Package evaluation of StructuralIdentifiability on Julia 1.13.0-DEV.966 (46c2a5c7e1*) started at 2025-08-07T14:59:16.319 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.66s ################################################################################ # Installation # Installing StructuralIdentifiability... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [220ca800] + StructuralIdentifiability v0.5.15 Updating `~/.julia/environments/v1.13/Manifest.toml` ⌅ [c3fe647b] + AbstractAlgebra v0.44.13 [a9b6321e] + Atomix v1.1.1 [861a8166] + Combinatorics v1.0.3 [34da2185] + Compat v4.18.0 ⌅ [864edb3b] + DataStructures v0.18.22 [e2ba6199] + ExprTools v0.1.10 [0b43b601] + Groebner v0.9.4 [18e54dd8] + IntegerMathUtils v0.1.3 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [1914dd2f] + MacroTools v0.5.16 ⌅ [2edaba10] + Nemo v0.49.5 [bac558e1] + OrderedCollections v1.8.1 [3e851597] + ParamPunPam v0.5.2 [aea7be01] + PrecompileTools v1.3.2 [21216c6a] + Preferences v1.4.3 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.10.4 [fb686558] + RandomExtensions v0.4.4 [220ca800] + StructuralIdentifiability v0.5.15 [a759f4b9] + TimerOutputs v0.5.29 [013be700] + UnsafeAtomics v0.3.0 ⌅ [e134572f] + FLINT_jll v300.200.201+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.76s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 213.29s ################################################################################ # Testing # Testing StructuralIdentifiability Status `/tmp/jl_vNkfNm/Project.toml` ⌅ [c3fe647b] AbstractAlgebra v0.44.13 [4c88cf16] Aqua v0.8.14 [2a0fbf3d] CPUSummary v0.2.6 [861a8166] Combinatorics v1.0.3 ⌅ [864edb3b] DataStructures v0.18.22 [0b43b601] Groebner v0.9.4 [c8e1da08] IterTools v1.10.0 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.49.5 [3e851597] ParamPunPam v0.5.2 [aea7be01] PrecompileTools v1.3.2 [27ebfcd6] Primes v0.5.7 [276daf66] SpecialFunctions v2.5.1 [220ca800] StructuralIdentifiability v0.5.15 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_vNkfNm/Manifest.toml` ⌅ [c3fe647b] AbstractAlgebra v0.44.13 [4c88cf16] Aqua v0.8.14 [a9b6321e] Atomix v1.1.1 [2a0fbf3d] CPUSummary v0.2.6 [861a8166] Combinatorics v1.0.3 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.0 [adafc99b] CpuId v0.3.1 ⌅ [864edb3b] DataStructures v0.18.22 [ab62b9b5] DeepDiffs v1.2.0 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 [0b43b601] Groebner v0.9.4 [615f187c] IfElse v0.1.1 [18e54dd8] IntegerMathUtils v0.1.3 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.49.5 [bac558e1] OrderedCollections v1.8.1 [3e851597] ParamPunPam v0.5.2 [aea7be01] PrecompileTools v1.3.2 [21216c6a] Preferences v1.4.3 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.10.4 [fb686558] RandomExtensions v0.4.4 [276daf66] SpecialFunctions v2.5.1 [aedffcd0] Static v1.2.0 [220ca800] StructuralIdentifiability v0.5.15 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [013be700] UnsafeAtomics v0.3.0 ⌅ [e134572f] FLINT_jll v300.200.201+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.15.0+1 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.2+0 [14a3606d] MozillaCACerts_jll v2025.7.15 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.5+0 [458c3c95] OpenSSL_jll v3.5.1+0 [efcefdf7] PCRE2_jll v10.45.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.65.0+0 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Precompiling packages... 7991.8 ms ✓ AbstractAlgebra → TestExt 1 dependency successfully precompiled in 8 seconds. 18 already precompiled. Resolving package versions... Installed ModelingToolkit ─ v10.15.0 Updating `/tmp/jl_vNkfNm/Project.toml` [961ee093] + ModelingToolkit v10.15.0 Updating `/tmp/jl_vNkfNm/Manifest.toml` [47edcb42] + ADTypes v1.16.0 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.3.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.19.0 [4c555306] + ArrayLayouts v1.11.2 [e2ed5e7c] + Bijections v0.2.2 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] + BlockArrays v1.7.0 [70df07ce] + BracketingNonlinearSolve v1.3.0 [d360d2e6] + ChainRulesCore v1.25.2 [fb6a15b2] + CloseOpenIntervals v0.1.13 [a80b9123] + CommonMark v0.9.1 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 [187b0558] + ConstructionBase v1.6.0 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [e2d170a0] + DataValueInterfaces v1.0.0 [2b5f629d] + DiffEqBase v6.182.0 [459566f4] + DiffEqCallbacks v4.9.0 [77a26b50] + DiffEqNoiseProcess v5.24.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.4 [8d63f2c5] + DispatchDoctor v0.4.26 [31c24e10] + Distributions v0.25.120 [5b8099bc] + DomainSets v0.7.16 [7c1d4256] + DynamicPolynomials v0.6.2 [06fc5a27] + DynamicQuantities v1.8.0 [4e289a0a] + EnumX v1.0.5 [f151be2c] + EnzymeCore v0.8.12 [55351af7] + ExproniconLite v0.10.14 [7034ab61] + FastBroadcast v0.3.5 [9aa1b823] + FastClosures v0.3.2 [a4df4552] + FastPower v1.1.3 [1a297f60] + FillArrays v1.13.0 [64ca27bc] + FindFirstFunctions v1.4.1 [6a86dc24] + FiniteDiff v2.27.0 [1fa38f19] + Format v1.3.7 [f6369f11] + ForwardDiff v1.0.1 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [d9f16b24] + Functors v0.5.2 [46192b85] + GPUArraysCore v0.2.0 [c27321d9] + Glob v1.3.1 [86223c79] + Graphs v1.13.0 [34004b35] + HypergeometricFunctions v0.3.28 [3263718b] + ImplicitDiscreteSolve v0.1.3 [d25df0c9] + Inflate v0.1.5 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [82899510] + IteratorInterfaceExtensions v1.0.0 [ae98c720] + Jieko v0.2.1 [98e50ef6] + JuliaFormatter v2.1.6 ⌅ [70703baa] + JuliaSyntax v0.4.10 [ccbc3e58] + JumpProcesses v9.16.1 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.8 [10f19ff3] + LayoutPointers v0.1.17 [87fe0de2] + LineSearch v0.1.4 [d3d80556] + LineSearches v7.4.0 [d8e11817] + MLStyle v0.4.17 [d125e4d3] + ManualMemory v0.1.8 [bb5d69b7] + MaybeInplace v0.1.4 [e1d29d7a] + Missings v1.2.0 [961ee093] + ModelingToolkit v10.15.0 [2e0e35c7] + Moshi v0.3.7 [46d2c3a1] + MuladdMacro v0.2.4 [102ac46a] + MultivariatePolynomials v0.5.9 [d8a4904e] + MutableArithmetics v1.6.4 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 [be0214bd] + NonlinearSolveBase v1.14.0 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.13.2 [bbf590c4] + OrdinaryDiffEqCore v1.26.2 [90014a1f] + PDMats v0.11.35 [d96e819e] + Parameters v0.12.3 [e409e4f3] + PoissonRandom v0.4.6 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [85a6dd25] + PositiveFactorizations v0.2.4 [08abe8d2] + PrettyTables v2.4.0 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.36.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [ae5879a3] + ResettableStacks v1.1.1 [79098fc4] + Rmath v0.8.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.15 [9dfe8606] + SCCNonlinearSolve v1.4.0 [94e857df] + SIMDTypes v0.1.0 [0bca4576] + SciMLBase v2.108.0 [19f34311] + SciMLJacobianOperators v0.1.8 [c0aeaf25] + SciMLOperators v1.4.0 [431bcebd] + SciMLPublic v1.0.0 [53ae85a6] + SciMLStructures v1.7.0 [efcf1570] + Setfield v1.1.2 [727e6d20] + SimpleNonlinearSolve v2.7.0 [699a6c99] + SimpleTraits v0.9.4 [ce78b400] + SimpleUnPack v1.1.0 [a2af1166] + SortingAlgorithms v1.2.2 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.14 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.6 [4c63d2b9] + StatsFuns v1.5.0 [7792a7ef] + StrideArraysCore v0.5.7 [892a3eda] + StringManipulation v0.4.1 [2efcf032] + SymbolicIndexingInterface v0.3.42 [19f23fe9] + SymbolicLimits v0.2.2 [d1185830] + SymbolicUtils v3.30.0 [0c5d862f] + Symbolics v6.49.0 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [ed4db957] + TaskLocalValues v0.1.3 [8ea1fca8] + TermInterface v2.0.0 [1c621080] + TestItems v1.0.0 [8290d209] + ThreadingUtilities v0.5.5 [410a4b4d] + Tricks v0.1.11 [781d530d] + TruncatedStacktraces v1.4.0 [5c2747f8] + URIs v1.6.1 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.24.0 [a7c27f48] + Unityper v0.1.6 [f50d1b31] + Rmath_jll v0.5.1+0 [9fa8497b] + Future v1.11.0 [a63ad114] + Mmap v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [4607b0f0] + SuiteSparse Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Resolving package versions... Updating `/tmp/jl_vNkfNm/Project.toml` [0c5d862f] + Symbolics v6.49.0 No packages added to or removed from `/tmp/jl_vNkfNm/Manifest.toml` Precompiling packages... 2725.4 ms ✓ MaybeInplace 970.9 ms ✓ PoissonRandom 1958.5 ms ✓ SimpleTraits 2307.4 ms ✓ Accessors → UnitfulExt 2439.8 ms ✓ Latexify → SparseArraysExt 3017.4 ms ✓ DispatchDoctor 1649.0 ms ✓ TruncatedStacktraces 3176.0 ms ✓ Functors 3658.2 ms ✓ SciMLOperators 12724.5 ms ✓ CommonMark 5596.1 ms ✓ Static 3647.4 ms ✓ ChainRulesCore 3496.2 ms ✓ QuadGK 5013.7 ms ✓ StatsBase 1360.8 ms ✓ ResettableStacks 23070.2 ms ✓ ArrayLayouts 1483.3 ms ✓ DifferentiationInterface → DifferentiationInterfaceStaticArraysExt 1414.7 ms ✓ FiniteDiff → FiniteDiffStaticArraysExt 1585.8 ms ✓ Accessors → StaticArraysExt 4076.9 ms ✓ SymbolicIndexingInterface 2560.6 ms ✓ HypergeometricFunctions 3397.8 ms ✓ FastPower → FastPowerForwardDiffExt 1921.5 ms ✓ DifferentiationInterface → DifferentiationInterfaceForwardDiffExt 2933.0 ms ✓ Unitful → ForwardDiffExt 1334.1 ms ✓ MaybeInplace → MaybeInplaceSparseArraysExt 9078.7 ms ✓ Graphs 904.4 ms ✓ DispatchDoctor → DispatchDoctorEnzymeCoreExt 11578.8 ms ✓ DynamicQuantities 1032.7 ms ✓ SciMLOperators → SciMLOperatorsStaticArraysCoreExt 1492.4 ms ✓ SciMLOperators → SciMLOperatorsSparseArraysExt 62775.7 ms ✓ JuliaFormatter 927.8 ms ✓ BitTwiddlingConvenienceFunctions 9407.5 ms ✓ StaticArrayInterface 2602.8 ms ✓ CPUSummary 1371.0 ms ✓ ChainRulesCore → ChainRulesCoreSparseArraysExt 849.7 ms ✓ ArrayInterface → ArrayInterfaceChainRulesCoreExt 871.1 ms ✓ ADTypes → ADTypesChainRulesCoreExt 3123.1 ms ✓ LogExpFunctions → LogExpFunctionsChainRulesCoreExt 892.4 ms ✓ DifferentiationInterface → DifferentiationInterfaceChainRulesCoreExt 1546.2 ms ✓ StaticArrays → StaticArraysChainRulesCoreExt 4117.8 ms ✓ SpecialFunctions → SpecialFunctionsChainRulesCoreExt 1377.1 ms ✓ DispatchDoctor → DispatchDoctorChainRulesCoreExt 3177.2 ms ✓ ArrayLayouts → ArrayLayoutsSparseArraysExt 4590.3 ms ✓ BlockArrays 4914.1 ms ✓ RecursiveArrayTools 3051.2 ms ✓ StatsFuns 4666.4 ms ✓ NLSolversBase 3876.5 ms ✓ DynamicQuantities → DynamicQuantitiesUnitfulExt 1657.6 ms ✓ DynamicQuantities → DynamicQuantitiesLinearAlgebraExt 1078.2 ms ✓ StaticArrayInterface → StaticArrayInterfaceOffsetArraysExt 1524.0 ms ✓ StaticArrayInterface → StaticArrayInterfaceStaticArraysExt 1049.3 ms ✓ CloseOpenIntervals 1226.2 ms ✓ LayoutPointers 1806.6 ms ✓ PolyesterWeave 6973.8 ms ✓ MultivariatePolynomials 2822.0 ms ✓ BlockArrays → BlockArraysAdaptExt 3177.4 ms ✓ RecursiveArrayTools → RecursiveArrayToolsSparseArraysExt 3185.7 ms ✓ RecursiveArrayTools → RecursiveArrayToolsForwardDiffExt 27908.0 ms ✓ SciMLBase 4122.6 ms ✓ StatsFuns → StatsFunsChainRulesCoreExt 1288.4 ms ✓ StatsFuns → StatsFunsInverseFunctionsExt 9946.5 ms ✓ Distributions 24145.9 ms ✓ LineSearches 1952.5 ms ✓ StrideArraysCore 4908.2 ms ✓ DynamicPolynomials 4214.3 ms ✓ SciMLBase → SciMLBaseChainRulesCoreExt 5096.9 ms ✓ SciMLBase → SciMLBaseMLStyleExt 8497.1 ms ✓ SciMLJacobianOperators 4680.8 ms ✓ SCCNonlinearSolve 5120.6 ms ✓ Distributions → DistributionsTestExt 4559.4 ms ✓ Distributions → DistributionsChainRulesCoreExt 9369.5 ms ✓ Optim 2040.7 ms ✓ Polyester 70566.1 ms ✓ SymbolicUtils 13149.7 ms ✓ LineSearch 67270.9 ms ✓ NonlinearSolveBase 2688.9 ms ✓ FastBroadcast 8952.8 ms ✓ SymbolicLimits 17385.7 ms ✓ LineSearch → LineSearchLineSearchesExt 4627.7 ms ✓ NonlinearSolveBase → NonlinearSolveBaseSparseArraysExt 9297.3 ms ✓ BracketingNonlinearSolve 3982.9 ms ✓ NonlinearSolveBase → NonlinearSolveBaseLineSearchExt 7566.9 ms ✓ NonlinearSolveBase → NonlinearSolveBaseForwardDiffExt 3356.6 ms ✓ RecursiveArrayTools → RecursiveArrayToolsFastBroadcastExt 139239.8 ms ✓ Symbolics 4695.3 ms ✓ BracketingNonlinearSolve → BracketingNonlinearSolveForwardDiffExt 8728.5 ms ✓ DiffEqBase 14952.5 ms ✓ Symbolics → SymbolicsForwardDiffExt 12797.1 ms ✓ DifferentiationInterface → DifferentiationInterfaceSymbolicsExt 3286.3 ms ✓ BracketingNonlinearSolve → BracketingNonlinearSolveChainRulesCoreExt 19536.6 ms ✓ SimpleNonlinearSolve 5219.4 ms ✓ DiffEqBase → DiffEqBaseChainRulesCoreExt 6254.1 ms ✓ DiffEqBase → DiffEqBaseForwardDiffExt 3979.2 ms ✓ DiffEqBase → DiffEqBaseUnitfulExt 4562.8 ms ✓ DiffEqBase → DiffEqBaseDistributionsExt 3542.9 ms ✓ DiffEqBase → DiffEqBaseSparseArraysExt 11698.8 ms ✓ DiffEqCallbacks 8008.3 ms ✓ OrdinaryDiffEqCore 5193.4 ms ✓ NonlinearSolveBase → NonlinearSolveBaseDiffEqBaseExt 3461.6 ms ✓ SimpleNonlinearSolve → SimpleNonlinearSolveChainRulesCoreExt 4140.1 ms ✓ SimpleNonlinearSolve → SimpleNonlinearSolveDiffEqBaseExt 19262.0 ms ✓ DiffEqNoiseProcess 6703.0 ms ✓ JumpProcesses 3374.5 ms ✓ OrdinaryDiffEqCore → OrdinaryDiffEqCoreEnzymeCoreExt 6689.6 ms ✓ ImplicitDiscreteSolve Info Given ModelingToolkit was explicitly requested, output will be shown live  WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in var"#bareiss_update_virtual_colswap_mtk!#1389"(Any, typeof(ModelingToolkit.bareiss_update_virtual_colswap_mtk!), Any, ModelingToolkit.SparseMatrixCLIL{T, Ti} where Ti<:Integer where T, Any, Any, Any, Any) at /home/pkgeval/.julia/packages/ModelingToolkit/y5RH4/src/systems/sparsematrixclil.jl 464572.8 ms ✓ ModelingToolkit 106 dependencies successfully precompiled in 1358 seconds. 164 already precompiled. 1 dependency had output during precompilation: ┌ ModelingToolkit │ [Output was shown above] └ Precompiling packages... 8592.2 ms ✓ Groebner → GroebnerDynamicPolynomialsExt 1 dependency successfully precompiled in 9 seconds. 44 already precompiled. Precompiling packages... 96958.9 ms ✓ Symbolics → SymbolicsNemoExt 15615.1 ms ✓ Symbolics → SymbolicsGroebnerExt 2 dependencies successfully precompiled in 114 seconds. 163 already precompiled. 1 dependency had output during precompilation: ┌ Symbolics → SymbolicsNemoExt │ [ Info: Assuming ((1//128)*(√((5120//1)*(a^4)) - (80//1)*(a^2))) != 0 │ [ Info: Assuming ((5//8)*(a^2)) != 0 └ Precompiling packages... 31740.6 ms ✓ ModelingToolkit → MTKDeepDiffsExt 1 dependency successfully precompiled in 35 seconds. 271 already precompiled. Precompiling packages... 47211.7 ms ✓ StructuralIdentifiability → ModelingToolkitSIExt 1 dependency successfully precompiled in 50 seconds. 288 already precompiled. [ Info: Testing started [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y ┌ Warning: New variable c, treating as a scalar parameter └ @ StructuralIdentifiability ~/.julia/packages/StructuralIdentifiability/Tp10P/src/pb_representation.jl:94 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: a [ Info: Parameters: b [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: a, b [ Info: Parameters: k1, k2 [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y 2.184822 seconds (920.10 k allocations: 49.614 MiB, 99.50% compilation time) 0.001968 seconds (7.10 k allocations: 317.523 KiB) 0.001861 seconds (10.83 k allocations: 487.312 KiB) 0.001746 seconds (10.80 k allocations: 482.539 KiB) 0.002491 seconds (14.56 k allocations: 637.742 KiB) 0.001331 seconds (7.97 k allocations: 362.656 KiB) 0.000858 seconds (7.49 k allocations: 302.547 KiB) 15.619840 seconds (6.41 M allocations: 345.655 MiB, 0.94% gc time, 99.79% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.335085 seconds (110.61 k allocations: 6.244 MiB, 98.04% compilation time) [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.011959 seconds (9.49 k allocations: 538.492 KiB, 90.33% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b [ Info: Inputs: u [ Info: Outputs: y Coefficient extraction for rational functions: Test Failed at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/test/extract_coefficients.jl:27 Expression: Set(C) == Set([x // 1, (y + 3) // 1, y ^ 2 // 1, one(R) // 1, 3 * one(R) // 1, -((x ^ 2 + y ^ 2)) // 1]) Evaluated: Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[1//3*x, 1//3*y + 1, -1//3*x^2 - 1//3*y^2, 1//3, 1, 1//3*y^2]) == Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[-x^2 - y^2, x, y^2, y + 3, 1, 3]) Stacktrace: [1] top-level scope @ ~/.julia/packages/StructuralIdentifiability/Tp10P/test/extract_coefficients.jl:2 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1929 [inlined] [3] macro expansion @ ~/.julia/packages/StructuralIdentifiability/Tp10P/test/extract_coefficients.jl:27 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:745 [inlined] [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 IOEQS: Dict{QQMPolyRingElem, QQMPolyRingElem}(y2(t)_1 => -a*y2(t)_0 + a*u(t)_0 + y2(t)_1 - u(t)_1, y1(t)_2 => -y1(t)_0 + y1(t)_2) [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a, b, c, d [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, I, W, R [ Info: Parameters: a, bi, bw, gam, k, mu, xi [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a01, a12, a13, a21, a31 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, In [ Info: Parameters: N, a, b, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00387974 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.200095503 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.067336061 seconds [ Info: Global identifiability assessed in 8.095673482 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002559904 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Global identifiability assessed in 0.809139674 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Global identifiability assessed in 4.635e-5 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.03326312 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.514836768 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.737e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:13 ✓ # Computing specializations.. Time: 0:00:15 [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 4 specializations in 13.554208143 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings ⌜ # Computing specializations.. Time: 0:00:26 ✓ # Computing specializations.. Time: 0:00:26 [ Info: Computed Groebner bases in 35.724309908 seconds [ Info: Inclusion checked with probability 0.9955 in 0.027415929 seconds [ Info: Global identifiability assessed in 138.504652771 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.614007159 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 1.885939257 seconds [ Info: Dimensions of the Wronskians [676] [ Info: Ranks of the Wronskians computed in 0.112326591 seconds [ Info: Global identifiability assessed in 35.211875831 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013983137 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031183872 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000413106 seconds [ Info: Global identifiability assessed in 0.097982237 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Note: the input model has nontrivial submodels. If the computation for the full model will be too heavy, you may want to try to first analyze one of the submodels. They can be produced using function `find_submodels` [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 14.344560036 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003597393 seconds [ Info: Dimensions of the Wronskians [2, 3, 2] [ Info: Ranks of the Wronskians computed in 0.000105499 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.170902002 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.009882199 seconds [ Info: Inclusion checked with probability 0.9955 in 0.001198128 seconds [ Info: Global identifiability assessed in 15.781535401 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002069119 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001673543 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 7.4039e-5 seconds [ Info: Global identifiability assessed in 0.00591528 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002485424 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00195728 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 8.2549e-5 seconds [ Info: Global identifiability assessed in 0.007053958 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004738281 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004142487 seconds [ Info: Dimensions of the Wronskians [6] [ Info: Ranks of the Wronskians computed in 0.000106809 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 5 variables [ Info: Used 9 specializations in 0.175850162 seconds, found 11 relations [ Info: Computing 6 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.162726506 seconds [ Info: Inclusion checked with probability 0.9955 in 0.002401115 seconds [ Info: Global identifiability assessed in 1.3190587 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007017148 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003593853 seconds [ Info: Dimensions of the Wronskians [2, 5] [ Info: Ranks of the Wronskians computed in 9.7439e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 5 specializations in 0.002354846 seconds, found 7 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.236431102 seconds [ Info: Inclusion checked with probability 0.9955 in 0.00196978 seconds [ Info: Global identifiability assessed in 0.280287463 seconds [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: V_m, c, k01, k_m [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k1, k2, k3, k4 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: s, i, r, x1, x2 [ Info: Parameters: M, b0, b1, g, mu, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, E, I, R, Q [ Info: Parameters: beta, gamma, psi, v [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: k01, k12, k13, k14, k21, k31, k41 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x5, x7, x4, x6 [ Info: Parameters: k10, k5, k6, k7, k8, k9 [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, In, L, Q [ Info: Parameters: Ninv, a, b, e, g, s [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, R, W [ Info: Parameters: Dd, T, a, d, dr, e, g, r, rR [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: P3, P0, P5, P4, P1, P2 [ Info: Parameters: Ks, M, Mar, alpa, beta, beta_SA, beta_SI, phi, siga1, siga2 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: C, α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR [ Info: Parameters: EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1 [ Info: Inputs: pro_EGFR [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio [ Info: Parameters: kOHbeta10, kbeta, kbeta10, kcryOH, kcrybeta, kzea [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: EpoR_A, k1, k2, k3, k5, k6, k7 [ Info: Inputs: [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, U, I [ Info: Parameters: N, a, b, d, g [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: alpha [ Info: Inputs: [ Info: Outputs: y [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001446725 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001232937 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 8.5339e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000785652 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.000982479 seconds [ Info: The search for identifiable functions concluded in 1.77492816 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001251627 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001220067 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 8.1369e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000591414 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.00885644 seconds [ Info: Inclusion checked with probability 0.995 in 0.000705823 seconds [ Info: The search for identifiable functions concluded in 0.018600589 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001627863 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001270937 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 8.5369e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: The search for identifiable functions concluded in 0.003736292 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001617104 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001332376 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 0.000110979 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: The search for identifiable functions concluded in 0.004024788 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001681313 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001285997 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 8.5229e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: The search for identifiable functions concluded in 0.006192036 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001883991 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001452506 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 0.000102059 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: The search for identifiable functions concluded in 0.007203626 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.293117963 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0019023 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 0.000104429 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000568374 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.000653383 seconds [ Info: The search for identifiable functions concluded in 0.301512597 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002448765 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001750172 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 9.8249e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000590614 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.010542672 seconds [ Info: Inclusion checked with probability 0.995 in 0.000785572 seconds [ Info: The search for identifiable functions concluded in 0.021537239 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001407106 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002020759 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 0.000113849 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 5 specializations in 0.002831541 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001724042 seconds [ Info: The search for identifiable functions concluded in 0.021226233 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001423825 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001518654 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 0.000105019 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 5 specializations in 0.002683242 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.046477745 seconds [ Info: Inclusion checked with probability 0.995 in 0.001686192 seconds [ Info: The search for identifiable functions concluded in 0.067889016 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001361717 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001311357 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.000100669 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.197716178 seconds, found 2 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001476835 seconds [ Info: The search for identifiable functions concluded in 1.295965148 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001479745 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001544584 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.000124559 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.001525394 seconds, found 2 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.027955444 seconds [ Info: Inclusion checked with probability 0.995 in 0.001392146 seconds [ Info: The search for identifiable functions concluded in 0.042248858 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002413625 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00194542 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.000109599 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.00198568 seconds, found 3 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001456315 seconds [ Info: The search for identifiable functions concluded in 0.022025894 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002294216 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001768102 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.000108309 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.001863111 seconds, found 3 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.05086371 seconds [ Info: Inclusion checked with probability 0.995 in 0.001525534 seconds [ Info: The search for identifiable functions concluded in 0.071770476 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003056589 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002459735 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 0.000115838 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 4 specializations in 0.002673623 seconds, found 6 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.00196618 seconds [ Info: The search for identifiable functions concluded in 0.029097552 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00293308 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002272547 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 0.000119248 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 4 specializations in 0.002726042 seconds, found 6 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.052349414 seconds [ Info: Inclusion checked with probability 0.995 in 0.001686533 seconds [ Info: The search for identifiable functions concluded in 0.078632825 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015911097 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005547713 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 0.000158548 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 1 specializations in 0.167999782 seconds, found 6 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.003010399 seconds [ Info: The search for identifiable functions concluded in 1.208115596 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007346475 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005082718 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 0.000152588 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 1 specializations in 0.001322307 seconds, found 6 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.076184731 seconds [ Info: Inclusion checked with probability 0.995 in 0.002988509 seconds [ Info: The search for identifiable functions concluded in 0.118161952 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004586493 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003235807 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 0.000112458 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 1 specializations in 0.001075609 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001800982 seconds [ Info: The search for identifiable functions concluded in 0.023645988 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004638323 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003173518 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 0.000102719 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 1 specializations in 0.001095109 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.336111263 seconds [ Info: Inclusion checked with probability 0.995 in 0.001804631 seconds [ Info: The search for identifiable functions concluded in 0.360471144 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004976379 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003059719 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 0.000105779 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 3 specializations in 0.002203907 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001895731 seconds [ Info: The search for identifiable functions concluded in 0.031054573 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004459364 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00294221 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 0.000100399 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 3 specializations in 0.002099949 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.078668575 seconds [ Info: Inclusion checked with probability 0.995 in 0.001621673 seconds [ Info: The search for identifiable functions concluded in 0.10853126 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002215497 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00192104 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 8.9729e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 3 specializations in 0.001601713 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001409955 seconds [ Info: The search for identifiable functions concluded in 0.017906357 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002106119 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001845561 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.000100489 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 3 specializations in 0.001709602 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.040626434 seconds [ Info: Inclusion checked with probability 0.995 in 0.001474975 seconds [ Info: The search for identifiable functions concluded in 0.058930378 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013084436 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.029380489 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000443605 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:05 ✓ # Computing specializations.. Time: 0:00:05 [ Info: Computing normal forms of degree 2 in 7 variables [ Info: Used 6 specializations in 1.851784877 seconds, found 9 relations [ Info: Computing 8 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.017070235 seconds [ Info: The search for identifiable functions concluded in 12.302705105 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013219025 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.03036118 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000433756 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 7 variables [ Info: Used 6 specializations in 0.005410805 seconds, found 9 relations [ Info: Computing 8 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.107433141 seconds [ Info: Inclusion checked with probability 0.995 in 0.016319443 seconds [ Info: The search for identifiable functions concluded in 0.519046573 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.416888758 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.598340653 seconds [ Info: Dimensions of the Wronskians [3, 830] [ Info: Ranks of the Wronskians computed in 0.215205149 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 6 specializations in 0.003805991 seconds, found 5 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 1.678853376 seconds [ Info: The search for identifiable functions concluded in 12.992195027 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.425771417 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.505626998 seconds [ Info: Dimensions of the Wronskians [3, 830] [ Info: Ranks of the Wronskians computed in 0.209711106 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 6 specializations in 0.004207627 seconds, found 5 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.078601906 seconds [ Info: Inclusion checked with probability 0.995 in 1.56711671 seconds [ Info: The search for identifiable functions concluded in 12.915911598 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012098637 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010881439 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 0.000135659 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 10 specializations in 0.005752911 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.004090218 seconds [ Info: The search for identifiable functions concluded in 0.075394599 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, gamma*psi - psi*v, beta*gamma - beta*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013362823 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.327534072 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 0.000467065 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 10 specializations in 0.006565233 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.119817555 seconds [ Info: Inclusion checked with probability 0.995 in 0.004112267 seconds [ Info: The search for identifiable functions concluded in 0.53414685 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.020940866 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015259824 seconds [ Info: Dimensions of the Wronskians [36, 3] [ Info: Ranks of the Wronskians computed in 0.000195798 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 11 specializations in 0.008003979 seconds, found 11 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.007524753 seconds [ Info: The search for identifiable functions concluded in 0.108972756 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.019524261 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01461804 seconds [ Info: Dimensions of the Wronskians [36, 3] [ Info: Ranks of the Wronskians computed in 0.000191158 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 11 specializations in 0.007572603 seconds, found 11 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.116774857 seconds [ Info: Inclusion checked with probability 0.995 in 0.008177176 seconds [ Info: The search for identifiable functions concluded in 0.229160347 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011419753 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016419312 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 0.000180568 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 8 specializations in 0.007985808 seconds, found 8 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.011826429 seconds [ Info: The search for identifiable functions concluded in 0.845512607 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, (a + e*s - s)//(a*e), (a^2*e*s + a^2*g + 3*a*e*g*s - a*e*s^2 - 2*a*g*s + e^2*g*s^2 - 2*e*g*s^2 + g*s^2)//(a + e*s - s)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = RingElem[(a + e*s - s)//(a*e), b, a + g, (a^2*e*s + a^2*g + 3*a*e*g*s - a*e*s^2 - 2*a*g*s + e^2*g*s^2 - 2*e*g*s^2 + g*s^2)//(a + e*s - s), s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010624301 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014982767 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 0.000208238 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 8 specializations in 0.008087178 seconds, found 8 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.258336739 seconds [ Info: Inclusion checked with probability 0.995 in 0.012426833 seconds [ Info: The search for identifiable functions concluded in 0.705632176 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, (a + e*s - s)//(a*e), (a^2*e*s + a^2*g + 3*a*e*g*s - a*e*s^2 - 2*a*g*s + e^2*g*s^2 - 2*e*g*s^2 + g*s^2)//(a + e*s - s)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = RingElem[(a + e*s - s)//(a*e), b, a + g, (a^2*e*s + a^2*g + 3*a*e*g*s - a*e*s^2 - 2*a*g*s + e^2*g*s^2 - 2*e*g*s^2 + g*s^2)//(a + e*s - s), s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.903712767 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.087708584 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000192328 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 15   ⌟ # Computing specializations.. Time: 0:00:01 Points: 23   ⌞ # Computing specializations.. Time: 0:00:01 Points: 29   ⌜ # Computing specializations.. Time: 0:00:01 Points: 37   ⌝ # Computing specializations.. Time: 0:00:02 Points: 44   ⌟ # Computing specializations.. Time: 0:00:02 Points: 52   ⌞ # Computing specializations.. Time: 0:00:02 Points: 60   ⌜ # Computing specializations.. Time: 0:00:03 Points: 68   ⌝ # Computing specializations.. Time: 0:00:03 Points: 76   ⌟ # Computing specializations.. Time: 0:00:03 Points: 84   ⌞ # Computing specializations.. Time: 0:00:04 Points: 92   ✓ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 43 running 1 of 1 signal (10): User defined signal 1 jl_svecref at /source/src/julia.h:1285 [inlined] hash_svec at /source/src/builtins.c:342 jl_object_id__cold at /source/src/builtins.c:477 ijl_object_id_ at /source/src/builtins.c:504 [inlined] jl_table_peek_bp at /source/src/iddict.c:118 [inlined] ijl_eqtable_get at /source/src/iddict.c:157 lookup_leafcache at /source/src/gf.c:1490 jl_lookup_generic_ at /source/src/gf.c:4144 [inlined] ijl_apply_generic at /source/src/gf.c:4208 ir_extract_coeffs_raw! at /home/pkgeval/.julia/packages/Groebner/FT1eI/src/input_output/intermediate.jl:213 unknown function (ip: 0x70efec309e56) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 __groebner_apply1! at /home/pkgeval/.julia/packages/Groebner/FT1eI/src/groebner/learn_apply.jl:234 unknown function (ip: 0x70efeeca7870) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 groebner_apply0! at /home/pkgeval/.julia/packages/Groebner/FT1eI/src/groebner/learn_apply.jl:129 #groebner_apply!#177 at /home/pkgeval/.julia/packages/Groebner/FT1eI/src/interface.jl:405 [inlined] groebner_apply! at /home/pkgeval/.julia/packages/Groebner/FT1eI/src/interface.jl:403 unknown function (ip: 0x70efeeca6974) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 discover_total_degrees! at /home/pkgeval/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:285 _paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:132 #paramgb#56 at /home/pkgeval/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:103 paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:60 [inlined] #groebner_basis_coeffs#320 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/RationalFunctionFields/RationalFunctionField.jl:514 groebner_basis_coeffs at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/RationalFunctionFields/RationalFunctionField.jl:514 unknown function (ip: 0x70efeedc6e24) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 #simplified_generating_set#323 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/RationalFunctionFields/RationalFunctionField.jl:693 simplified_generating_set at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/RationalFunctionFields/RationalFunctionField.jl:693 unknown function (ip: 0x70efee6cd3c9) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 #_find_identifiable_functions#366 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:86 [inlined] #364 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#362 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:49 unknown function (ip: 0x70efee6c8124) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 ✓ # Computing specializations.. Time: 0:00:01 eval at ./boot.jl:489 include_string at ./loading.jl:2847 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 _include at ./loading.jl:2907 include at ./Base.jl:312 IncludeInto at ./Base.jl:313 unknown function (ip: 0x70effc364782) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/test/runtests.jl:161 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:1929 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/test/runtests.jl:159 [inlined] macro expansion at ./timing.jl:645 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/test/runtests.jl:158 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_invoke at /source/src/gf.c:4022 jl_toplevel_eval_flex at /source/src/toplevel.c:762 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 include_string at ./loading.jl:2847 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 _include at ./loading.jl:2907 include at ./Base.jl:312 IncludeInto at ./Base.jl:313 jfptr_IncludeInto_65218.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:708 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 exec_options at ./client.jl:286 _start at ./client.jl:553 jfptr__start_69016.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x70f018f49249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ⌜ # Computing specializations.. Time: 0:00:00 Points: 5  ============================================================== Profile collected. A report will print at the next yield point ==============================================================  ⌝ # Computing specializations.. Time: 0:00:00┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x000070effec00010 Total snapshots: 212. Utilization: 100% ╎208 @Base/client.jl:553 _start() ╎ 208 @Base/client.jl:286 exec_options(opts::Base.JLOptions) ╎ 208 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ 208 @Base/Base.jl:313 (::Base.IncludeInto)(fname::String) ╎ 208 @Base/Base.jl:312 include(mapexpr::Function, mod::Module, _path::St… ╎ 208 @Base/loading.jl:2907 _include(mapexpr::Function, mod::Module, _pa… ╎ ╎ 208 @Base/loading.jl:2847 include_string(mapexpr::typeof(identity), m… ╎ ╎ 208 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ 208 @StructuralIdentifiability/…:158 top-level scope ╎ ╎ 208 @Base/timing.jl:645 macro expansion ╎ ╎ 208 @StructuralIdentifiability/…:159 macro expansion ╎ ╎ ╎ 208 @Test/src/Test.jl:1929 macro expansion ╎ ╎ ╎ 208 @StructuralIdentifiability/…:161 macro expansion ╎ ╎ ╎ 208 @Base/Base.jl:313 (::Base.IncludeInto)(fname::String) ╎ ╎ ╎ 208 @Base/Base.jl:312 include(mapexpr::Function, mod::Module,… ╎ ╎ ╎ 208 @Base/loading.jl:2907 _include(mapexpr::Function, mod::M… ╎ ╎ ╎ ╎ 208 @Base/loading.jl:2847 include_string(mapexpr::typeof(id… ╎ ╎ ╎ ╎ 208 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ ╎ ╎ 208 @StructuralIdentifiability/…:49 kwcall(::@NamedTuple{… ╎ ╎ ╎ ╎ 208 @StructuralIdentifiability/…:61 #find_identifiable_f… ╎ ╎ ╎ ╎ 208 @Base/…ogging.jl:651 with_logger ╎ ╎ ╎ ╎ ╎ 208 @Base/…gging.jl:540 with_logstate(f::StructuralIde… ╎ ╎ ╎ ╎ ╎ 208 @StructuralIdentifiability/…:63 (::StructuralIden… ╎ ╎ ╎ ╎ ╎ 208 @StructuralIdentifiability/…:86 _find_identifiab… ╎ ╎ ╎ ╎ ╎ 208 @StructuralIdentifiability/…:120 _find_identifi… ╎ ╎ ╎ ╎ ╎ 208 @StructuralIdentifiability/…:693 kwcall(::@Nam… ╎ ╎ ╎ ╎ ╎ ╎ 208 @StructuralIdentifiability/…:693 simplified_g… ╎ ╎ ╎ ╎ ╎ ╎ 208 @StructuralIdentifiability/…:514 kwcall(::@N… ╎ ╎ ╎ ╎ ╎ ╎ 208 @StructuralIdentifiability/…:514 groebner_b… ╎ ╎ ╎ ╎ ╎ ╎ 208 @ParamPunPam/…:60 paramgb ╎ ╎ ╎ ╎ ╎ ╎ 208 @ParamPunPam/…:103 paramgb(blackbox::Stru… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 208 @ParamPunPam/…:138 _paramgb(blackbox::St… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 16 @ParamPunPam/…:431 interpolate_exponent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 16 @StructuralIdentifiability/…:297 speci… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 15 @StructuralIdentifiability/…:271 frac… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 15 @Base/…ay.jl:3386 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 15 @Base/…ay.jl:738 collect_similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:823 _collect(c::Vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @StructuralIdentifiability/…:271 … 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:548 evaluate(a::fp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 13 @Base/…ay.jl:833 _collect(c::Vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 13 @Base/…ay.jl:839 collect_to_with_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 13 @Base/…ay.jl:861 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 13 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 13 @StructuralIdentifiability/…:271… 13╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 13 @Nemo/…ly.jl:548 evaluate(a::fp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @StructuralIdentifiability/…:277 frac… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:251 -(a::fpMPolyRingEle… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 191 @ParamPunPam/…:432 interpolate_exponent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 191 @Groebner/…l:403 groebner_apply!(trace… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 191 @Groebner/…l:405 #groebner_apply!#177 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 33 @Groebner/…l:128 groebner_apply0!(wr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @Groebner/…l:22 io_convert_polynomi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @Groebner/…l:108 io_extract_coeffs… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @Groebner/…l:128 io_extract_coeff… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @Base/…ay.jl:3416 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @Base/…ay.jl:813 collect(itr::B… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 6 @Base/…ay.jl:839 collect_to_wit… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 6 @Base/…ay.jl:861 collect_to!(de… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…or.jl:45 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 5 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 5 @Groebner/…l:116 io_lift_coeff_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 5 @Nemo/…em.jl:46 lift ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 5 @Nemo/…em.jl:45 lift 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Nemo/…es.jl:71 ZZRingElem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Nemo/…es.jl:72 ZZRingElem ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 3 @Nemo/…es.jl:73 ZZRingElem 3╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 3 @Base/…ls.jl:86 finalizer ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 26 @Groebner/…l:23 io_convert_polynomi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 26 @Groebner/…l:181 io_extract_monoms… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 26 @Base/…ay.jl:734 collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 26 @Base/…ay.jl:740 _collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ay.jl:947 copyto!(dest::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 3 @Base/…ay.jl:995 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ay.jl:999 _setindex! 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Base/…ay.jl:1000 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 23 @Base/…ay.jl:949 copyto!(dest::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 23 @AbstractAlgebra/…:840 iterate 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 23 @Nemo/…ly.jl:39 exponent_vector ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 12 @Nemo/…ly.jl:23 exponent_vector… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 11 @Base/…ot.jl:648 Array 10╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 11 @Base/…ot.jl:588 GenericMemory 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ot.jl:649 Array ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 10 @Nemo/…ly.jl:24 exponent_vector… 10╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 10 @Nemo/…ly.jl:736 exponent_vecto… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:25 io_convert_polynomi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 157 @Groebner/…l:129 groebner_apply0!(wr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 7 @Groebner/…l:218 __groebner_apply1!… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 7 @Groebner/…l:61 wrapped_trace_chec… 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ls.jl:967 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @Base/…rs.jl:321 != 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:3044 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Base/…ay.jl:3055 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Base/…rs.jl:416 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 4 @Base/…rs.jl:425 _zip_iterate_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Base/…rs.jl:433 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Base/…ay.jl:1241 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Base/…ay.jl:1249 _iterate 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Base/…ls.jl:967 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Base/…rs.jl:435 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Base/…rs.jl:433 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Base/…ay.jl:1241 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Base/…ay.jl:1249 _iterate 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ls.jl:967 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/int.jl:87 + ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 32 @Groebner/…l:234 __groebner_apply1!… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:212 ir_extract_coeffs… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ls.jl:967 getindex 31╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 31 @Groebner/…l:213 ir_extract_coeffs… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 118 @Groebner/…l:237 __groebner_apply1!… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 118 @Groebner/…l:253 groebner_apply2!(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 118 @Groebner/…l:266 _groebner_apply2… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 25 @Groebner/…l:502 f4_apply!(trace… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:315 f4_symbolic_pr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ge.jl:5 Colon ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ge.jl:415 UnitRange 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ge.jl:426 unitrange_last ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @Groebner/…l:323 f4_symbolic_pr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:304 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:248 hashtable_resi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…al.jl:771 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:995 setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 4 @Groebner/…l:306 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:482 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:1359 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ls.jl:967 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 3 @Groebner/…l:519 hashtable_inse… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:0 monom_create_div… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:708 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1359 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:966 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ls.jl:387 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:724 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ge.jl:923 iterate 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…on.jl:637 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 19 @Groebner/…l:342 f4_symbolic_pr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 19 @Groebner/…l:306 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:475 hashtable_inse… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ls.jl:967 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:476 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:499 monom_product! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Groebner/…l:37 monom_overflow_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Groebner/…l:32 monom_overflow_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…rs.jl:472 >= 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/int.jl:523 <= ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 3 @Groebner/…l:482 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 3 @Base/…ay.jl:1359 getindex 3╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 3 @Base/…ls.jl:967 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 6 @Groebner/…l:485 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 5 @Groebner/…l:264 hashtable_is_h… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 5 @Base/…ay.jl:1359 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:966 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ls.jl:387 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ls.jl:383 checkbounds 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ls.jl:11 length 4╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 4 @Base/…ls.jl:967 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:265 hashtable_is_h… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1359 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:966 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ls.jl:387 checkbounds 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ls.jl:383 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:487 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:995 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1000 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:501 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:264 hashtable_is_h… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1359 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:966 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ls.jl:387 checkbounds 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ls.jl:383 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 6 @Groebner/…l:519 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Groebner/…l:708 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Base/…ay.jl:1359 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Base/…ls.jl:966 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 2 @Base/…ls.jl:387 checkbounds 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ls.jl:383 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:712 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ge.jl:923 iterate 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…on.jl:637 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:717 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/int.jl:631 mod 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/int.jl:552 rem ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:720 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1359 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:966 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ls.jl:387 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:724 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ge.jl:923 iterate 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…on.jl:637 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 93 @Groebner/…l:504 f4_apply!(trace… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Groebner/…l:262 f4_reduction_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:235 matrix_fill_co… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ay.jl:1359 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ls.jl:967 getindex 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 2 @Groebner/…l:236 matrix_fill_co… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:242 matrix_fill_co… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ay.jl:1359 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ls.jl:967 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 87 @Groebner/…l:271 f4_reduction_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 87 @Groebner/…l:23 linalg_main! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 87 @Groebner/…l:56 #linalg_main!#83 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 87 @Groebner/…l:203 _linalg_main_w… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 83 @Groebner/…l:39 linalg_apply_sp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 63 @Groebner/…l:104 linalg_apply_r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Groebner/…l:317 linalg_prepare… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ls.jl:967 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 62 @Groebner/…l:320 linalg_prepare… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 62 @Base/…ot.jl:648 Array 47╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 62 @Base/…ot.jl:588 GenericMemory 7╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 7 @Nemo/…es.jl:5233 _nmod_mpoly_c… 8╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 8 @Nemo/…es.jl:5249 _nmod_poly_cl… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Groebner/…l:108 linalg_apply_r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ay.jl:597 zeros ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ay.jl:601 zeros ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ot.jl:661 Array ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…ot.jl:648 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…ot.jl:588 GenericMemory ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Groebner/…l:109 linalg_apply_r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Groebner/…l:679 linalg_new_emp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ot.jl:671 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ot.jl:649 Array ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Groebner/…l:120 linalg_apply_r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Groebner/…l:861 linalg_load_sp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ay.jl:995 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ay.jl:1000 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Groebner/…l:865 linalg_load_sp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…al.jl:771 setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ay.jl:995 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…ay.jl:1000 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 16 @Groebner/…l:125 linalg_apply_r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 16 @Groebner/…l:369 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 16 @Groebner/…l:369 linalg_reduce_… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 15 @Groebner/…l:415 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 5 @Groebner/…l:751 linalg_vector_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 3 @Base/…ay.jl:1359 getindex 3╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 3 @Base/…ls.jl:967 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/int.jl:1005 * 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/int.jl:87 + ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 9 @Groebner/…l:752 linalg_vector_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 3 @Groebner/…l:122 mod_p ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 2 @Groebner/…l:106 _mul_high 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 2 @Base/int.jl:1005 * ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Groebner/…l:108 _mul_high ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 1 @Base/…rs.jl:643 + 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +13 1 @Base/int.jl:87 + ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 6 @Groebner/…l:124 mod_p 6╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 6 @Base/int.jl:538 >>> ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Groebner/…l:428 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Groebner/…l:886 linalg_extract… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…ls.jl:967 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 4 @Groebner/…l:44 linalg_apply_sp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 4 @Groebner/…l:183 linalg_apply_i… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 4 @Groebner/…l:190 #linalg_apply_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 4 @Groebner/…l:127 linalg_interre… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Groebner/…l:138 linalg_interre… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…ay.jl:1503 resize!(a::Ve… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…ay.jl:1181 _growend! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Base/…ay.jl:1156 _growend_inte… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 1 @Base/…ay.jl:1076 array_new_mem… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +13 1 @Base/…ot.jl:588 GenericMemory ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Groebner/…l:166 linalg_interre… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Groebner/…l:862 linalg_load_sp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…ge.jl:923 iterate 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Base/…on.jl:637 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 2 @Groebner/…l:170 linalg_interre… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 2 @Groebner/…l:369 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 2 @Groebner/…l:369 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 2 @Groebner/…l:428 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 1 @Groebner/…l:886 linalg_extract… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +13 1 @Base/…ls.jl:967 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 1 @Groebner/…l:887 linalg_extract… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +13 1 @Base/…ot.jl:0 setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Groebner/…l:274 f4_reduction_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 2 @Groebner/…l:189 matrix_convert… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Groebner/…l:239 matrix_convert… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:378 matrix_insert_… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/int.jl:522 <= ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:390 matrix_insert_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1359 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:967 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:131 groebner_apply0!(wr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:44 io_convert_ir_to_po… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:250 _io_convert_ir_to… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:957 fpMPolyRing ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:1497 fpMPolyRingEle… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:831 sort_terms! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:433 interpolate_exponent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ProgressMeter/…:499 update! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ProgressMeter/…:500 #update!#19 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ProgressMeter/…:470 lock_if_threadi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ProgressMeter/…:503 #21 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ProgressMeter/…:211 updateProgres… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ProgressMeter/…:213 #updateProgr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ProgressMeter/…:378 _updateProg… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ProgressMeter/…:437 _updatePro… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…io.jl:244 print(io::Base… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…io.jl:242 write ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…am.jl:1154 unsafe_write(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…am.jl:1081 uv_write(s::B… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…sk.jl:1180 wait() 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…uv.jl:133 process_events Points: 10  ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1192 wait_forever at ./task.jl:1129 jfptr_wait_forever_70461.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] start_task at /source/src/task.c:1253 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007747a6312950 Total snapshots: 488. Utilization: 0% ╎488 @Base/task.jl:1129 wait_forever() 487╎ 488 @Base/task.jl:1192 wait()  ⌟ # Computing specializations.. Time: 0:00:33 Points: 390   ⌞ # Computing specializations.. Time: 0:00:34 Points: 408   ⌜ # Computing specializations.. Time: 0:00:34 Points: 416   ⌝ # Computing specializations.. Time: 0:00:34 Points: 422   ⌟ # Computing specializations.. Time: 0:00:35 Points: 430   ⌞ # Computing specializations.. Time: 0:00:35 Points: 437   ⌜ # Computing specializations.. Time: 0:00:35 Points: 445   ⌝ # Computing specializations.. Time: 0:00:36 Points: 452   ⌟ # Computing specializations.. Time: 0:00:36 Points: 460   ⌞ # Computing specializations.. Time: 0:00:37 Points: 468   ⌜ # Computing specializations.. Time: 0:00:37 Points: 476   ⌝ # Computing specializations.. Time: 0:00:37 Points: 484   ⌟ # Computing specializations.. Time: 0:00:38 Points: 492   ⌞ # Computing specializations.. Time: 0:00:38 Points: 500   ⌜ # Computing specializations.. Time: 0:00:38 Points: 508   ⌝ # Computing specializations.. Time: 0:00:39 Points: 516   ⌟ # Computing specializations.. Time: 0:00:39 Points: 524   ⌞ # Computing specializations.. Time: 0:00:40 Points: 531   ⌜ # Computing specializations.. Time: 0:00:40 Points: 539   ⌝ # Computing specializations.. Time: 0:00:40 Points: 547   ⌟ # Computing specializations.. Time: 0:00:41 Points: 555   ⌞ # Computing specializations.. Time: 0:00:41 Points: 563  [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1192 wait_forever at ./task.jl:1129 jfptr_wait_forever_70461.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] start_task at /source/src/task.c:1253 unknown function (ip: (nil)) at (unknown file) Allocations: 21563458 (Pool: 21562862; Big: 596); GC: 19 [43] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/test/identifiable_functions.jl:960 checkbounds at ./essentials.jl:383 [inlined] _iterate at ./abstractarray.jl:1248 [inlined] iterate at ./abstractarray.jl:1241 [inlined] _zip_iterate_some at ./iterators.jl:433 [inlined] _zip_iterate_all at ./iterators.jl:425 [inlined] iterate at ./iterators.jl:416 [inlined] == at ./abstractarray.jl:3055 [inlined] != at ./operators.jl:321 [inlined] wrapped_trace_check_input at /home/pkgeval/.julia/packages/Groebner/FT1eI/src/groebner/wrapped_trace.jl:61 __groebner_apply1! at /home/pkgeval/.julia/packages/Groebner/FT1eI/src/groebner/learn_apply.jl:218 unknown function (ip: 0x70efeeca7870) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 groebner_apply0! at /home/pkgeval/.julia/packages/Groebner/FT1eI/src/groebner/learn_apply.jl:129 #groebner_apply!#177 at /home/pkgeval/.julia/packages/Groebner/FT1eI/src/interface.jl:405 [inlined] groebner_apply! at /home/pkgeval/.julia/packages/Groebner/FT1eI/src/interface.jl:403 unknown function (ip: 0x70efeeca6974) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 interpolate_exponents! at /home/pkgeval/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:432 _paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:138 #paramgb#56 at /home/pkgeval/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:103 paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wEEQO/src/groebner/paramgb.jl:60 [inlined] #groebner_basis_coeffs#320 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/RationalFunctionFields/RationalFunctionField.jl:514 groebner_basis_coeffs at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/RationalFunctionFields/RationalFunctionField.jl:514 unknown function (ip: 0x70efeedc6e24) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 #simplified_generating_set#323 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/RationalFunctionFields/RationalFunctionField.jl:693 simplified_generating_set at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/RationalFunctionFields/RationalFunctionField.jl:693 unknown function (ip: 0x70efee6cd3c9) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 #_find_identifiable_functions#366 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:86 [inlined] #364 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#362 at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/src/identifiable_functions.jl:49 unknown function (ip: 0x70efee6c8124) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 include_string at ./loading.jl:2847 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 _include at ./loading.jl:2907 include at ./Base.jl:312 IncludeInto at ./Base.jl:313 unknown function (ip: 0x70effc364782) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/test/runtests.jl:161 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:1929 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/test/runtests.jl:159 [inlined] macro expansion at ./timing.jl:645 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/Tp10P/test/runtests.jl:158 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_invoke at /source/src/gf.c:4022 jl_toplevel_eval_flex at /source/src/toplevel.c:762 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 include_string at ./loading.jl:2847 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 _include at ./loading.jl:2907 include at ./Base.jl:312 IncludeInto at ./Base.jl:313 jfptr_IncludeInto_65218.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:708 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 exec_options at ./client.jl:286 _start at ./client.jl:553 jfptr__start_69016.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x70f018f49249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 530858055 (Pool: 530853883; Big: 4172); GC: 233 PkgEval terminated after 2746.68s: test duration exceeded the time limit