThreadSafeModule) [with long unsigned int N = 4]:: > at /source/usr/include/llvm/ExecutionEngine/Orc/ThreadSafeModule.h:136 [inlined] operator() at /source/src/jitlayers.cpp:1471 [inlined] operator() at /source/src/jitlayers.cpp:1623 [inlined] addModule at /source/src/jitlayers.cpp:2080 jl_compile_codeinst_now at /source/src/jitlayers.cpp:682 jl_compile_codeinst_impl at /source/src/jitlayers.cpp:873 jl_compile_method_internal at /source/src/gf.c:3527 _jl_invoke at /source/src/gf.c:4007 [inlined] ijl_apply_generic at /source/src/gf.c:4212 __groebner1 at /home/pkgeval/.julia/packages/Groebner/k40dp/src/groebner/groebner.jl:57 unknown function (ip: 0x7bab89904486) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 _groebner1 at /home/pkgeval/.julia/packages/Groebner/k40dp/src/groebner/groebner.jl:34 unknown function (ip: 0x7bab8a3524d0) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 groebner0 at /home/pkgeval/.julia/packages/Groebner/k40dp/src/groebner/groebner.jl:10 #groebner#172 at /home/pkgeval/.julia/packages/Groebner/k40dp/src/interface.jl:111 [inlined] groebner at /home/pkgeval/.julia/packages/Groebner/k40dp/src/interface.jl:109 unknown function (ip: 0x7bab8a351bc2) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 #local_normal_forms#285 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/RationalFunctionFields/normalforms.jl:59 local_normal_forms at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/RationalFunctionFields/normalforms.jl:48 [inlined] #linear_relations_between_normal_forms#296 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/RationalFunctionFields/normalforms.jl:293 linear_relations_between_normal_forms at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/RationalFunctionFields/normalforms.jl:293 [inlined] #monomial_generators_up_to_degree#322 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/RationalFunctionFields/RationalFunctionField.jl:679 [inlined] monomial_generators_up_to_degree at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/RationalFunctionFields/RationalFunctionField.jl:672 unknown function (ip: 0x7bab8a3edd5c) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 #simplified_generating_set#323 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/RationalFunctionFields/RationalFunctionField.jl:693 simplified_generating_set at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/RationalFunctionFields/RationalFunctionField.jl:693 unknown function (ip: 0x7bab9c66c4d9) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 #_find_identifiable_functions#366 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:86 [inlined] #364 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#362 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:49 unknown function (ip: 0x7bab9c66ba54) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 include_string at ./loading.jl:2847 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 _include at ./loading.jl:2907 include at ./Base.jl:312 IncludeInto at ./Base.jl:313 unknown function (ip: 0x7bab9f2e66f2) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/test/runtests.jl:161 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:1929 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/test/runtests.jl:159 [inlined] macro expansion at ./timing.jl:645 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/test/runtests.jl:158 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_invoke at /source/src/gf.c:4022 jl_toplevel_eval_flex at /source/src/toplevel.c:762 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 include_string at ./loading.jl:2847 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 _include at ./loading.jl:2907 include at ./Base.jl:312 IncludeInto at ./Base.jl:313 jfptr_IncludeInto_36308.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:708 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 exec_options at ./client.jl:286 _start at ./client.jl:553 jfptr__start_70166.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7babbc493249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point ============================================================== [ Info: Used 6 specializations in 2.236372571 seconds, found 9 relations [ Info: Computing 8 Groebner bases for degrees (3, 3) for block orderings ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1192 wait_forever at ./task.jl:1129 jfptr_wait_forever_30142.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] start_task at /source/src/task.c:1253 unknown function (ip: (nil)) at (unknown file) [ Info: Inclusion checked with probability 0.995 in 0.020022225 seconds [ Info: The search for identifiable functions concluded in 20.293927387 seconds ============================================================== Profile collected. A report will print at the next yield point ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007fb64c501960 Total snapshots: 466. Utilization: 0% ╎466 @Base/task.jl:1129 wait_forever() 465╎ 466 @Base/task.jl:1192 wait() ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007baba2200010 Total snapshots: 1. Utilization: 100% ╎1 @Base/client.jl:553 _start() ╎ 1 @Base/client.jl:286 exec_options(opts::Base.JLOptions) ╎ 1 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ 1 @Base/Base.jl:313 (::Base.IncludeInto)(fname::String) ╎ 1 @Base/Base.jl:312 include(mapexpr::Function, mod::Module, _path::Strin… ╎ 1 @Base/loading.jl:2907 _include(mapexpr::Function, mod::Module, _path:… ╎ ╎ 1 @Base/loading.jl:2847 include_string(mapexpr::typeof(identity), mod:… ╎ ╎ 1 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ 1 @StructuralIdentifiability/…:158 top-level scope ╎ ╎ 1 @Base/timing.jl:645 macro expansion ╎ ╎ 1 @StructuralIdentifiability/…:159 macro expansion ╎ ╎ ╎ 1 @Test/src/Test.jl:1929 macro expansion ╎ ╎ ╎ 1 @StructuralIdentifiability/…:161 macro expansion ╎ ╎ ╎ 1 @Base/Base.jl:313 (::Base.IncludeInto)(fname::String) ╎ ╎ ╎ 1 @Base/Base.jl:312 include(mapexpr::Function, mod::Module, _p… ╎ ╎ ╎ 1 @Base/loading.jl:2907 _include(mapexpr::Function, mod::Modu… ╎ ╎ ╎ ╎ 1 @Base/loading.jl:2847 include_string(mapexpr::typeof(ident… ╎ ╎ ╎ ╎ 1 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ ╎ ╎ 1 @StructuralIdentifiability/…:49 kwcall(::@NamedTuple{sim… ╎ ╎ ╎ ╎ 1 @StructuralIdentifiability/…:61 #find_identifiable_func… ╎ ╎ ╎ ╎ 1 @Base/…logging.jl:651 with_logger ╎ ╎ ╎ ╎ ╎ 1 @Base/…ogging.jl:540 with_logstate(f::StructuralIdent… ╎ ╎ ╎ ╎ ╎ 1 @StructuralIdentifiability/…:63 (::StructuralIdentif… ╎ ╎ ╎ ╎ ╎ 1 @StructuralIdentifiability/…:86 _find_identifiable_… ╎ ╎ ╎ ╎ ╎ 1 @StructuralIdentifiability/…:120 _find_identifiabl… ╎ ╎ ╎ ╎ ╎ 1 @StructuralIdentifiability/…:693 kwcall(::@NamedT… ╎ ╎ ╎ ╎ ╎ ╎ 1 @StructuralIdentifiability/…:693 simplified_gene… ╎ ╎ ╎ ╎ ╎ ╎ 1 @StructuralIdentifiability/…:672 kwcall(::@Name… ╎ ╎ ╎ ╎ ╎ ╎ 1 @StructuralIdentifiability/…:679 #monomial_gen… ╎ ╎ ╎ ╎ ╎ ╎ 1 @StructuralIdentifiability/…:293 linear_relat… ╎ ╎ ╎ ╎ ╎ ╎ 1 @StructuralIdentifiability/…:293 linear_rela… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @StructuralIdentifiability/…:48 local_norma… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @StructuralIdentifiability/…:59 local_norm… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:109 groebner(polynomials::Ve… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:111 #groebner#172 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:10 groebner0(polynomials::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:34 _groebner1(ring::Groeb… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:57 __groebner1(ring::Gro… ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.020704838 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.037271087 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000335697 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 7 variables [ Info: Used 6 specializations in 0.007615885 seconds, found 9 relations [ Info: Computing 8 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.12416004 seconds [ Info: Inclusion checked with probability 0.995 in 0.0195747 seconds [ Info: The search for identifiable functions concluded in 0.313541755 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.803656324 seconds [ Info: Computing Wronskians [43] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/test/identifiable_functions.jl:960 jl_to_typeof at /source/src/julia.h:994 [inlined] verify_type at /source/src/gf.c:3990 [inlined] _jl_invoke at /source/src/gf.c:4016 [inlined] ijl_apply_generic at /source/src/gf.c:4212 monomial_compress at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/wronskian.jl:37 monomial_compress at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/wronskian.jl:20 [inlined] #wronskian##0 at ./none (unknown line) [inlined] iterate at ./generator.jl:48 [inlined] collect at ./array.jl:803 wronskian at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/wronskian.jl:200 #initial_identifiable_functions#330 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/global_identifiability.jl:86 initial_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/global_identifiability.jl:86 [inlined] #_find_identifiable_functions#366 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:108 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:86 [inlined] #364 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#362 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:49 unknown function (ip: 0x7bab9c66ba54) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 include_string at ./loading.jl:2847 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 _include at ./loading.jl:2907 include at ./Base.jl:312 IncludeInto at ./Base.jl:313 unknown function (ip: 0x7bab9f2e66f2) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/test/runtests.jl:161 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:1929 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/test/runtests.jl:159 [inlined] macro expansion at ./timing.jl:645 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/test/runtests.jl:158 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_invoke at /source/src/gf.c:4022 jl_toplevel_eval_flex at /source/src/toplevel.c:762 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 include_string at ./loading.jl:2847 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 _include at ./loading.jl:2907 include at ./Base.jl:312 IncludeInto at ./Base.jl:313 jfptr_IncludeInto_36308.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:708 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 exec_options at ./client.jl:286 _start at ./client.jl:553 jfptr__start_70166.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7babbc493249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 348409768 (Pool: 348405580; Big: 4188); GC: 129 PkgEval terminated after 2766.07s: test duration exceeded the time limit