Package evaluation of QuasiNewtonMethods on Julia 1.13.0-DEV.922 (90e3c1a568*) started at 2025-07-29T17:01:21.308 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.76s ################################################################################ # Installation # Installing QuasiNewtonMethods... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [64452400] + QuasiNewtonMethods v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [79e6a3ab] + Adapt v4.3.0 [4fba245c] + ArrayInterface v7.19.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] + CPUSummary v0.2.6 [fb6a15b2] + CloseOpenIntervals v0.1.13 [34da2185] + Compat v4.17.0 [adafc99b] + CpuId v0.3.1 [ffbed154] + DocStringExtensions v0.9.5 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [10f19ff3] + LayoutPointers v0.1.17 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [6fe1bfb0] + OffsetArrays v1.17.0 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.2 [21216c6a] + Preferences v1.4.3 [64452400] + QuasiNewtonMethods v0.1.4 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 ⌅ [aedffcd0] + Static v0.8.10 [0d7ed370] + StaticArrayInterface v1.8.0 ⌅ [7792a7ef] + StrideArraysCore v0.4.17 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [3d5dd08c] + VectorizationBase v0.21.71 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 3.74s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 219.84s ################################################################################ # Testing # Testing QuasiNewtonMethods Status `/tmp/jl_mD5Kut/Project.toml` [4c88cf16] Aqua v0.8.13 [64452400] QuasiNewtonMethods v0.1.4 [d1fa6d79] StrideArrays v0.1.29 [8dfed614] Test v1.11.0 Status `/tmp/jl_mD5Kut/Manifest.toml` [79e6a3ab] Adapt v4.3.0 [4c88cf16] Aqua v0.8.13 [4fba245c] ArrayInterface v7.19.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] CPUSummary v0.2.6 [fb6a15b2] CloseOpenIntervals v0.1.13 [34da2185] Compat v4.17.0 [adafc99b] CpuId v0.3.1 [ffbed154] DocStringExtensions v0.9.5 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [10f19ff3] LayoutPointers v0.1.17 [bdcacae8] LoopVectorization v0.12.172 [d125e4d3] ManualMemory v0.1.8 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.2 [21216c6a] Preferences v1.4.3 [64452400] QuasiNewtonMethods v0.1.4 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 ⌅ [aedffcd0] Static v0.8.10 [0d7ed370] StaticArrayInterface v1.8.0 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [d1fa6d79] StrideArrays v0.1.29 ⌅ [7792a7ef] StrideArraysCore v0.4.17 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [3d5dd08c] VectorizationBase v0.21.71 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.10 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.15.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.7.15 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.1+0 [efcefdf7] PCRE2_jll v10.45.0+0 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.65.0+0 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... WARNING: Method definition boundscheck() in module StrideArraysCore at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/ptr_array.jl:897 overwritten at /home/pkgeval/.julia/packages/StrideArraysCore/COJRJ/src/StrideArraysCore.jl:75. WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in __init() at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/VectorizedRNG.jl WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in initXoshiro!(Ptr{UInt64}, Any, UInt64, UInt64, UInt64, UInt64) at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/xoshiro.jl Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") does not declare a compat entry for the following extras: 1-element Vector{Base.PkgId}: Test [8dfed614-e22c-5e08-85e1-65c5234f0b40] Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras: Test Failed at /home/pkgeval/.julia/packages/Aqua/1UuaV/src/deps_compat.jl:60 Expression: isempty(result) Evaluated: isempty(Base.PkgId[Base.PkgId(Base.UUID("8dfed614-e22c-5e08-85e1-65c5234f0b40"), "Test")]) Stacktrace: [1] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:745 [inlined] [2] test_deps_compat(pkg::Base.PkgId, deps_type::String; broken::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/1UuaV/src/deps_compat.jl:60 [3] test_deps_compat @ ~/.julia/packages/Aqua/1UuaV/src/deps_compat.jl:55 [inlined] [4] macro expansion @ ~/.julia/packages/Aqua/1UuaV/src/deps_compat.jl:45 [inlined] [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1859 [inlined] [6] test_deps_compat(pkg::Base.PkgId; check_julia::Bool, check_extras::Bool, check_weakdeps::Bool, kwargs::@Kwargs{}) @ Aqua ~/.julia/packages/Aqua/1UuaV/src/deps_compat.jl:45 n = 2 WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in randn!(VectorizedRNG.AbstractVRNG{N} where N, AbstractArray{T, N} where N, Number, Any, Any) where {T<:Union{Float32, Float64}} at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/api.jl WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in optimize!(Any, Any, StrideArraysCore.AbstractStrideArray{T, N, R, S, X, O} where O<:Tuple{Vararg{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8, Static.StaticInt{N} where N}, N}} where X<:Tuple{Vararg{Union{Nothing, Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8, Static.StaticInt{N} where N, StrideArraysCore.StrideReset{T} where T}, N}} where S<:Tuple{Vararg{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8, Static.StaticInt{N} where N}, N}} where R where N, Any, Any) where {T} at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/src/QuasiNewtonMethods.jl WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in update_state!(Any, Any, Any) at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/src/QuasiNewtonMethods.jl WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in step!(Any, Any, Any, Any, Any) at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/src/QuasiNewtonMethods.jl WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in initial_B⁻¹!(AbstractArray{T, 2} where T) at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/src/QuasiNewtonMethods.jl WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in BFGS_update!(AbstractArray{T, 2}, Any, Any, Any, Any, Any) where {T} at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/src/QuasiNewtonMethods.jl WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in materialize(Base.Broadcast.Broadcasted{S, Axes, F, Args} where Args<:Tuple where F where Axes) where {S<:(StrideArrays.AbstractStrideStyle{S, N} where N where S)} at /home/pkgeval/.julia/packages/StrideArrays/tZEoU/src/broadcast.jl QuasiNewtonMethods.optimum(state) .- 1 = [1.6859624807352702e-11, 3.236055867716914e-11] WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in gradient(QuasiNewtonMethods.AbstractBFGSState{P, T, L, LT} where LT where L where T where P) at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/src/QuasiNewtonMethods.jl WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in maximum(typeof(Base.abs), StrideArraysCore.AbstractStrideArray{T, N, R, S, X, O} where O<:Tuple{Vararg{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8, Static.StaticInt{N} where N}, N}} where X<:Tuple{Vararg{Union{Nothing, Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8, Static.StaticInt{N} where N, StrideArraysCore.StrideReset{T} where T}, N}} where S<:Tuple{Vararg{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8, Static.StaticInt{N} where N}, N}} where R where N) where {T} at /home/pkgeval/.julia/packages/StrideArrays/tZEoU/src/miscellaneous.jl QuasiNewtonMethods.optimum(state) .- 1 = [-2.575717417130363e-13, -3.2651659154225854e-12] n = 3 WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in copyto!(StrideArraysCore.AbstractStrideArray{var"#s146", N, R, S, X, O} where O<:Tuple{Vararg{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8, Static.StaticInt{N} where N}, N}} where X<:Tuple{Vararg{Union{Nothing, Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8, Static.StaticInt{N} where N, StrideArraysCore.StrideReset{T} where T}, N}} where S<:Tuple{Vararg{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8, Static.StaticInt{N} where N}, N}} where R where var"#s146", StrideArraysCore.AbstractStrideArray{var"#s144", N, R, S, X, O} where O<:Tuple{Vararg{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8, Static.StaticInt{N} where N}, N}} where X<:Tuple{Vararg{Union{Nothing, Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8, Static.StaticInt{N} where N, StrideArraysCore.StrideReset{T} where T}, N}} where S<:Tuple{Vararg{Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8, Static.StaticInt{N} where N}, N}} where R where var"#s144") where {N} at /home/pkgeval/.julia/packages/StrideArrays/tZEoU/src/miscellaneous.jl QuasiNewtonMethods.optimum(state) .- 1 = [7.952527525389996e-12, 1.5793810703712552e-11, -1.5725976076907955e-11] QuasiNewtonMethods.optimum(state) .- 1 = [3.79274389672446e-12, 7.319256312143807e-12, -1.7388313011679202e-12] n = 4 QuasiNewtonMethods.optimum(state) .- 1 = [2.9600766282555924e-12, 5.364375610383831e-12, 5.0099924209234814e-12, 1.1120881993065268e-11] QuasiNewtonMethods.optimum(state) .- 1 = [8.51274606361585e-12, -1.7334467194984882e-11, 1.5046852652744747e-11, -3.4859226616390515e-11] n = 5 QuasiNewtonMethods.optimum(state) .- 1 = [-9.50572953684059e-13, 7.064571150294796e-12, -2.2664092824697946e-12, 1.5094814287408553e-11, 3.0193625377705757e-12] QuasiNewtonMethods.optimum(state) .- 1 = [5.952283110843837e-11, 3.148743488168293e-10, 1.3780931951146158e-10, 6.189162515823909e-10, 9.379164112033322e-13] n = 6 QuasiNewtonMethods.optimum(state) .- 1 = [6.017408793468348e-14, 1.162847595992389e-12, -2.3193669207444145e-12, 3.652633751016765e-13, 2.2815083156046967e-12, -4.686584453850173e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-2.018718525675922e-12, 3.647970814313339e-12, -4.3731684939984916e-13, -3.824496275228739e-12, 7.278178060232676e-12, -8.822942376696119e-13] n = 7 QuasiNewtonMethods.optimum(state) .- 1 = [2.758415718062679e-11, 3.829780936825955e-11, 2.3886670419415168e-11, 5.491651577926859e-11, 7.741496332869247e-11, 4.541766962518068e-11, -3.747557819622216e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-7.09432512735475e-14, 1.6440182548649318e-12, 1.0289991081435801e-11, -1.3145040611561853e-13, 3.403721748895805e-12, 2.0941248735084628e-11, 3.219646771412954e-14] n = 8 QuasiNewtonMethods.optimum(state) .- 1 = [-7.320588579773357e-12, 2.052469305624527e-11, 2.8606006452491783e-11, 2.6958657528552976e-11, -1.5459411528695455e-11, 3.8974601324071045e-11, 6.037526034674556e-11, 5.530642610551695e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.462074988329732e-11, 3.330558051573007e-11, 3.126521264107396e-11, -3.906974743728142e-11, -5.024791693841735e-11, 6.743849922941081e-11, 6.221201331868542e-11, -7.85498333044643e-11] n = 9 QuasiNewtonMethods.optimum(state) .- 1 = [-2.1116441928370477e-12, 1.4547918425478201e-11, -6.026179555362887e-12, 2.2164492463616625e-12, -1.730837695390619e-12, 2.865574444399499e-11, -1.1661338561452794e-11, 4.61231053350275e-12, -2.3463786469335446e-11] QuasiNewtonMethods.optimum(state) .- 1 = [6.438738431313595e-11, -7.484390884826553e-11, -4.63568072817111e-11, -9.643830178873714e-11, 1.297237872677215e-10, -1.369068192147438e-10, -8.976230869706114e-11, -1.905079427544365e-10, -4.630740235711528e-13] n = 10 QuasiNewtonMethods.optimum(state) .- 1 = [-3.968936290732472e-11, -6.066180890940132e-11, 4.3823389361818954e-11, -2.297406709317329e-11, 1.8274270985330077e-12, -8.146738839087675e-11, -1.2478673649951588e-10, 7.983813610223933e-11, -3.742428589248448e-11, 1.3087309014281345e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.3450318636643033e-10, -4.785916107863386e-11, -9.636402786838971e-12, -1.4824363958609865e-11, 7.114087097193078e-12, -2.708878676926929e-10, -1.0647049908385497e-10, -1.3357870365382496e-11, -3.758671152098714e-11, 1.071054356316381e-11] n = 11 QuasiNewtonMethods.optimum(state) .- 1 = [-2.7915181277649026e-10, -4.249556262436727e-11, 3.377964574724501e-11, 1.2047407516035946e-10, 7.594858075776756e-11, -5.667138980314235e-10, -8.101486148603954e-11, 6.693579024386054e-11, 2.2782709052648897e-10, 1.4271717141411955e-10, 6.012967901369848e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-6.276112962666502e-11, -4.0707215376301065e-11, 6.787015394138507e-12, -3.9303338361662554e-11, 4.872324765869962e-11, -1.1777001596158243e-10, -8.230560677446874e-11, 1.4174217355389374e-11, -8.170653043038101e-11, 1.0062795041676509e-10, 8.1556983388964e-12] n = 12 QuasiNewtonMethods.optimum(state) .- 1 = [-7.887057673627851e-11, 4.64344118711324e-11, -6.059208690345486e-11, 3.821276628457326e-11, -1.4771350809184014e-10, -1.2667267235144664e-10, -1.592194154298454e-10, 9.586909044401182e-11, -1.354590883906326e-10, 6.770073390782727e-11, -3.122356817542027e-10, -2.4058466330245665e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.3485657035516851e-11, 7.434053372890048e-13, -4.9278248148709736e-11, -1.452733489060165e-10, -3.9276470964466625e-11, 3.215094857011991e-11, 3.597744324679297e-11, 3.310907104037142e-12, -9.155953772932435e-11, -2.962773359982407e-10, -7.283040837080534e-11, 7.043965410957753e-11] n = 13 QuasiNewtonMethods.optimum(state) .- 1 = [-2.2207791161577006e-11, -1.1612111272540915e-10, 1.719544506784132e-10, -6.568812160878679e-11, 1.2972489749074612e-10, 9.038458870236354e-11, -4.529754349391624e-11, -2.3560675632694483e-10, 3.347464527791999e-10, -1.3376888485794325e-10, 2.670943466398512e-10, 1.8707413396157335e-10, -1.039723862561459e-12] QuasiNewtonMethods.optimum(state) .- 1 = [9.8362429312715e-11, -1.8474810570268119e-10, 1.4259038394470736e-11, -1.2524237202882205e-10, -2.8849367339489618e-11, 1.4686452054490928e-10, 2.1228574453857618e-10, -3.7858460810724637e-10, 2.8688607045523895e-11, -2.505969876054337e-10, -4.7611803388747376e-11, 3.0185454136244516e-10, 3.423572536576103e-11] n = 14 QuasiNewtonMethods.optimum(state) .- 1 = [1.3488321570775952e-10, -6.485689763024993e-11, -1.5971146627435928e-10, -1.8588464101298996e-12, -3.741551513058994e-11, 1.2595990916963729e-10, -4.031019962269511e-11, 2.681339594801102e-10, -1.3839762669221045e-10, -3.334930109843981e-10, -6.928235762870827e-12, -7.324951756260134e-11, 2.5204660580868676e-10, -9.42105282675243e-11] QuasiNewtonMethods.optimum(state) .- 1 = [6.214340153576359e-11, 6.417177900175375e-11, -1.341818878231038e-10, 5.725175888926515e-11, -8.676037666077718e-11, -7.123923673191257e-11, -7.937595025708788e-11, 1.2379341995938375e-10, 1.2052070452739372e-10, -2.711521007725537e-10, 1.1699397006736945e-10, -1.809506988692533e-10, -1.4430390216091382e-10, -1.575448660418033e-10] n = 15 QuasiNewtonMethods.optimum(state) .- 1 = [1.704969498916853e-10, -7.066891516416263e-11, 3.9228020831671984e-10, -8.263800754804151e-11, -1.0063072597432665e-10, -9.363754216451525e-11, -5.933709079641858e-11, 3.4547609217838726e-10, -1.361583068515415e-10, 7.860239126245006e-10, -1.7183321432412413e-10, -1.9846746468488163e-10, -1.9363599612631788e-10, -1.0354961332836865e-10, 1.1868284133242923e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-8.231870740615932e-11, -5.862743623907818e-11, -4.8073878211596366e-11, -3.6199931940927854e-12, 9.246936549800466e-11, 1.7548384967369657e-10, -1.8103529786372974e-10, -1.6421275450539952e-10, -1.1257961229915736e-10, -9.339073958614108e-11, -1.25010002349768e-11, 1.7170864730076119e-10, 3.5116487495656656e-10, -3.6110181511617157e-10, 2.1014301410104963e-12] n = 16 QuasiNewtonMethods.optimum(state) .- 1 = [3.549183169582193e-11, 3.4138913918013714e-11, -1.285683781659941e-10, -2.7955859849271292e-11, -9.045308946298292e-11, -9.797718192317006e-12, 2.7970514793196344e-11, -1.4299406103646106e-10, 6.800537910578441e-11, 7.001244028970177e-11, -2.520574859943281e-10, -6.242539818401838e-11, -1.8973023152568658e-10, -2.5664248504142506e-11, 5.7613913639897874e-11, -2.7641122724020306e-10] QuasiNewtonMethods.optimum(state) .- 1 = [1.6963319637852692e-11, -7.616685060440886e-12, -7.190958939418124e-11, -3.7197356306251095e-11, 2.4082513760959046e-11, 5.7629456762242626e-12, 2.4147350785597155e-12, 2.4882096383294083e-11, 3.572764306625231e-11, -2.108702101821791e-11, -1.3561873846157368e-10, -7.463862861101234e-11, 4.4259040876681865e-11, 1.6918910716867686e-11, 1.8696155734687636e-11, 4.797473529549734e-11] n = 17 QuasiNewtonMethods.optimum(state) .- 1 = [-4.012301602074331e-11, -4.6758263927415555e-11, 9.285439084294467e-11, 4.906075545818567e-12, -1.6772694344524552e-11, 3.245648194649675e-11, 1.63176139267307e-11, -7.650680089454909e-11, -7.132494594941363e-11, -9.576128778832071e-11, 1.9005019780138355e-10, 1.329758525514535e-11, -3.324274189253629e-11, 6.370437510838656e-11, 3.469535769795584e-11, -1.493737356028646e-10, 4.620748228489902e-13] QuasiNewtonMethods.optimum(state) .- 1 = [-7.914668920250278e-12, 1.429634188809814e-11, -4.698874622732774e-11, -7.665978962734243e-12, 2.8108626537459713e-12, -5.123490520730911e-11, -1.8138712754023345e-11, -5.503775213355766e-11, -1.3129053400007251e-11, 2.848543623201749e-11, -9.03696006915311e-11, -1.3469114712449937e-11, 8.422373909411363e-12, -1.0511236325783102e-10, -3.3918756692230545e-11, -1.0866807453879801e-10, 1.4144241333724494e-13] n = 18 QuasiNewtonMethods.optimum(state) .- 1 = [5.749156706258418e-11, -2.9391156175506694e-11, -4.269740117024412e-11, -3.184241759157658e-11, -3.1835756253428826e-11, 1.9550139285229307e-11, 2.573941060290963e-12, 2.060285275717888e-11, 9.548806190196046e-12, 1.1487499840256987e-10, -5.929334800924835e-11, -8.686462660278949e-11, -6.169953437051845e-11, -6.42853548171729e-11, 3.916200697062777e-11, 5.445643935786393e-12, 4.143307918980099e-11, 1.9282131447084794e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-3.361633194032265e-11, 1.0609069178713071e-11, -3.34322569628398e-11, -1.813105221515343e-11, -4.7255199753237775e-11, -3.2854718945429795e-11, -1.0425205143604899e-10, -8.069989121395338e-11, -5.289324533919171e-12, -6.09269301676818e-11, 2.567546175669122e-11, -6.514055961304166e-11, -3.8021252812825423e-11, -9.277956181108493e-11, -6.514178085836875e-11, -2.040349000864694e-10, -1.6432544214239897e-10, -9.843570403234025e-12] n = 19 QuasiNewtonMethods.optimum(state) .- 1 = [-1.649582692664353e-10, -3.0041746867937036e-11, -1.0250544857370869e-10, -7.016831560235914e-12, -2.8692936915319933e-11, -5.58764146063595e-12, 9.91458026788905e-11, -6.124323270739751e-11, -6.0573879245851e-11, -3.358970879219214e-10, -5.5573656787544223e-11, -2.0412449508455666e-10, -1.3612444504929044e-11, -4.491518268423533e-11, -1.4643286583293502e-11, 2.003734955735581e-10, -1.2873635490961988e-10, -1.2586409692261213e-10, 2.0401458300511877e-12] QuasiNewtonMethods.optimum(state) .- 1 = [4.8859805090728514e-11, 4.3280068418027895e-10, -3.257416558710702e-11, 2.6437296796189003e-11, -1.6688306292422794e-10, 7.617817487926004e-11, 2.7457369711214596e-11, 4.8259174434406304e-12, 1.3819390076719174e-10, 9.296563519001211e-11, 8.548950436448877e-10, -7.188494244303456e-11, 5.791656043641069e-11, -3.427036432412933e-10, 1.450550790593752e-10, 3.744826670981638e-11, 1.8689494396539885e-11, 2.8416113906359897e-10, 9.228173780684301e-13] n = 20 QuasiNewtonMethods.optimum(state) .- 1 = [-3.415034921516735e-11, -7.248157629646812e-11, 6.389333506717776e-12, -3.689881733492939e-11, -1.5009771203722266e-11, -5.240963218966499e-11, -5.980660411353256e-11, 3.805822323954544e-11, 8.408562734985026e-11, 4.943823128655822e-11, -6.726974532966778e-11, -1.498949853129261e-10, 1.6811663172688895e-11, -7.251288458576255e-11, -2.957556421989693e-11, -1.0105882797262211e-10, -1.1404333033482317e-10, 7.515521538437042e-11, 1.778917013695036e-10, 9.96380755680093e-11] QuasiNewtonMethods.optimum(state) .- 1 = [7.706302262988629e-11, -1.0882217349461598e-10, -1.1457979010032204e-10, 1.431974538945724e-10, -3.752109734023179e-10, -1.1415357548116845e-10, -2.516531427687596e-11, 2.167008794629055e-10, 1.2228595913654772e-10, 1.4808154702450338e-10, 1.5320478219393863e-10, -2.3238433399797032e-10, -2.4967417022736527e-10, 2.896665129981102e-10, -7.362448428693824e-10, -2.384424879764424e-10, -5.868250330109959e-11, 4.4583448044477336e-10, 2.485609496005736e-10, 2.921103359199151e-10] n = 21 QuasiNewtonMethods.optimum(state) .- 1 = [1.72064584802456e-11, 4.100719763755478e-12, -1.9093726599805905e-11, -4.622191518421914e-12, 1.2777112701201077e-11, 9.416689650265653e-12, 3.067168741210935e-11, -1.709832275764711e-11, -3.3440805680129415e-11, 2.0740298367627474e-11, 3.645572732580149e-11, 7.55329132573479e-12, -3.981015517240394e-11, -5.779376976988715e-12, 2.1894708268632712e-11, 1.837685559280544e-11, 5.931544144743839e-11, -3.2472580180353816e-11, -6.315226119824047e-11, 4.362554761883075e-11, 1.034949903555571e-12] QuasiNewtonMethods.optimum(state) .- 1 = [-1.1607304006844288e-10, -9.18860543208666e-11, 5.654476886718385e-11, 2.677353894142698e-10, 7.997025264216973e-11, 3.5043745683083216e-11, 9.369838238626471e-12, 9.007306012165373e-11, 9.595213512625378e-11, 1.0055112298346103e-10, -2.3257595849202062e-10, -1.8702328574704552e-10, 1.1047229797611635e-10, 5.399070079903368e-10, 1.4853274166171104e-10, 7.346789843154511e-11, 8.44035952241029e-12, 1.9552515162502004e-10, 1.9317614174951814e-10, 2.0663160071876518e-10, 2.4390045538780214e-11] n = 22 QuasiNewtonMethods.optimum(state) .- 1 = [-2.8047231204197942e-11, -4.1078807022643105e-11, 3.72435415840755e-11, 6.624256698728459e-12, 2.2870594307278225e-12, -2.3771873358668927e-11, 2.0586643501019353e-11, -1.5195067426532205e-11, -4.759526106568046e-13, 2.6807667197203955e-11, 1.4926726521480305e-11, -5.892020205067183e-11, -8.293477016252382e-11, 7.207900942773904e-11, 1.0078604617547171e-11, 3.886446720002823e-12, -4.8626436210952306e-11, 3.969069517495427e-11, -3.313338492461071e-11, -2.6295632338246833e-12, 5.202571706774961e-11, 3.110156576724421e-11] QuasiNewtonMethods.optimum(state) .- 1 = [-2.7170488081651456e-11, 2.6836310951239284e-11, 6.244715855530103e-11, -2.7371549471411072e-11, -1.501132551595674e-11, -7.730904805214323e-11, 1.9240165016753963e-12, 3.319566843629218e-12, 1.1391998455678731e-11, 5.864864149884852e-12, 2.5260238345481412e-11, -5.382272405540789e-11, 5.6442628348918333e-11, 1.278646077906842e-10, -5.8100302346986155e-11, -2.6533664154726466e-11, -1.5325540836386153e-10, 6.214140313431926e-12, 7.871703289197285e-12, 2.1317614340432556e-11, 8.818501484597618e-12, 5.0277337848569914e-11] n = 23 QuasiNewtonMethods.optimum(state) .- 1 = [-8.216793911941522e-11, 2.6007196396449217e-11, -4.0594749783906536e-11, 5.255440527207611e-11, -3.436950724022836e-11, 2.0556001345539698e-11, -1.0128697880418258e-10, -3.7986502832154656e-11, -4.13936662724268e-11, -1.2178047459343588e-10, -8.412803786939094e-11, -1.6598356022967664e-10, 5.902323074735705e-11, -9.316480920062986e-11, 1.0610889944473456e-10, -5.162814620263134e-11, 4.529998598457041e-11, -2.0471324635451538e-10, -9.152922864075208e-11, -8.636147352802936e-11, -2.50288123559983e-10, -1.6431178639919608e-10, 2.0310420012492614e-12] QuasiNewtonMethods.optimum(state) .- 1 = [1.3932854869835865e-11, 1.8257839684565624e-11, -6.8827166188611955e-12, 1.6338042030383804e-12, -1.648226000128261e-11, 1.0668355088228054e-11, 2.941646926046815e-11, 2.7251534362449092e-12, 1.5551560039739343e-11, -1.7839618671189328e-11, -8.399059225894234e-12, 2.6972868383268178e-11, 3.9370506854652376e-11, -1.060773691108352e-11, 2.4933388687031766e-12, -3.215849808668736e-11, 2.059930004350008e-11, 5.916178658083027e-11, 6.6273653231974095e-12, 3.015565575026358e-11, -4.000089148803454e-11, -2.2597479443220436e-11, -1.0336176359260207e-12] n = 24 QuasiNewtonMethods.optimum(state) .- 1 = [-4.8046011613678274e-11, 1.1405765221184083e-10, 1.1962875134940987e-11, -5.0153436959021747e-11, 4.0189629402220817e-11, -3.4083380562321963e-10, 2.988895797528812e-10, -1.117412828932629e-10, -4.549305376855273e-11, -3.226396927402675e-11, 1.1378831210606677e-10, 1.8891488373640186e-10, -9.73844338503227e-11, 2.339293203590387e-10, 2.857980518911063e-11, -1.019888618003506e-10, 8.102984949687198e-11, -7.045688477091971e-10, 5.959759352691663e-10, -2.26588969809427e-10, -8.990719280177473e-11, -6.141132047332576e-11, 2.2716539760381238e-10, 3.7960945498127785e-10] QuasiNewtonMethods.optimum(state) .- 1 = [-1.4007128790183287e-11, 1.1803824584433187e-10, 8.400857787194127e-11, -2.053313075123242e-11, 4.091038618980747e-11, -5.000977409963525e-11, -5.878741937692666e-11, 7.370837273867892e-11, -7.276401703393276e-13, -1.402732374700122e-10, -6.745826119924914e-12, 3.499711631604896e-11, -2.6806223907271942e-11, 2.292519507562929e-10, 1.7890311454493713e-10, -4.416134125051485e-11, 9.245004761737619e-11, -8.627942804650957e-11, -1.127977711234962e-10, 1.5216361504144515e-10, 2.8359536941025e-12, -2.836989532184475e-10, -2.1144974660103344e-11, 7.172773486274764e-11] Test Summary: | Pass Fail Total Time QuasiNewtonMethods.jl | 148 1 149 4m14.2s Method ambiguity | 1 1 10.1s Unbound type parameters | 1 1 0.1s Undefined exports | 1 1 0.0s Compare Project.toml and test/Project.toml | 1 1 0.4s Stale dependencies | 1 1 7.1s Compat bounds | 3 1 4 11.8s julia | 1 1 0.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") deps | 1 1 0.6s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") extras | 1 1 11.1s Base.PkgId(Base.UUID("64452400-c6f4-4a1d-a4f6-ad403655768a"), "QuasiNewtonMethods") weakdeps | 1 1 0.0s Piracy | 1 1 0.2s Persistent tasks | 1 1 51.9s RNG of the outermost testset: Random.Xoshiro(0x89ff61ce17ced479, 0x1525042f5ceec4f3, 0xacc0f1885a6ef2f2, 0x0b309412c7c72436, 0x778732896937df86) ERROR: LoadError: Some tests did not pass: 148 passed, 1 failed, 0 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/QuasiNewtonMethods/Pnhdf/test/runtests.jl:35 Testing failed after 282.62s ERROR: LoadError: Package QuasiNewtonMethods errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2695 [3] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/Operations.jl:2544 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:538 [5] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:168 [6] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [7] test @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:156 [inlined] [8] #test#81 @ /opt/julia/share/julia/stdlib/v1.13/Pkg/src/API.jl:155 [inlined] [9] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:219 [10] include(mod::Module, _path::String) @ Base ./Base.jl:311 [11] exec_options(opts::Base.JLOptions) @ Base ./client.jl:320 [12] _start() @ Base ./client.jl:553 in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 PkgEval failed after 536.19s: package has test failures