Package evaluation of Hypatia on Julia 1.13.0-DEV.966 (46c2a5c7e1*) started at 2025-08-07T18:41:26.979 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.56s ################################################################################ # Installation # Installing Hypatia... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [b99e6be6] + Hypatia v0.9.0 Updating `~/.julia/environments/v1.13/Manifest.toml` [6e4b80f9] + BenchmarkTools v1.6.0 [523fee87] + CodecBzip2 v0.8.5 [944b1d66] + CodecZlib v0.7.8 [861a8166] + Combinatorics v1.0.3 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.18.0 ⌅ [864edb3b] + DataStructures v0.18.22 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [ffbed154] + DocStringExtensions v0.9.5 [e2ba6199] + ExprTools v0.1.10 [9aa1b823] + FastClosures v0.3.2 [1a297f60] + FillArrays v1.13.0 [f6369f11] + ForwardDiff v1.0.1 [14197337] + GenericLinearAlgebra v0.3.18 [b99e6be6] + Hypatia v0.9.0 [92d709cd] + IrrationalConstants v0.2.4 [42fd0dbc] + IterativeSolvers v0.9.4 [692b3bcd] + JLLWrappers v1.7.1 [682c06a0] + JSON v0.21.4 [0f8b85d8] + JSON3 v1.14.3 [4076af6c] + JuMP v1.28.0 ⌅ [0b1a1467] + KrylovKit v0.9.5 [7a12625a] + LinearMaps v3.11.4 [5c8ed15e] + LinearOperators v2.10.0 [2ab3a3ac] + LogExpFunctions v0.3.29 [607ca3ad] + LowRankOpt v0.2.1 [1914dd2f] + MacroTools v0.5.16 [b8f27783] + MathOptInterface v1.42.1 [d8a4904e] + MutableArithmetics v1.6.4 [a4795742] + NLPModels v0.21.5 [792afdf1] + NLPModelsJuMP v0.13.2 [77ba4419] + NaNMath v1.1.3 [bac558e1] + OrderedCollections v1.8.1 [65ce6f38] + PackageExtensionCompat v1.0.2 [69de0a69] + Parsers v2.8.3 [3a141323] + PolynomialRoots v1.0.0 [aea7be01] + PrecompileTools v1.3.2 [21216c6a] + Preferences v1.4.3 [3cdcf5f2] + RecipesBase v1.3.4 [ae029012] + Requires v1.3.1 [ff4d7338] + SolverCore v0.3.8 [276daf66] + SpecialFunctions v2.5.1 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [856f2bd8] + StructTypes v1.11.0 [a759f4b9] + TimerOutputs v0.5.29 [3bb67fe8] + TranscodingStreams v0.11.3 [c4a57d5a] + UnsafeArrays v1.0.8 [409d34a3] + VectorInterface v0.5.0 [6e34b625] + Bzip2_jll v1.0.9+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [de0858da] + Printf v1.11.0 [9abbd945] + Profile v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.44s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 20.43s ################################################################################ # Testing # Testing Hypatia Status `/tmp/jl_w1iogV/Project.toml` [861a8166] Combinatorics v1.0.3 [ffbed154] DocStringExtensions v0.9.5 [7c1d4256] DynamicPolynomials v0.6.2 [f6369f11] ForwardDiff v1.0.1 [14197337] GenericLinearAlgebra v0.3.18 [b99e6be6] Hypatia v0.9.0 [42fd0dbc] IterativeSolvers v0.9.4 [7a12625a] LinearMaps v3.11.4 [607ca3ad] LowRankOpt v0.2.1 [b8f27783] MathOptInterface v1.42.1 [3a141323] PolynomialRoots v1.0.0 [ae029012] Requires v1.3.1 [276daf66] SpecialFunctions v2.5.1 [37e2e46d] LinearAlgebra v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [4607b0f0] SuiteSparse [8dfed614] Test v1.11.0 Status `/tmp/jl_w1iogV/Manifest.toml` [6e4b80f9] BenchmarkTools v1.6.0 [d360d2e6] ChainRulesCore v1.25.2 [523fee87] CodecBzip2 v0.8.5 [944b1d66] CodecZlib v0.7.8 [861a8166] Combinatorics v1.0.3 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.18.0 ⌅ [864edb3b] DataStructures v0.18.22 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [ffbed154] DocStringExtensions v0.9.5 [7c1d4256] DynamicPolynomials v0.6.2 [e2ba6199] ExprTools v0.1.10 [9aa1b823] FastClosures v0.3.2 [1a297f60] FillArrays v1.13.0 [f6369f11] ForwardDiff v1.0.1 [14197337] GenericLinearAlgebra v0.3.18 [b99e6be6] Hypatia v0.9.0 [92d709cd] IrrationalConstants v0.2.4 [42fd0dbc] IterativeSolvers v0.9.4 [692b3bcd] JLLWrappers v1.7.1 [682c06a0] JSON v0.21.4 [0f8b85d8] JSON3 v1.14.3 [4076af6c] JuMP v1.28.0 ⌅ [0b1a1467] KrylovKit v0.9.5 [7a12625a] LinearMaps v3.11.4 [5c8ed15e] LinearOperators v2.10.0 [2ab3a3ac] LogExpFunctions v0.3.29 [607ca3ad] LowRankOpt v0.2.1 [1914dd2f] MacroTools v0.5.16 [b8f27783] MathOptInterface v1.42.1 [102ac46a] MultivariatePolynomials v0.5.9 [d8a4904e] MutableArithmetics v1.6.4 [a4795742] NLPModels v0.21.5 [792afdf1] NLPModelsJuMP v0.13.2 [77ba4419] NaNMath v1.1.3 [bac558e1] OrderedCollections v1.8.1 [65ce6f38] PackageExtensionCompat v1.0.2 [69de0a69] Parsers v2.8.3 [3a141323] PolynomialRoots v1.0.0 [aea7be01] PrecompileTools v1.3.2 [21216c6a] Preferences v1.4.3 [3cdcf5f2] RecipesBase v1.3.4 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [ff4d7338] SolverCore v0.3.8 [276daf66] SpecialFunctions v2.5.1 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [856f2bd8] StructTypes v1.11.0 [a759f4b9] TimerOutputs v0.5.29 [3bb67fe8] TranscodingStreams v0.11.3 [c4a57d5a] UnsafeArrays v1.0.8 [409d34a3] VectorInterface v0.5.0 [6e34b625] Bzip2_jll v1.0.9+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [de0858da] Printf v1.11.0 [9abbd945] Profile v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.5+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... [ Info: starting all tests [ Info: starting polyutils tests Float64 ... 5.27e+01 seconds Float32 ... 4.71e+01 seconds BigFloat ... 5.12e+01 seconds [ Info: finished polyutils tests in 1.56e+02 seconds [ Info: starting cone tests starting oracle tests Hypatia.Cones.Nonnegative{Float64} 1.28e+01 seconds Hypatia.Cones.PosSemidefTri{Float64, Float64} 1.76e+01 seconds Hypatia.Cones.PosSemidefTri{Float64, ComplexF64} 1.56e+01 seconds Hypatia.Cones.DoublyNonnegativeTri{Float64} 1.26e+01 seconds Hypatia.Cones.PosSemidefTriSparse{Hypatia.Cones.PSDSparseDense, Float64, Float64} 8.43e+00 seconds Hypatia.Cones.PosSemidefTriSparse{Hypatia.Cones.PSDSparseDense, Float64, ComplexF64} 5.94e+00 seconds Hypatia.Cones.LinMatrixIneq{Float64} 2.09e+01 seconds Hypatia.Cones.EpiNormInf{Float64, Float64} 2.88e+01 seconds Hypatia.Cones.EpiNormInf{Float64, ComplexF64} 1.24e+01 seconds Hypatia.Cones.EpiNormEucl{Float64} 1.04e+01 seconds Hypatia.Cones.EpiPerSquare{Float64} 1.14e+01 seconds Hypatia.Cones.EpiNormSpectralTri{Float64, Float64} 2.67e+01 seconds Hypatia.Cones.EpiNormSpectralTri{Float64, ComplexF64} 2.16e+01 seconds Hypatia.Cones.EpiNormSpectral{Float64, Float64} 2.23e+01 seconds Hypatia.Cones.EpiNormSpectral{Float64, ComplexF64} 1.88e+01 seconds Hypatia.Cones.MatrixEpiPerSquare{Float64, Float64} 4.28e+01 seconds Hypatia.Cones.MatrixEpiPerSquare{Float64, ComplexF64} 3.60e+01 seconds Hypatia.Cones.GeneralizedPower{Float64} 1.63e+01 seconds Hypatia.Cones.HypoPowerMean{Float64} 1.48e+01 seconds Hypatia.Cones.HypoGeoMean{Float64} 7.41e+00 seconds Hypatia.Cones.HypoRootdetTri{Float64, Float64} 7.42e+00 seconds Hypatia.Cones.HypoRootdetTri{Float64, ComplexF64} 6.53e+00 seconds Hypatia.Cones.HypoPerLog{Float64} 7.56e+00 seconds Hypatia.Cones.HypoPerLogdetTri{Float64, Float64} 7.67e+00 seconds Hypatia.Cones.HypoPerLogdetTri{Float64, ComplexF64} 5.93e+00 seconds Hypatia.Cones.EpiPerSepSpectral{Hypatia.Cones.VectorCSqr{Float64}, Float64} 1.71e+01 seconds Hypatia.Cones.EpiPerSepSpectral{Hypatia.Cones.MatrixCSqr{Float64, Float64}, Float64} 2.41e+01 seconds Hypatia.Cones.EpiPerSepSpectral{Hypatia.Cones.MatrixCSqr{Float64, ComplexF64}, Float64} 1.17e+01 seconds Hypatia.Cones.EpiRelEntropy{Float64} 2.88e+01 seconds Hypatia.Cones.EpiTrRelEntropyTri{Float64, Float64} 5.58e+01 seconds Hypatia.Cones.EpiTrRelEntropyTri{Float64, ComplexF64} 3.51e+01 seconds Hypatia.Cones.WSOSInterpNonnegative{Float64, Float64} 7.32e+00 seconds Hypatia.Cones.WSOSInterpNonnegative{Float64, ComplexF64} 7.20e+00 seconds Hypatia.Cones.WSOSInterpPosSemidefTri{Float64} 6.45e+01 seconds Hypatia.Cones.WSOSInterpEpiNormEucl{Float64} 6.65e+01 seconds Hypatia.Cones.WSOSInterpEpiNormOne{Float64} 2.46e+01 seconds Hypatia.Cones.PosSemidefTriSparse{Hypatia.Cones.PSDSparseCholmod, Float64, Float64} 3.99e+01 seconds Hypatia.Cones.PosSemidefTriSparse{Hypatia.Cones.PSDSparseCholmod, Float64, ComplexF64} 4.28e+01 seconds [ Info: finished cone tests in 8.26e+02 seconds [ Info: starting native tests Precompiling packages... 1492.3 ms ✓ KrylovKit → KrylovKitChainRulesCoreExt 1 dependency successfully precompiled in 2 seconds. 11 already precompiled. starting default options tests dimension1 Float64 ... 4.95e+01 seconds consistent1 Float64 ... 4.52e+00 seconds inconsistent1 Float64 ... 4.26e-01 seconds inconsistent2 Float64 ... 2.65e-01 seconds primalinfeas1 Float64 ... 1.95e+00 seconds primalinfeas2 Float64 ... 6.23e+00 seconds primalinfeas3 Float64 ... 4.14e+00 seconds dualinfeas1 Float64 ... 6.08e+00 seconds dualinfeas2 Float64 ... 4.56e+00 seconds dualinfeas3 Float64 ... 1.27e-01 seconds nonnegative1 Float64 ... 6.83e+00 seconds nonnegative2 Float64 ... 1.76e-01 seconds nonnegative3 Float64 ... 1.74e+00 seconds nonnegative4 Float64 ... 5.24e-01 seconds possemideftri1 Float64 ... 1.71e+00 seconds possemideftri2 Float64 ... 1.61e+00 seconds possemideftri3 Float64 ... 6.24e-01 seconds possemideftri4 Float64 ... 2.91e-01 seconds possemideftri5 Float64 ... 1.56e+00 seconds possemideftri6 Float64 ... 8.11e-01 seconds possemideftri7 Float64 ... 2.94e-01 seconds possemideftri8 Float64 ... 1.26e+00 seconds possemideftri9 Float64 ... 1.12e+00 seconds doublynonnegativetri1 Float64 ... 6.83e+00 seconds doublynonnegativetri2 Float64 ... 3.49e-01 seconds doublynonnegativetri3 Float64 ... 1.55e-01 seconds possemideftrisparse1 Float64 ... 4.90e+00 seconds possemideftrisparse2 Float64 ... 5.34e+00 seconds possemideftrisparse3 Float64 ... 4.88e+00 seconds possemideftrisparse4 Float64 ... 9.45e-01 seconds possemideftrisparse5 Float64 ... 1.12e+00 seconds linmatrixineq1 Float64 ... 4.88e+00 seconds linmatrixineq2 Float64 ... 2.60e+00 seconds linmatrixineq3 Float64 ... 4.93e+01 seconds epinorminf1 Float64 ... 3.27e-01 seconds epinorminf2 Float64 ... 1.54e+00 seconds epinorminf3 Float64 ... 2.18e-01 seconds epinorminf4 Float64 ... 2.91e-01 seconds epinorminf5 Float64 ... 5.28e+00 seconds epinorminf6 Float64 ... 1.57e+00 seconds epinorminf7 Float64 ... 9.51e-01 seconds epinormeucl1 Float64 ... 2.85e-01 seconds epinormeucl2 Float64 ... 1.75e-01 seconds epinormeucl3 Float64 ... 1.58e-01 seconds epipersquare1 Float64 ... 5.33e-01 seconds epipersquare2 Float64 ... 2.59e-01 seconds epipersquare3 Float64 ... 1.48e-01 seconds epipersquare4 Float64 ... 6.67e-01 seconds epinormspectraltri1 Float64 ... 1.27e+01 seconds epinormspectraltri2 Float64 ... 7.66e-01 seconds epinormspectraltri3 Float64 ... 3.85e-01 seconds epinormspectral1 Float64 ... 1.61e+01 seconds epinormspectral2 Float64 ... 4.72e-01 seconds epinormspectral3 Float64 ... 2.78e-01 seconds epinormspectral4 Float64 ... 7.19e-01 seconds matrixepipersquare1 Float64 ... 1.35e+01 seconds matrixepipersquare2 Float64 ... 6.02e+00 seconds matrixepipersquare3 Float64 ... 5.67e-01 seconds generalizedpower1 Float64 ... 7.89e+00 seconds generalizedpower2 Float64 ... 5.26e-01 seconds generalizedpower3 Float64 ... 1.84e+00 seconds generalizedpower4 Float64 ... 2.95e-01 seconds hypopowermean1 Float64 ... 5.71e+00 seconds hypopowermean2 Float64 ... 9.46e-01 seconds hypopowermean3 Float64 ... 2.92e-01 seconds hypopowermean4 Float64 ... 9.72e-01 seconds hypopowermean5 Float64 ... 3.65e-01 seconds hypopowermean6 Float64 ... 5.40e-01 seconds hypogeomean1 Float64 ... 4.10e+00 seconds hypogeomean2 Float64 ... 4.49e-01 seconds hypogeomean3 Float64 ... 2.17e-01 seconds hypogeomean4 Float64 ... 4.28e-01 seconds hypogeomean5 Float64 ... 3.68e-01 seconds hypogeomean6 Float64 ... 3.81e-01 seconds hyporootdettri1 Float64 ... 6.48e+00 seconds hyporootdettri2 Float64 ... 1.33e+00 seconds hyporootdettri3 Float64 ... 4.75e-01 seconds hyporootdettri4 Float64 ... 4.18e-01 seconds hypoperlog1 Float64 ... 4.19e-01 seconds hypoperlog2 Float64 ... 1.51e-01 seconds hypoperlog3 Float64 ... 4.70e-01 seconds hypoperlog4 Float64 ... 2.43e-01 seconds hypoperlog5 Float64 ... 3.01e-01 seconds hypoperlog6 Float64 ... 2.07e-01 seconds hypoperlog7 Float64 ... 4.61e-01 seconds hypoperlogdettri1 Float64 ... 7.30e+00 seconds hypoperlogdettri2 Float64 ... 1.33e+00 seconds hypoperlogdettri3 Float64 ... 4.85e-01 seconds hypoperlogdettri4 Float64 ... 4.35e-01 seconds epipersepspectral_vector1 Float64 ... 3.34e+00 seconds epipersepspectral_vector2 Float64 ... 3.99e-01 seconds epipersepspectral_vector3 Float64 ... 1.01e+00 seconds epipersepspectral_vector4 Float64 ... 1.05e+00 seconds epipersepspectral_matrix1 Float64 ... 8.41e+00 seconds epipersepspectral_matrix2 Float64 ... 6.27e-01 seconds epipersepspectral_matrix3 Float64 ... 6.62e-01 seconds epirelentropy1 Float64 ... 2.16e+01 seconds epirelentropy2 Float64 ... 2.60e-01 seconds epirelentropy3 Float64 ... 3.14e-01 seconds epirelentropy4 Float64 ... 3.45e-01 seconds epirelentropy5 Float64 ... 9.39e-01 seconds epitrrelentropytri1 Float64 ... 1.15e+02 seconds epitrrelentropytri2 Float64 ... 7.28e-01 seconds epitrrelentropytri3 Float64 ... 2.08e-01 seconds epitrrelentropytri4 Float64 ... 1.12e-01 seconds wsosinterpnonnegative1 Float64 ... 1.11e+01 seconds wsosinterpnonnegative2 Float64 ... 4.51e+00 seconds wsosinterpnonnegative3 Float64 ... 2.27e-01 seconds wsosinterpnonnegative4 Float64 ... 2.52e+00 seconds wsosinterpnonnegative5 Float64 ... 1.26e+00 seconds wsosinterppossemideftri1 Float64 ... 3.24e+00 seconds wsosinterppossemideftri2 Float64 ... 3.40e+00 seconds wsosinterppossemideftri3 Float64 ... 6.27e+00 seconds wsosinterpepinormone1 Float64 ... 7.14e+00 seconds wsosinterpepinormone2 Float64 ... 5.83e-01 seconds wsosinterpepinormone3 Float64 ... 1.33e+00 seconds wsosinterpepinormeucl1 Float64 ... 1.77e+00 seconds wsosinterpepinormeucl2 Float64 ... 3.14e-01 seconds wsosinterpepinormeucl3 Float64 ... 8.87e-01 seconds starting no preprocess tests nonnegative1 Float64 ... 1.13e+01 seconds possemideftri1 Float64 ... 1.90e+00 seconds possemideftri5 Float64 ... 6.52e-01 seconds doublynonnegativetri1 Float64 ... 1.42e-01 seconds possemideftrisparse2 Float64 ... 2.01e-01 seconds possemideftrisparse5 Float64 ... 4.57e-02 seconds linmatrixineq1 Float64 ... 1.15e-01 seconds epinorminf4 Float64 ... 8.67e-01 seconds epinorminf6 Float64 ... 3.88e-02 seconds epinormeucl1 Float64 ... 1.78e+00 seconds epipersquare1 Float64 ... 1.51e+00 seconds epinormspectraltri2 Float64 ... 7.94e-02 seconds epinormspectral1 Float64 ... 7.73e-02 seconds matrixepipersquare2 Float64 ... 3.59e-01 seconds generalizedpower1 Float64 ... 3.61e-02 seconds hypopowermean1 Float64 ... 3.49e-02 seconds hypogeomean1 Float64 ... 3.47e-02 seconds hyporootdettri1 Float64 ... 3.53e-02 seconds hypoperlog1 Float64 ... 1.71e-02 seconds hypoperlogdettri1 Float64 ... 3.76e-02 seconds epipersepspectral_vector1 Float64 ... 3.35e-01 seconds epipersepspectral_matrix2 Float64 ... 1.10e-01 seconds epirelentropy4 Float64 ... 1.91e-02 seconds epitrrelentropytri1 Float64 ... 2.14e-01 seconds wsosinterpnonnegative1 Float64 ... 1.98e-02 seconds wsosinterpnonnegative4 Float64 ... 1.72e-02 seconds wsosinterppossemideftri1 Float64 ... 1.71e-02 seconds wsosinterpepinormone1 Float64 ... 1.96e-02 seconds wsosinterpepinormeucl2 Float64 ... 1.90e-02 seconds starting indirect solvers tests indirect1 Float64 ... 1.37e+01 seconds indirect1 BigFloat ... 4.33e+01 seconds indirect2 Float64 ... 1.54e+01 seconds indirect2 BigFloat ... 2.10e+01 seconds indirect3 Float64 ... 5.53e+00 seconds indirect3 BigFloat ... 1.55e+01 seconds indirect4 Float64 ... 6.56e+00 seconds indirect4 BigFloat ... 1.65e+01 seconds indirect5 Float64 ... 5.19e+00 seconds indirect5 BigFloat ... 4.22e+00 seconds starting system solvers tests primalinfeas3 Float64 NaiveDenseSystemSolver ... 1.77e+01 seconds primalinfeas3 BigFloat NaiveDenseSystemSolver ... ┌ Warning: using dense factorization of [A; G] in preprocessing and initial point finding because sparse factorization for number type BigFloat is not supported by SuiteSparse packages └ @ Hypatia.Solvers ~/.julia/packages/Hypatia/ZMk1t/src/Solvers/process.jl:103 ┌ Warning: using dense factorization of A' in preprocessing and initial point finding because sparse factorization for number type BigFloat is not supported by SuiteSparse packages └ @ Hypatia.Solvers ~/.julia/packages/Hypatia/ZMk1t/src/Solvers/process.jl:227 3.61e+01 seconds primalinfeas3 Float64 NaiveSparseSystemSolver ... 6.01e+00 seconds primalinfeas3 Float64 NaiveElimDenseSystemSolver ... 3.45e+00 seconds primalinfeas3 BigFloat NaiveElimDenseSystemSolver ... 3.50e+00 seconds primalinfeas3 Float64 NaiveElimSparseSystemSolver ... 2.01e+00 seconds primalinfeas3 Float32 SymIndefDenseSystemSolver ... 4.16e+01 seconds primalinfeas3 Float64 SymIndefDenseSystemSolver ... 1.53e-03 seconds primalinfeas3 BigFloat SymIndefDenseSystemSolver ... 4.54e+00 seconds primalinfeas3 Float64 SymIndefSparseSystemSolver ... 7.88e+00 seconds primalinfeas3 Float32 QRCholDenseSystemSolver ... 1.33e+01 seconds primalinfeas3 Float64 QRCholDenseSystemSolver ... 4.26e-01 seconds primalinfeas3 BigFloat QRCholDenseSystemSolver ... 1.20e+01 seconds dualinfeas3 Float64 NaiveDenseSystemSolver ... 1.32e+00 seconds dualinfeas3 BigFloat NaiveDenseSystemSolver ... 3.88e+00 seconds dualinfeas3 Float64 NaiveSparseSystemSolver ... 2.29e-01 seconds dualinfeas3 Float64 NaiveElimDenseSystemSolver ... 5.61e-01 seconds dualinfeas3 BigFloat NaiveElimDenseSystemSolver ... 5.54e-01 seconds dualinfeas3 Float64 NaiveElimSparseSystemSolver ... 9.56e-02 seconds dualinfeas3 Float32 SymIndefDenseSystemSolver ... 1.30e+01 seconds dualinfeas3 Float64 SymIndefDenseSystemSolver ... 1.15e-03 seconds dualinfeas3 BigFloat SymIndefDenseSystemSolver ... 1.34e-01 seconds dualinfeas3 Float64 SymIndefSparseSystemSolver ... 2.56e-01 seconds dualinfeas3 Float32 QRCholDenseSystemSolver ... 1.01e+01 seconds dualinfeas3 Float64 QRCholDenseSystemSolver ... 1.64e-03 seconds dualinfeas3 BigFloat QRCholDenseSystemSolver ... 1.33e+01 seconds epinorminf4 Float64 NaiveDenseSystemSolver ... 4.43e+00 seconds epinorminf4 BigFloat NaiveDenseSystemSolver ... 9.75e+00 seconds epinorminf4 Float64 NaiveSparseSystemSolver ... 2.20e+00 seconds epinorminf4 Float64 NaiveElimDenseSystemSolver ... 9.52e-01 seconds epinorminf4 BigFloat NaiveElimDenseSystemSolver ... 1.11e+00 seconds epinorminf4 Float64 NaiveElimSparseSystemSolver ... 2.23e-01 seconds epinorminf4 Float32 SymIndefDenseSystemSolver ... 1.56e+01 seconds epinorminf4 Float64 SymIndefDenseSystemSolver ... 2.07e-03 seconds epinorminf4 BigFloat SymIndefDenseSystemSolver ... 9.35e-01 seconds epinorminf4 Float64 SymIndefSparseSystemSolver ... 1.34e+00 seconds epinorminf4 Float32 QRCholDenseSystemSolver ... 2.72e+00 seconds epinorminf4 Float64 QRCholDenseSystemSolver ... 2.26e-01 seconds epinorminf4 BigFloat QRCholDenseSystemSolver ... 4.08e+00 seconds hyporootdettri4 Float64 NaiveDenseSystemSolver ... 1.21e+00 seconds hyporootdettri4 BigFloat NaiveDenseSystemSolver ... 1.67e+01 seconds hyporootdettri4 Float64 NaiveSparseSystemSolver ... 4.71e-01 seconds hyporootdettri4 Float64 NaiveElimDenseSystemSolver ... 8.86e-01 seconds hyporootdettri4 BigFloat NaiveElimDenseSystemSolver ... 3.44e+00 seconds hyporootdettri4 Float64 NaiveElimSparseSystemSolver ... 8.89e-02 seconds hyporootdettri4 Float32 SymIndefDenseSystemSolver ... 2.39e+01 seconds hyporootdettri4 Float64 SymIndefDenseSystemSolver ... 2.40e-03 seconds hyporootdettri4 BigFloat SymIndefDenseSystemSolver ... 4.72e-01 seconds hyporootdettri4 Float64 SymIndefSparseSystemSolver ... 4.21e-01 seconds hyporootdettri4 Float32 QRCholDenseSystemSolver ... 5.03e+00 seconds hyporootdettri4 Float64 QRCholDenseSystemSolver ... 3.19e-03 seconds hyporootdettri4 BigFloat QRCholDenseSystemSolver ... 3.66e+00 seconds starting PredOrCentStepper tests (with printing) primalinfeas3 Float64 adj=false curv=false ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 0.0000e+00 3.8500e+00 | 3.00e+00 0.00e+00 1.07e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 0.0000e+00 2.8362e+01 | 1.11e+00 0.00e+00 4.38e+00 | 7.34e-02 1.23e+00 3.00e-01 | 1.3e-15 7.0e-01 pred 7.00e-01 2 0.0000e+00 1.3949e+01 | 8.88e-01 0.00e+00 2.48e+00 | 1.30e-01 9.54e-01 2.53e-01 | 2.8e-16 5.1e-01 cent 1.00e+00 3 0.0000e+00 9.5540e+00 | 7.40e-01 0.00e+00 1.66e+00 | 1.93e-01 9.92e-01 2.33e-01 | 3.2e-16 1.8e-01 cent 1.00e+00 4 0.0000e+00 8.8732e+00 | 6.95e-01 0.00e+00 1.49e+00 | 2.16e-01 1.06e+00 2.31e-01 | 2.8e-17 8.1e-03 cent 1.00e+00 5 0.0000e+00 8.4084e+01 | 2.54e-01 0.00e+00 5.22e+00 | 1.85e-02 1.30e+00 6.94e-02 | 3.3e-16 6.5e-01 pred 7.00e-01 6 0.0000e+00 4.1441e+01 | 2.07e-01 0.00e+00 3.04e+00 | 3.17e-02 1.06e+00 6.00e-02 | 4.4e-16 4.4e-01 cent 1.00e+00 7 0.0000e+00 2.8293e+01 | 1.78e-01 0.00e+00 2.10e+00 | 4.60e-02 1.04e+00 5.65e-02 | 1.4e-17 1.5e-01 cent 1.00e+00 8 0.0000e+00 2.5501e+01 | 1.69e-01 0.00e+00 1.86e+00 | 5.20e-02 1.07e+00 5.61e-02 | 6.9e-18 1.1e-02 cent 1.00e+00 9 0.0000e+00 6.0082e+02 | 3.12e-02 0.00e+00 7.04e+00 | 2.06e-03 1.20e+00 8.42e-03 | 1.1e-16 7.1e-01 pred 8.50e-01 primal infeasibility detected; terminating status is PrimalInfeasible after 9 iterations and 3.509 seconds 3.51e+00 seconds primalinfeas3 BigFloat adj=false curv=false ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 0.0000e+00 3.8500e+00 | 3.00e+00 0.00e+00 1.07e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 0.0000e+00 2.8362e+01 | 1.11e+00 0.00e+00 4.38e+00 | 7.34e-02 1.23e+00 3.00e-01 | 1.0e-76 7.0e-01 pred 7.00e-01 2 0.0000e+00 1.3949e+01 | 8.88e-01 0.00e+00 2.48e+00 | 1.30e-01 9.54e-01 2.53e-01 | 5.2e-77 5.1e-01 cent 1.00e+00 3 0.0000e+00 9.5540e+00 | 7.40e-01 0.00e+00 1.66e+00 | 1.93e-01 9.92e-01 2.33e-01 | 2.2e-78 1.8e-01 cent 1.00e+00 4 0.0000e+00 8.8732e+00 | 6.95e-01 0.00e+00 1.49e+00 | 2.16e-01 1.06e+00 2.31e-01 | 2.2e-78 8.1e-03 cent 1.00e+00 5 0.0000e+00 8.4084e+01 | 2.54e-01 0.00e+00 5.22e+00 | 1.85e-02 1.30e+00 6.94e-02 | 2.6e-77 6.5e-01 pred 7.00e-01 6 0.0000e+00 4.1441e+01 | 2.07e-01 0.00e+00 3.04e+00 | 3.17e-02 1.06e+00 6.00e-02 | 4.3e-78 4.4e-01 cent 1.00e+00 7 0.0000e+00 2.8293e+01 | 1.78e-01 0.00e+00 2.10e+00 | 4.60e-02 1.04e+00 5.65e-02 | 8.6e-78 1.5e-01 cent 1.00e+00 8 0.0000e+00 2.5501e+01 | 1.69e-01 0.00e+00 1.86e+00 | 5.20e-02 1.07e+00 5.61e-02 | 1.1e-78 1.1e-02 cent 1.00e+00 9 0.0000e+00 6.0082e+02 | 3.12e-02 0.00e+00 7.04e+00 | 2.06e-03 1.20e+00 8.42e-03 | 1.3e-77 7.1e-01 pred 8.50e-01 primal infeasibility detected; terminating status is PrimalInfeasible after 9 iterations and 3.31 seconds 3.31e+00 seconds primalinfeas3 Float64 adj=true curv=false ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 0.0000e+00 3.8500e+00 | 3.00e+00 0.00e+00 1.07e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 0.0000e+00 1.3424e+02 | 7.79e-01 0.00e+00 1.44e+01 | 1.49e-02 1.43e+00 2.00e-01 | 1.3e-15 8.9e-01 pred 8.00e-01 2 0.0000e+00 3.6932e+01 | 5.98e-01 0.00e+00 5.16e+00 | 4.16e-02 9.66e-01 1.59e-01 | 1.8e-15 7.5e-01 cent 1.00e+00 3 0.0000e+00 1.5210e+01 | 4.67e-01 0.00e+00 2.17e+00 | 9.89e-02 9.35e-01 1.40e-01 | 1.1e-16 3.4e-01 cent 1.00e+00 4 0.0000e+00 1.2119e+01 | 4.17e-01 0.00e+00 1.61e+00 | 1.34e-01 1.05e+00 1.39e-01 | 7.6e-17 1.1e-02 cent 1.00e+00 5 0.0000e+00 3.2838e+02 | 5.01e-02 0.00e+00 5.10e+00 | 4.21e-03 1.33e+00 1.39e-02 | 4.4e-16 6.0e-01 pred 9.00e-01 primal infeasibility detected; terminating status is PrimalInfeasible after 5 iterations and 0.001 seconds 2.08e-03 seconds primalinfeas3 BigFloat adj=true curv=false ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 0.0000e+00 3.8500e+00 | 3.00e+00 0.00e+00 1.07e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 0.0000e+00 1.3424e+02 | 7.79e-01 0.00e+00 1.44e+01 | 1.49e-02 1.43e+00 2.00e-01 | 1.0e-76 8.9e-01 pred 8.00e-01 2 0.0000e+00 3.6932e+01 | 5.98e-01 0.00e+00 5.16e+00 | 4.16e-02 9.66e-01 1.59e-01 | 1.4e-76 7.5e-01 cent 1.00e+00 3 0.0000e+00 1.5210e+01 | 4.67e-01 0.00e+00 2.17e+00 | 9.89e-02 9.35e-01 1.40e-01 | 6.5e-78 3.4e-01 cent 1.00e+00 4 0.0000e+00 1.2119e+01 | 4.17e-01 0.00e+00 1.61e+00 | 1.34e-01 1.05e+00 1.39e-01 | 2.2e-78 1.1e-02 cent 1.00e+00 5 0.0000e+00 3.2838e+02 | 5.01e-02 0.00e+00 5.10e+00 | 4.21e-03 1.33e+00 1.39e-02 | 1.7e-77 6.0e-01 pred 9.00e-01 primal infeasibility detected; terminating status is PrimalInfeasible after 5 iterations and 0.006 seconds 6.70e-03 seconds primalinfeas3 Float64 adj=true curv=true ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 0.0000e+00 3.8500e+00 | 3.00e+00 0.00e+00 1.07e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 0.0000e+00 7.9449e+01 | 7.63e-01 0.00e+00 8.44e+00 | 2.54e-02 1.45e+00 2.00e-01 | 1.3e-15 8.2e-01 pred 8.00e-01 2 0.0000e+00 2.5112e+01 | 5.94e-01 0.00e+00 3.22e+00 | 6.66e-02 1.10e+00 1.67e-01 | 8.9e-16 5.6e-01 cent 1.00e+00 3 0.0000e+00 1.4401e+01 | 4.89e-01 0.00e+00 1.74e+00 | 1.23e-01 1.20e+00 1.59e-01 | 1.1e-16 6.8e-02 cent 1.00e+00 4 0.0000e+00 1.4077e+01 | 4.78e-01 0.00e+00 1.67e+00 | 1.29e-01 1.24e+00 1.59e-01 | 6.9e-18 5.1e-05 cent 1.00e+00 5 0.0000e+00 9.4879e+02 | 3.76e-03 0.00e+00 1.29e+00 | 1.66e-03 1.57e+00 1.59e-03 | 2.2e-16 6.4e-01 pred 9.90e-01 primal infeasibility detected; terminating status is PrimalInfeasible after 5 iterations and 0.0 seconds 1.05e-03 seconds primalinfeas3 BigFloat adj=true curv=true ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 0.0000e+00 3.8500e+00 | 3.00e+00 0.00e+00 1.07e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 0.0000e+00 7.9449e+01 | 7.63e-01 0.00e+00 8.44e+00 | 2.54e-02 1.45e+00 2.00e-01 | 1.0e-76 8.2e-01 pred 8.00e-01 2 0.0000e+00 2.5112e+01 | 5.94e-01 0.00e+00 3.22e+00 | 6.66e-02 1.10e+00 1.67e-01 | 2.6e-77 5.6e-01 cent 1.00e+00 3 0.0000e+00 1.4401e+01 | 4.89e-01 0.00e+00 1.74e+00 | 1.23e-01 1.20e+00 1.59e-01 | 1.7e-77 6.8e-02 cent 1.00e+00 4 0.0000e+00 1.4077e+01 | 4.78e-01 0.00e+00 1.67e+00 | 1.29e-01 1.24e+00 1.59e-01 | 1.6e-78 5.1e-05 cent 1.00e+00 5 0.0000e+00 9.4879e+02 | 3.76e-03 0.00e+00 1.29e+00 | 1.66e-03 1.57e+00 1.59e-03 | 4.3e-77 6.4e-01 pred 9.90e-01 primal infeasibility detected; terminating status is PrimalInfeasible after 5 iterations and 0.004 seconds 4.67e-03 seconds dualinfeas3 Float64 adj=false curv=false ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 1.0000e+00 0.0000e+00 | 2.00e+00 5.00e-01 0.00e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 8.6957e-02 0.0000e+00 | 4.91e-01 1.96e-01 0.00e+00 | 7.67e-01 5.33e-01 3.00e-01 | 0.0e+00 5.1e-01 pred 7.00e-01 2 1.7838e-01 0.0000e+00 | 5.74e-01 2.73e-01 0.00e+00 | 5.50e-01 5.02e-01 2.83e-01 | 2.2e-16 2.6e-02 cent 1.00e+00 3 -6.7476e-01 0.0000e+00 | 1.41e-01 1.49e-01 0.00e+00 | 3.02e-01 3.83e-01 8.55e-02 | 1.1e-16 8.4e-01 pred 7.00e-01 4 -9.3554e-01 0.0000e+00 | 1.70e-01 2.18e-01 0.00e+00 | 2.06e-01 3.73e-01 8.24e-02 | 2.8e-17 6.6e-02 cent 1.00e+00 5 -1.0110e+00 0.0000e+00 | 1.65e-01 2.14e-01 0.00e+00 | 2.10e-01 3.92e-01 8.23e-02 | 6.9e-18 1.8e-03 cent 1.00e+00 6 -7.0243e+00 0.0000e+00 | 1.98e-02 1.42e-01 0.00e+00 | 4.77e-02 3.62e-01 1.23e-02 | 3.9e-16 9.5e-01 pred 8.50e-01 7 -9.2885e+00 0.0000e+00 | 2.47e-02 2.02e-01 0.00e+00 | 3.34e-02 3.37e-01 1.20e-02 | 6.9e-17 6.2e-02 cent 1.00e+00 8 -9.6691e+00 0.0000e+00 | 2.39e-02 2.00e-01 0.00e+00 | 3.38e-02 3.54e-01 1.20e-02 | 8.7e-19 1.6e-03 cent 1.00e+00 9 -2.4900e+02 0.0000e+00 | 5.86e-04 1.45e-01 0.00e+00 | 1.40e-03 3.50e-01 3.59e-04 | 1.4e-17 8.7e-01 pred 9.70e-01 dual infeasibility detected; terminating status is DualInfeasible after 9 iterations and 0.001 seconds 1.82e-03 seconds dualinfeas3 BigFloat adj=false curv=false ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 1.0000e+00 0.0000e+00 | 2.00e+00 5.00e-01 0.00e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 8.6957e-02 0.0000e+00 | 4.91e-01 1.96e-01 0.00e+00 | 7.67e-01 5.33e-01 3.00e-01 | 1.7e-77 5.1e-01 pred 7.00e-01 2 1.7838e-01 0.0000e+00 | 5.74e-01 2.73e-01 0.00e+00 | 5.50e-01 5.02e-01 2.83e-01 | 6.7e-78 2.6e-02 cent 1.00e+00 3 -6.7476e-01 0.0000e+00 | 1.41e-01 1.49e-01 0.00e+00 | 3.02e-01 3.83e-01 8.55e-02 | 2.6e-77 8.4e-01 pred 7.00e-01 4 -9.3554e-01 0.0000e+00 | 1.70e-01 2.18e-01 0.00e+00 | 2.06e-01 3.73e-01 8.24e-02 | 1.4e-78 6.6e-02 cent 1.00e+00 5 -1.0110e+00 0.0000e+00 | 1.65e-01 2.14e-01 0.00e+00 | 2.10e-01 3.92e-01 8.23e-02 | 2.4e-79 1.8e-03 cent 1.00e+00 6 -7.0243e+00 0.0000e+00 | 1.98e-02 1.42e-01 0.00e+00 | 4.77e-02 3.62e-01 1.23e-02 | 1.3e-77 9.5e-01 pred 8.50e-01 7 -9.2885e+00 0.0000e+00 | 2.47e-02 2.02e-01 0.00e+00 | 3.34e-02 3.37e-01 1.20e-02 | 1.1e-78 6.2e-02 cent 1.00e+00 8 -9.6691e+00 0.0000e+00 | 2.39e-02 2.00e-01 0.00e+00 | 3.38e-02 3.54e-01 1.20e-02 | 5.4e-79 1.6e-03 cent 1.00e+00 9 -2.4900e+02 0.0000e+00 | 5.86e-04 1.45e-01 0.00e+00 | 1.40e-03 3.50e-01 3.59e-04 | 2.2e-77 8.7e-01 pred 9.70e-01 dual infeasibility detected; terminating status is DualInfeasible after 9 iterations and 0.005 seconds 5.88e-03 seconds dualinfeas3 Float64 adj=true curv=false ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 1.0000e+00 0.0000e+00 | 2.00e+00 5.00e-01 0.00e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 -3.8724e-02 0.0000e+00 | 3.23e-01 1.54e-01 0.00e+00 | 6.50e-01 4.25e-01 2.00e-01 | 2.8e-17 8.6e-01 pred 8.00e-01 2 -1.3851e-01 0.0000e+00 | 3.97e-01 2.37e-01 0.00e+00 | 4.23e-01 4.59e-01 1.97e-01 | 5.6e-17 2.4e-02 cent 1.00e+00 3 -5.0921e+00 0.0000e+00 | 3.29e-02 1.47e-01 0.00e+00 | 6.82e-02 3.87e-01 1.98e-02 | 1.1e-16 8.5e-01 pred 9.00e-01 4 -7.0312e+00 0.0000e+00 | 3.95e-02 2.01e-01 0.00e+00 | 4.98e-02 3.90e-01 1.96e-02 | 1.1e-16 1.1e-02 cent 1.00e+00 5 -7.3323e+02 0.0000e+00 | 3.87e-04 1.89e-01 0.00e+00 | 5.28e-04 3.88e-01 1.97e-04 | 1.7e-16 1.0e-01 pred 9.90e-01 dual infeasibility detected; terminating status is DualInfeasible after 5 iterations and 0.001 seconds 1.30e-03 seconds dualinfeas3 BigFloat adj=true curv=false ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 1.0000e+00 0.0000e+00 | 2.00e+00 5.00e-01 0.00e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 -3.8724e-02 0.0000e+00 | 3.23e-01 1.54e-01 0.00e+00 | 6.50e-01 4.25e-01 2.00e-01 | 1.7e-77 8.6e-01 pred 8.00e-01 2 -1.3851e-01 0.0000e+00 | 3.97e-01 2.37e-01 0.00e+00 | 4.23e-01 4.59e-01 1.97e-01 | 7.6e-78 2.4e-02 cent 1.00e+00 3 -5.0921e+00 0.0000e+00 | 3.29e-02 1.47e-01 0.00e+00 | 6.82e-02 3.87e-01 1.98e-02 | 8.6e-78 8.5e-01 pred 9.00e-01 4 -7.0312e+00 0.0000e+00 | 3.95e-02 2.01e-01 0.00e+00 | 4.98e-02 3.90e-01 1.96e-02 | 5.4e-78 1.1e-02 cent 1.00e+00 5 -7.3323e+02 0.0000e+00 | 3.87e-04 1.89e-01 0.00e+00 | 5.28e-04 3.88e-01 1.97e-04 | 3.5e-77 1.0e-01 pred 9.90e-01 dual infeasibility detected; terminating status is DualInfeasible after 5 iterations and 0.004 seconds 5.21e-03 seconds dualinfeas3 Float64 adj=true curv=true ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 1.0000e+00 0.0000e+00 | 2.00e+00 5.00e-01 0.00e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 -3.0162e-02 0.0000e+00 | 3.32e-01 1.57e-01 0.00e+00 | 6.39e-01 4.19e-01 2.00e-01 | 2.8e-17 8.3e-01 pred 8.00e-01 2 -1.4223e-01 0.0000e+00 | 3.98e-01 2.37e-01 0.00e+00 | 4.22e-01 4.60e-01 1.97e-01 | 1.1e-16 2.0e-02 cent 1.00e+00 3 -5.3999e+01 0.0000e+00 | 3.20e-03 1.41e-01 0.00e+00 | 7.09e-03 3.87e-01 1.98e-03 | 1.1e-16 9.6e-01 pred 9.90e-01 dual infeasibility detected; terminating status is DualInfeasible after 3 iterations and 0.0 seconds 1.04e-03 seconds dualinfeas3 BigFloat adj=true curv=true ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 1.0000e+00 0.0000e+00 | 2.00e+00 5.00e-01 0.00e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 -3.0162e-02 0.0000e+00 | 3.32e-01 1.57e-01 0.00e+00 | 6.39e-01 4.19e-01 2.00e-01 | 1.7e-77 8.3e-01 pred 8.00e-01 2 -1.4223e-01 0.0000e+00 | 3.98e-01 2.37e-01 0.00e+00 | 4.22e-01 4.60e-01 1.97e-01 | 8.6e-78 2.0e-02 cent 1.00e+00 3 -5.3999e+01 0.0000e+00 | 3.20e-03 1.41e-01 0.00e+00 | 7.09e-03 3.87e-01 1.98e-03 | 8.6e-78 9.6e-01 pred 9.90e-01 dual infeasibility detected; terminating status is DualInfeasible after 3 iterations and 0.003 seconds 3.74e-03 seconds epinorminf4 Float64 adj=false curv=false ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 -4.0000e-01 -2.1321e+00 | 3.00e+00 5.00e-01 3.66e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -9.9619e-01 -1.1221e+00 | 2.54e-01 5.29e-02 3.87e-02 | 9.46e-01 1.54e-01 1.00e-01 | 1.1e-16 9.2e-01 pred 9.00e-01 2 -9.2471e-01 -1.1183e+00 | 2.22e-01 6.62e-02 4.85e-02 | 7.55e-01 1.27e-01 7.94e-02 | 1.1e-15 6.3e-01 cent 1.00e+00 3 -9.4097e-01 -1.1741e+00 | 2.08e-01 7.47e-02 5.47e-02 | 6.70e-01 1.17e-01 7.16e-02 | 2.2e-16 3.4e-01 cent 1.00e+00 4 -9.5914e-01 -1.2117e+00 | 2.07e-01 7.82e-02 5.73e-02 | 6.39e-01 1.12e-01 6.97e-02 | 1.1e-16 8.6e-02 cent 1.00e+00 5 -9.6588e-01 -1.2234e+00 | 2.09e-01 7.89e-02 5.77e-02 | 6.34e-01 1.10e-01 6.96e-02 | 6.9e-18 5.0e-03 cent 1.00e+00 6 -1.0223e+00 -1.0583e+00 | 3.02e-02 1.21e-02 8.83e-03 | 6.22e-01 1.87e-02 1.04e-02 | 2.2e-16 9.8e-01 pred 8.50e-01 7 -9.9791e-01 -1.0374e+00 | 2.91e-02 1.27e-02 9.30e-03 | 5.91e-01 1.76e-02 9.88e-03 | 1.1e-15 1.5e-01 cent 1.00e+00 8 -9.9925e-01 -1.0404e+00 | 2.95e-02 1.28e-02 9.34e-03 | 5.88e-01 1.68e-02 9.83e-03 | 1.6e-16 1.6e-02 cent 1.00e+00 9 -1.0010e+00 -1.0030e+00 | 1.49e-03 6.37e-04 4.66e-04 | 5.89e-01 8.22e-04 4.93e-04 | 8.9e-16 8.3e-01 pred 9.50e-01 10 -9.9995e-01 -1.0020e+00 | 1.39e-03 6.66e-04 4.88e-04 | 5.63e-01 8.74e-04 4.71e-04 | 8.9e-14 1.0e-01 cent 1.00e+00 11 -1.0000e+00 -1.0022e+00 | 1.41e-03 6.68e-04 4.89e-04 | 5.62e-01 8.39e-04 4.70e-04 | 1.5e-14 7.1e-03 cent 1.00e+00 12 -1.0000e+00 -1.0000e+00 | 1.46e-05 6.67e-06 4.88e-06 | 5.62e-01 7.53e-06 4.71e-06 | 4.4e-15 6.7e-01 pred 9.90e-01 13 -1.0000e+00 -1.0000e+00 | 1.28e-05 7.18e-06 5.26e-06 | 5.22e-01 8.97e-06 4.37e-06 | 7.2e-10 1.7e-01 cent 1.00e+00 14 -1.0000e+00 -1.0000e+00 | 1.30e-05 7.23e-06 5.29e-06 | 5.19e-01 8.42e-06 4.34e-06 | 3.1e-10 2.1e-02 cent 1.00e+00 15 -1.0000e+00 -1.0000e+00 | 4.04e-07 2.16e-07 1.58e-07 | 5.20e-01 2.27e-07 1.31e-07 | 8.8e-11 5.9e-01 pred 9.70e-01 16 -1.0000e+00 -1.0000e+00 | 3.55e-07 2.33e-07 1.71e-07 | 4.82e-01 2.69e-07 1.21e-07 | 4.3e-12 1.3e-01 cent 1.00e+00 17 -1.0000e+00 -1.0000e+00 | 3.62e-07 2.34e-07 1.71e-07 | 4.81e-01 2.52e-07 1.21e-07 | 2.1e-12 5.8e-03 cent 1.00e+00 18 -1.0000e+00 -1.0000e+00 | 3.80e-09 2.34e-09 1.71e-09 | 4.82e-01 2.16e-09 1.21e-09 | 4.2e-13 3.7e-01 pred 9.90e-01 optimal solution found; terminating status is Optimal after 18 iterations and 0.002 seconds 3.35e-03 seconds epinorminf4 BigFloat adj=false curv=false ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 -4.0000e-01 -2.1321e+00 | 3.00e+00 5.00e-01 3.66e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -9.9619e-01 -1.1221e+00 | 2.54e-01 5.29e-02 3.87e-02 | 9.46e-01 1.54e-01 1.00e-01 | 1.7e-77 9.2e-01 pred 9.00e-01 2 -9.2471e-01 -1.1183e+00 | 2.22e-01 6.62e-02 4.85e-02 | 7.55e-01 1.27e-01 7.94e-02 | 7.9e-76 6.3e-01 cent 1.00e+00 3 -9.4097e-01 -1.1741e+00 | 2.08e-01 7.47e-02 5.47e-02 | 6.70e-01 1.17e-01 7.16e-02 | 3.5e-77 3.4e-01 cent 1.00e+00 4 -9.5914e-01 -1.2117e+00 | 2.07e-01 7.82e-02 5.73e-02 | 6.39e-01 1.12e-01 6.97e-02 | 4.3e-78 8.6e-02 cent 1.00e+00 5 -9.6588e-01 -1.2234e+00 | 2.09e-01 7.89e-02 5.77e-02 | 6.34e-01 1.10e-01 6.96e-02 | 2.7e-79 5.0e-03 cent 1.00e+00 6 -1.0223e+00 -1.0583e+00 | 3.02e-02 1.21e-02 8.83e-03 | 6.22e-01 1.87e-02 1.04e-02 | 4.3e-78 9.8e-01 pred 8.50e-01 7 -9.9791e-01 -1.0374e+00 | 2.91e-02 1.27e-02 9.30e-03 | 5.91e-01 1.76e-02 9.88e-03 | 7.3e-77 1.5e-01 cent 1.00e+00 8 -9.9925e-01 -1.0404e+00 | 2.95e-02 1.28e-02 9.34e-03 | 5.88e-01 1.68e-02 9.83e-03 | 3.9e-78 1.6e-02 cent 1.00e+00 9 -1.0010e+00 -1.0030e+00 | 1.49e-03 6.37e-04 4.66e-04 | 5.89e-01 8.22e-04 4.93e-04 | 1.3e-77 8.3e-01 pred 9.50e-01 10 -9.9995e-01 -1.0020e+00 | 1.39e-03 6.66e-04 4.88e-04 | 5.63e-01 8.74e-04 4.71e-04 | 1.4e-75 1.0e-01 cent 1.00e+00 11 -1.0000e+00 -1.0022e+00 | 1.41e-03 6.68e-04 4.89e-04 | 5.62e-01 8.39e-04 4.70e-04 | 1.7e-75 7.1e-03 cent 1.00e+00 12 -1.0000e+00 -1.0000e+00 | 1.46e-05 6.67e-06 4.88e-06 | 5.62e-01 7.53e-06 4.71e-06 | 7.2e-76 6.7e-01 pred 9.90e-01 13 -1.0000e+00 -1.0000e+00 | 1.28e-05 7.18e-06 5.26e-06 | 5.22e-01 8.97e-06 4.37e-06 | 5.5e-70 1.7e-01 cent 1.00e+00 14 -1.0000e+00 -1.0000e+00 | 1.30e-05 7.23e-06 5.29e-06 | 5.19e-01 8.42e-06 4.34e-06 | 2.2e-71 2.1e-02 cent 1.00e+00 15 -1.0000e+00 -1.0000e+00 | 4.04e-07 2.16e-07 1.58e-07 | 5.20e-01 2.27e-07 1.31e-07 | 9.6e-72 5.9e-01 pred 9.70e-01 16 -1.0000e+00 -1.0000e+00 | 3.55e-07 2.33e-07 1.71e-07 | 4.82e-01 2.69e-07 1.21e-07 | 1.9e-67 1.3e-01 cent 1.00e+00 17 -1.0000e+00 -1.0000e+00 | 3.62e-07 2.34e-07 1.71e-07 | 4.81e-01 2.52e-07 1.21e-07 | 5.3e-69 5.8e-03 cent 1.00e+00 18 -1.0000e+00 -1.0000e+00 | 3.80e-09 2.34e-09 1.71e-09 | 4.82e-01 2.16e-09 1.21e-09 | 3.9e-69 3.7e-01 pred 9.90e-01 19 -1.0000e+00 -1.0000e+00 | 3.51e-09 2.39e-09 1.75e-09 | 4.70e-01 2.57e-09 1.18e-09 | 2.2e-64 7.5e-02 cent 1.00e+00 20 -1.0000e+00 -1.0000e+00 | 3.54e-09 2.40e-09 1.75e-09 | 4.69e-01 2.51e-09 1.18e-09 | 8.0e-66 3.8e-03 cent 1.00e+00 21 -1.0000e+00 -1.0000e+00 | 3.61e-11 2.39e-11 1.75e-11 | 4.70e-01 2.36e-11 1.18e-11 | 1.5e-65 3.3e-01 pred 9.90e-01 22 -1.0000e+00 -1.0000e+00 | 3.43e-11 2.45e-11 1.80e-11 | 4.59e-01 2.57e-11 1.15e-11 | 4.8e-60 4.6e-02 cent 1.00e+00 23 -1.0000e+00 -1.0000e+00 | 3.45e-11 2.45e-11 1.80e-11 | 4.59e-01 2.51e-11 1.15e-11 | 2.3e-62 1.3e-03 cent 1.00e+00 24 -1.0000e+00 -1.0000e+00 | 3.48e-13 2.45e-13 1.80e-13 | 4.59e-01 2.46e-13 1.15e-13 | 1.1e-61 1.1e-01 pred 9.90e-01 25 -1.0000e+00 -1.0000e+00 | 3.44e-13 2.46e-13 1.80e-13 | 4.57e-01 2.52e-13 1.15e-13 | 3.7e-57 6.2e-03 cent 1.00e+00 26 -1.0000e+00 -1.0000e+00 | 3.61e-15 2.46e-15 1.80e-15 | 4.58e-01 2.16e-15 1.15e-15 | 6.2e-58 4.3e-01 pred 9.90e-01 27 -1.0000e+00 -1.0000e+00 | 3.29e-15 2.54e-15 1.86e-15 | 4.42e-01 2.60e-15 1.11e-15 | 3.2e-52 9.2e-02 cent 1.00e+00 28 -1.0000e+00 -1.0000e+00 | 3.32e-15 2.55e-15 1.87e-15 | 4.41e-01 2.52e-15 1.11e-15 | 6.8e-53 6.1e-03 cent 1.00e+00 29 -1.0000e+00 -1.0000e+00 | 3.43e-17 2.55e-17 1.86e-17 | 4.42e-01 2.28e-17 1.11e-17 | 2.2e-53 5.3e-01 pred 9.90e-01 30 -1.0000e+00 -1.0000e+00 | 3.08e-17 2.70e-17 1.98e-17 | 4.16e-01 2.66e-17 1.05e-17 | 3.2e-47 1.0e-01 cent 1.00e+00 31 -1.0000e+00 -1.0000e+00 | 3.13e-17 2.71e-17 1.98e-17 | 4.15e-01 2.52e-17 1.04e-17 | 9.2e-50 4.9e-03 cent 1.00e+00 32 -1.0000e+00 -1.0000e+00 | 3.23e-19 2.71e-19 1.98e-19 | 4.16e-01 2.27e-19 1.04e-19 | 3.1e-49 3.8e-01 pred 9.90e-01 33 -1.0000e+00 -1.0000e+00 | 3.01e-19 2.79e-19 2.04e-19 | 4.04e-01 2.58e-19 1.01e-19 | 2.9e-44 6.7e-02 cent 1.00e+00 34 -1.0000e+00 -1.0000e+00 | 3.04e-19 2.79e-19 2.04e-19 | 4.03e-01 2.51e-19 1.01e-19 | 1.6e-45 3.1e-03 cent 1.00e+00 35 -1.0000e+00 -1.0000e+00 | 3.09e-21 2.79e-21 2.04e-21 | 4.04e-01 2.40e-21 1.01e-21 | 9.9e-46 2.7e-01 pred 9.90e-01 36 -1.0000e+00 -1.0000e+00 | 2.97e-21 2.83e-21 2.08e-21 | 3.97e-01 2.55e-21 9.97e-22 | 3.7e-40 3.2e-02 cent 1.00e+00 37 -1.0000e+00 -1.0000e+00 | 9.79e-23 8.44e-23 6.18e-23 | 4.00e-01 5.67e-23 3.01e-23 | 4.8e-41 6.1e-01 pred 9.70e-01 38 -1.0000e+00 -1.0000e+00 | 8.34e-23 8.97e-23 6.56e-23 | 3.76e-01 7.98e-23 2.84e-23 | 2.0e-36 1.8e-01 cent 1.00e+00 39 -1.0000e+00 -1.0000e+00 | 8.42e-23 9.04e-23 6.62e-23 | 3.73e-01 7.59e-23 2.81e-23 | 1.0e-37 2.4e-02 cent 1.00e+00 40 -1.0000e+00 -1.0000e+00 | 2.64e-24 2.70e-24 1.98e-24 | 3.75e-01 2.00e-24 8.47e-25 | 2.5e-38 6.6e-01 pred 9.70e-01 41 -1.0000e+00 -1.0000e+00 | 2.26e-24 2.95e-24 2.16e-24 | 3.43e-01 2.45e-24 7.75e-25 | 2.6e-33 1.5e-01 cent 1.00e+00 42 -1.0000e+00 -1.0000e+00 | 2.31e-24 2.97e-24 2.17e-24 | 3.41e-01 2.27e-24 7.71e-25 | 9.9e-35 8.6e-03 cent 1.00e+00 43 -1.0000e+00 -1.0000e+00 | 2.48e-26 2.96e-26 2.17e-26 | 3.42e-01 1.80e-26 7.73e-27 | 2.8e-35 5.7e-01 pred 9.90e-01 44 -1.0000e+00 -1.0000e+00 | 2.15e-26 3.14e-26 2.30e-26 | 3.23e-01 2.39e-26 7.29e-27 | 3.0e-54 1.6e-01 cent 1.00e+00 45 -1.0000e+00 -1.0000e+00 | 2.17e-26 3.15e-26 2.31e-26 | 3.21e-01 2.27e-26 7.25e-27 | 6.5e-31 1.8e-02 cent 1.00e+00 46 -1.0000e+00 -1.0000e+00 | 6.73e-28 9.44e-28 6.91e-28 | 3.22e-01 6.22e-28 2.18e-28 | 1.3e-31 4.9e-01 pred 9.70e-01 47 -1.0000e+00 -1.0000e+00 | 6.10e-28 9.95e-28 7.28e-28 | 3.05e-01 7.13e-28 2.07e-28 | 3.8e-52 9.2e-02 cent 1.00e+00 48 -1.0000e+00 -1.0000e+00 | 6.20e-28 9.96e-28 7.29e-28 | 3.05e-01 6.79e-28 2.07e-28 | 9.5e-54 3.8e-03 cent 1.00e+00 49 -1.0000e+00 -1.0000e+00 | 6.36e-30 9.96e-30 7.29e-30 | 3.05e-01 6.27e-30 2.07e-30 | 5.4e-54 3.0e-01 pred 9.90e-01 50 -1.0000e+00 -1.0000e+00 | 6.05e-30 1.01e-29 7.43e-30 | 2.99e-01 6.91e-30 2.03e-30 | 2.4e-44 4.4e-02 cent 1.00e+00 51 -1.0000e+00 -1.0000e+00 | 6.09e-30 1.02e-29 7.43e-30 | 2.99e-01 6.78e-30 2.03e-30 | 4.7e-46 1.3e-03 cent 1.00e+00 52 -1.0000e+00 -1.0000e+00 | 6.13e-32 1.01e-31 7.43e-32 | 2.99e-01 6.65e-32 2.03e-32 | 3.6e-47 1.2e-01 pred 9.90e-01 optimal solution found; terminating status is Optimal after 52 iterations and 0.447 seconds 4.48e-01 seconds epinorminf4 Float64 adj=true curv=false ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 -4.0000e-01 -2.1321e+00 | 3.00e+00 5.00e-01 3.66e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -1.0415e+00 -1.2015e+00 | 2.84e-01 5.38e-02 3.94e-02 | 9.30e-01 1.25e-01 1.00e-01 | 1.1e-16 9.6e-01 pred 9.00e-01 2 -9.8555e-01 -1.1621e+00 | 2.94e-01 5.56e-02 4.07e-02 | 8.99e-01 1.14e-01 9.93e-02 | 2.2e-16 3.6e-02 cent 1.00e+00 3 -9.8319e-01 -1.1642e+00 | 2.98e-01 5.56e-02 4.07e-02 | 8.99e-01 1.11e-01 9.93e-02 | 3.8e-18 7.1e-06 cent 1.00e+00 4 -1.0030e+00 -1.0122e+00 | 1.50e-02 2.81e-03 2.06e-03 | 8.89e-01 5.50e-03 4.97e-03 | 2.2e-16 6.4e-01 pred 9.50e-01 5 -1.0001e+00 -1.0091e+00 | 1.50e-02 2.80e-03 2.05e-03 | 8.93e-01 5.56e-03 4.98e-03 | 1.1e-14 1.4e-02 cent 1.00e+00 6 -1.0000e+00 -1.0000e+00 | 1.48e-05 2.80e-06 2.05e-06 | 8.92e-01 5.74e-06 4.98e-06 | 6.0e-15 5.3e-01 pred 9.99e-01 7 -1.0000e+00 -1.0000e+00 | 1.50e-05 2.79e-06 2.04e-06 | 8.96e-01 5.56e-06 5.00e-06 | 3.0e-13 5.9e-03 cent 1.00e+00 8 -1.0000e+00 -1.0000e+00 | 1.43e-09 2.79e-10 2.05e-10 | 8.95e-01 6.32e-10 4.99e-10 | 6.7e-10 2.9e-01 pred 1.00e+00 optimal solution found; terminating status is Optimal after 8 iterations and 0.001 seconds 1.81e-03 seconds epinorminf4 BigFloat adj=true curv=false ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 -4.0000e-01 -2.1321e+00 | 3.00e+00 5.00e-01 3.66e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -1.0415e+00 -1.2015e+00 | 2.84e-01 5.38e-02 3.94e-02 | 9.30e-01 1.25e-01 1.00e-01 | 1.7e-77 9.6e-01 pred 9.00e-01 2 -9.8555e-01 -1.1621e+00 | 2.94e-01 5.56e-02 4.07e-02 | 8.99e-01 1.14e-01 9.93e-02 | 2.6e-77 3.6e-02 cent 1.00e+00 3 -9.8319e-01 -1.1642e+00 | 2.98e-01 5.56e-02 4.07e-02 | 8.99e-01 1.11e-01 9.93e-02 | 2.7e-79 7.1e-06 cent 1.00e+00 4 -1.0030e+00 -1.0122e+00 | 1.50e-02 2.81e-03 2.06e-03 | 8.89e-01 5.50e-03 4.97e-03 | 3.5e-77 6.4e-01 pred 9.50e-01 5 -1.0001e+00 -1.0091e+00 | 1.50e-02 2.80e-03 2.05e-03 | 8.93e-01 5.56e-03 4.98e-03 | 9.5e-76 1.4e-02 cent 1.00e+00 6 -1.0000e+00 -1.0000e+00 | 1.48e-05 2.80e-06 2.05e-06 | 8.92e-01 5.74e-06 4.98e-06 | 4.0e-76 5.3e-01 pred 9.99e-01 7 -1.0000e+00 -1.0000e+00 | 1.50e-05 2.79e-06 2.04e-06 | 8.96e-01 5.56e-06 5.00e-06 | 4.2e-70 5.9e-03 cent 1.00e+00 8 -1.0000e+00 -1.0000e+00 | 1.43e-09 2.79e-10 2.05e-10 | 8.95e-01 6.32e-10 4.99e-10 | 8.3e-71 2.9e-01 pred 1.00e+00 9 -1.0000e+00 -1.0000e+00 | 1.49e-09 2.80e-10 2.05e-10 | 8.92e-01 5.60e-10 4.98e-10 | 1.5e-62 1.2e-02 cent 1.00e+00 10 -1.0000e+00 -1.0000e+00 | 1.53e-12 2.80e-13 2.05e-13 | 8.93e-01 5.17e-13 4.98e-13 | 2.0e-63 3.5e-01 pred 9.99e-01 11 -1.0000e+00 -1.0000e+00 | 1.50e-12 2.79e-13 2.05e-13 | 8.95e-01 5.58e-13 4.99e-13 | 1.0e-55 1.6e-03 cent 1.00e+00 12 -1.0000e+00 -1.0000e+00 | 1.48e-16 2.80e-17 2.05e-17 | 8.94e-01 5.75e-17 4.99e-17 | 2.4e-57 1.1e-01 pred 1.00e+00 13 -1.0000e+00 -1.0000e+00 | 1.50e-16 2.80e-17 2.05e-17 | 8.94e-01 5.58e-17 4.99e-17 | 1.0e-48 4.6e-04 cent 1.00e+00 14 -1.0000e+00 -1.0000e+00 | 1.50e-20 2.80e-21 2.05e-21 | 8.94e-01 5.57e-21 4.99e-21 | 6.1e-50 3.7e-03 pred 1.00e+00 15 -1.0000e+00 -1.0000e+00 | 1.48e-24 2.80e-25 2.05e-25 | 8.94e-01 5.71e-25 4.99e-25 | 2.1e-41 3.0e-01 pred 1.00e+00 16 -1.0000e+00 -1.0000e+00 | 1.49e-24 2.80e-25 2.05e-25 | 8.92e-01 5.60e-25 4.97e-25 | 1.4e-31 5.6e-03 cent 1.00e+00 17 -1.0000e+00 -1.0000e+00 | 1.57e-28 2.80e-29 2.05e-29 | 8.93e-01 4.70e-29 4.98e-29 | 9.6e-33 4.4e-01 pred 1.00e+00 18 -1.0000e+00 -1.0000e+00 | 1.50e-28 2.79e-29 2.04e-29 | 8.97e-01 5.56e-29 5.00e-29 | 3.2e-46 5.6e-03 cent 1.00e+00 19 -1.0000e+00 -1.0000e+00 | 1.43e-32 2.79e-33 2.04e-33 | 8.95e-01 6.39e-33 5.00e-33 | 1.4e-46 2.7e-01 pred 1.00e+00 optimal solution found; terminating status is Optimal after 19 iterations and 0.012 seconds 1.31e-02 seconds epinorminf4 Float64 adj=true curv=true ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 -4.0000e-01 -2.1321e+00 | 3.00e+00 5.00e-01 3.66e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -1.0415e+00 -1.2015e+00 | 2.84e-01 5.38e-02 3.94e-02 | 9.30e-01 1.25e-01 1.00e-01 | 1.1e-16 9.6e-01 pred 9.00e-01 2 -9.8555e-01 -1.1621e+00 | 2.94e-01 5.56e-02 4.07e-02 | 8.99e-01 1.14e-01 9.93e-02 | 2.2e-16 3.6e-02 cent 1.00e+00 3 -9.8319e-01 -1.1642e+00 | 2.98e-01 5.56e-02 4.07e-02 | 8.99e-01 1.11e-01 9.93e-02 | 3.8e-18 7.1e-06 cent 1.00e+00 4 -1.0016e+00 -1.0074e+00 | 9.19e-03 1.69e-03 1.24e-03 | 8.89e-01 3.07e-03 2.98e-03 | 2.2e-16 8.0e-01 pred 9.70e-01 5 -1.0000e+00 -1.0054e+00 | 9.02e-03 1.67e-03 1.22e-03 | 8.98e-01 3.34e-03 3.01e-03 | 4.9e-14 1.5e-02 cent 1.00e+00 6 -1.0000e+00 -1.0000e+00 | 9.29e-06 1.67e-06 1.22e-06 | 8.97e-01 3.04e-06 3.00e-06 | 1.2e-14 1.1e-01 pred 9.99e-01 7 -1.0000e+00 -1.0000e+00 | 9.01e-06 1.67e-06 1.22e-06 | 8.97e-01 3.35e-06 3.00e-06 | 2.3e-14 4.3e-04 cent 1.00e+00 8 -1.0000e+00 -1.0000e+00 | 9.01e-10 1.67e-10 1.22e-10 | 8.97e-01 3.35e-10 3.00e-10 | 7.6e-11 8.4e-04 pred 1.00e+00 optimal solution found; terminating status is Optimal after 8 iterations and 0.001 seconds 2.36e-03 seconds epinorminf4 BigFloat adj=true curv=true ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 -4.0000e-01 -2.1321e+00 | 3.00e+00 5.00e-01 3.66e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -1.0415e+00 -1.2015e+00 | 2.84e-01 5.38e-02 3.94e-02 | 9.30e-01 1.25e-01 1.00e-01 | 1.7e-77 9.6e-01 pred 9.00e-01 2 -9.8555e-01 -1.1621e+00 | 2.94e-01 5.56e-02 4.07e-02 | 8.99e-01 1.14e-01 9.93e-02 | 2.6e-77 3.6e-02 cent 1.00e+00 3 -9.8319e-01 -1.1642e+00 | 2.98e-01 5.56e-02 4.07e-02 | 8.99e-01 1.11e-01 9.93e-02 | 2.7e-79 7.1e-06 cent 1.00e+00 4 -1.0016e+00 -1.0074e+00 | 9.19e-03 1.69e-03 1.24e-03 | 8.89e-01 3.07e-03 2.98e-03 | 3.5e-77 8.0e-01 pred 9.70e-01 5 -1.0000e+00 -1.0054e+00 | 9.02e-03 1.67e-03 1.22e-03 | 8.98e-01 3.34e-03 3.01e-03 | 1.0e-74 1.5e-02 cent 1.00e+00 6 -1.0000e+00 -1.0000e+00 | 9.29e-06 1.67e-06 1.22e-06 | 8.97e-01 3.04e-06 3.00e-06 | 7.1e-76 1.1e-01 pred 9.99e-01 7 -1.0000e+00 -1.0000e+00 | 9.01e-06 1.67e-06 1.22e-06 | 8.97e-01 3.35e-06 3.00e-06 | 3.1e-70 4.3e-04 cent 1.00e+00 8 -1.0000e+00 -1.0000e+00 | 9.01e-10 1.67e-10 1.22e-10 | 8.97e-01 3.35e-10 3.00e-10 | 1.7e-72 8.4e-04 pred 1.00e+00 9 -1.0000e+00 -1.0000e+00 | 9.01e-14 1.67e-14 1.22e-14 | 8.97e-01 3.35e-14 3.00e-14 | 2.3e-63 2.1e-03 pred 1.00e+00 10 -1.0000e+00 -1.0000e+00 | 9.03e-18 1.67e-18 1.22e-18 | 8.97e-01 3.32e-18 3.00e-18 | 1.6e-55 1.9e-02 pred 1.00e+00 11 -1.0000e+00 -1.0000e+00 | 9.09e-21 1.68e-21 1.23e-21 | 8.93e-01 3.21e-21 2.99e-21 | 3.0e-46 1.2e-01 pred 9.99e-01 12 -1.0000e+00 -1.0000e+00 | 8.97e-21 1.68e-21 1.23e-21 | 8.93e-01 3.35e-21 2.99e-21 | 2.2e-40 3.6e-04 cent 1.00e+00 13 -1.0000e+00 -1.0000e+00 | 8.97e-25 1.68e-25 1.23e-25 | 8.93e-01 3.35e-25 2.99e-25 | 1.1e-41 5.2e-04 pred 1.00e+00 14 -1.0000e+00 -1.0000e+00 | 8.97e-29 1.68e-29 1.23e-29 | 8.93e-01 3.35e-29 2.99e-29 | 7.4e-34 1.1e-03 pred 1.00e+00 15 -1.0000e+00 -1.0000e+00 | 8.97e-33 1.68e-33 1.23e-33 | 8.93e-01 3.34e-33 2.99e-33 | 4.6e-47 4.5e-03 pred 1.00e+00 optimal solution found; terminating status is Optimal after 15 iterations and 0.009 seconds 9.94e-03 seconds hyporootdettri4 Float64 adj=false curv=false ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 6.8659e-01 -2.0000e+00 | 5.00e+00 2.57e-01 3.38e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -9.5184e-01 -2.0378e+00 | 1.94e+00 1.19e-01 1.56e-01 | 8.68e-01 5.32e-01 4.00e-01 | 2.2e-16 9.3e-01 pred 6.00e-01 2 -8.5668e-01 -2.1450e+00 | 1.66e+00 1.41e-01 1.85e-01 | 7.30e-01 5.34e-01 3.41e-01 | 3.6e-15 8.1e-01 cent 1.00e+00 3 -7.0540e-01 -2.1767e+00 | 1.47e+00 1.58e-01 2.08e-01 | 6.50e-01 5.19e-01 3.02e-01 | 4.4e-16 6.4e-01 cent 1.00e+00 4 -4.6388e-01 -2.0376e+00 | 1.39e+00 1.62e-01 2.13e-01 | 6.35e-01 4.75e-01 2.82e-01 | 1.1e-16 3.7e-01 cent 1.00e+00 5 -2.8011e-01 -1.8760e+00 | 1.38e+00 1.57e-01 2.07e-01 | 6.54e-01 4.30e-01 2.77e-01 | 5.6e-17 9.3e-02 cent 1.00e+00 6 -8.3310e-01 -1.4719e+00 | 5.67e-01 5.97e-02 7.86e-02 | 6.89e-01 1.50e-01 1.12e-01 | 2.2e-16 6.3e-01 pred 6.00e-01 7 -7.8598e-01 -1.4286e+00 | 5.14e-01 6.31e-02 8.30e-02 | 6.52e-01 1.71e-01 1.04e-01 | 3.0e-16 3.5e-01 cent 1.00e+00 8 -7.3126e-01 -1.3937e+00 | 5.09e-01 6.36e-02 8.36e-02 | 6.47e-01 1.61e-01 1.02e-01 | 8.2e-17 1.0e-01 cent 1.00e+00 9 -7.1228e-01 -1.3781e+00 | 5.10e-01 6.34e-02 8.33e-02 | 6.50e-01 1.57e-01 1.02e-01 | 2.0e-17 8.0e-03 cent 1.00e+00 10 -9.3089e-01 -1.0698e+00 | 1.07e-01 1.20e-02 1.58e-02 | 6.86e-01 2.26e-02 2.04e-02 | 2.5e-16 8.4e-01 pred 8.00e-01 11 -9.5655e-01 -1.1039e+00 | 8.17e-02 1.46e-02 1.93e-02 | 5.62e-01 3.51e-02 1.69e-02 | 1.4e-14 7.5e-01 cent 1.00e+00 12 -9.3753e-01 -1.1045e+00 | 7.50e-02 1.62e-02 2.12e-02 | 5.09e-01 3.29e-02 1.53e-02 | 1.4e-15 5.1e-01 cent 1.00e+00 13 -9.2451e-01 -1.1024e+00 | 7.23e-02 1.69e-02 2.22e-02 | 4.87e-01 3.14e-02 1.46e-02 | 2.6e-16 2.4e-01 cent 1.00e+00 14 -9.1605e-01 -1.0978e+00 | 7.21e-02 1.70e-02 2.24e-02 | 4.83e-01 3.02e-02 1.44e-02 | 4.2e-17 4.9e-02 cent 1.00e+00 15 -9.8594e-01 -1.0050e+00 | 7.54e-03 1.67e-03 2.19e-03 | 4.93e-01 2.37e-03 1.45e-03 | 4.4e-16 4.8e-01 pred 9.00e-01 16 -9.9161e-01 -1.0103e+00 | 6.76e-03 1.77e-03 2.33e-03 | 4.64e-01 3.12e-03 1.37e-03 | 2.6e-15 1.1e-01 cent 1.00e+00 17 -9.9056e-01 -1.0097e+00 | 6.80e-03 1.78e-03 2.34e-03 | 4.62e-01 2.96e-03 1.36e-03 | 5.2e-17 7.9e-03 cent 1.00e+00 18 -9.9961e-01 -1.0002e+00 | 2.09e-04 5.32e-05 7.00e-05 | 4.64e-01 7.82e-05 4.09e-05 | 7.2e-17 4.4e-01 pred 9.70e-01 19 -9.9973e-01 -1.0003e+00 | 1.89e-04 5.68e-05 7.47e-05 | 4.35e-01 9.38e-05 3.84e-05 | 7.8e-14 1.2e-01 cent 1.00e+00 20 -9.9969e-01 -1.0003e+00 | 1.91e-04 5.69e-05 7.49e-05 | 4.34e-01 8.85e-05 3.83e-05 | 1.0e-15 5.7e-03 cent 1.00e+00 21 -1.0000e+00 -1.0000e+00 | 1.96e-06 5.69e-07 7.48e-07 | 4.34e-01 7.84e-07 3.83e-07 | 8.9e-16 3.8e-01 pred 9.90e-01 22 -1.0000e+00 -1.0000e+00 | 1.88e-06 5.78e-07 7.60e-07 | 4.27e-01 8.97e-07 3.77e-07 | 2.3e-13 8.7e-02 cent 1.00e+00 23 -1.0000e+00 -1.0000e+00 | 1.88e-06 5.79e-07 7.61e-07 | 4.26e-01 8.84e-07 3.76e-07 | 5.7e-14 6.2e-03 cent 1.00e+00 24 -1.0000e+00 -1.0000e+00 | 1.91e-08 5.79e-09 7.61e-09 | 4.27e-01 8.28e-09 3.77e-09 | 1.3e-14 5.3e-01 pred 9.90e-01 optimal solution found; terminating status is Optimal after 24 iterations and 0.003 seconds 4.29e-03 seconds hyporootdettri4 BigFloat adj=false curv=false ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 6.8659e-01 -2.0000e+00 | 5.00e+00 2.57e-01 3.38e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -9.5184e-01 -2.0378e+00 | 1.94e+00 1.19e-01 1.56e-01 | 8.68e-01 5.32e-01 4.00e-01 | 3.5e-77 9.3e-01 pred 6.00e-01 2 -8.5668e-01 -2.1450e+00 | 1.66e+00 1.41e-01 1.85e-01 | 7.30e-01 5.34e-01 3.41e-01 | 1.3e-76 8.1e-01 cent 1.00e+00 3 -7.0540e-01 -2.1767e+00 | 1.47e+00 1.58e-01 2.08e-01 | 6.50e-01 5.19e-01 3.02e-01 | 4.7e-77 6.4e-01 cent 1.00e+00 4 -4.6388e-01 -2.0376e+00 | 1.39e+00 1.62e-01 2.13e-01 | 6.35e-01 4.75e-01 2.82e-01 | 1.6e-77 3.7e-01 cent 1.00e+00 5 -2.8011e-01 -1.8760e+00 | 1.38e+00 1.57e-01 2.07e-01 | 6.54e-01 4.30e-01 2.77e-01 | 4.3e-78 9.3e-02 cent 1.00e+00 6 -8.3310e-01 -1.4719e+00 | 5.67e-01 5.97e-02 7.86e-02 | 6.89e-01 1.50e-01 1.12e-01 | 8.6e-78 6.3e-01 pred 6.00e-01 7 -7.8598e-01 -1.4286e+00 | 5.14e-01 6.31e-02 8.30e-02 | 6.52e-01 1.71e-01 1.04e-01 | 3.5e-77 3.5e-01 cent 1.00e+00 8 -7.3126e-01 -1.3937e+00 | 5.09e-01 6.36e-02 8.36e-02 | 6.47e-01 1.61e-01 1.02e-01 | 3.2e-78 1.0e-01 cent 1.00e+00 9 -7.1228e-01 -1.3781e+00 | 5.10e-01 6.34e-02 8.33e-02 | 6.50e-01 1.57e-01 1.02e-01 | 1.1e-78 8.0e-03 cent 1.00e+00 10 -9.3089e-01 -1.0698e+00 | 1.07e-01 1.20e-02 1.58e-02 | 6.86e-01 2.26e-02 2.04e-02 | 1.7e-77 8.4e-01 pred 8.00e-01 11 -9.5655e-01 -1.1039e+00 | 8.17e-02 1.46e-02 1.93e-02 | 5.62e-01 3.51e-02 1.69e-02 | 1.3e-75 7.5e-01 cent 1.00e+00 12 -9.3753e-01 -1.1045e+00 | 7.50e-02 1.62e-02 2.12e-02 | 5.09e-01 3.29e-02 1.53e-02 | 2.5e-76 5.1e-01 cent 1.00e+00 13 -9.2451e-01 -1.1024e+00 | 7.23e-02 1.69e-02 2.22e-02 | 4.87e-01 3.14e-02 1.46e-02 | 8.6e-78 2.4e-01 cent 1.00e+00 14 -9.1605e-01 -1.0978e+00 | 7.21e-02 1.70e-02 2.24e-02 | 4.83e-01 3.02e-02 1.44e-02 | 5.2e-78 4.9e-02 cent 1.00e+00 15 -9.8594e-01 -1.0050e+00 | 7.54e-03 1.67e-03 2.19e-03 | 4.93e-01 2.37e-03 1.45e-03 | 1.4e-77 4.8e-01 pred 9.00e-01 16 -9.9161e-01 -1.0103e+00 | 6.76e-03 1.77e-03 2.33e-03 | 4.64e-01 3.12e-03 1.37e-03 | 5.7e-77 1.1e-01 cent 1.00e+00 17 -9.9056e-01 -1.0097e+00 | 6.80e-03 1.78e-03 2.34e-03 | 4.62e-01 2.96e-03 1.36e-03 | 2.5e-78 7.9e-03 cent 1.00e+00 18 -9.9961e-01 -1.0002e+00 | 2.09e-04 5.32e-05 7.00e-05 | 4.64e-01 7.82e-05 4.09e-05 | 1.9e-77 4.4e-01 pred 9.70e-01 19 -9.9973e-01 -1.0003e+00 | 1.89e-04 5.68e-05 7.47e-05 | 4.35e-01 9.38e-05 3.84e-05 | 3.0e-75 1.2e-01 cent 1.00e+00 20 -9.9969e-01 -1.0003e+00 | 1.91e-04 5.69e-05 7.49e-05 | 4.34e-01 8.85e-05 3.83e-05 | 3.5e-77 5.7e-03 cent 1.00e+00 21 -1.0000e+00 -1.0000e+00 | 1.96e-06 5.69e-07 7.48e-07 | 4.34e-01 7.84e-07 3.83e-07 | 1.1e-76 3.8e-01 pred 9.90e-01 22 -1.0000e+00 -1.0000e+00 | 1.88e-06 5.78e-07 7.60e-07 | 4.27e-01 8.97e-07 3.77e-07 | 4.2e-74 8.7e-02 cent 1.00e+00 23 -1.0000e+00 -1.0000e+00 | 1.88e-06 5.79e-07 7.61e-07 | 4.26e-01 8.84e-07 3.76e-07 | 6.8e-75 6.2e-03 cent 1.00e+00 24 -1.0000e+00 -1.0000e+00 | 1.91e-08 5.79e-09 7.61e-09 | 4.27e-01 8.28e-09 3.77e-09 | 1.7e-75 5.2e-01 pred 9.90e-01 25 -1.0000e+00 -1.0000e+00 | 1.78e-08 6.08e-09 7.99e-09 | 4.06e-01 9.25e-09 3.59e-09 | 6.9e-72 1.7e-01 cent 1.00e+00 26 -1.0000e+00 -1.0000e+00 | 1.78e-08 6.11e-09 8.03e-09 | 4.05e-01 8.86e-09 3.57e-09 | 2.9e-72 2.2e-02 cent 1.00e+00 27 -1.0000e+00 -1.0000e+00 | 5.43e-10 1.83e-10 2.40e-10 | 4.05e-01 2.48e-10 1.07e-10 | 1.4e-72 6.0e-01 pred 9.70e-01 28 -1.0000e+00 -1.0000e+00 | 4.96e-10 1.95e-10 2.57e-10 | 3.80e-01 2.82e-10 1.01e-10 | 3.4e-70 2.1e-01 cent 1.00e+00 29 -1.0000e+00 -1.0000e+00 | 4.99e-10 1.96e-10 2.58e-10 | 3.77e-01 2.66e-10 9.99e-11 | 1.0e-70 3.3e-02 cent 1.00e+00 30 -1.0000e+00 -1.0000e+00 | 1.53e-11 5.87e-12 7.72e-12 | 3.78e-01 7.22e-12 3.01e-12 | 1.9e-71 8.8e-01 pred 9.70e-01 31 -1.0000e+00 -1.0000e+00 | 1.28e-11 6.71e-12 8.82e-12 | 3.31e-01 8.93e-12 2.63e-12 | 9.3e-69 3.6e-01 cent 1.00e+00 32 -1.0000e+00 -1.0000e+00 | 1.29e-11 6.84e-12 8.99e-12 | 3.25e-01 8.10e-12 2.58e-12 | 1.8e-68 9.6e-02 cent 1.00e+00 33 -1.0000e+00 -1.0000e+00 | 1.29e-11 6.85e-12 9.01e-12 | 3.24e-01 7.96e-12 2.58e-12 | 6.1e-70 7.6e-03 cent 1.00e+00 34 -1.0000e+00 -1.0000e+00 | 1.31e-13 6.84e-14 9.00e-14 | 3.25e-01 7.35e-14 2.58e-14 | 1.1e-70 6.4e-01 pred 9.90e-01 35 -1.0000e+00 -1.0000e+00 | 1.18e-13 7.36e-14 9.67e-14 | 3.02e-01 8.50e-14 2.40e-14 | 6.9e-67 2.4e-01 cent 1.00e+00 36 -1.0000e+00 -1.0000e+00 | 1.19e-13 7.42e-14 9.75e-14 | 3.00e-01 8.01e-14 2.38e-14 | 2.9e-67 4.2e-02 cent 1.00e+00 37 -1.0000e+00 -1.0000e+00 | 1.19e-13 7.42e-14 9.76e-14 | 3.00e-01 7.95e-14 2.38e-14 | 4.4e-69 1.5e-03 cent 1.00e+00 38 -1.0000e+00 -1.0000e+00 | 1.19e-15 7.42e-16 9.75e-16 | 3.00e-01 7.83e-16 2.38e-16 | 3.8e-69 1.2e-01 pred 9.90e-01 39 -1.0000e+00 -1.0000e+00 | 1.19e-15 7.44e-16 9.78e-16 | 2.99e-01 7.97e-16 2.37e-16 | 3.4e-66 1.2e-02 cent 1.00e+00 40 -1.0000e+00 -1.0000e+00 | 1.22e-17 7.43e-18 9.77e-18 | 2.99e-01 6.84e-18 2.38e-18 | 2.1e-66 9.5e-01 pred 9.90e-01 41 -1.0000e+00 -1.0000e+00 | 1.01e-17 8.52e-18 1.12e-17 | 2.61e-01 8.96e-18 2.07e-18 | 5.1e-63 4.3e-01 cent 1.00e+00 42 -1.0000e+00 -1.0000e+00 | 1.00e-17 8.77e-18 1.15e-17 | 2.53e-01 8.17e-18 2.01e-18 | 2.0e-62 1.5e-01 cent 1.00e+00 43 -1.0000e+00 -1.0000e+00 | 1.00e-17 8.81e-18 1.16e-17 | 2.52e-01 7.97e-18 2.01e-18 | 2.7e-64 1.8e-02 cent 1.00e+00 44 -1.0000e+00 -1.0000e+00 | 3.05e-19 2.64e-19 3.47e-19 | 2.53e-01 2.25e-19 6.03e-20 | 2.5e-64 4.9e-01 pred 9.70e-01 45 -1.0000e+00 -1.0000e+00 | 2.86e-19 2.76e-19 3.62e-19 | 2.42e-01 2.49e-19 5.76e-20 | 1.4e-61 1.5e-01 cent 1.00e+00 46 -1.0000e+00 -1.0000e+00 | 2.87e-19 2.77e-19 3.64e-19 | 2.41e-01 2.39e-19 5.74e-20 | 2.1e-62 1.8e-02 cent 1.00e+00 47 -1.0000e+00 -1.0000e+00 | 8.72e-21 8.29e-21 1.09e-20 | 2.41e-01 6.79e-21 1.73e-21 | 1.5e-62 4.8e-01 pred 9.70e-01 48 -1.0000e+00 -1.0000e+00 | 8.19e-21 8.66e-21 1.14e-20 | 2.31e-01 7.46e-21 1.65e-21 | 5.0e-60 1.5e-01 cent 1.00e+00 49 -1.0000e+00 -1.0000e+00 | 8.23e-21 8.68e-21 1.14e-20 | 2.30e-01 7.17e-21 1.65e-21 | 1.8e-61 1.7e-02 cent 1.00e+00 50 -1.0000e+00 -1.0000e+00 | 2.50e-22 2.60e-22 3.42e-22 | 2.31e-01 2.04e-22 4.95e-23 | 1.9e-61 4.5e-01 pred 9.70e-01 51 -1.0000e+00 -1.0000e+00 | 2.36e-22 2.70e-22 3.55e-22 | 2.22e-01 2.22e-22 4.76e-23 | 1.7e-58 1.3e-01 cent 1.00e+00 52 -1.0000e+00 -1.0000e+00 | 2.37e-22 2.71e-22 3.56e-22 | 2.22e-01 2.15e-22 4.75e-23 | 1.9e-59 1.3e-02 cent 1.00e+00 53 -1.0000e+00 -1.0000e+00 | 7.19e-24 8.12e-24 1.07e-23 | 2.22e-01 6.20e-24 1.43e-24 | 3.9e-60 3.5e-01 pred 9.70e-01 54 -1.0000e+00 -1.0000e+00 | 6.94e-24 8.30e-24 1.09e-23 | 2.17e-01 6.58e-24 1.39e-24 | 1.6e-57 8.3e-02 cent 1.00e+00 55 -1.0000e+00 -1.0000e+00 | 6.97e-24 8.31e-24 1.09e-23 | 2.17e-01 6.44e-24 1.39e-24 | 1.4e-58 5.2e-03 cent 1.00e+00 56 -1.0000e+00 -1.0000e+00 | 7.04e-26 8.31e-26 1.09e-25 | 2.17e-01 6.12e-26 1.39e-26 | 4.5e-59 4.5e-01 pred 9.90e-01 57 -1.0000e+00 -1.0000e+00 | 6.67e-26 8.62e-26 1.13e-25 | 2.09e-01 6.67e-26 1.34e-26 | 2.9e-55 1.3e-01 cent 1.00e+00 58 -1.0000e+00 -1.0000e+00 | 6.70e-26 8.64e-26 1.14e-25 | 2.08e-01 6.45e-26 1.34e-26 | 3.1e-56 1.3e-02 cent 1.00e+00 59 -1.0000e+00 -1.0000e+00 | 2.03e-27 2.59e-27 3.40e-27 | 2.09e-01 1.86e-27 4.03e-28 | 9.0e-57 3.4e-01 pred 9.70e-01 60 -1.0000e+00 -1.0000e+00 | 1.96e-27 2.65e-27 3.48e-27 | 2.04e-01 1.97e-27 3.94e-28 | 3.5e-54 8.0e-02 cent 1.00e+00 61 -1.0000e+00 -1.0000e+00 | 1.97e-27 2.65e-27 3.48e-27 | 2.04e-01 1.93e-27 3.93e-28 | 4.0e-55 4.9e-03 cent 1.00e+00 62 -1.0000e+00 -1.0000e+00 | 1.99e-29 2.65e-29 3.48e-29 | 2.04e-01 1.84e-29 3.94e-30 | 1.6e-55 4.2e-01 pred 9.90e-01 63 -1.0000e+00 -1.0000e+00 | 1.89e-29 2.74e-29 3.60e-29 | 1.97e-01 1.99e-29 3.81e-30 | 1.2e-51 1.2e-01 cent 1.00e+00 64 -1.0000e+00 -1.0000e+00 | 1.90e-29 2.74e-29 3.61e-29 | 1.97e-01 1.93e-29 3.80e-30 | 8.5e-53 1.0e-02 cent 1.00e+00 65 -1.0000e+00 -1.0000e+00 | 1.94e-31 2.74e-31 3.60e-31 | 1.97e-01 1.75e-31 3.81e-32 | 3.1e-53 8.6e-01 pred 9.90e-01 66 -1.0000e+00 -1.0000e+00 | 1.64e-31 3.11e-31 4.08e-31 | 1.74e-01 2.16e-31 3.36e-32 | 3.2e-49 3.5e-01 cent 1.00e+00 67 -1.0000e+00 -1.0000e+00 | 1.64e-31 3.16e-31 4.16e-31 | 1.71e-01 1.97e-31 3.29e-32 | 1.7e-49 9.3e-02 cent 1.00e+00 68 -1.0000e+00 -1.0000e+00 | 1.64e-31 3.17e-31 4.17e-31 | 1.70e-01 1.93e-31 3.29e-32 | 4.6e-51 7.1e-03 cent 1.00e+00 69 -1.0000e+00 -1.0000e+00 | 1.67e-33 3.17e-33 4.16e-33 | 1.71e-01 1.79e-33 3.29e-34 | 1.6e-51 6.0e-01 pred 9.90e-01 optimal solution found; terminating status is Optimal after 69 iterations and 0.182 seconds 1.83e-01 seconds hyporootdettri4 Float64 adj=true curv=false ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 6.8659e-01 -2.0000e+00 | 5.00e+00 2.57e-01 3.38e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -8.0042e-01 -1.6717e+00 | 1.53e+00 8.15e-02 1.07e-01 | 9.47e-01 2.81e-01 3.00e-01 | 2.2e-16 6.4e-01 pred 7.00e-01 2 -6.8070e-01 -1.5060e+00 | 1.44e+00 8.02e-02 1.05e-01 | 9.62e-01 3.12e-01 2.91e-01 | 3.3e-16 1.6e-01 cent 1.00e+00 3 -6.4076e-01 -1.4705e+00 | 1.45e+00 7.93e-02 1.04e-01 | 9.73e-01 2.99e-01 2.91e-01 | 2.8e-17 1.3e-03 cent 1.00e+00 4 -9.1680e-01 -1.0407e+00 | 2.24e-01 1.10e-02 1.45e-02 | 1.05e+00 3.57e-02 4.36e-02 | 1.9e-16 4.0e-01 pred 8.50e-01 5 -9.4268e-01 -1.0612e+00 | 2.19e-01 1.11e-02 1.45e-02 | 1.05e+00 4.18e-02 4.37e-02 | 2.8e-16 7.8e-03 cent 1.00e+00 6 -9.9905e-01 -1.0002e+00 | 2.20e-03 1.10e-04 1.44e-04 | 1.06e+00 4.01e-04 4.37e-04 | 2.2e-16 6.6e-01 pred 9.90e-01 7 -9.9942e-01 -1.0006e+00 | 2.19e-03 1.09e-04 1.44e-04 | 1.06e+00 4.15e-04 4.38e-04 | 9.3e-14 1.6e-02 cent 1.00e+00 8 -1.0000e+00 -1.0000e+00 | 2.26e-06 1.09e-07 1.44e-07 | 1.06e+00 3.54e-07 4.38e-07 | 2.4e-15 3.9e-01 pred 9.99e-01 9 -1.0000e+00 -1.0000e+00 | 2.18e-06 1.10e-07 1.44e-07 | 1.05e+00 4.17e-07 4.36e-07 | 1.2e-10 1.6e-02 cent 1.00e+00 10 -1.0000e+00 -1.0000e+00 | 2.19e-08 1.09e-09 1.44e-09 | 1.06e+00 4.15e-09 4.38e-09 | 1.5e-12 5.2e-03 pred 9.90e-01 optimal solution found; terminating status is Optimal after 10 iterations and 0.001 seconds 2.23e-03 seconds hyporootdettri4 BigFloat adj=true curv=false ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 6.8659e-01 -2.0000e+00 | 5.00e+00 2.57e-01 3.38e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -8.0042e-01 -1.6717e+00 | 1.53e+00 8.15e-02 1.07e-01 | 9.47e-01 2.81e-01 3.00e-01 | 3.5e-77 6.4e-01 pred 7.00e-01 2 -6.8070e-01 -1.5060e+00 | 1.44e+00 8.02e-02 1.05e-01 | 9.62e-01 3.12e-01 2.91e-01 | 1.7e-77 1.6e-01 cent 1.00e+00 3 -6.4076e-01 -1.4705e+00 | 1.45e+00 7.93e-02 1.04e-01 | 9.73e-01 2.99e-01 2.91e-01 | 2.3e-78 1.3e-03 cent 1.00e+00 4 -9.1680e-01 -1.0407e+00 | 2.24e-01 1.10e-02 1.45e-02 | 1.05e+00 3.57e-02 4.36e-02 | 1.7e-77 4.0e-01 pred 8.50e-01 5 -9.4268e-01 -1.0612e+00 | 2.19e-01 1.11e-02 1.45e-02 | 1.05e+00 4.18e-02 4.37e-02 | 1.3e-77 7.8e-03 cent 1.00e+00 6 -9.9905e-01 -1.0002e+00 | 2.20e-03 1.10e-04 1.44e-04 | 1.06e+00 4.01e-04 4.37e-04 | 1.6e-77 6.6e-01 pred 9.90e-01 7 -9.9942e-01 -1.0006e+00 | 2.19e-03 1.09e-04 1.44e-04 | 1.06e+00 4.15e-04 4.38e-04 | 8.3e-75 1.6e-02 cent 1.00e+00 8 -1.0000e+00 -1.0000e+00 | 2.26e-06 1.09e-07 1.44e-07 | 1.06e+00 3.54e-07 4.38e-07 | 1.2e-76 3.9e-01 pred 9.99e-01 9 -1.0000e+00 -1.0000e+00 | 2.18e-06 1.10e-07 1.44e-07 | 1.05e+00 4.17e-07 4.36e-07 | 2.9e-72 1.6e-02 cent 1.00e+00 10 -1.0000e+00 -1.0000e+00 | 2.21e-09 1.09e-10 1.44e-10 | 1.06e+00 4.00e-10 4.38e-10 | 3.4e-73 1.1e-01 pred 9.99e-01 11 -1.0000e+00 -1.0000e+00 | 2.19e-09 1.09e-10 1.44e-10 | 1.06e+00 4.14e-10 4.38e-10 | 6.3e-71 5.6e-04 cent 1.00e+00 12 -1.0000e+00 -1.0000e+00 | 2.19e-13 1.09e-14 1.44e-14 | 1.06e+00 4.14e-14 4.38e-14 | 3.7e-72 2.5e-03 pred 1.00e+00 13 -1.0000e+00 -1.0000e+00 | 2.20e-17 1.09e-18 1.44e-18 | 1.06e+00 4.08e-18 4.38e-18 | 1.2e-68 2.9e-01 pred 1.00e+00 14 -1.0000e+00 -1.0000e+00 | 2.20e-17 1.09e-18 1.43e-18 | 1.06e+00 4.13e-18 4.39e-18 | 7.8e-62 4.6e-03 cent 1.00e+00 15 -1.0000e+00 -1.0000e+00 | 2.17e-21 1.09e-22 1.44e-22 | 1.06e+00 4.40e-22 4.39e-22 | 3.6e-63 2.5e-01 pred 1.00e+00 16 -1.0000e+00 -1.0000e+00 | 2.19e-21 1.09e-22 1.44e-22 | 1.06e+00 4.15e-22 4.38e-22 | 4.3e-58 9.9e-03 cent 1.00e+00 17 -1.0000e+00 -1.0000e+00 | 2.20e-24 1.09e-25 1.44e-25 | 1.06e+00 4.05e-25 4.38e-25 | 8.9e-59 1.3e-01 pred 9.99e-01 18 -1.0000e+00 -1.0000e+00 | 2.19e-24 1.09e-25 1.44e-25 | 1.06e+00 4.14e-25 4.38e-25 | 1.1e-55 9.3e-04 cent 1.00e+00 19 -1.0000e+00 -1.0000e+00 | 2.19e-28 1.09e-29 1.44e-29 | 1.06e+00 4.14e-29 4.38e-29 | 3.3e-57 2.2e-03 pred 1.00e+00 20 -1.0000e+00 -1.0000e+00 | 2.20e-32 1.09e-33 1.44e-33 | 1.06e+00 4.09e-33 4.38e-33 | 4.0e-54 2.5e-01 pred 1.00e+00 optimal solution found; terminating status is Optimal after 20 iterations and 0.02 seconds 2.13e-02 seconds hyporootdettri4 Float64 adj=true curv=true ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 6.8659e-01 -2.0000e+00 | 5.00e+00 2.57e-01 3.38e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -8.6141e-01 -1.5006e+00 | 1.09e+00 5.26e-02 6.92e-02 | 9.78e-01 1.12e-01 2.00e-01 | 2.2e-16 9.1e-01 pred 8.00e-01 2 -8.3917e-01 -1.4062e+00 | 8.88e-01 5.66e-02 7.44e-02 | 9.09e-01 2.22e-01 1.82e-01 | 3.0e-15 5.4e-01 cent 1.00e+00 3 -7.5964e-01 -1.3510e+00 | 8.85e-01 5.67e-02 7.45e-02 | 9.08e-01 2.00e-01 1.78e-01 | 4.9e-16 1.1e-01 cent 1.00e+00 4 -7.4073e-01 -1.3351e+00 | 8.89e-01 5.64e-02 7.41e-02 | 9.13e-01 1.95e-01 1.78e-01 | 1.6e-17 5.4e-04 cent 1.00e+00 5 -9.5495e-01 -1.0124e+00 | 8.91e-02 5.32e-03 6.99e-03 | 9.68e-01 1.81e-02 1.78e-02 | 2.2e-16 6.8e-01 pred 9.00e-01 6 -9.7192e-01 -1.0293e+00 | 8.88e-02 5.35e-03 7.04e-03 | 9.61e-01 1.85e-02 1.78e-02 | 2.2e-16 6.8e-03 cent 1.00e+00 7 -9.9996e-01 -1.0000e+00 | 8.48e-05 5.32e-06 6.99e-06 | 9.67e-01 2.27e-05 1.78e-05 | 2.2e-16 7.4e-01 pred 9.99e-01 8 -9.9997e-01 -1.0000e+00 | 8.89e-05 5.32e-06 7.00e-06 | 9.67e-01 1.84e-05 1.78e-05 | 1.4e-13 6.0e-03 cent 1.00e+00 9 -1.0000e+00 -1.0000e+00 | 8.91e-08 5.32e-09 6.99e-09 | 9.67e-01 1.82e-08 1.78e-08 | 7.3e-15 3.3e-02 pred 9.99e-01 optimal solution found; terminating status is Optimal after 9 iterations and 0.001 seconds 1.96e-03 seconds hyporootdettri4 BigFloat adj=true curv=true ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 6.8659e-01 -2.0000e+00 | 5.00e+00 2.57e-01 3.38e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -8.6141e-01 -1.5006e+00 | 1.09e+00 5.26e-02 6.92e-02 | 9.78e-01 1.12e-01 2.00e-01 | 3.5e-77 9.1e-01 pred 8.00e-01 2 -8.3917e-01 -1.4062e+00 | 8.88e-01 5.66e-02 7.44e-02 | 9.09e-01 2.22e-01 1.82e-01 | 3.0e-76 5.4e-01 cent 1.00e+00 3 -7.5964e-01 -1.3510e+00 | 8.85e-01 5.67e-02 7.45e-02 | 9.08e-01 2.00e-01 1.78e-01 | 3.2e-77 1.1e-01 cent 1.00e+00 4 -7.4073e-01 -1.3351e+00 | 8.89e-01 5.64e-02 7.41e-02 | 9.13e-01 1.95e-01 1.78e-01 | 1.1e-78 5.4e-04 cent 1.00e+00 5 -9.5495e-01 -1.0124e+00 | 8.91e-02 5.32e-03 6.99e-03 | 9.68e-01 1.81e-02 1.78e-02 | 1.1e-77 6.8e-01 pred 9.00e-01 6 -9.7192e-01 -1.0293e+00 | 8.88e-02 5.35e-03 7.04e-03 | 9.61e-01 1.85e-02 1.78e-02 | 3.5e-77 6.8e-03 cent 1.00e+00 7 -9.9996e-01 -1.0000e+00 | 8.48e-05 5.32e-06 6.99e-06 | 9.67e-01 2.27e-05 1.78e-05 | 5.2e-77 7.4e-01 pred 9.99e-01 8 -9.9997e-01 -1.0000e+00 | 8.89e-05 5.32e-06 7.00e-06 | 9.67e-01 1.84e-05 1.78e-05 | 8.5e-75 6.0e-03 cent 1.00e+00 9 -1.0000e+00 -1.0000e+00 | 9.09e-09 5.32e-10 6.99e-10 | 9.67e-01 1.64e-09 1.78e-09 | 6.0e-76 3.2e-01 pred 1.00e+00 10 -1.0000e+00 -1.0000e+00 | 8.91e-09 5.31e-10 6.98e-10 | 9.69e-01 1.84e-09 1.78e-09 | 1.4e-70 9.0e-03 cent 1.00e+00 11 -1.0000e+00 -1.0000e+00 | 9.13e-13 5.32e-14 6.99e-14 | 9.68e-01 1.60e-13 1.78e-13 | 1.6e-71 5.3e-01 pred 1.00e+00 12 -1.0000e+00 -1.0000e+00 | 8.99e-13 5.27e-14 6.93e-14 | 9.76e-01 1.83e-13 1.80e-13 | 5.3e-66 3.0e-02 cent 1.00e+00 13 -1.0000e+00 -1.0000e+00 | 9.15e-16 5.29e-17 6.95e-17 | 9.73e-01 1.62e-16 1.79e-16 | 4.4e-67 5.2e-01 pred 9.99e-01 14 -1.0000e+00 -1.0000e+00 | 9.03e-16 5.24e-17 6.89e-17 | 9.81e-01 1.83e-16 1.80e-16 | 2.6e-63 2.8e-02 cent 1.00e+00 15 -1.0000e+00 -1.0000e+00 | 9.15e-19 5.26e-20 6.92e-20 | 9.78e-01 1.68e-19 1.80e-19 | 1.0e-63 4.1e-01 pred 9.99e-01 16 -1.0000e+00 -1.0000e+00 | 9.04e-19 5.24e-20 6.89e-20 | 9.82e-01 1.83e-19 1.81e-19 | 1.6e-60 1.7e-02 cent 1.00e+00 17 -1.0000e+00 -1.0000e+00 | 9.07e-22 5.25e-23 6.90e-23 | 9.80e-01 1.78e-22 1.80e-22 | 1.0e-61 1.5e-01 pred 9.99e-01 18 -1.0000e+00 -1.0000e+00 | 9.02e-22 5.25e-23 6.90e-23 | 9.81e-01 1.84e-22 1.80e-22 | 4.3e-58 1.3e-03 cent 1.00e+00 19 -1.0000e+00 -1.0000e+00 | 9.02e-26 5.25e-27 6.90e-27 | 9.80e-01 1.83e-26 1.80e-26 | 1.3e-59 1.1e-02 pred 1.00e+00 20 -1.0000e+00 -1.0000e+00 | 9.26e-30 5.25e-31 6.91e-31 | 9.79e-01 1.57e-30 1.80e-30 | 7.0e-55 6.5e-01 pred 1.00e+00 21 -1.0000e+00 -1.0000e+00 | 9.14e-30 5.18e-31 6.82e-31 | 9.92e-01 1.82e-30 1.82e-30 | 3.8e-49 3.8e-02 cent 1.00e+00 22 -1.0000e+00 -1.0000e+00 | 9.12e-30 5.18e-31 6.82e-31 | 9.92e-01 1.84e-30 1.82e-30 | 2.1e-51 2.7e-05 cent 1.00e+00 23 -1.0000e+00 -1.0000e+00 | 9.12e-34 5.18e-35 6.82e-35 | 9.92e-01 1.84e-34 1.82e-34 | 2.8e-53 9.0e-06 pred 1.00e+00 optimal solution found; terminating status is Optimal after 23 iterations and 0.021 seconds 2.18e-02 seconds primalinfeas3 Float64 other ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 0.0000e+00 3.8500e+00 | 3.00e+00 0.00e+00 1.07e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 0.0000e+00 7.4330e+00 | 1.63e+00 0.00e+00 1.56e+00 | 3.51e-01 1.16e+00 5.10e-01 | 1.3e-15 2.4e-01 pred 4.90e-01 2 0.0000e+00 6.6525e+00 | 1.51e+00 0.00e+00 1.35e+00 | 4.04e-01 1.23e+00 5.03e-01 | 5.6e-17 1.8e-02 cent 1.00e+00 3 0.0000e+00 1.5998e+01 | 8.28e-01 0.00e+00 2.04e+00 | 1.37e-01 1.45e+00 2.57e-01 | 6.7e-16 2.7e-01 pred 4.90e-01 4 0.0000e+00 1.3254e+01 | 7.64e-01 0.00e+00 1.67e+00 | 1.67e-01 1.47e+00 2.52e-01 | 5.6e-17 3.6e-02 cent 1.00e+00 5 0.0000e+00 1.3121e+01 | 7.56e-01 0.00e+00 1.64e+00 | 1.70e-01 1.49e+00 2.52e-01 | 1.7e-18 2.4e-04 cent 1.00e+00 6 0.0000e+00 3.0491e+01 | 4.04e-01 0.00e+00 2.13e+00 | 6.68e-02 1.66e+00 1.29e-01 | 4.4e-16 1.7e-01 pred 4.90e-01 7 0.0000e+00 2.6772e+01 | 3.85e-01 0.00e+00 1.87e+00 | 7.61e-02 1.66e+00 1.28e-01 | 4.3e-17 1.5e-02 cent 1.00e+00 8 0.0000e+00 1.1858e+02 | 1.24e-01 0.00e+00 2.62e+00 | 1.63e-02 1.82e+00 3.83e-02 | 2.2e-16 2.8e-01 pred 7.00e-01 9 0.0000e+00 9.3386e+01 | 1.14e-01 0.00e+00 2.11e+00 | 2.03e-02 1.78e+00 3.76e-02 | 1.1e-16 4.9e-02 cent 1.00e+00 10 0.0000e+00 9.0714e+01 | 1.13e-01 0.00e+00 2.04e+00 | 2.10e-02 1.79e+00 3.76e-02 | 3.5e-18 9.7e-04 cent 1.00e+00 11 0.0000e+00 3.2891e+02 | 3.46e-02 0.00e+00 2.25e+00 | 5.70e-03 1.84e+00 1.13e-02 | 2.2e-16 8.4e-02 pred 7.00e-01 primal infeasibility detected; terminating status is PrimalInfeasible after 11 iterations and 0.026 seconds 2.68e-02 seconds dualinfeas3 Float64 other ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 1.0000e+00 0.0000e+00 | 2.00e+00 5.00e-01 0.00e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 4.1441e-01 0.0000e+00 | 9.67e-01 3.05e-01 0.00e+00 | 8.37e-01 6.73e-01 5.10e-01 | 0.0e+00 1.8e-01 pred 4.90e-01 2 4.6909e-01 0.0000e+00 | 1.01e+00 3.32e-01 0.00e+00 | 7.67e-01 6.60e-01 5.07e-01 | 4.2e-17 2.6e-03 cent 1.00e+00 3 5.0813e-02 0.0000e+00 | 4.87e-01 2.21e-01 0.00e+00 | 5.89e-01 4.90e-01 2.58e-01 | 2.2e-16 2.8e-01 pred 4.90e-01 4 4.6213e-02 0.0000e+00 | 5.15e-01 2.54e-01 0.00e+00 | 5.11e-01 4.97e-01 2.56e-01 | 2.1e-17 1.1e-02 cent 1.00e+00 5 -4.8581e-01 0.0000e+00 | 2.50e-01 1.99e-01 0.00e+00 | 3.34e-01 4.27e-01 1.31e-01 | 1.1e-16 2.4e-01 pred 4.90e-01 6 -5.6241e-01 0.0000e+00 | 2.62e-01 2.22e-01 0.00e+00 | 2.99e-01 4.33e-01 1.30e-01 | 6.9e-18 8.6e-03 cent 1.00e+00 7 -1.5776e+00 0.0000e+00 | 1.30e-01 1.97e-01 0.00e+00 | 1.72e-01 4.06e-01 6.65e-02 | 2.2e-16 1.4e-01 pred 4.90e-01 8 -1.6878e+00 0.0000e+00 | 1.33e-01 2.09e-01 0.00e+00 | 1.62e-01 4.09e-01 6.65e-02 | 2.1e-17 2.5e-03 cent 1.00e+00 9 -6.3335e+00 0.0000e+00 | 3.81e-02 1.83e-01 0.00e+00 | 5.55e-02 3.92e-01 2.00e-02 | 6.1e-16 2.4e-01 pred 7.00e-01 10 -6.9265e+00 0.0000e+00 | 3.99e-02 2.01e-01 0.00e+00 | 5.06e-02 3.91e-01 1.99e-02 | 6.9e-18 6.4e-03 cent 1.00e+00 11 -2.3786e+01 0.0000e+00 | 1.18e-02 1.93e-01 0.00e+00 | 1.58e-02 3.88e-01 5.98e-03 | 5.6e-17 7.0e-02 pred 7.00e-01 12 -2.4481e+01 0.0000e+00 | 1.20e-02 1.98e-01 0.00e+00 | 1.54e-02 3.89e-01 5.98e-03 | 1.9e-17 5.7e-04 cent 1.00e+00 13 -8.2253e+01 0.0000e+00 | 3.57e-03 1.96e-01 0.00e+00 | 4.67e-03 3.87e-01 1.79e-03 | 3.3e-16 2.0e-02 pred 7.00e-01 dual infeasibility detected; terminating status is DualInfeasible after 13 iterations and 0.001 seconds 1.60e-03 seconds epinorminf4 Float64 other ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 -4.0000e-01 -2.1321e+00 | 3.00e+00 5.00e-01 3.66e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -8.5784e-01 -1.3565e+00 | 8.73e-01 1.57e-01 1.15e-01 | 9.58e-01 3.42e-01 3.00e-01 | 1.1e-16 1.8e-01 pred 7.00e-01 2 -8.7040e-01 -1.4048e+00 | 8.93e-01 1.61e-01 1.18e-01 | 9.32e-01 3.22e-01 2.98e-01 | 5.6e-17 2.0e-02 cent 1.00e+00 3 -9.7618e-01 -1.2470e+00 | 4.53e-01 8.41e-02 6.16e-02 | 9.09e-01 1.72e-01 1.52e-01 | 2.2e-16 1.1e-01 pred 4.90e-01 4 -9.6140e-01 -1.2374e+00 | 4.56e-01 8.45e-02 6.18e-02 | 9.06e-01 1.68e-01 1.52e-01 | 1.6e-17 5.3e-03 cent 1.00e+00 5 -9.9740e-01 -1.1376e+00 | 2.32e-01 4.36e-02 3.19e-02 | 8.95e-01 8.77e-02 7.76e-02 | 5.6e-17 9.0e-02 pred 4.90e-01 6 -9.8976e-01 -1.1312e+00 | 2.32e-01 4.36e-02 3.19e-02 | 8.96e-01 8.66e-02 7.75e-02 | 4.9e-17 2.3e-03 cent 1.00e+00 7 -1.0046e+00 -1.0466e+00 | 6.94e-02 1.32e-02 9.64e-03 | 8.89e-01 2.66e-02 2.33e-02 | 4.4e-16 2.1e-01 pred 7.00e-01 8 -9.9923e-01 -1.0418e+00 | 6.95e-02 1.32e-02 9.65e-03 | 8.88e-01 2.62e-02 2.32e-02 | 1.9e-16 6.5e-03 cent 1.00e+00 9 -1.0006e+00 -1.0133e+00 | 2.09e-02 3.96e-03 2.90e-03 | 8.88e-01 7.86e-03 6.97e-03 | 8.9e-16 7.2e-02 pred 7.00e-01 10 -1.0000e+00 -1.0128e+00 | 2.09e-02 3.96e-03 2.90e-03 | 8.88e-01 7.85e-03 6.96e-03 | 3.5e-16 9.4e-04 cent 1.00e+00 11 -1.0001e+00 -1.0039e+00 | 6.27e-03 1.19e-03 8.70e-04 | 8.88e-01 2.35e-03 2.09e-03 | 1.1e-15 2.3e-02 pred 7.00e-01 12 -1.0000e+00 -1.0012e+00 | 1.87e-03 3.58e-04 2.62e-04 | 8.85e-01 7.14e-04 6.25e-04 | 1.6e-14 1.8e-02 pred 7.00e-01 13 -1.0000e+00 -1.0004e+00 | 5.60e-04 1.07e-04 7.86e-05 | 8.85e-01 2.15e-04 1.87e-04 | 3.9e-14 2.0e-02 pred 7.00e-01 14 -1.0000e+00 -1.0001e+00 | 1.68e-04 3.22e-05 2.36e-05 | 8.84e-01 6.44e-05 5.62e-05 | 3.7e-13 2.1e-02 pred 7.00e-01 15 -1.0000e+00 -1.0000e+00 | 5.04e-05 9.67e-06 7.08e-06 | 8.84e-01 1.93e-05 1.69e-05 | 1.4e-13 2.3e-02 pred 7.00e-01 16 -1.0000e+00 -1.0000e+00 | 1.51e-05 2.90e-06 2.12e-06 | 8.84e-01 5.80e-06 5.06e-06 | 1.6e-12 2.6e-02 pred 7.00e-01 17 -1.0000e+00 -1.0000e+00 | 4.54e-06 8.71e-07 6.37e-07 | 8.84e-01 1.74e-06 1.52e-06 | 2.9e-12 3.0e-02 pred 7.00e-01 18 -1.0000e+00 -1.0000e+00 | 1.36e-06 2.61e-07 1.91e-07 | 8.84e-01 5.23e-07 4.56e-07 | 4.7e-11 3.6e-02 pred 7.00e-01 19 -1.0000e+00 -1.0000e+00 | 1.37e-06 2.61e-07 1.91e-07 | 8.84e-01 5.16e-07 4.56e-07 | 3.1e-14 4.7e-04 cent 1.00e+00 20 -1.0000e+00 -1.0000e+00 | 4.10e-07 7.84e-08 5.74e-08 | 8.84e-01 1.55e-07 1.37e-07 | 4.5e-14 9.2e-05 pred 7.00e-01 21 -1.0000e+00 -1.0000e+00 | 1.23e-07 2.35e-08 1.72e-08 | 8.84e-01 4.64e-08 4.10e-08 | 2.8e-12 6.3e-05 pred 7.00e-01 optimal solution found; terminating status is Optimal after 21 iterations and 0.001 seconds 2.12e-03 seconds hyporootdettri4 Float64 other ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 6.8659e-01 -2.0000e+00 | 5.00e+00 2.57e-01 3.38e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -1.9256e-01 -2.0203e+00 | 3.26e+00 1.83e-01 2.40e-01 | 9.24e-01 7.33e-01 6.57e-01 | 2.2e-16 1.9e-01 pred 3.43e-01 2 -8.5093e-02 -1.9043e+00 | 3.27e+00 1.77e-01 2.33e-01 | 9.53e-01 6.89e-01 6.55e-01 | 2.8e-17 1.6e-02 cent 1.00e+00 3 -5.3285e-01 -1.7273e+00 | 2.15e+00 1.16e-01 1.53e-01 | 9.54e-01 4.52e-01 4.31e-01 | 1.1e-16 1.7e-01 pred 3.43e-01 4 -4.7711e-01 -1.6604e+00 | 2.14e+00 1.15e-01 1.51e-01 | 9.70e-01 4.44e-01 4.29e-01 | 2.6e-17 1.7e-02 cent 1.00e+00 5 -6.8888e-01 -1.4574e+00 | 1.42e+00 7.31e-02 9.62e-02 | 9.98e-01 2.79e-01 2.82e-01 | 4.4e-16 1.2e-01 pred 3.43e-01 6 -6.7173e-01 -1.4339e+00 | 1.41e+00 7.28e-02 9.57e-02 | 1.00e+00 2.81e-01 2.82e-01 | 2.1e-17 8.6e-03 cent 1.00e+00 7 -8.3242e-01 -1.2172e+00 | 7.24e-01 3.58e-02 4.70e-02 | 1.04e+00 1.33e-01 1.44e-01 | 2.2e-16 2.0e-01 pred 4.90e-01 8 -8.3104e-01 -1.2119e+00 | 7.14e-01 3.59e-02 4.72e-02 | 1.04e+00 1.39e-01 1.43e-01 | 3.7e-17 2.1e-02 cent 1.00e+00 9 -9.0730e-01 -1.1003e+00 | 3.66e-01 1.79e-02 2.36e-02 | 1.06e+00 6.78e-02 7.30e-02 | 2.2e-16 1.1e-01 pred 4.90e-01 10 -9.0992e-01 -1.1020e+00 | 3.64e-01 1.80e-02 2.36e-02 | 1.06e+00 6.91e-02 7.29e-02 | 6.9e-18 4.6e-03 cent 1.00e+00 11 -9.6936e-01 -1.0271e+00 | 1.10e-01 5.32e-03 6.99e-03 | 1.07e+00 1.98e-02 2.19e-02 | 5.8e-16 2.1e-01 pred 7.00e-01 12 -9.7212e-01 -1.0295e+00 | 1.09e-01 5.36e-03 7.04e-03 | 1.06e+00 2.06e-02 2.17e-02 | 1.1e-16 1.5e-02 cent 1.00e+00 13 -9.9115e-01 -1.0084e+00 | 3.28e-02 1.60e-03 2.10e-03 | 1.07e+00 6.06e-03 6.54e-03 | 6.7e-16 7.1e-02 pred 7.00e-01 14 -9.9146e-01 -1.0087e+00 | 3.27e-02 1.60e-03 2.10e-03 | 1.07e+00 6.12e-03 6.54e-03 | 2.1e-17 1.7e-03 cent 1.00e+00 15 -9.9740e-01 -1.0026e+00 | 9.81e-03 4.79e-04 6.30e-04 | 1.07e+00 1.83e-03 1.96e-03 | 3.0e-16 2.2e-02 pred 7.00e-01 16 -9.9922e-01 -1.0008e+00 | 2.94e-03 1.44e-04 1.89e-04 | 1.07e+00 5.52e-04 5.88e-04 | 2.2e-16 1.8e-02 pred 7.00e-01 17 -9.9977e-01 -1.0002e+00 | 8.81e-04 4.32e-05 5.69e-05 | 1.07e+00 1.66e-04 1.76e-04 | 4.6e-16 2.5e-02 pred 7.00e-01 18 -9.9993e-01 -1.0001e+00 | 2.64e-04 1.30e-05 1.71e-05 | 1.07e+00 4.97e-05 5.29e-05 | 3.0e-16 3.3e-02 pred 7.00e-01 19 -9.9998e-01 -1.0000e+00 | 7.93e-05 3.89e-06 5.12e-06 | 1.07e+00 1.49e-05 1.59e-05 | 4.2e-16 4.4e-02 pred 7.00e-01 20 -9.9998e-01 -1.0000e+00 | 7.93e-05 3.90e-06 5.12e-06 | 1.07e+00 1.49e-05 1.59e-05 | 6.1e-15 1.2e-03 cent 1.00e+00 21 -9.9999e-01 -1.0000e+00 | 2.38e-05 1.17e-06 1.54e-06 | 1.07e+00 4.46e-06 4.76e-06 | 2.9e-15 1.1e-03 pred 7.00e-01 22 -1.0000e+00 -1.0000e+00 | 7.14e-06 3.51e-07 4.61e-07 | 1.07e+00 1.34e-06 1.43e-06 | 4.5e-15 1.5e-03 pred 7.00e-01 23 -1.0000e+00 -1.0000e+00 | 2.14e-06 1.05e-07 1.38e-07 | 1.07e+00 4.02e-07 4.29e-07 | 1.3e-15 1.9e-03 pred 7.00e-01 24 -1.0000e+00 -1.0000e+00 | 6.43e-07 3.16e-08 4.15e-08 | 1.07e+00 1.20e-07 1.29e-07 | 6.7e-16 2.6e-03 pred 7.00e-01 25 -1.0000e+00 -1.0000e+00 | 1.93e-07 9.48e-09 1.25e-08 | 1.07e+00 3.62e-08 3.86e-08 | 1.1e-15 3.5e-03 pred 7.00e-01 optimal solution found; terminating status is Optimal after 25 iterations and 0.004 seconds 4.60e-03 seconds starting CombinedStepper tests (with printing) primalinfeas3 Float64 shift=0 ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 0.0000e+00 3.8500e+00 | 3.00e+00 0.00e+00 1.07e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 0.0000e+00 7.9449e+01 | 7.63e-01 0.00e+00 8.44e+00 | 2.54e-02 1.45e+00 2.00e-01 | 1.3e-15 8.2e-01 co-a 8.00e-01 2 0.0000e+00 8.2556e+01 | 3.69e-02 0.00e+00 1.08e+00 | 1.98e-02 1.58e+00 1.70e-02 | 1.4e-15 8.3e-01 co-a 9.00e-01 3 0.0000e+00 2.5178e+03 | 1.64e-02 0.00e+00 1.24e+01 | 5.19e-04 1.29e+00 4.28e-03 | 5.6e-16 8.4e-01 co-a 7.00e-01 primal infeasibility detected; terminating status is PrimalInfeasible after 3 iterations and 0.117 seconds 1.18e-01 seconds primalinfeas3 BigFloat shift=0 ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 0.0000e+00 3.8500e+00 | 3.00e+00 0.00e+00 1.07e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 0.0000e+00 7.9449e+01 | 7.63e-01 0.00e+00 8.44e+00 | 2.54e-02 1.45e+00 2.00e-01 | 1.0e-76 8.2e-01 co-a 8.00e-01 2 0.0000e+00 8.2556e+01 | 3.69e-02 0.00e+00 1.08e+00 | 1.98e-02 1.58e+00 1.70e-02 | 3.2e-77 8.3e-01 co-a 9.00e-01 3 0.0000e+00 2.5178e+03 | 1.64e-02 0.00e+00 1.24e+01 | 5.19e-04 1.29e+00 4.28e-03 | 7.8e-77 8.4e-01 co-a 7.00e-01 primal infeasibility detected; terminating status is PrimalInfeasible after 3 iterations and 0.127 seconds 1.28e-01 seconds primalinfeas3 Float64 shift=2 ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 0.0000e+00 3.8500e+00 | 3.00e+00 0.00e+00 1.07e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 0.0000e+00 7.9449e+01 | 7.63e-01 0.00e+00 8.44e+00 | 2.54e-02 1.45e+00 2.00e-01 | 1.3e-15 8.2e-01 co-a 8.00e-01 2 0.0000e+00 8.2556e+01 | 3.69e-02 0.00e+00 1.08e+00 | 1.98e-02 1.58e+00 1.70e-02 | 1.4e-15 8.3e-01 co-a 9.00e-01 3 0.0000e+00 2.5178e+03 | 1.64e-02 0.00e+00 1.24e+01 | 5.19e-04 1.29e+00 4.28e-03 | 5.6e-16 8.4e-01 co-a 7.00e-01 primal infeasibility detected; terminating status is PrimalInfeasible after 3 iterations and 0.001 seconds 1.20e-03 seconds primalinfeas3 BigFloat shift=2 ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 0.0000e+00 3.8500e+00 | 3.00e+00 0.00e+00 1.07e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 0.0000e+00 7.9449e+01 | 7.63e-01 0.00e+00 8.44e+00 | 2.54e-02 1.45e+00 2.00e-01 | 1.0e-76 8.2e-01 co-a 8.00e-01 2 0.0000e+00 8.2556e+01 | 3.69e-02 0.00e+00 1.08e+00 | 1.98e-02 1.58e+00 1.70e-02 | 3.2e-77 8.3e-01 co-a 9.00e-01 3 0.0000e+00 2.5178e+03 | 1.64e-02 0.00e+00 1.24e+01 | 5.19e-04 1.29e+00 4.28e-03 | 7.8e-77 8.4e-01 co-a 7.00e-01 primal infeasibility detected; terminating status is PrimalInfeasible after 3 iterations and 0.002 seconds 2.56e-03 seconds dualinfeas3 Float64 shift=0 ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 1.0000e+00 0.0000e+00 | 2.00e+00 5.00e-01 0.00e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 -3.0162e-02 0.0000e+00 | 3.32e-01 1.57e-01 0.00e+00 | 6.39e-01 4.19e-01 2.00e-01 | 2.8e-17 8.3e-01 co-a 8.00e-01 2 -4.0200e+01 0.0000e+00 | 2.90e-03 1.50e-01 0.00e+00 | 6.66e-03 2.72e-01 1.57e-03 | 1.7e-16 8.4e-01 co-a 9.90e-01 dual infeasibility detected; terminating status is DualInfeasible after 2 iterations and 0.0 seconds 1.22e-03 seconds dualinfeas3 BigFloat shift=0 ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 1.0000e+00 0.0000e+00 | 2.00e+00 5.00e-01 0.00e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 -3.0162e-02 0.0000e+00 | 3.32e-01 1.57e-01 0.00e+00 | 6.39e-01 4.19e-01 2.00e-01 | 1.7e-77 8.3e-01 co-a 8.00e-01 2 -4.0200e+01 0.0000e+00 | 2.90e-03 1.50e-01 0.00e+00 | 6.66e-03 2.72e-01 1.57e-03 | 1.7e-77 8.4e-01 co-a 9.90e-01 dual infeasibility detected; terminating status is DualInfeasible after 2 iterations and 0.002 seconds 2.52e-03 seconds dualinfeas3 Float64 shift=2 ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 1.0000e+00 0.0000e+00 | 2.00e+00 5.00e-01 0.00e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 -3.0162e-02 0.0000e+00 | 3.32e-01 1.57e-01 0.00e+00 | 6.39e-01 4.19e-01 2.00e-01 | 2.8e-17 8.3e-01 co-a 8.00e-01 2 -4.7619e+00 0.0000e+00 | 3.34e-02 1.94e-01 0.00e+00 | 5.15e-02 2.85e-01 1.60e-02 | 1.7e-16 1.7e-01 co-a 9.00e-01 3 -2.0157e+02 0.0000e+00 | 1.02e-03 2.00e-01 0.00e+00 | 1.50e-03 3.03e-01 4.93e-04 | 1.7e-16 7.9e-02 co-a 9.70e-01 dual infeasibility detected; terminating status is DualInfeasible after 3 iterations and 0.0 seconds 1.23e-03 seconds dualinfeas3 BigFloat shift=2 ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 1.0000e+00 0.0000e+00 | 2.00e+00 5.00e-01 0.00e+00 | 1.00e+00 1.00e+00 1.00e+00 | 1 -3.0162e-02 0.0000e+00 | 3.32e-01 1.57e-01 0.00e+00 | 6.39e-01 4.19e-01 2.00e-01 | 1.7e-77 8.3e-01 co-a 8.00e-01 2 -4.7619e+00 0.0000e+00 | 3.34e-02 1.94e-01 0.00e+00 | 5.15e-02 2.85e-01 1.60e-02 | 1.7e-77 1.7e-01 co-a 9.00e-01 3 -2.0157e+02 0.0000e+00 | 1.02e-03 2.00e-01 0.00e+00 | 1.50e-03 3.03e-01 4.93e-04 | 1.3e-77 7.9e-02 co-a 9.70e-01 dual infeasibility detected; terminating status is DualInfeasible after 3 iterations and 0.002 seconds 3.03e-03 seconds epinorminf4 Float64 shift=0 ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 -4.0000e-01 -2.1321e+00 | 3.00e+00 5.00e-01 3.66e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -1.0415e+00 -1.2015e+00 | 2.84e-01 5.38e-02 3.94e-02 | 9.30e-01 1.25e-01 1.00e-01 | 1.1e-16 9.6e-01 co-a 9.00e-01 2 -9.9376e-01 -1.0453e+00 | 6.83e-02 2.02e-02 1.48e-02 | 7.44e-01 4.36e-02 2.52e-02 | 4.4e-16 8.6e-01 co-a 7.00e-01 3 -1.0010e+00 -1.0084e+00 | 7.65e-03 2.07e-03 1.51e-03 | 7.26e-01 2.83e-03 2.43e-03 | 1.6e-14 7.9e-01 co-a 9.00e-01 4 -1.0000e+00 -1.0012e+00 | 9.80e-04 3.47e-04 2.54e-04 | 6.49e-01 4.99e-04 3.26e-04 | 5.1e-13 9.2e-01 co-a 8.50e-01 5 -1.0000e+00 -1.0002e+00 | 1.30e-04 5.82e-05 4.26e-05 | 5.80e-01 7.62e-05 4.37e-05 | 1.5e-11 9.4e-01 co-a 8.50e-01 6 -1.0000e+00 -1.0000e+00 | 1.73e-05 9.81e-06 7.18e-06 | 5.16e-01 1.16e-05 5.83e-06 | 4.2e-11 8.6e-01 co-a 8.50e-01 7 -1.0000e+00 -1.0000e+00 | 2.43e-06 1.61e-06 1.18e-06 | 4.72e-01 1.63e-06 8.01e-07 | 2.6e-13 8.4e-01 co-a 8.50e-01 8 -1.0000e+00 -1.0000e+00 | 3.34e-07 2.65e-07 1.94e-07 | 4.30e-01 2.41e-07 1.09e-07 | 3.7e-12 9.7e-01 co-a 8.50e-01 9 -1.0000e+00 -1.0000e+00 | 5.45e-08 6.08e-08 4.45e-08 | 3.74e-01 5.79e-08 1.90e-08 | 5.9e-11 8.1e-01 co-a 8.00e-01 10 -1.0000e+00 -1.0000e+00 | 8.40e-09 9.56e-09 7.00e-09 | 3.57e-01 7.02e-09 2.73e-09 | 1.0e-10 6.1e-01 co-a 8.50e-01 optimal solution found; terminating status is Optimal after 10 iterations and 0.002 seconds 3.24e-03 seconds epinorminf4 BigFloat shift=0 ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 -4.0000e-01 -2.1321e+00 | 3.00e+00 5.00e-01 3.66e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -1.0415e+00 -1.2015e+00 | 2.84e-01 5.38e-02 3.94e-02 | 9.30e-01 1.25e-01 1.00e-01 | 1.7e-77 9.6e-01 co-a 9.00e-01 2 -9.9376e-01 -1.0453e+00 | 6.83e-02 2.02e-02 1.48e-02 | 7.44e-01 4.36e-02 2.52e-02 | 7.1e-77 8.6e-01 co-a 7.00e-01 3 -1.0010e+00 -1.0084e+00 | 7.65e-03 2.07e-03 1.51e-03 | 7.26e-01 2.83e-03 2.43e-03 | 4.5e-76 7.9e-01 co-a 9.00e-01 4 -1.0000e+00 -1.0012e+00 | 9.80e-04 3.47e-04 2.54e-04 | 6.49e-01 4.99e-04 3.26e-04 | 1.6e-75 9.2e-01 co-a 8.50e-01 5 -1.0000e+00 -1.0002e+00 | 1.30e-04 5.82e-05 4.26e-05 | 5.80e-01 7.62e-05 4.37e-05 | 1.3e-72 9.4e-01 co-a 8.50e-01 6 -1.0000e+00 -1.0000e+00 | 1.73e-05 9.81e-06 7.18e-06 | 5.16e-01 1.16e-05 5.83e-06 | 6.4e-71 8.6e-01 co-a 8.50e-01 7 -1.0000e+00 -1.0000e+00 | 2.43e-06 1.61e-06 1.18e-06 | 4.72e-01 1.63e-06 8.01e-07 | 1.1e-69 8.4e-01 co-a 8.50e-01 8 -1.0000e+00 -1.0000e+00 | 3.34e-07 2.65e-07 1.94e-07 | 4.30e-01 2.41e-07 1.09e-07 | 3.8e-68 9.7e-01 co-a 8.50e-01 9 -1.0000e+00 -1.0000e+00 | 5.45e-08 6.08e-08 4.45e-08 | 3.74e-01 5.79e-08 1.90e-08 | 9.3e-67 8.1e-01 co-a 8.00e-01 10 -1.0000e+00 -1.0000e+00 | 8.40e-09 9.56e-09 7.00e-09 | 3.57e-01 7.02e-09 2.73e-09 | 6.4e-65 6.1e-01 co-a 8.50e-01 11 -1.0000e+00 -1.0000e+00 | 8.37e-10 1.01e-09 7.41e-10 | 3.38e-01 5.73e-10 2.58e-10 | 7.4e-65 9.6e-01 co-a 9.00e-01 12 -1.0000e+00 -1.0000e+00 | 1.86e-10 3.54e-10 2.59e-10 | 2.90e-01 2.72e-10 6.63e-11 | 2.2e-63 8.7e-01 co-a 7.00e-01 13 -1.0000e+00 -1.0000e+00 | 2.03e-11 3.70e-11 2.71e-11 | 2.77e-01 1.83e-11 6.33e-12 | 1.2e-60 8.6e-01 co-a 9.00e-01 14 -1.0000e+00 -1.0000e+00 | 3.24e-12 8.42e-12 6.17e-12 | 2.43e-01 5.00e-12 1.11e-12 | 2.3e-59 9.3e-01 co-a 8.00e-01 15 -1.0000e+00 -1.0000e+00 | 4.50e-13 1.40e-12 1.02e-12 | 2.20e-01 7.05e-13 1.51e-13 | 1.2e-57 6.0e-01 co-a 8.50e-01 16 -1.0000e+00 -1.0000e+00 | 6.92e-14 2.15e-13 1.58e-13 | 2.14e-01 8.89e-14 2.21e-14 | 3.8e-57 7.1e-01 co-a 8.50e-01 17 -1.0000e+00 -1.0000e+00 | 9.24e-15 3.53e-14 2.58e-14 | 1.96e-01 1.47e-14 3.03e-15 | 1.3e-55 8.3e-01 co-a 8.50e-01 18 -1.0000e+00 -1.0000e+00 | 1.26e-15 5.82e-15 4.26e-15 | 1.78e-01 2.20e-15 4.13e-16 | 7.2e-54 9.9e-01 co-a 8.50e-01 19 -1.0000e+00 -1.0000e+00 | 2.04e-16 1.34e-15 9.83e-16 | 1.55e-01 5.33e-16 7.16e-17 | 5.9e-52 8.1e-01 co-a 8.00e-01 20 -1.0000e+00 -1.0000e+00 | 3.17e-17 2.10e-16 1.54e-16 | 1.48e-01 6.41e-17 1.03e-17 | 5.9e-51 5.8e-01 co-a 8.50e-01 21 -1.0000e+00 -1.0000e+00 | 3.16e-18 2.22e-17 1.63e-17 | 1.40e-01 5.28e-18 9.75e-19 | 2.1e-49 8.9e-01 co-a 9.00e-01 22 -1.0000e+00 -1.0000e+00 | 4.89e-19 5.10e-18 3.74e-18 | 1.22e-01 1.55e-18 1.70e-19 | 1.4e-47 9.6e-01 co-a 8.00e-01 23 -1.0000e+00 -1.0000e+00 | 4.75e-20 5.64e-19 4.13e-19 | 1.10e-01 1.26e-19 1.53e-20 | 1.8e-46 8.9e-01 co-a 9.00e-01 24 -1.0000e+00 -1.0000e+00 | 7.95e-21 1.27e-19 9.31e-20 | 9.80e-02 3.00e-20 2.72e-21 | 1.3e-44 8.6e-01 co-a 8.00e-01 25 -1.0000e+00 -1.0000e+00 | 1.15e-21 2.06e-20 1.51e-20 | 9.05e-02 4.01e-21 3.77e-22 | 1.8e-42 7.0e-01 co-a 8.50e-01 26 -1.0000e+00 -1.0000e+00 | 1.65e-22 3.30e-21 2.42e-21 | 8.49e-02 5.61e-22 5.31e-23 | 2.1e-41 8.5e-01 co-a 8.50e-01 27 -1.0000e+00 -1.0000e+00 | 2.80e-23 7.37e-22 5.40e-22 | 7.60e-02 1.33e-22 9.51e-24 | 6.1e-41 8.4e-01 co-a 8.00e-01 28 -1.0000e+00 -1.0000e+00 | 4.03e-24 1.19e-22 8.74e-23 | 7.04e-02 1.78e-23 1.32e-24 | 1.1e-38 7.7e-01 co-a 8.50e-01 29 -1.0000e+00 -1.0000e+00 | 5.63e-25 1.94e-23 1.42e-23 | 6.49e-02 2.59e-24 1.83e-25 | 2.1e-37 9.3e-01 co-a 8.50e-01 30 -1.0000e+00 -1.0000e+00 | 9.30e-26 4.42e-24 3.23e-24 | 5.71e-02 6.23e-25 3.21e-26 | 6.4e-35 8.6e-01 co-a 8.00e-01 31 -1.0000e+00 -1.0000e+00 | 1.36e-26 7.13e-25 5.22e-25 | 5.31e-02 8.13e-26 4.48e-27 | 1.7e-34 6.3e-01 co-a 8.50e-01 32 -1.0000e+00 -1.0000e+00 | 1.98e-27 1.13e-25 8.25e-26 | 5.04e-02 1.13e-26 6.38e-28 | 6.4e-33 7.6e-01 co-a 8.50e-01 33 -1.0000e+00 -1.0000e+00 | 2.67e-28 1.85e-26 1.35e-26 | 4.60e-02 1.79e-27 8.74e-29 | 6.3e-32 9.3e-01 co-a 8.50e-01 34 -1.0000e+00 -1.0000e+00 | 4.46e-29 4.20e-27 3.07e-27 | 4.05e-02 4.20e-28 1.54e-29 | 4.5e-54 8.2e-01 co-a 8.00e-01 35 -1.0000e+00 -1.0000e+00 | 6.71e-30 6.68e-28 4.89e-28 | 3.83e-02 5.27e-29 2.18e-30 | 7.9e-54 6.8e-01 co-a 8.50e-01 36 -1.0000e+00 -1.0000e+00 | 9.44e-31 1.07e-28 7.85e-29 | 3.57e-02 7.78e-30 3.05e-31 | 1.8e-51 8.1e-01 co-a 8.50e-01 37 -1.0000e+00 -1.0000e+00 | 1.63e-31 2.37e-29 1.74e-29 | 3.23e-02 1.78e-30 5.52e-32 | 3.9e-49 8.0e-01 co-a 8.00e-01 38 -1.0000e+00 -1.0000e+00 | 2.39e-32 3.81e-30 2.79e-30 | 3.02e-02 2.35e-31 7.74e-33 | 3.9e-45 8.2e-01 co-a 8.50e-01 39 -1.0000e+00 -1.0000e+00 | 4.14e-33 8.43e-31 6.17e-31 | 2.73e-02 5.35e-32 1.40e-33 | 9.7e-43 8.0e-01 co-a 8.00e-01 40 -1.0000e+00 -1.0000e+00 | 6.05e-34 1.35e-31 9.90e-32 | 2.55e-02 7.05e-33 1.96e-34 | 2.9e-39 8.1e-01 co-a 8.50e-01 optimal solution found; terminating status is Optimal after 40 iterations and 0.031 seconds 3.19e-02 seconds epinorminf4 Float64 shift=2 ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 -4.0000e-01 -2.1321e+00 | 3.00e+00 5.00e-01 3.66e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -1.0415e+00 -1.2015e+00 | 2.84e-01 5.38e-02 3.94e-02 | 9.30e-01 1.25e-01 1.00e-01 | 1.1e-16 9.6e-01 co-a 9.00e-01 2 -9.9376e-01 -1.0453e+00 | 6.83e-02 2.02e-02 1.48e-02 | 7.44e-01 4.36e-02 2.52e-02 | 4.4e-16 8.6e-01 co-a 7.00e-01 3 -1.0002e+00 -1.0103e+00 | 1.08e-02 3.13e-03 2.29e-03 | 7.18e-01 5.03e-03 3.60e-03 | 1.6e-14 3.2e-01 co-a 8.50e-01 4 -1.0001e+00 -1.0008e+00 | 6.00e-04 1.58e-04 1.16e-04 | 7.11e-01 1.60e-04 1.79e-04 | 1.1e-14 8.2e-01 co-a 9.50e-01 5 -1.0000e+00 -1.0000e+00 | 1.56e-05 5.55e-06 4.06e-06 | 6.08e-01 4.48e-06 4.58e-06 | 2.4e-12 7.3e-01 co-a 9.70e-01 6 -1.0000e+00 -1.0000e+00 | 4.83e-07 3.33e-07 2.44e-07 | 5.07e-01 5.54e-07 1.91e-07 | 1.3e-09 9.3e-01 co-a 9.50e-01 7 -1.0000e+00 -1.0000e+00 | 6.87e-08 2.98e-08 2.18e-08 | 5.67e-01 2.95e-08 2.14e-08 | 2.3e-11 5.8e-01 co-a 9.00e-01 optimal solution found; terminating status is Optimal after 7 iterations and 0.002 seconds 2.63e-03 seconds epinorminf4 BigFloat shift=2 ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 -4.0000e-01 -2.1321e+00 | 3.00e+00 5.00e-01 3.66e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -1.0415e+00 -1.2015e+00 | 2.84e-01 5.38e-02 3.94e-02 | 9.30e-01 1.25e-01 1.00e-01 | 1.7e-77 9.6e-01 co-a 9.00e-01 2 -9.9376e-01 -1.0453e+00 | 6.83e-02 2.02e-02 1.48e-02 | 7.44e-01 4.36e-02 2.52e-02 | 7.1e-77 8.6e-01 co-a 7.00e-01 3 -1.0002e+00 -1.0103e+00 | 1.08e-02 3.13e-03 2.29e-03 | 7.18e-01 5.03e-03 3.60e-03 | 4.5e-76 3.2e-01 co-a 8.50e-01 4 -1.0001e+00 -1.0008e+00 | 6.00e-04 1.58e-04 1.16e-04 | 7.11e-01 1.60e-04 1.79e-04 | 8.0e-76 8.2e-01 co-a 9.50e-01 5 -1.0000e+00 -1.0000e+00 | 1.56e-05 5.55e-06 4.06e-06 | 6.08e-01 4.48e-06 4.58e-06 | 8.9e-73 7.3e-01 co-a 9.70e-01 6 -1.0000e+00 -1.0000e+00 | 4.83e-07 3.33e-07 2.44e-07 | 5.07e-01 5.54e-07 1.91e-07 | 6.1e-70 9.3e-01 co-a 9.50e-01 7 -1.0000e+00 -1.0000e+00 | 6.87e-08 2.98e-08 2.18e-08 | 5.67e-01 2.95e-08 2.14e-08 | 2.1e-66 5.8e-01 co-a 9.00e-01 8 -1.0000e+00 -1.0000e+00 | 3.18e-09 1.64e-09 1.20e-09 | 5.14e-01 1.34e-09 9.67e-10 | 4.4e-65 5.1e-01 co-a 9.50e-01 9 -1.0000e+00 -1.0000e+00 | 6.85e-11 5.62e-11 4.12e-11 | 4.50e-01 7.38e-11 2.54e-11 | 1.1e-62 7.6e-01 co-a 9.70e-01 10 -1.0000e+00 -1.0000e+00 | 8.84e-12 5.30e-12 3.88e-12 | 4.77e-01 4.08e-12 2.70e-12 | 3.2e-59 9.4e-01 co-a 9.00e-01 11 -1.0000e+00 -1.0000e+00 | 1.95e-12 1.85e-12 1.36e-12 | 4.09e-01 2.01e-12 6.94e-13 | 4.2e-58 8.7e-01 co-a 7.00e-01 12 -1.0000e+00 -1.0000e+00 | 2.99e-13 2.93e-13 2.15e-13 | 3.88e-01 2.48e-13 9.87e-14 | 1.0e-55 4.0e-01 co-a 8.50e-01 13 -1.0000e+00 -1.0000e+00 | 3.07e-14 3.00e-14 2.19e-14 | 3.80e-01 2.08e-14 9.66e-15 | 1.2e-55 5.8e-01 co-a 9.00e-01 14 -1.0000e+00 -1.0000e+00 | 1.52e-15 1.63e-15 1.20e-15 | 3.49e-01 7.23e-16 4.44e-16 | 1.8e-53 8.6e-01 co-a 9.50e-01 15 -1.0000e+00 -1.0000e+00 | 4.97e-17 9.86e-17 7.22e-17 | 2.89e-01 8.20e-17 1.84e-17 | 4.4e-51 7.0e-01 co-a 9.50e-01 16 -1.0000e+00 -1.0000e+00 | 9.20e-18 1.39e-17 1.02e-17 | 3.07e-01 8.14e-18 2.93e-18 | 5.5e-48 5.1e-01 co-a 8.50e-01 17 -1.0000e+00 -1.0000e+00 | 4.67e-19 7.47e-19 5.47e-19 | 2.86e-01 2.76e-19 1.36e-19 | 8.5e-47 8.2e-01 co-a 9.50e-01 18 -1.0000e+00 -1.0000e+00 | 1.52e-20 4.49e-20 3.29e-20 | 2.38e-01 3.14e-20 5.67e-21 | 1.5e-44 7.9e-01 co-a 9.50e-01 19 -1.0000e+00 -1.0000e+00 | 1.95e-21 4.26e-21 3.12e-21 | 2.50e-01 1.76e-21 5.97e-22 | 8.2e-41 8.9e-01 co-a 9.00e-01 20 -1.0000e+00 -1.0000e+00 | 2.98e-22 9.83e-22 7.20e-22 | 2.17e-01 5.37e-22 1.04e-22 | 2.3e-40 9.5e-01 co-a 8.00e-01 21 -1.0000e+00 -1.0000e+00 | 2.94e-23 1.08e-22 7.89e-23 | 1.98e-01 4.21e-23 9.44e-24 | 2.4e-37 8.9e-01 co-a 9.00e-01 22 -1.0000e+00 -1.0000e+00 | 4.86e-24 2.44e-23 1.79e-23 | 1.75e-01 1.04e-23 1.67e-24 | 2.9e-36 9.0e-01 co-a 8.00e-01 23 -1.0000e+00 -1.0000e+00 | 6.85e-25 4.01e-24 2.94e-24 | 1.60e-01 1.43e-24 2.28e-25 | 3.8e-34 6.5e-01 co-a 8.50e-01 24 -1.0000e+00 -1.0000e+00 | 1.03e-25 6.29e-25 4.60e-25 | 1.53e-01 1.87e-25 3.28e-26 | 5.1e-35 7.7e-01 co-a 8.50e-01 25 -1.0000e+00 -1.0000e+00 | 1.36e-26 1.04e-25 7.60e-26 | 1.39e-01 3.06e-26 4.47e-27 | 2.8e-32 9.4e-01 co-a 8.50e-01 26 -1.0000e+00 -1.0000e+00 | 2.26e-27 2.36e-26 1.73e-26 | 1.22e-01 7.19e-27 7.85e-28 | 4.2e-31 8.0e-01 co-a 8.00e-01 27 -1.0000e+00 -1.0000e+00 | 3.47e-28 3.72e-27 2.72e-27 | 1.16e-01 8.79e-28 1.12e-28 | 8.4e-54 6.7e-01 co-a 8.50e-01 28 -1.0000e+00 -1.0000e+00 | 4.83e-29 5.99e-28 4.38e-28 | 1.08e-01 1.33e-28 1.57e-29 | 1.3e-53 7.8e-01 co-a 8.50e-01 29 -1.0000e+00 -1.0000e+00 | 6.59e-30 9.83e-29 7.19e-29 | 9.90e-02 2.04e-29 2.15e-30 | 2.8e-50 9.7e-01 co-a 8.50e-01 30 -1.0000e+00 -1.0000e+00 | 1.07e-30 2.26e-29 1.65e-29 | 8.63e-02 4.92e-30 3.75e-31 | 1.2e-47 8.4e-01 co-a 8.00e-01 31 -1.0000e+00 -1.0000e+00 | 1.62e-31 3.59e-30 2.63e-30 | 8.14e-02 6.15e-31 5.30e-32 | 6.4e-46 5.9e-01 co-a 8.50e-01 32 -1.0000e+00 -1.0000e+00 | 1.65e-32 3.76e-31 2.75e-31 | 7.76e-02 4.80e-32 5.06e-33 | 6.7e-43 9.7e-01 co-a 9.00e-01 optimal solution found; terminating status is Optimal after 32 iterations and 0.026 seconds 2.66e-02 seconds hyporootdettri4 Float64 shift=0 ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 6.8659e-01 -2.0000e+00 | 5.00e+00 2.57e-01 3.38e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -8.6141e-01 -1.5006e+00 | 1.09e+00 5.26e-02 6.92e-02 | 9.78e-01 1.12e-01 2.00e-01 | 2.2e-16 9.1e-01 co-a 8.00e-01 2 -9.6942e-01 -1.0198e+00 | 9.00e-02 5.04e-03 6.63e-03 | 1.02e+00 2.23e-02 1.88e-02 | 5.2e-15 7.9e-01 co-a 9.00e-01 3 -9.9422e-01 -1.0008e+00 | 9.94e-03 5.24e-04 6.89e-04 | 9.81e-01 8.97e-04 1.80e-03 | 6.8e-16 8.4e-01 co-a 9.00e-01 4 -1.0000e+00 -1.0006e+00 | 6.45e-04 6.57e-05 8.64e-05 | 7.83e-01 2.80e-04 1.44e-04 | 2.4e-14 8.9e-01 co-a 9.00e-01 5 -9.9994e-01 -1.0000e+00 | 9.81e-05 5.28e-06 6.94e-06 | 9.75e-01 9.66e-06 1.79e-05 | 1.3e-12 8.1e-01 co-a 9.00e-01 6 -1.0000e+00 -1.0000e+00 | 6.65e-06 6.47e-07 8.51e-07 | 7.95e-01 2.66e-06 1.46e-06 | 1.1e-12 7.8e-01 co-a 9.00e-01 7 -1.0000e+00 -1.0000e+00 | 9.57e-07 5.31e-08 6.97e-08 | 9.70e-01 1.17e-07 1.78e-07 | 6.5e-11 6.5e-01 co-a 9.00e-01 8 -1.0000e+00 -1.0000e+00 | 2.00e-08 1.88e-09 2.47e-09 | 8.21e-01 8.77e-09 4.53e-09 | 4.3e-11 9.9e-01 co-a 9.70e-01 optimal solution found; terminating status is Optimal after 8 iterations and 0.004 seconds 4.59e-03 seconds hyporootdettri4 BigFloat shift=0 ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 6.8659e-01 -2.0000e+00 | 5.00e+00 2.57e-01 3.38e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -8.6141e-01 -1.5006e+00 | 1.09e+00 5.26e-02 6.92e-02 | 9.78e-01 1.12e-01 2.00e-01 | 3.5e-77 9.1e-01 co-a 8.00e-01 2 -9.6942e-01 -1.0198e+00 | 9.00e-02 5.04e-03 6.63e-03 | 1.02e+00 2.23e-02 1.88e-02 | 6.9e-76 7.9e-01 co-a 9.00e-01 3 -9.9422e-01 -1.0008e+00 | 9.94e-03 5.24e-04 6.89e-04 | 9.81e-01 8.97e-04 1.80e-03 | 8.2e-77 8.4e-01 co-a 9.00e-01 4 -1.0000e+00 -1.0006e+00 | 6.45e-04 6.57e-05 8.64e-05 | 7.83e-01 2.80e-04 1.44e-04 | 1.1e-75 8.9e-01 co-a 9.00e-01 5 -9.9994e-01 -1.0000e+00 | 9.81e-05 5.28e-06 6.94e-06 | 9.75e-01 9.66e-06 1.79e-05 | 8.8e-74 8.1e-01 co-a 9.00e-01 6 -1.0000e+00 -1.0000e+00 | 6.65e-06 6.47e-07 8.51e-07 | 7.95e-01 2.66e-06 1.46e-06 | 1.1e-73 7.8e-01 co-a 9.00e-01 7 -1.0000e+00 -1.0000e+00 | 9.57e-07 5.30e-08 6.97e-08 | 9.70e-01 1.17e-07 1.78e-07 | 6.2e-72 6.5e-01 co-a 9.00e-01 8 -1.0000e+00 -1.0000e+00 | 2.00e-08 1.88e-09 2.47e-09 | 8.21e-01 8.77e-09 4.53e-09 | 1.8e-71 9.3e-01 co-a 9.70e-01 9 -1.0000e+00 -1.0000e+00 | 3.08e-09 1.52e-10 2.00e-10 | 1.01e+00 2.73e-10 5.59e-10 | 2.6e-69 7.4e-01 co-a 9.00e-01 10 -1.0000e+00 -1.0000e+00 | 2.05e-10 1.89e-11 2.49e-11 | 8.16e-01 8.02e-11 4.50e-11 | 3.6e-69 6.7e-01 co-a 9.00e-01 11 -1.0000e+00 -1.0000e+00 | 4.10e-11 2.44e-12 3.20e-12 | 9.50e-01 6.52e-12 7.86e-12 | 1.4e-67 3.7e-01 co-a 8.50e-01 12 -1.0000e+00 -1.0000e+00 | 1.11e-12 8.08e-14 1.06e-13 | 8.60e-01 1.96e-13 2.13e-13 | 2.9e-67 9.1e-01 co-a 9.70e-01 13 -1.0000e+00 -1.0000e+00 | 1.03e-13 8.86e-15 1.17e-14 | 7.84e-01 1.80e-14 1.95e-14 | 5.8e-66 5.9e-01 co-a 9.00e-01 14 -1.0000e+00 -1.0000e+00 | 4.15e-15 5.01e-16 6.59e-16 | 6.93e-01 1.46e-15 8.60e-16 | 3.8e-65 4.9e-01 co-a 9.50e-01 15 -1.0000e+00 -1.0000e+00 | 7.03e-16 7.29e-17 9.59e-17 | 7.14e-01 1.33e-16 1.33e-16 | 3.1e-64 5.2e-01 co-a 8.50e-01 16 -1.0000e+00 -1.0000e+00 | 5.71e-17 8.33e-18 1.10e-17 | 6.25e-01 2.03e-17 1.16e-17 | 9.0e-63 7.1e-01 co-a 9.00e-01 17 -1.0000e+00 -1.0000e+00 | 9.06e-18 1.28e-18 1.68e-18 | 6.11e-01 1.93e-18 1.71e-18 | 1.2e-61 6.3e-01 co-a 8.50e-01 18 -1.0000e+00 -1.0000e+00 | 1.06e-18 2.24e-19 2.95e-19 | 5.23e-01 4.92e-19 2.19e-19 | 2.3e-60 8.2e-01 co-a 8.50e-01 19 -1.0000e+00 -1.0000e+00 | 1.62e-19 3.57e-20 4.69e-20 | 4.93e-01 4.90e-20 3.10e-20 | 4.8e-60 5.9e-01 co-a 8.50e-01 20 -1.0000e+00 -1.0000e+00 | 1.96e-20 6.16e-21 8.10e-21 | 4.28e-01 1.07e-20 4.03e-21 | 9.0e-59 8.5e-01 co-a 8.50e-01 21 -1.0000e+00 -1.0000e+00 | 2.99e-21 9.82e-22 1.29e-21 | 4.03e-01 1.07e-21 5.70e-22 | 2.6e-58 6.6e-01 co-a 8.50e-01 22 -1.0000e+00 -1.0000e+00 | 4.61e-22 2.32e-22 3.05e-22 | 3.41e-01 3.45e-22 9.65e-23 | 1.4e-57 6.2e-01 co-a 8.00e-01 23 -1.0000e+00 -1.0000e+00 | 7.71e-23 3.46e-23 4.55e-23 | 3.43e-01 2.99e-23 1.46e-23 | 2.1e-57 5.7e-01 co-a 8.50e-01 24 -1.0000e+00 -1.0000e+00 | 6.19e-24 3.99e-24 5.25e-24 | 2.97e-01 4.64e-24 1.26e-24 | 3.6e-56 9.7e-01 co-a 9.00e-01 25 -1.0000e+00 -1.0000e+00 | 8.93e-25 6.56e-25 8.63e-25 | 2.71e-01 5.25e-25 1.73e-25 | 1.2e-55 8.5e-01 co-a 8.50e-01 26 -1.0000e+00 -1.0000e+00 | 9.79e-26 1.21e-25 1.59e-25 | 2.21e-01 1.29e-25 2.11e-26 | 2.2e-53 6.1e-01 co-a 8.50e-01 27 -1.0000e+00 -1.0000e+00 | 1.80e-26 1.67e-26 2.19e-26 | 2.40e-01 1.10e-26 3.44e-27 | 2.1e-54 4.6e-01 co-a 8.50e-01 28 -1.0000e+00 -1.0000e+00 | 1.53e-27 1.86e-27 2.45e-27 | 2.15e-01 1.47e-27 3.08e-28 | 1.9e-53 7.5e-01 co-a 9.00e-01 29 -1.0000e+00 -1.0000e+00 | 2.36e-28 2.89e-28 3.80e-28 | 2.08e-01 1.52e-28 4.46e-29 | 3.9e-53 6.0e-01 co-a 8.50e-01 30 -1.0000e+00 -1.0000e+00 | 2.80e-29 5.03e-29 6.61e-29 | 1.79e-01 3.71e-29 5.77e-30 | 9.3e-52 7.9e-01 co-a 8.50e-01 31 -1.0000e+00 -1.0000e+00 | 4.36e-30 7.88e-30 1.04e-29 | 1.71e-01 3.55e-30 8.28e-31 | 1.6e-51 6.3e-01 co-a 8.50e-01 32 -1.0000e+00 -1.0000e+00 | 5.13e-31 1.38e-30 1.82e-30 | 1.47e-01 8.47e-31 1.06e-31 | 7.8e-50 9.0e-01 co-a 8.50e-01 33 -1.0000e+00 -1.0000e+00 | 7.57e-32 2.25e-31 2.96e-31 | 1.35e-01 9.15e-32 1.47e-32 | 1.7e-49 6.5e-01 co-a 8.50e-01 34 -1.0000e+00 -1.0000e+00 | 9.38e-33 3.87e-32 5.08e-32 | 1.18e-01 1.83e-32 1.92e-33 | 8.5e-48 7.4e-01 co-a 8.50e-01 optimal solution found; terminating status is Optimal after 34 iterations and 0.054 seconds 5.56e-02 seconds hyporootdettri4 Float64 shift=2 ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 6.8659e-01 -2.0000e+00 | 5.00e+00 2.57e-01 3.38e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -8.6141e-01 -1.5006e+00 | 1.09e+00 5.26e-02 6.92e-02 | 9.78e-01 1.12e-01 2.00e-01 | 2.2e-16 9.1e-01 co-a 8.00e-01 2 -9.6942e-01 -1.0198e+00 | 9.00e-02 5.04e-03 6.63e-03 | 1.02e+00 2.23e-02 1.88e-02 | 5.2e-15 7.9e-01 co-a 9.00e-01 3 -9.9422e-01 -1.0008e+00 | 9.94e-03 5.24e-04 6.89e-04 | 9.81e-01 8.97e-04 1.80e-03 | 6.8e-16 8.4e-01 co-a 9.00e-01 4 -1.0000e+00 -1.0006e+00 | 6.45e-04 6.57e-05 8.64e-05 | 7.83e-01 2.80e-04 1.44e-04 | 2.4e-14 8.9e-01 co-a 9.00e-01 5 -9.9994e-01 -1.0000e+00 | 9.81e-05 5.28e-06 6.94e-06 | 9.75e-01 9.66e-06 1.79e-05 | 1.3e-12 8.1e-01 co-a 9.00e-01 6 -1.0000e+00 -1.0000e+00 | 6.65e-06 6.47e-07 8.51e-07 | 7.95e-01 2.66e-06 1.46e-06 | 1.1e-12 7.8e-01 co-a 9.00e-01 7 -1.0000e+00 -1.0000e+00 | 9.57e-07 5.31e-08 6.97e-08 | 9.70e-01 1.17e-07 1.78e-07 | 6.5e-11 6.5e-01 co-a 9.00e-01 8 -1.0000e+00 -1.0000e+00 | 2.00e-08 1.88e-09 2.47e-09 | 8.21e-01 8.77e-09 4.53e-09 | 4.3e-11 9.9e-01 co-a 9.70e-01 optimal solution found; terminating status is Optimal after 8 iterations and 0.003 seconds 3.58e-03 seconds hyporootdettri4 BigFloat shift=2 ... iter p_obj d_obj | abs_gap x_feas z_feas | tau kap mu | dir_res prox step alpha 0 6.8659e-01 -2.0000e+00 | 5.00e+00 2.57e-01 3.38e-01 | 1.00e+00 1.00e+00 1.00e+00 | 1 -8.6141e-01 -1.5006e+00 | 1.09e+00 5.26e-02 6.92e-02 | 9.78e-01 1.12e-01 2.00e-01 | 3.5e-77 9.1e-01 co-a 8.00e-01 2 -9.6942e-01 -1.0198e+00 | 9.00e-02 5.04e-03 6.63e-03 | 1.02e+00 2.23e-02 1.88e-02 | 6.9e-76 7.9e-01 co-a 9.00e-01 3 -9.9422e-01 -1.0008e+00 | 9.94e-03 5.24e-04 6.89e-04 | 9.81e-01 8.97e-04 1.80e-03 | 8.2e-77 8.4e-01 co-a 9.00e-01 4 -1.0000e+00 -1.0006e+00 | 6.45e-04 6.57e-05 8.64e-05 | 7.83e-01 2.80e-04 1.44e-04 | 1.1e-75 8.9e-01 co-a 9.00e-01 5 -9.9994e-01 -1.0000e+00 | 9.81e-05 5.28e-06 6.94e-06 | 9.75e-01 9.66e-06 1.79e-05 | 8.8e-74 8.1e-01 co-a 9.00e-01 6 -1.0000e+00 -1.0000e+00 | 6.65e-06 6.47e-07 8.51e-07 | 7.95e-01 2.66e-06 1.46e-06 | 1.1e-73 7.8e-01 co-a 9.00e-01 7 -1.0000e+00 -1.0000e+00 | 9.57e-07 5.30e-08 6.97e-08 | 9.70e-01 1.17e-07 1.78e-07 | 6.2e-72 6.5e-01 co-a 9.00e-01 8 -1.0000e+00 -1.0000e+00 | 2.00e-08 1.88e-09 2.47e-09 | 8.21e-01 8.77e-09 4.53e-09 | 1.8e-71 9.3e-01 co-a 9.70e-01 9 -1.0000e+00 -1.0000e+00 | 3.08e-09 1.52e-10 2.00e-10 | 1.01e+00 2.73e-10 5.59e-10 | 2.6e-69 7.4e-01 co-a 9.00e-01 10 -1.0000e+00 -1.0000e+00 | 2.05e-10 1.89e-11 2.49e-11 | 8.16e-01 8.02e-11 4.50e-11 | 3.6e-69 6.7e-01 co-a 9.00e-01 11 -1.0000e+00 -1.0000e+00 | 4.10e-11 2.44e-12 3.20e-12 | 9.50e-01 6.52e-12 7.86e-12 | 1.4e-67 3.7e-01 co-a 8.50e-01 12 -1.0000e+00 -1.0000e+00 | 1.80e-12 1.35e-13 1.77e-13 | 8.61e-01 3.90e-13 3.56e-13 | 2.9e-67 5.8e-01 co-a 9.50e-01 13 -1.0000e+00 -1.0000e+00 | 1.84e-13 1.39e-14 1.82e-14 | 8.35e-01 2.74e-14 3.45e-14 | 1.5e-66 6.0e-01 co-a 9.00e-01 14 -1.0000e+00 -1.0000e+00 | 3.99e-15 4.86e-16 6.39e-16 | 7.15e-01 1.87e-15 8.88e-16 | 3.4e-65 8.1e-01 co-a 9.70e-01 15 -1.0000e+00 -1.0000e+00 | 5.95e-16 3.94e-17 5.18e-17 | 8.81e-01 6.90e-17 1.09e-16 | 4.5e-63 6.4e-01 co-a 9.00e-01 16 -1.0000e+00 -1.0000e+00 | 2.03e-17 2.40e-18 3.16e-18 | 7.24e-01 9.15e-18 4.49e-18 | 2.8e-62 7.9e-01 co-a 9.50e-01 17 -1.0000e+00 -1.0000e+00 | 2.98e-18 1.96e-19 2.57e-19 | 8.88e-01 3.70e-19 5.51e-19 | 8.0e-61 6.2e-01 co-a 9.00e-01 18 -1.0000e+00 -1.0000e+00 | 1.05e-19 1.17e-20 1.54e-20 | 7.42e-01 4.53e-20 2.30e-20 | 7.0e-60 9.3e-01 co-a 9.50e-01 19 -1.0000e+00 -1.0000e+00 | 1.47e-20 9.76e-22 1.28e-21 | 8.89e-01 2.04e-21 2.76e-21 | 5.2e-58 8.6e-01 co-a 9.00e-01 20 -1.0000e+00 -1.0000e+00 | 1.16e-21 1.13e-22 1.49e-22 | 7.68e-01 3.55e-22 2.38e-22 | 5.2e-58 3.4e-01 co-a 9.00e-01 21 -1.0000e+00 -1.0000e+00 | 1.34e-22 1.07e-23 1.41e-23 | 8.10e-01 2.10e-23 2.51e-23 | 1.4e-57 5.1e-01 co-a 9.00e-01 22 -1.0000e+00 -1.0000e+00 | 3.24e-24 3.73e-25 4.90e-25 | 6.99e-01 9.46e-25 6.50e-25 | 8.7e-56 6.7e-01 co-a 9.70e-01 23 -1.0000e+00 -1.0000e+00 | 5.02e-25 5.73e-26 7.53e-26 | 6.82e-01 1.02e-25 9.52e-26 | 1.5e-54 5.1e-01 co-a 8.50e-01 24 -1.0000e+00 -1.0000e+00 | 4.12e-26 6.52e-27 8.57e-27 | 6.00e-01 1.50e-26 8.37e-27 | 1.9e-53 7.4e-01 co-a 9.00e-01 25 -1.0000e+00 -1.0000e+00 | 6.48e-27 1.01e-27 1.32e-27 | 5.83e-01 1.45e-27 1.22e-27 | 5.0e-53 6.3e-01 co-a 8.50e-01 26 -1.0000e+00 -1.0000e+00 | 7.54e-28 1.77e-28 2.32e-28 | 4.98e-01 3.70e-28 1.56e-28 | 1.5e-51 8.5e-01 co-a 8.50e-01 27 -1.0000e+00 -1.0000e+00 | 1.14e-28 2.84e-29 3.73e-29 | 4.65e-01 3.80e-29 2.19e-29 | 2.3e-51 6.0e-01 co-a 8.50e-01 28 -1.0000e+00 -1.0000e+00 | 1.40e-29 4.87e-30 6.40e-30 | 4.06e-01 7.91e-30 2.87e-30 | 8.3e-50 8.2e-01 co-a 8.50e-01 29 -1.0000e+00 -1.0000e+00 | 2.16e-30 7.68e-31 1.01e-30 | 3.86e-01 7.73e-31 4.10e-31 | 4.5e-49 6.6e-01 co-a 8.50e-01 30 -1.0000e+00 -1.0000e+00 | 3.31e-31 1.82e-31 2.39e-31 | 3.26e-01 2.60e-31 6.92e-32 | 2.0e-48 6.7e-01 co-a 8.00e-01 optimal solution found; terminating status is Optimal after 30 iterations and 0.057 seconds 5.80e-02 seconds starting model modification tests modify1 Float64 ... 1.42e+00 seconds modify1 Float64 ... 4.33e-03 seconds modify1 Float64 ... 3.61e-03 seconds modify1 Float64 ... 4.51e-03 seconds modify1 Float64 ... 4.37e-03 seconds modify1 Float64 ... 3.65e-03 seconds modify1 BigFloat ... 1.34e+00 seconds modify1 BigFloat ... 3.73e-02 seconds modify1 BigFloat ... 2.92e-02 seconds modify1 BigFloat ... 3.70e-02 seconds modify1 BigFloat ... 4.02e-02 seconds modify1 BigFloat ... 8.89e-02 seconds modify1 Float64 ... 1.39e-02 seconds modify1 Float64 ... 4.74e-03 seconds modify1 Float64 ... 3.94e-03 seconds modify1 Float64 ... 4.58e-03 seconds modify1 Float64 ... 4.66e-03 seconds modify1 Float64 ... 4.05e-03 seconds modify1 Float64 ... 6.21e-03 seconds modify1 Float64 ... 3.67e-03 seconds modify1 Float64 ... 5.81e-03 seconds modify1 Float64 ... 3.71e-03 seconds modify1 BigFloat ... 5.09e-02 seconds modify1 BigFloat ... 3.67e-02 seconds modify1 BigFloat ... 5.08e-02 seconds modify1 BigFloat ... 3.70e-02 seconds modify2 Float64 ... 3.58e-01 seconds modify2 Float64 ... 1.29e-03 seconds modify2 Float64 ... 1.10e-03 seconds modify2 Float64 ... 1.15e-03 seconds modify2 Float64 ... 1.06e-03 seconds modify2 Float64 ... 1.04e-03 seconds modify2 BigFloat ... 2.34e+00 seconds modify2 BigFloat ... 6.46e-03 seconds modify2 BigFloat ... 5.91e-03 seconds modify2 BigFloat ... 6.23e-03 seconds modify2 BigFloat ... 6.40e-03 seconds modify2 BigFloat ... 8.11e-03 seconds modify2 Float64 ... 2.70e-02 seconds modify2 Float64 ... 1.58e-03 seconds modify2 Float64 ... 1.39e-03 seconds modify2 Float64 ... 1.34e-03 seconds modify2 Float64 ... 1.26e-03 seconds modify2 Float64 ... 1.28e-03 seconds modify2 Float64 ... 1.21e-03 seconds modify2 Float64 ... 9.16e-04 seconds modify2 Float64 ... 8.78e-04 seconds modify2 Float64 ... 8.49e-04 seconds modify2 BigFloat ... 6.82e-03 seconds modify2 BigFloat ... 6.00e-03 seconds modify2 BigFloat ... 6.65e-03 seconds modify2 BigFloat ... 6.75e-03 seconds [ Info: finished native tests in 9.74e+02 seconds [ Info: starting moi tests starting MOI wrapper cone tests Float64 ... BigFloat ... starting MOI.Test tests: Float64 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 13 running 1 of 1 signal (10): User defined signal 1 egal_types at /source/src/builtins.c:182 egal_types at /source/src/builtins.c:185 ijl_types_equal at /source/src/subtype.c:2325 jl_specializations_get_linfo_ at /source/src/gf.c:237 #specialize_method#8 at ./runtime_internals.jl:1782 [inlined] specialize_method at ./runtime_internals.jl:1769 [inlined] typeinf_edge at ./../usr/share/julia/Compiler/src/typeinfer.jl:1029 abstract_call_method at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:735 infercalls at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:167 abstract_call_gf_by_type at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:338 abstract_call_known at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:2796 abstract_call at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:2903 abstract_call at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:2896 [inlined] abstract_call at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:3056 abstract_eval_call at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:3074 [inlined] abstract_eval_statement_expr at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:3430 abstract_eval_basic_statement at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:3857 [inlined] abstract_eval_basic_statement at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:3814 [inlined] typeinf_local at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:4363 jfptr_typeinf_local_84439.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 typeinf at ./../usr/share/julia/Compiler/src/abstractinterpretation.jl:4521 typeinf_ext at ./../usr/share/julia/Compiler/src/typeinfer.jl:1378 typeinf_ext_toplevel at ./../usr/share/julia/Compiler/src/typeinfer.jl:1561 [inlined] typeinf_ext_toplevel at ./../usr/share/julia/Compiler/src/typeinfer.jl:1570 jfptr_typeinf_ext_toplevel_82287.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] jl_type_infer at /source/src/gf.c:462 jl_compile_method_internal at /source/src/gf.c:3514 _jl_invoke at /source/src/gf.c:4007 [inlined] ijl_apply_generic at /source/src/gf.c:4212 macro expansion at /home/pkgeval/.julia/packages/MathOptInterface/vK6dk/src/Test/Test.jl:270 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:1929 [inlined] #runtests#2 at /home/pkgeval/.julia/packages/MathOptInterface/vK6dk/src/Test/Test.jl:265 runtests at /home/pkgeval/.julia/packages/MathOptInterface/vK6dk/src/Test/Test.jl:223 unknown function (ip: 0x74c386bf89cd) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 macro expansion at /home/pkgeval/.julia/packages/Hypatia/ZMk1t/test/runmoitests.jl:74 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:2018 [inlined] macro expansion at /home/pkgeval/.julia/packages/Hypatia/ZMk1t/test/runmoitests.jl:53 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:1929 [inlined] top-level scope at /home/pkgeval/.julia/packages/Hypatia/ZMk1t/test/runmoitests.jl:19 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_invoke at /source/src/gf.c:4022 jl_toplevel_eval_flex at /source/src/toplevel.c:762 jl_toplevel_eval_flex at /source/src/toplevel.c:713 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 include_string at ./loading.jl:2847 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 _include at ./loading.jl:2907 include at ./Base.jl:312 IncludeInto at ./Base.jl:313 unknown function (ip: 0x74c360eb71f2) at (unknown file) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 macro expansion at ./timing.jl:461 [inlined] macro expansion at /home/pkgeval/.julia/packages/Hypatia/ZMk1t/test/runtests.jl:35 [inlined] macro expansion at ./timing.jl:461 [inlined] macro expansion at /home/pkgeval/.julia/packages/Hypatia/ZMk1t/test/runtests.jl:33 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:1929 [inlined] top-level scope at /home/pkgeval/.julia/packages/Hypatia/ZMk1t/test/runtests.jl:33 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_invoke at /source/src/gf.c:4022 jl_toplevel_eval_flex at /source/src/toplevel.c:762 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 include_string at ./loading.jl:2847 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 _include at ./loading.jl:2907 include at ./Base.jl:312 IncludeInto at ./Base.jl:313 jfptr_IncludeInto_65218.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:708 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 exec_options at ./client.jl:286 _start at ./client.jl:553 jfptr__start_69016.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x74c3a201a249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1192 wait_forever at ./task.jl:1129 jfptr_wait_forever_70461.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] start_task at /source/src/task.c:1253 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007450feb12950 Total snapshots: 426. Utilization: 0% ╎426 @Base/task.jl:1129 wait_forever() 425╎ 426 @Base/task.jl:1192 wait() [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1192 wait_forever at ./task.jl:1129 jfptr_wait_forever_70461.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2375 [inlined] start_task at /source/src/task.c:1253 unknown function (ip: (nil)) at (unknown file) Allocations: 19380314 (Pool: 19379795; Big: 519); GC: 15 [13] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/Hypatia/ZMk1t/test/runmoitests.jl:18 PkgEval terminated after 2734.39s: test duration exceeded the time limit