Package evaluation of MCMCChains on Julia 1.13.0-DEV.897 (a39797a4fb*) started at 2025-07-24T21:47:18.941 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 10.0s ################################################################################ # Installation # Installing MCMCChains... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [c7f686f2] + MCMCChains v7.1.0 Updating `~/.julia/environments/v1.13/Manifest.toml` [621f4979] + AbstractFFTs v1.5.0 [80f14c24] + AbstractMCMC v5.6.3 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.3.0 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.5.0 [13072b0f] + AxisAlgorithms v1.1.0 [39de3d68] + AxisArrays v0.4.7 [198e06fe] + BangBang v0.4.4 [9718e550] + Baselet v0.1.1 [d360d2e6] + ChainRulesCore v1.25.2 [34da2185] + Compat v4.17.0 [a33af91c] + CompositionsBase v0.1.2 [88cd18e8] + ConsoleProgressMonitor v0.1.2 [187b0558] + ConstructionBase v1.6.0 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [31c24e10] + Distributions v0.25.120 [ffbed154] + DocStringExtensions v0.9.5 [7a1cc6ca] + FFTW v1.9.0 [1a297f60] + FillArrays v1.13.0 [34004b35] + HypergeometricFunctions v0.3.28 [22cec73e] + InitialValues v0.3.1 [a98d9a8b] + Interpolations v0.16.1 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.4 [c8e1da08] + IterTools v1.10.0 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.1 [5ab0869b] + KernelDensity v0.6.10 [b964fa9f] + LaTeXStrings v1.4.0 [1d6d02ad] + LeftChildRightSiblingTrees v0.2.1 [6fdf6af0] + LogDensityProblems v2.1.2 [2ab3a3ac] + LogExpFunctions v0.3.29 [e6f89c97] + LoggingExtras v1.1.0 [c7f686f2] + MCMCChains v7.1.0 [be115224] + MCMCDiagnosticTools v0.3.14 [e80e1ace] + MLJModelInterface v1.12.0 [1914dd2f] + MacroTools v0.5.16 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 [c020b1a1] + NaturalSort v1.0.0 [6fe1bfb0] + OffsetArrays v1.17.0 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.35 [aea7be01] + PrecompileTools v1.3.2 [21216c6a] + Preferences v1.4.3 [08abe8d2] + PrettyTables v2.4.0 [33c8b6b6] + ProgressLogging v0.1.5 [92933f4c] + ProgressMeter v1.10.4 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [b3c3ace0] + RangeArrays v0.3.2 [c84ed2f1] + Ratios v0.4.5 [3cdcf5f2] + RecipesBase v1.3.4 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [30f210dd] + ScientificTypesBase v3.0.0 [efcf1570] + Setfield v1.1.2 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.1 [171d559e] + SplittablesBase v0.1.15 [90137ffa] + StaticArrays v1.9.14 [1e83bf80] + StaticArraysCore v1.4.3 [64bff920] + StatisticalTraits v3.5.0 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.5 [4c63d2b9] + StatsFuns v1.5.0 [892a3eda] + StringManipulation v0.4.1 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [5d786b92] + TerminalLoggers v0.1.7 [28d57a85] + Transducers v0.4.84 [efce3f68] + WoodburyMatrices v1.0.0 [f5851436] + FFTW_jll v3.3.11+0 [1d5cc7b8] + IntelOpenMP_jll v2025.2.0+0 [856f044c] + MKL_jll v2025.2.0+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [1317d2d5] + oneTBB_jll v2022.0.0+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [4af54fe1] + LazyArtifacts v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [3fa0cd96] + REPL v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.14.1+1 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.7.15 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.5+0 [458c3c95] + OpenSSL_jll v3.5.1+0 [efcefdf7] + PCRE2_jll v10.45.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [8e850b90] + libblastrampoline_jll v5.13.1+0 [8e850ede] + nghttp2_jll v1.65.0+0 [3f19e933] + p7zip_jll v17.5.0+2 Installation completed after 4.58s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Warning: Could not use exact versions of packages in manifest, re-resolving └ @ TestEnv ~/.julia/packages/TestEnv/iS95e/src/julia-1.11/activate_set.jl:75 Precompiling package dependencies... Precompilation completed after 69.59s ################################################################################ # Testing # Testing MCMCChains Test Could not use exact versions of packages in manifest, re-resolving. Note: if you do not check your manifest file into source control, then you can probably ignore this message. However, if you do check your manifest file into source control, then you probably want to pass the `allow_reresolve = false` kwarg when calling the `Pkg.test` function. Updating `/tmp/jl_fFEwd8/Project.toml` [a93c6f00] + DataFrames v1.7.0 [e30172f5] + Documenter v1.14.1 [a7f614a8] + MLJBase v1.8.2 [c6f25543] + MLJDecisionTreeInterface v0.4.2 [91a5bcdd] + Plots v1.40.17 [f3b207a7] + StatsPlots v0.15.7 [b8865327] + UnicodePlots v3.8.1 Updating `/tmp/jl_fFEwd8/Manifest.toml` [a4c015fc] + ANSIColoredPrinters v0.0.1 [7d9fca2a] + Arpack v0.5.4 [a9b6321e] + Atomix v1.1.1 [d1d4a3ce] + BitFlags v0.1.9 [324d7699] + CategoricalArrays v0.10.8 [af321ab8] + CategoricalDistributions v0.1.15 [aaaa29a8] + Clustering v0.15.8 [944b1d66] + CodecZlib v0.7.8 [35d6a980] + ColorSchemes v3.30.0 [3da002f7] + ColorTypes v0.12.1 [c3611d14] + ColorVectorSpace v0.11.0 [5ae59095] + Colors v0.13.1 [ed09eef8] + ComputationalResources v0.3.2 [f0e56b4a] + ConcurrentUtilities v2.5.0 [6add18c4] + ContextVariablesX v0.1.3 [d38c429a] + Contour v0.6.3 [a93c6f00] + DataFrames v1.7.0 [7806a523] + DecisionTree v0.12.4 [8bb1440f] + DelimitedFiles v1.9.1 [b4f34e82] + Distances v0.10.12 [e30172f5] + Documenter v1.14.1 [460bff9d] + ExceptionUnwrapping v0.1.11 [c87230d0] + FFMPEG v0.4.2 [cc61a311] + FLoops v0.2.2 [b9860ae5] + FLoopsBase v0.1.1 [53c48c17] + FixedPointNumbers v0.8.5 [1fa38f19] + Format v1.3.7 [46192b85] + GPUArraysCore v0.2.0 [28b8d3ca] + GR v0.73.17 [d7ba0133] + Git v1.4.0 [42e2da0e] + Grisu v1.0.2 [cd3eb016] + HTTP v1.10.17 [076d061b] + HashArrayMappedTries v0.2.0 [b5f81e59] + IOCapture v0.2.5 [842dd82b] + InlineStrings v1.4.4 ⌅ [a98d9a8b] ↓ Interpolations v0.16.1 ⇒ v0.15.1 [41ab1584] + InvertedIndices v1.3.1 [1019f520] + JLFzf v0.1.11 [682c06a0] + JSON v0.21.4 [b14d175d] + JuliaVariables v0.2.4 [63c18a36] + KernelAbstractions v0.9.38 [23fbe1c1] + Latexify v0.16.8 [0e77f7df] + LazilyInitializedFields v1.3.0 [92ad9a40] + LearnAPI v1.0.1 [c2834f40] + MLCore v1.0.0 [a7f614a8] + MLJBase v1.8.2 [c6f25543] + MLJDecisionTreeInterface v0.4.2 [d8e11817] + MLStyle v0.4.17 [f1d291b0] + MLUtils v0.4.8 [299715c1] + MarchingCubes v0.1.11 [d0879d2d] + MarkdownAST v0.1.2 [739be429] + MbedTLS v1.1.9 [442fdcdd] + Measures v0.3.2 [6f286f6a] + MultivariateStats v0.10.3 [872c559c] + NNlib v0.9.31 [77ba4419] + NaNMath v1.1.3 [71a1bf82] + NameResolution v0.1.5 [b8a86587] + NearestNeighbors v0.4.22 [510215fc] + Observables v0.5.5 [4d8831e6] + OpenSSL v1.5.0 [d96e819e] + Parameters v0.12.3 [69de0a69] + Parsers v2.8.3 [ccf2f8ad] + PlotThemes v3.3.0 [995b91a9] + PlotUtils v1.4.3 [91a5bcdd] + Plots v1.40.17 [2dfb63ee] + PooledArrays v1.4.3 [8162dcfd] + PrettyPrint v0.2.0 [01d81517] + RecipesPipeline v0.6.12 [2792f1a3] + RegistryInstances v0.1.0 [05181044] + RelocatableFolders v1.0.1 [321657f4] + ScientificTypes v3.1.0 [6e75b9c4] + ScikitLearnBase v0.5.0 [7e506255] + ScopedValues v1.4.0 [6c6a2e73] + Scratch v1.3.0 [91c51154] + SentinelArrays v1.4.8 [605ecd9f] + ShowCases v0.1.0 [992d4aef] + Showoff v1.0.3 [777ac1f9] + SimpleBufferStream v1.2.0 [699a6c99] + SimpleTraits v0.9.4 [860ef19b] + StableRNGs v1.0.3 [c062fc1d] + StatisticalMeasuresBase v0.1.2 [f3b207a7] + StatsPlots v0.15.7 [ab02a1b2] + TableOperations v1.2.0 [62fd8b95] + TensorCore v0.1.1 [3bb67fe8] + TranscodingStreams v0.11.3 [5c2747f8] + URIs v1.6.1 [3a884ed6] + UnPack v1.0.2 [1cfade01] + UnicodeFun v0.4.1 [b8865327] + UnicodePlots v3.8.1 [1986cc42] + Unitful v1.23.1 [45397f5d] + UnitfulLatexify v1.7.0 [013be700] + UnsafeAtomics v0.3.0 [41fe7b60] + Unzip v0.2.0 [cc8bc4a8] + Widgets v0.6.7 ⌅ [68821587] + Arpack_jll v3.5.1+1 [6e34b625] + Bzip2_jll v1.0.9+0 [83423d85] + Cairo_jll v1.18.5+0 [ee1fde0b] + Dbus_jll v1.16.2+0 [2702e6a9] + EpollShim_jll v0.0.20230411+1 [2e619515] + Expat_jll v2.6.5+0 ⌅ [b22a6f82] + FFMPEG_jll v4.4.4+1 [a3f928ae] + Fontconfig_jll v2.16.0+0 [d7e528f0] + FreeType2_jll v2.13.4+0 [559328eb] + FriBidi_jll v1.0.17+0 [0656b61e] + GLFW_jll v3.4.0+2 [d2c73de3] + GR_jll v0.73.17+0 [b0724c58] + GettextRuntime_jll v0.22.4+0 [f8c6e375] + Git_jll v2.50.1+0 [7746bdde] + Glib_jll v2.84.3+0 [3b182d85] + Graphite2_jll v1.3.15+0 [2e76f6c2] + HarfBuzz_jll v8.5.1+0 [aacddb02] + JpegTurbo_jll v3.1.1+0 [c1c5ebd0] + LAME_jll v3.100.3+0 [88015f11] + LERC_jll v4.0.1+0 [1d63c593] + LLVMOpenMP_jll v18.1.8+0 [dd4b983a] + LZO_jll v2.10.3+0 [e9f186c6] + Libffi_jll v3.4.7+0 [7e76a0d4] + Libglvnd_jll v1.7.1+1 [94ce4f54] + Libiconv_jll v1.18.0+0 [4b2f31a3] + Libmount_jll v2.41.0+0 [89763e89] + Libtiff_jll v4.7.1+0 [38a345b3] + Libuuid_jll v2.41.0+0 [c8ffd9c3] + MbedTLS_jll v2.28.6+2 [e7412a2a] + Ogg_jll v1.3.6+0 [9bd350c2] + OpenSSH_jll v10.0.1+0 [91d4177d] + Opus_jll v1.5.2+0 [36c8627f] + Pango_jll v1.56.3+0 ⌅ [30392449] + Pixman_jll v0.44.2+0 [c0090381] + Qt6Base_jll v6.8.2+1 [629bc702] + Qt6Declarative_jll v6.8.2+1 [ce943373] + Qt6ShaderTools_jll v6.8.2+1 [e99dba38] + Qt6Wayland_jll v6.8.2+1 [a44049a8] + Vulkan_Loader_jll v1.3.243+0 [a2964d1f] + Wayland_jll v1.24.0+0 [ffd25f8a] + XZ_jll v5.8.1+0 [f67eecfb] + Xorg_libICE_jll v1.1.2+0 [c834827a] + Xorg_libSM_jll v1.2.6+0 [4f6342f7] + Xorg_libX11_jll v1.8.12+0 [0c0b7dd1] + Xorg_libXau_jll v1.0.13+0 [935fb764] + Xorg_libXcursor_jll v1.2.4+0 [a3789734] + Xorg_libXdmcp_jll v1.1.6+0 [1082639a] + Xorg_libXext_jll v1.3.7+0 [d091e8ba] + Xorg_libXfixes_jll v6.0.1+0 [a51aa0fd] + Xorg_libXi_jll v1.8.3+0 [d1454406] + Xorg_libXinerama_jll v1.1.6+0 [ec84b674] + Xorg_libXrandr_jll v1.5.5+0 [ea2f1a96] + Xorg_libXrender_jll v0.9.12+0 [c7cfdc94] + Xorg_libxcb_jll v1.17.1+0 [cc61e674] + Xorg_libxkbfile_jll v1.1.3+0 [e920d4aa] + Xorg_xcb_util_cursor_jll v0.1.5+0 [12413925] + Xorg_xcb_util_image_jll v0.4.1+0 [2def613f] + Xorg_xcb_util_jll v0.4.1+0 [975044d2] + Xorg_xcb_util_keysyms_jll v0.4.1+0 [0d47668e] + Xorg_xcb_util_renderutil_jll v0.3.10+0 [c22f9ab0] + Xorg_xcb_util_wm_jll v0.4.2+0 [35661453] + Xorg_xkbcomp_jll v1.4.7+0 [33bec58e] + Xorg_xkeyboard_config_jll v2.44.0+0 [c5fb5394] + Xorg_xtrans_jll v1.6.0+0 [35ca27e7] + eudev_jll v3.2.14+0 [214eeab7] + fzf_jll v0.61.1+0 [a4ae2306] + libaom_jll v3.12.1+0 ⌅ [0ac62f75] + libass_jll v0.15.2+0 [1183f4f0] + libdecor_jll v0.2.2+0 [2db6ffa8] + libevdev_jll v1.13.4+0 [f638f0a6] + libfdk_aac_jll v2.0.4+0 [36db933b] + libinput_jll v1.28.1+0 [b53b4c65] + libpng_jll v1.6.50+0 [f27f6e37] + libvorbis_jll v1.3.8+0 [009596ad] + mtdev_jll v1.1.7+0 ⌅ [1270edf5] + x264_jll v2021.5.5+0 ⌅ [dfaa095f] + x265_jll v3.5.0+0 [d8fb68d0] + xkbcommon_jll v1.9.2+0 [3161d3a3] + Zstd_jll v1.5.7+1 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Test Successfully re-resolved Status `/tmp/jl_fFEwd8/Project.toml` [80f14c24] AbstractMCMC v5.6.3 [a93c6f00] DataFrames v1.7.0 [31c24e10] Distributions v0.25.120 [e30172f5] Documenter v1.14.1 [7a1cc6ca] FFTW v1.9.0 [82899510] IteratorInterfaceExtensions v1.0.0 [5ab0869b] KernelDensity v0.6.10 [c7f686f2] MCMCChains v7.1.0 [be115224] MCMCDiagnosticTools v0.3.14 [a7f614a8] MLJBase v1.8.2 [c6f25543] MLJDecisionTreeInterface v0.4.2 [91a5bcdd] Plots v1.40.17 [10745b16] Statistics v1.11.1 [2913bbd2] StatsBase v0.34.5 [f3b207a7] StatsPlots v0.15.7 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [b8865327] UnicodePlots v3.8.1 [ade2ca70] Dates v1.11.0 [56ddb016] Logging v1.11.0 [9a3f8284] Random v1.11.0 [9e88b42a] Serialization v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_fFEwd8/Manifest.toml` [a4c015fc] ANSIColoredPrinters v0.0.1 [621f4979] AbstractFFTs v1.5.0 [80f14c24] AbstractMCMC v5.6.3 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 [7d9fca2a] Arpack v0.5.4 [a9b6321e] Atomix v1.1.1 [13072b0f] AxisAlgorithms v1.1.0 [39de3d68] AxisArrays v0.4.7 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 [d1d4a3ce] BitFlags v0.1.9 [324d7699] CategoricalArrays v0.10.8 [af321ab8] CategoricalDistributions v0.1.15 [d360d2e6] ChainRulesCore v1.25.2 [aaaa29a8] Clustering v0.15.8 [944b1d66] CodecZlib v0.7.8 [35d6a980] ColorSchemes v3.30.0 [3da002f7] ColorTypes v0.12.1 [c3611d14] ColorVectorSpace v0.11.0 [5ae59095] Colors v0.13.1 [34da2185] Compat v4.17.0 [a33af91c] CompositionsBase v0.1.2 [ed09eef8] ComputationalResources v0.3.2 [f0e56b4a] ConcurrentUtilities v2.5.0 [88cd18e8] ConsoleProgressMonitor v0.1.2 [187b0558] ConstructionBase v1.6.0 [6add18c4] ContextVariablesX v0.1.3 [d38c429a] Contour v0.6.3 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [a93c6f00] DataFrames v1.7.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [7806a523] DecisionTree v0.12.4 [244e2a9f] DefineSingletons v0.1.2 [8bb1440f] DelimitedFiles v1.9.1 [b4f34e82] Distances v0.10.12 [31c24e10] Distributions v0.25.120 [ffbed154] DocStringExtensions v0.9.5 [e30172f5] Documenter v1.14.1 [460bff9d] ExceptionUnwrapping v0.1.11 [c87230d0] FFMPEG v0.4.2 [7a1cc6ca] FFTW v1.9.0 [cc61a311] FLoops v0.2.2 [b9860ae5] FLoopsBase v0.1.1 [1a297f60] FillArrays v1.13.0 [53c48c17] FixedPointNumbers v0.8.5 [1fa38f19] Format v1.3.7 [46192b85] GPUArraysCore v0.2.0 [28b8d3ca] GR v0.73.17 [d7ba0133] Git v1.4.0 [42e2da0e] Grisu v1.0.2 [cd3eb016] HTTP v1.10.17 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [b5f81e59] IOCapture v0.2.5 [22cec73e] InitialValues v0.3.1 [842dd82b] InlineStrings v1.4.4 ⌅ [a98d9a8b] Interpolations v0.15.1 [8197267c] IntervalSets v0.7.11 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [82899510] IteratorInterfaceExtensions v1.0.0 [1019f520] JLFzf v0.1.11 [692b3bcd] JLLWrappers v1.7.1 [682c06a0] JSON v0.21.4 [b14d175d] JuliaVariables v0.2.4 [63c18a36] KernelAbstractions v0.9.38 [5ab0869b] KernelDensity v0.6.10 [b964fa9f] LaTeXStrings v1.4.0 [23fbe1c1] Latexify v0.16.8 [0e77f7df] LazilyInitializedFields v1.3.0 [92ad9a40] LearnAPI v1.0.1 [1d6d02ad] LeftChildRightSiblingTrees v0.2.1 [6fdf6af0] LogDensityProblems v2.1.2 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.1.0 [c7f686f2] MCMCChains v7.1.0 [be115224] MCMCDiagnosticTools v0.3.14 [c2834f40] MLCore v1.0.0 [a7f614a8] MLJBase v1.8.2 [c6f25543] MLJDecisionTreeInterface v0.4.2 [e80e1ace] MLJModelInterface v1.12.0 [d8e11817] MLStyle v0.4.17 [f1d291b0] MLUtils v0.4.8 [1914dd2f] MacroTools v0.5.16 [299715c1] MarchingCubes v0.1.11 [d0879d2d] MarkdownAST v0.1.2 [739be429] MbedTLS v1.1.9 [442fdcdd] Measures v0.3.2 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [6f286f6a] MultivariateStats v0.10.3 [872c559c] NNlib v0.9.31 [77ba4419] NaNMath v1.1.3 [71a1bf82] NameResolution v0.1.5 [c020b1a1] NaturalSort v1.0.0 [b8a86587] NearestNeighbors v0.4.22 [510215fc] Observables v0.5.5 [6fe1bfb0] OffsetArrays v1.17.0 [4d8831e6] OpenSSL v1.5.0 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.35 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 [ccf2f8ad] PlotThemes v3.3.0 [995b91a9] PlotUtils v1.4.3 [91a5bcdd] Plots v1.40.17 [2dfb63ee] PooledArrays v1.4.3 [aea7be01] PrecompileTools v1.3.2 [21216c6a] Preferences v1.4.3 [8162dcfd] PrettyPrint v0.2.0 [08abe8d2] PrettyTables v2.4.0 [33c8b6b6] ProgressLogging v0.1.5 [92933f4c] ProgressMeter v1.10.4 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [b3c3ace0] RangeArrays v0.3.2 [c84ed2f1] Ratios v0.4.5 [3cdcf5f2] RecipesBase v1.3.4 [01d81517] RecipesPipeline v0.6.12 [189a3867] Reexport v1.2.2 [2792f1a3] RegistryInstances v0.1.0 [05181044] RelocatableFolders v1.0.1 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [321657f4] ScientificTypes v3.1.0 [30f210dd] ScientificTypesBase v3.0.0 [6e75b9c4] ScikitLearnBase v0.5.0 [7e506255] ScopedValues v1.4.0 [6c6a2e73] Scratch v1.3.0 [91c51154] SentinelArrays v1.4.8 [efcf1570] Setfield v1.1.2 [605ecd9f] ShowCases v0.1.0 [992d4aef] Showoff v1.0.3 [777ac1f9] SimpleBufferStream v1.2.0 [699a6c99] SimpleTraits v0.9.4 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.1 [171d559e] SplittablesBase v0.1.15 [860ef19b] StableRNGs v1.0.3 [90137ffa] StaticArrays v1.9.14 [1e83bf80] StaticArraysCore v1.4.3 [c062fc1d] StatisticalMeasuresBase v0.1.2 [64bff920] StatisticalTraits v3.5.0 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.5 [4c63d2b9] StatsFuns v1.5.0 [f3b207a7] StatsPlots v0.15.7 [892a3eda] StringManipulation v0.4.1 [ab02a1b2] TableOperations v1.2.0 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [62fd8b95] TensorCore v0.1.1 [5d786b92] TerminalLoggers v0.1.7 [3bb67fe8] TranscodingStreams v0.11.3 [28d57a85] Transducers v0.4.84 [5c2747f8] URIs v1.6.1 [3a884ed6] UnPack v1.0.2 [1cfade01] UnicodeFun v0.4.1 [b8865327] UnicodePlots v3.8.1 [1986cc42] Unitful v1.23.1 [45397f5d] UnitfulLatexify v1.7.0 [013be700] UnsafeAtomics v0.3.0 [41fe7b60] Unzip v0.2.0 [cc8bc4a8] Widgets v0.6.7 [efce3f68] WoodburyMatrices v1.0.0 ⌅ [68821587] Arpack_jll v3.5.1+1 [6e34b625] Bzip2_jll v1.0.9+0 [83423d85] Cairo_jll v1.18.5+0 [ee1fde0b] Dbus_jll v1.16.2+0 [2702e6a9] EpollShim_jll v0.0.20230411+1 [2e619515] Expat_jll v2.6.5+0 ⌅ [b22a6f82] FFMPEG_jll v4.4.4+1 [f5851436] FFTW_jll v3.3.11+0 [a3f928ae] Fontconfig_jll v2.16.0+0 [d7e528f0] FreeType2_jll v2.13.4+0 [559328eb] FriBidi_jll v1.0.17+0 [0656b61e] GLFW_jll v3.4.0+2 [d2c73de3] GR_jll v0.73.17+0 [b0724c58] GettextRuntime_jll v0.22.4+0 [f8c6e375] Git_jll v2.50.1+0 [7746bdde] Glib_jll v2.84.3+0 [3b182d85] Graphite2_jll v1.3.15+0 [2e76f6c2] HarfBuzz_jll v8.5.1+0 [1d5cc7b8] IntelOpenMP_jll v2025.2.0+0 [aacddb02] JpegTurbo_jll v3.1.1+0 [c1c5ebd0] LAME_jll v3.100.3+0 [88015f11] LERC_jll v4.0.1+0 [1d63c593] LLVMOpenMP_jll v18.1.8+0 [dd4b983a] LZO_jll v2.10.3+0 [e9f186c6] Libffi_jll v3.4.7+0 [7e76a0d4] Libglvnd_jll v1.7.1+1 [94ce4f54] Libiconv_jll v1.18.0+0 [4b2f31a3] Libmount_jll v2.41.0+0 [89763e89] Libtiff_jll v4.7.1+0 [38a345b3] Libuuid_jll v2.41.0+0 [856f044c] MKL_jll v2025.2.0+0 [c8ffd9c3] MbedTLS_jll v2.28.6+2 [e7412a2a] Ogg_jll v1.3.6+0 [9bd350c2] OpenSSH_jll v10.0.1+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [91d4177d] Opus_jll v1.5.2+0 [36c8627f] Pango_jll v1.56.3+0 ⌅ [30392449] Pixman_jll v0.44.2+0 [c0090381] Qt6Base_jll v6.8.2+1 [629bc702] Qt6Declarative_jll v6.8.2+1 [ce943373] Qt6ShaderTools_jll v6.8.2+1 [e99dba38] Qt6Wayland_jll v6.8.2+1 [f50d1b31] Rmath_jll v0.5.1+0 [a44049a8] Vulkan_Loader_jll v1.3.243+0 [a2964d1f] Wayland_jll v1.24.0+0 [ffd25f8a] XZ_jll v5.8.1+0 [f67eecfb] Xorg_libICE_jll v1.1.2+0 [c834827a] Xorg_libSM_jll v1.2.6+0 [4f6342f7] Xorg_libX11_jll v1.8.12+0 [0c0b7dd1] Xorg_libXau_jll v1.0.13+0 [935fb764] Xorg_libXcursor_jll v1.2.4+0 [a3789734] Xorg_libXdmcp_jll v1.1.6+0 [1082639a] Xorg_libXext_jll v1.3.7+0 [d091e8ba] Xorg_libXfixes_jll v6.0.1+0 [a51aa0fd] Xorg_libXi_jll v1.8.3+0 [d1454406] Xorg_libXinerama_jll v1.1.6+0 [ec84b674] Xorg_libXrandr_jll v1.5.5+0 [ea2f1a96] Xorg_libXrender_jll v0.9.12+0 [c7cfdc94] Xorg_libxcb_jll v1.17.1+0 [cc61e674] Xorg_libxkbfile_jll v1.1.3+0 [e920d4aa] Xorg_xcb_util_cursor_jll v0.1.5+0 [12413925] Xorg_xcb_util_image_jll v0.4.1+0 [2def613f] Xorg_xcb_util_jll v0.4.1+0 [975044d2] Xorg_xcb_util_keysyms_jll v0.4.1+0 [0d47668e] Xorg_xcb_util_renderutil_jll v0.3.10+0 [c22f9ab0] Xorg_xcb_util_wm_jll v0.4.2+0 [35661453] Xorg_xkbcomp_jll v1.4.7+0 [33bec58e] Xorg_xkeyboard_config_jll v2.44.0+0 [c5fb5394] Xorg_xtrans_jll v1.6.0+0 [35ca27e7] eudev_jll v3.2.14+0 [214eeab7] fzf_jll v0.61.1+0 [a4ae2306] libaom_jll v3.12.1+0 ⌅ [0ac62f75] libass_jll v0.15.2+0 [1183f4f0] libdecor_jll v0.2.2+0 [2db6ffa8] libevdev_jll v1.13.4+0 [f638f0a6] libfdk_aac_jll v2.0.4+0 [36db933b] libinput_jll v1.28.1+0 [b53b4c65] libpng_jll v1.6.50+0 [f27f6e37] libvorbis_jll v1.3.8+0 [009596ad] mtdev_jll v1.1.7+0 [1317d2d5] oneTBB_jll v2022.0.0+0 ⌅ [1270edf5] x264_jll v2021.5.5+0 ⌅ [dfaa095f] x265_jll v3.5.0+0 [d8fb68d0] xkbcommon_jll v1.9.2+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [1a1011a3] SharedArrays v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.14.1+1 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.7.15 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.5+0 [458c3c95] OpenSSL_jll v3.5.1+0 [efcefdf7] PCRE2_jll v10.45.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.65.0+0 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ESS/R-hat ┌ Warning: number of draws after splitting must be >4 but is 0. ESS cannot be computed. └ @ MCMCDiagnosticTools ~/.julia/packages/MCMCDiagnosticTools/hc08m/src/ess_rhat.jl:472 ┌ Warning: number of draws after splitting must be >4 but is 0. ESS cannot be computed. └ @ MCMCDiagnosticTools ~/.julia/packages/MCMCDiagnosticTools/hc08m/src/ess_rhat.jl:472 ┌ Warning: number of draws after splitting must be >4 but is 0. ESS cannot be computed. └ @ MCMCDiagnosticTools ~/.julia/packages/MCMCDiagnosticTools/hc08m/src/ess_rhat.jl:472 ┌ Warning: number of draws after splitting must be >4 but is 0. ESS cannot be computed. └ @ MCMCDiagnosticTools ~/.julia/packages/MCMCDiagnosticTools/hc08m/src/ess_rhat.jl:472 ┌ Warning: number of draws after splitting must be >4 but is 0. ESS cannot be computed. └ @ MCMCDiagnosticTools ~/.julia/packages/MCMCDiagnosticTools/hc08m/src/ess_rhat.jl:472 ┌ Warning: number of draws after splitting must be >4 but is 0. ESS cannot be computed. └ @ MCMCDiagnosticTools ~/.julia/packages/MCMCDiagnosticTools/hc08m/src/ess_rhat.jl:472 179.441753 seconds (30.15 M allocations: 8.205 GiB, 4.89% gc time, 30.54% compilation time: 5% of which was recompilation) MCSE 53.682592 seconds (8.02 M allocations: 756.768 MiB, 0.42% gc time, 26.15% compilation time) Tables interfaces 72.065565 seconds (33.15 M allocations: 2.071 GiB, 2.02% gc time, 89.37% compilation time: 12% of which was recompilation) Plotting Precompiling packages... 7691.3 ms ✓ TableOperations 4484.2 ms ✓ NearestNeighbors 16855.1 ms ✓ PlotUtils 3185.9 ms ✓ Interpolations → InterpolationsUnitfulExt 4746.1 ms ✓ MultivariateStats 3717.8 ms ✓ Clustering 8154.1 ms ✓ PlotThemes 8775.9 ms ✓ RecipesPipeline 101881.1 ms ✓ Plots 20932.3 ms ✓ Plots → UnitfulExt 29819.4 ms ✓ StatsPlots 11 dependencies successfully precompiled in 214 seconds. 235 already precompiled. Precompiling packages... 8354.3 ms ✓ MarchingCubes 87269.8 ms ✓ UnicodePlots 2 dependencies successfully precompiled in 96 seconds. 47 already precompiled. Precompiling packages... 8157.6 ms ✓ UnicodePlots → IntervalSetsExt 1 dependency successfully precompiled in 9 seconds. 66 already precompiled. traceplot ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.77039│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 1 │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀│Chain 2 │⠀⡇⠀⢀⡄⢰⠀⠀⠀⠀⠀⡆⢰⠀⠀⢠⠀⠀⣾⠀⢀⡆⠀⠀⠀⠀⠀⢸⠀⢸⠀⢠⡇⡆⠀⠀⠀⡄⠀⠀│Chain 3 │⠀⡇⢰⣼⣷⣿⠀⡇⣰⢠⢠⣧⣸⠀⡀⣸⡆⠀⣿⢰⢸⣿⠀⠀⠀⢀⡀⢸⢀⢸⡆⢸⣿⡇⠀⠀⢰⣇⢸⠀│ │⠀⡇⢸⣿⣿⣿⣾⣿⣿⣾⣾⣿⣿⣀⣷⣿⣧⡇⣿⢸⣸⣿⣸⣤⣇⣾⣧⣸⣿⢸⣇⣾⣿⣿⠀⡇⢸⣿⣾⠀│ │⠀⣧⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣆⣿⣿⣿⣿⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠒⣿⣿⣿⣿⣿⣿⡟⣿⣿⣿⣿⢺⣿⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⣿⣿⣿⣿⣿⡟⣿⣿⣿⠒│ │⠀⣿⣿⠇⡿⢿⠏⠇⡿⢸⠀⢿⠘⢹⢸⡿⡏⣿⡟⣿⠏⣿⡿⡿⠈⡏⣿⣿⣿⡇⣿⣿⢻⢿⣿⡇⢿⣿⡿⠀│ │⠀⡿⠿⠀⡇⢸⠀⠀⠃⠘⠀⠸⠀⠀⠘⠇⠃⢸⡇⠀⠀⠉⠁⠇⠀⠇⢹⠁⡟⠀⣿⡏⢸⢸⣿⡇⢸⣿⠁⠀│ │⠀⡇⠀⠀⠁⠸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⢸⠀⠁⠀⣿⡇⠀⠘⠀⠃⢸⠙⠀⠀│ -2.20176│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠋⠃⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ meanplot ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 1.86401│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 1 │⠀⣷⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 2 │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 3 │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Mean│⠀⣿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣀⣀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⡇⠀⠀⠀⠀⠀⢠⣤⣞⣛⣡⣈⡭⠟⠛⠻⠞⠛⠶⠶⣿⡙⣛⣒⡶⢶⠶⣖⣶⣤⣤⣶⠒⠒⠦⠤⠤⠀│ │⠀⣿⣧⣀⣼⣦⣴⡟⣻⠞⠛⠟⠓⠞⠙⠉⠉⠛⠓⠲⢤⠤⠦⢭⣥⣀⣤⣠⣀⣀⡀⢀⣀⣈⣉⣉⣝⣭⢭⠀│ │⠀⣿⣼⣿⠿⠿⠟⠿⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠉⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⢻⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣼⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.512867│⠀⡇⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ density ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 0.430407│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⢀⡤⣤⢶⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⡜⢰⢫⢫⠈⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢰⢁⢧⠃⠀⠣⣜⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⡇⡾⠃⠀⠀⠀⠀⢹⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢸⡼⠁⠀⠀⠀⠀⠀⠀⢿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣷⠃⠀⠀⠀⠀⠀⠀⠀⠘⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⣻⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⡻⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠣⣣⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢠⡟⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⢳⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣄⠱⡄⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⢀⣠⡾⠋⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠦⣝⣦⡀⠀⠀⠀⠀⠀⠀│ -0.00938728│⠤⠶⠶⠿⠯⠤⠤⠤⠤⠤⠤⠤⢼⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠬⠽⠶⠦⠤⠤⠤│ └────────────────────────────────────────┘ ⠀-2.16608⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀4.73471⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 0.419162│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡴⠲⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⡜⠀⠀⠈⢦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⡜⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⡸⠀⠀⠀⠀⠀⠀⠀⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢠⠃⠀⠀⠀⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⢾⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠊⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣠⠃⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⣀⠔⠁⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⢤⣀⠀⠀⠀⠀⠀⠀│ -0.0112109│⠤⠶⠶⠯⠥⠤⠤⠤⠤⠤⠤⠤⢼⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠭⠷⠦⠤⠤⠤│ └────────────────────────────────────────┘ ⠀-2.15981⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀4.72844⠀ autocorplot ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 1.03259│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 1 │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 2 │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 3 │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Autocorrelation│⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⢀⠜⡄⡠⠻⣠⣀⡀⡠⡀⠀⣤⠀⠀⠀⢀⠀⠀⠀⡰⢄⢠⠚⡄⠀⠀⡰⢲⢦⡔⠒⡆⠀⡜⠀│ │⠒⡗⣷⣲⣖⡺⠖⢳⢓⢶⢿⠞⠻⡶⣷⡺⠛⣷⡶⢶⠚⢻⣷⣲⣓⣲⡳⢖⠞⠶⡶⠷⠓⠚⡗⡻⠚⣾⠞⠒│ -0.118903│⠀⡇⠘⠁⠀⠈⠢⠊⠉⠉⠀⠀⠀⠑⠁⠀⠀⠈⠉⠁⠑⠁⠀⠈⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠁⠀⠀│ └────────────────────────────────────────┘ ⠀-0.81⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Lag⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀27.81⠀ ridgelineplot ┌────────────────────────────────────────┐ 3.78235│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⣴⠀⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Mean │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⣿⠀⠀⠀⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Median │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⣿⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│95% HPDI │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⣿⠀⠀⢸⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⣿⡆⠀⢸⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⢠⢿⡇⠀⢸⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⢸⢸⡇⠀⢸⢸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Parameters│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⢸⢸⡇⠀⡼⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠐⠚⚬⠛⠒⠓⠂⠓⢀⣀⣀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⢀⣀⡤⠖⠋⠉⢸⡇⠈⠑⠦⣄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠠⠤⠤⠖⢺⠒⠒⠒⠺⠭⢤⣤⣤⠤⠤⚬⠧⠤⠤⠤⠤⠬⠭⠽⠒⠒⠒⠒⠲⠤⠤⠤⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢀⣠⠴⠚⠉⠀⡏⠉⠙⠲⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠤⠤⠤⠴⠒⠒⢺⠾⠭⢤⣤⣤⠤⠤⚬⠤⠤⠤⠤⠬⠭⠗⠒⠒⠲⠤⠤⠤⠤⠤⠄⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⣸⠖⠋⠉⢸⠈⠙⠲⢤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.0956598│⠀⠤⠤⠤⠤⠤⠴⠒⠺⠭⠤⢼⠤⠤⠤⚬⠤⠤⠤⠤⠤⠭⠽⠒⠒⠲⠤⠤⠤⠤⠤⠤⠄⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-3.13502⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀7.49865⠀ forestplot ┌────────────────────────────────────────┐ 1.745│⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⚬⠒⠒⠒⚬⠒⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│95% HPDI │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│80% HPDI │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Median │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Mean │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⚬⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Parameters│⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⚬⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.155│⠀⠤⠤⠤⠤⠤⢼⠤⠤⠤⠤⠤⠤⚬⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-1.03466⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀5.25898⠀ histogram ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 111│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⢸⠉⚬⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⢸⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡏⚬⢹⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⚬⡇⠀⢸⠀⠀⡧⚬⢤⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Frequency│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡇⢸⚬⠀⠀⡇⠀⢸⚬⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠉⡇⚬⣿⚬⚬⚬⚬⚬⚬⢸⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⡇⚬⚬⢸⢸⚬⢸⚬⚬⢸⠀⢸⣀⚬⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⚬⣿⚬⢸⢸⢸⚬⣿⢸⚬⠀⢸⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⚬⚬⚬⚬⡇⣿⣿⢸⢸⢸⢸⣿⢸⚬⚬⚬⚬⡄⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⚬⚬⚬⡇⡇⣿⣿⢸⢸⢸⢸⣿⢸⢸⚬⚬⚬⚬⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0│⠀⠀⣀⚬⣠⚬⚬⚬⚬⚬⚬⣿⣇⣇⣇⣿⣿⣸⣸⣸⣸⣿⣸⣸⣸⣿⣇⚬⚬⚬⚬⚬⚬⣆⚬⣀⚬⣀⠀⠀│ └────────────────────────────────────────┘ ⠀-2.9635⠀⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀⠀5.4635⠀ mixeddensity ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 0.430407│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⢀⡤⣤⢶⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 1 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⡜⢰⢫⢫⠈⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 2 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢰⢁⢧⠃⠀⠣⣜⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 3 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⡇⡾⠃⠀⠀⠀⠀⢹⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢸⡼⠁⠀⠀⠀⠀⠀⠀⢿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣷⠃⠀⠀⠀⠀⠀⠀⠀⠘⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⣻⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⡻⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠣⣣⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢠⡟⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⢳⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣄⠱⡄⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⢀⣠⡾⠋⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠦⣝⣦⡀⠀⠀⠀⠀⠀⠀│ -0.00938728│⠤⠶⠶⠿⠯⠤⠤⠤⠤⠤⠤⠤⢼⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠬⠽⠶⠦⠤⠤⠤│ └────────────────────────────────────────┘ ⠀-2.16608⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀4.73471⠀ corner ┌────────────────────────────────────────┐ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⚬⢹⠒⚬⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢸⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢸⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡤⚬⡇⠀⢸⠀⠀⡏⚬⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⚬⠤⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⚬⢤⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⢸⣀⚬⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡤⚬⢼⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⢸⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢸⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⢸⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢀⣀⚬⡇⠀⢸⠀⠀⡇⠀⡇⠀⢸⠀⠀⡇⠀⢸⠀⢸⠀⠀⣇⚬⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⣀⚬⣠⚬⣼⣀⣀⣇⣀⣸⣀⣀⣇⣀⣇⣀⣸⣀⣀⣇⣀⣸⣀⣸⣀⣀⣇⣀⣸⚬⣒⣆⚬⣀⚬⣀⠀⠀│ └────────────────────────────────────────┘ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 300.796│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ param_2│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -9.99085│⠤⠤⠤⠤⚬⠶⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⠶⠶⚬⠤⠤⠤⠤│ │⠀⚬⣤⣤⣤⣤⣤⣤⣤⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⠀│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-2.9635⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀5.4635⠀ ┌────────────────────────────────────────┐ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⚬⠉⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡧⚬⢤⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⢸⠤⚬⢤⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡤⚬⠤⡇⠀⠀⡇⠀⢸⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡖⚬⠒⡇⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⢸⠤⚬⢤⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⢸⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⣀⚬⣀⡇⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⢸⠀⠀⢸⠤⚬⢤⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⢸⠀⠀⢸⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⣀⚬⣀⡇⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⠀⡇⠀⢸⠀⠀⢸⠀⠀⢸⠀⠀⢸⣀⚬⣀⠀⠀⠀⠀⠀│ │⠀⠀⣀⚬⣀⣇⣀⣀⣇⣀⣀⣇⣀⣀⣇⣀⣀⣇⣀⣀⣇⣀⣸⣀⣀⣸⣀⣀⣸⣀⣀⣸⣀⣀⣸⣒⚬⣲⠀⠀│ └────────────────────────────────────────┘ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 199.855│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ param_2│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⚬⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -7.0354│⠒⠒⠒⠒⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⚬⠒⠒⠒│ │⠀⚬⚬⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⣤⠀│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-2.3708⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀4.3708⠀ violinplot ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.77039│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡰⢹⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠏⡿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣿⡀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡸⠁⢸⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⡇⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⡇⠳⡀⠀⠀⠀⠀│ │⠀⠀⠀⢠⠇⠀⢸⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⣠⠇⠀⡇⠸⣄⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⡇⠀⠹⡀⠀⠀⠀│ │⠀⠀⡠⠋⠀⢰⠚⡆⠀⠙⢆⠀⠀⠀⠀⢠⠞⠁⠀⡤⢧⠀⠈⠳⡄⠀⠀⠀⠀⡔⠉⠀⢠⠧⡄⠀⠉⢢⠀⠀│ │⠀⡞⠁⠀⠀⢸⣀⡇⠀⠀⠈⢳⠀⠀⢠⠋⠀⠀⠀⡇⢸⠀⠀⠀⠙⡄⠀⠀⢀⠇⠀⠀⢸⠀⡇⠀⠀⢸⡀⠀│ │⠀⠙⡄⠀⠀⢸⠀⡇⠀⠀⢠⠎⠀⠀⠸⣄⠀⠀⠀⡏⢹⠀⠀⠀⣠⠇⠀⠀⡏⠀⠀⠀⢸⠉⡇⠀⠀⠀⢹⠀│ │⠀⠀⠳⡀⠀⠘⢲⠃⠀⢀⠜⠀⠀⠀⠀⠘⢦⠀⠀⠓⡞⠀⠀⡴⠃⠀⠀⠀⠙⢆⠀⠀⠸⡤⠇⠀⠀⡰⠋⠀│ │⠒⠒⠒⠚⡖⠒⢺⠒⢲⠓⠒⠒⠒⠒⠒⠒⠚⢳⠒⠒⡗⠒⡞⠓⠒⠒⠒⠒⠒⠒⠛⣖⠒⡗⠒⣲⠛⠒⠒⠒│ │⠀⠀⠀⠀⠱⣄⢸⢠⠞⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⠀⡇⡼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⡇⢰⠃⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠘⣼⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⡿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣇⠏⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ -2.20176│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 5.66907│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣾⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢰⢻⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡏⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⣠⠃⢸⠘⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⡸⠁⡏⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠋⡇⠹⣄⠀⠀⠀⠀│ │⠀⠀⠀⣸⠁⠀⢸⠀⠈⢇⠀⠀⠀⠀⠀⠀⢀⡜⠁⠀⡇⠈⢣⡀⠀⠀⠀⠀⠀⣀⠜⠁⠀⡇⠀⠈⠢⡀⠀⠀│ │⠀⠀⡴⠃⠀⢠⠼⡄⠀⠈⢦⠀⠀⠀⠀⢀⡞⠀⠀⡤⢧⠀⠀⢳⡀⠀⠀⠀⢸⠁⠀⠀⢰⠓⡆⠀⠀⠈⡆⠀│ │⠀⠀⡇⠀⠀⢸⠀⡇⠀⠀⢸⠀⠀⠀⢠⠎⠀⠀⠀⡇⢸⠀⠀⠀⠱⡄⠀⠀⡞⠀⠀⠀⢸⣀⡇⠀⠀⠀⢳⠀│ │⠀⡜⠁⠀⠀⢸⠒⡇⠀⠀⠀⢣⠀⠀⢸⡀⠀⠀⠀⡏⢹⠀⠀⠀⢀⡇⠀⠀⣇⠀⠀⠀⢸⠀⡇⠀⠀⠀⡸⠀│ │⠀⠳⡀⠀⠀⢸⣀⡇⠀⠀⢀⠜⠀⠀⠀⢳⡀⠀⠀⠓⡞⠀⠀⢀⡞⠀⠀⠀⠈⢦⡀⠀⠘⡖⠃⠀⢀⡴⠁⠀│ │⠀⠀⠙⢆⠀⠀⢸⠀⠀⡠⠋⠀⠀⠀⠀⠀⠙⢦⠀⠀⡇⠀⡴⠋⠀⠀⠀⠀⠀⠀⠳⡄⠀⡇⠀⢠⠎⠀⠀⠀│ │⠀⠀⠀⠀⢣⡀⢸⢀⡜⠁⠀⠀⠀⠀⠀⠀⠀⠀⢳⡀⣇⡞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣆⡇⣰⠃⠀⠀⠀⠀│ │⠒⠒⠒⠒⠒⢻⣺⡟⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⢳⡟⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠺⣷⠗⠒⠒⠒⠒⠒│ │⠀⠀⠀⠀⠀⠀⣿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀│ -1.13707│⠀⠀⠀⠀⠀⠀⠛⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 6.55969│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢀⢶⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⡿⡄⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡼⢸⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡎⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⡇⢣⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡸⠀⢸⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⢀⡎⠀⡇⢱⡀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠁⡇⠘⡆⠀⠀⠀⠀│ │⠀⠀⠀⡰⠃⠀⢸⠀⠘⢆⠀⠀⠀⠀⠀⠀⣠⠞⠀⠀⡇⠀⠳⣄⠀⠀⠀⠀⠀⢀⡴⠃⠀⡇⠀⠙⢦⡀⠀⠀│ │⠀⠀⡼⠁⠀⢰⠚⡆⠀⠈⢧⠀⠀⠀⢀⡞⠁⠀⠀⡖⢳⠀⠀⠈⢳⡀⠀⠀⡴⠋⠀⠀⢰⠓⡆⠀⠀⠙⢦⠀│ │⠀⡞⠁⠀⠀⢸⣀⡇⠀⠀⠈⢳⠀⠀⢸⠀⠀⠀⠀⣇⣸⠀⠀⠀⠀⡇⠀⠀⣇⠀⠀⠀⢸⠤⡇⠀⠀⠀⡸⠀│ │⠀⠳⡄⠀⠀⢸⠀⡇⠀⠀⢠⠞⠀⠀⠘⣆⠀⠀⠀⡇⢸⠀⠀⠀⣰⠃⠀⠀⠘⡆⠀⠀⢸⠀⡇⠀⠀⢰⠃⠀│ │⠀⠀⠱⡀⠀⠘⢲⠃⠀⢀⡞⠀⠀⠀⠀⠈⠧⡀⠀⠉⡏⠀⢀⠼⠁⠀⠀⠀⠀⠳⡀⠀⠘⡖⠃⠀⢠⠞⠀⠀│ │⠀⠀⠀⠙⣆⠀⢸⠀⣠⠋⠀⠀⠀⠀⠀⠀⠀⠸⡄⠀⡇⢠⠇⠀⠀⠀⠀⠀⠀⠀⠹⣄⠀⡇⠀⣠⠇⠀⠀⠀│ │⠀⠀⠀⠀⠈⢦⢸⡴⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢧⠀⡇⡼⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢣⡇⡜⠁⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠈⣿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⡿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣿⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠿⠀⠀⠀⠀⠀⠀│ -0.392045│⠉⠉⠉⠉⠉⠉⚬⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠙⚬⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 2.03│⠀⢤⠤⠤⠤⢴⠶⡦⠤⠤⠤⡤⠀⠀⠀⣤⠤⠤⠤⡶⢶⠤⠤⠤⣤⠀⠀⠀⡤⠤⠤⠤⢴⠶⡦⠤⠤⠤⢤⠀│ │⠀⠈⠣⣄⠀⢸⠀⡇⠀⣀⠔⠁⠀⠀⠀⠈⠢⡀⠀⡇⢸⠀⢀⠔⠁⠀⠀⠀⠘⠦⡀⠀⢸⠀⡇⠀⢀⠔⠁⠀│ │⠀⠀⠀⠈⠳⣼⠀⣇⠞⠁⠀⠀⠀⠀⠀⠀⠀⠈⢦⡇⢸⡴⠁⠀⠀⠀⠀⠀⠀⠀⠈⠢⣸⠀⣇⠔⠁⠀⠀⠀│ │⠀⠀⠀⠀⠀⢹⣤⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣧⣼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣠⡏⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⢹⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡏⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡧⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⣸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣇⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⣸⠋⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡟⢻⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠙⣇⠀⠀⠀⠀⠀│ │⠀⠀⠀⢀⠔⢹⠀⡏⠢⡀⠀⠀⠀⠀⠀⠀⠀⡠⠊⡇⢸⠑⢄⠀⠀⠀⠀⠀⠀⠀⢀⠔⢹⠀⡏⠢⡀⠀⠀⠀│ │⠀⢀⠔⠁⠀⢸⠀⡇⠀⠈⠲⡄⠀⠀⠀⡴⠊⠀⠀⡇⢸⠀⠀⠑⢦⠀⠀⠀⢠⠖⠁⠀⢸⠀⡇⠀⠈⠢⡀⠀│ 0.97│⠀⠃⠀⠀⠀⠸⠤⠇⠀⠀⠀⠘⠀⠀⠘⠀⠀⠀⠀⠧⠼⠀⠀⠀⠀⠃⠀⠀⠃⠀⠀⠀⠸⠤⠇⠀⠀⠀⠘⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 5.71189│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠠⚬⠀⠀⠀⠀⠀⠀⠀⠀⢰⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⡇⠀⠀⠀⠀⠀⠀⠀⢀⢿⢱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⡞⢸⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢠⚬⠀⠀⠀⠀⠀⠀⠀⢀⡎⣿⡀⠀⠀⠀⠀⠀⡼⠁⣸⡀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⣸⣧⠀⠀⠀⠀⠀⠀⢀⠎⠀⡇⠹⡄⠀⠀⠀⡼⠁⠀⡇⡇⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⢰⠃⡏⣆⠀⠀⠀⠀⢀⡞⠀⢀⣇⠀⢳⡀⠀⠐⣇⠀⠀⡏⡇⠀⠀⣸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⡏⠀⡇⠸⡄⠀⠀⠀⢸⠀⠀⢸⢸⠀⠀⡇⠀⠀⠸⡄⠀⢧⠇⠀⢰⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⢀⡜⠀⢰⢳⠀⠱⡄⠀⠀⡏⠀⠀⢸⢹⠀⠀⢹⡄⠀⠀⠙⣄⢸⠀⣰⠃⠀⠀⠀⠙⠻⢭⡏⣯⠽⠛⠋⠀│ │⠀⡏⠀⠀⢸⢼⠀⠀⢘⠆⠀⠳⡀⠀⠘⡞⠀⢀⠞⠀⠀⠀⠀⠘⣾⣰⠃⠀⠀⠀⢀⡤⠖⠚⣇⡏⠓⠢⢤⠀│ │⠀⢹⡀⠀⢸⢸⠀⠀⡎⠀⠀⠀⠙⣆⠀⡇⣠⠋⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⣀⣀⣱⣄⣈⣏⣀⣞⣁⣀⣀⣀⣀⣈⣆⣷⣃⣀⣀⣀⣀⣀⣀⣀⚬⣇⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀│ │⠀⠀⠀⢣⠀⡇⣸⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⚬⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢳⡿⠁⠀⠀⠀⠀⠀⠀⠀⠘⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -2.22918│⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.486⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀4.514⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 6.60471│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⚬⠀⠀⠀⠀⠀⠀⠀⠀⣸⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⢰⢻⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢀⚬⠀⠀⠀⠀⠀⠀⠀⠀⡞⣷⠀⠀⠀⠀⠀⠀⡠⠋⢸⠀⠹⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⡴⠃⡏⢦⠀⠀⠀⠀⡞⠁⠀⡏⡇⠀⠈⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⢀⠏⡟⡆⠀⠀⠀⠀⠀⡼⠁⢀⣇⠈⢧⠀⠀⠐⡇⠀⠀⡗⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⣸⠀⡇⢧⠀⠀⠀⠀⡼⠁⠀⢸⢸⠀⠈⢣⠀⠀⠹⣄⠀⢧⠇⠀⣠⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⢀⡞⠁⢠⢧⠈⠳⡄⠀⠀⣇⠀⠀⢸⢹⠀⠀⢸⠃⠀⠀⠈⢇⢸⠀⡼⠁⠀⠀⠀⠙⠻⢭⡏⣯⠭⠛⠃⠀│ │⠀⡎⠀⠀⢸⣸⠀⠀⠹⡄⠀⠘⢆⠀⠈⡏⠀⣰⠃⠀⠀⠀⠀⠸⣸⢠⠇⠀⠀⠀⢀⠤⠒⠊⣇⡏⠓⠲⢤⠀│ │⠀⠳⡀⠀⢸⣸⠀⢀⡞⠀⠀⠀⠈⠳⡀⣇⡞⠁⠀⠀⠀⠀⠀⠀⢹⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠤⠤⠽⡤⠤⡧⢤⠾⠤⠤⠤⠤⠤⠤⢷⡿⠤⠤⠤⠤⠤⠤⠤⠤⚬⡧⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤│ │⠀⠀⠀⠹⡄⣇⡞⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢱⡿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -1.938│⠀⠀⠀⠀⠘⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.486⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀4.514⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 6.06323│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⚬⠀⠀⠀⠀⠀⠀⠀⢠⢻⠸⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⣧⠀⠀⠀⠀⠀⠀⢀⡞⢸⠀⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⢠⠇⡟⡄⠀⠀⠀⠀⡰⠋⠀⡼⡄⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢸⣇⠀⠀⠀⠀⠀⢀⡴⠃⠀⡇⠈⢦⡀⠀⠈⡇⠀⠀⣇⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⢠⠏⡟⣆⠀⠀⠀⠀⡞⠀⠀⢰⢳⠀⠀⢱⠀⠀⢳⠀⠀⡇⡇⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⣠⠏⠀⡇⠘⣆⠀⠀⠀⡇⠀⠀⢸⢼⠀⠀⢸⡄⠀⠈⢆⠀⢹⠁⠀⡼⠁⠀⢠⣤⠤⠤⡤⡤⠤⠤⣤⠀│ │⠀⢰⠁⠀⢰⢳⠀⠈⡇⠀⠀⢣⡀⠀⢸⣸⠀⠀⡼⠀⠀⠀⠈⢧⢸⢀⡼⠁⠀⠀⠀⠈⠉⣓⡧⣷⡚⠉⠀⠀│ │⠀⡜⠀⠀⢸⢼⠀⠀⢱⡀⠀⠀⠳⡀⠀⡇⢀⡞⠀⠀⠀⠀⠀⠀⢻⡞⠀⠀⠀⠀⠠⠚⠉⠁⠧⠇⠈⠙⠲⠀│ │⠀⢧⡀⠀⢸⣸⠀⠀⡴⠃⠀⠀⠀⠹⡄⣇⠎⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠒⠒⠻⣖⠒⡗⢲⠞⠓⠒⠒⠒⠒⠒⢳⡟⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒│ │⠀⠀⠀⠸⡄⣇⡏⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢱⡿⠀⠀⠀⠀⠀⠀⠀⠀⠈⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -1.86122│⠀⠀⠀⠀⠘⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.486⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀4.514⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.77039│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡰⢹⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠏⡿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣿⡀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡸⠁⢸⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⡇⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⡇⠳⡀⠀⠀⠀⠀│ │⠀⠀⠀⢠⠇⠀⢸⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⣠⠇⠀⡇⠸⣄⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⡇⠀⠹⡀⠀⠀⠀│ │⠀⠀⡠⠋⠀⢰⠚⡆⠀⠙⢆⠀⠀⠀⠀⢠⠞⠁⠀⡤⢧⠀⠈⠳⡄⠀⠀⠀⠀⡔⠉⠀⢠⠧⡄⠀⠉⢢⠀⠀│ │⠀⡞⠁⠀⠀⢸⣀⡇⠀⠀⠈⢳⠀⠀⢠⠋⠀⠀⠀⡇⢸⠀⠀⠀⠙⡄⠀⠀⢀⠇⠀⠀⢸⠀⡇⠀⠀⢸⡀⠀│ │⠀⠙⡄⠀⠀⢸⠀⡇⠀⠀⢠⠎⠀⠀⠸⣄⠀⠀⠀⡏⢹⠀⠀⠀⣠⠇⠀⠀⡏⠀⠀⠀⢸⠉⡇⠀⠀⠀⢹⠀│ │⠀⠀⠳⡀⠀⠘⢲⠃⠀⢀⠜⠀⠀⠀⠀⠘⢦⠀⠀⠓⡞⠀⠀⡴⠃⠀⠀⠀⠙⢆⠀⠀⠸⡤⠇⠀⠀⡰⠋⠀│ │⠒⠒⠒⠚⡖⠒⢺⠒⢲⠓⠒⠒⠒⠒⠒⠒⠚⢳⠒⠒⡗⠒⡞⠓⠒⠒⠒⠒⠒⠒⠛⣖⠒⡗⠒⣲⠛⠒⠒⠒│ │⠀⠀⠀⠀⠱⣄⢸⢠⠞⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⠀⡇⡼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⡇⢰⠃⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠘⣼⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⡿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣇⠏⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ -2.20176│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 5.71189│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠠⚬⠀⠀⠀⠀⠀⠀⠀⠀⢰⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⡇⠀⠀⠀⠀⠀⠀⠀⢀⢿⢱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⡞⢸⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢠⚬⠀⠀⠀⠀⠀⠀⠀⢀⡎⣿⡀⠀⠀⠀⠀⠀⡼⠁⣸⡀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⣸⣧⠀⠀⠀⠀⠀⠀⢀⠎⠀⡇⠹⡄⠀⠀⠀⡼⠁⠀⡇⡇⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⢰⠃⡏⣆⠀⠀⠀⠀⢀⡞⠀⢀⣇⠀⢳⡀⠀⠐⣇⠀⠀⡏⡇⠀⠀⣸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⡏⠀⡇⠸⡄⠀⠀⠀⢸⠀⠀⢸⢸⠀⠀⡇⠀⠀⠸⡄⠀⢧⠇⠀⢰⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⢀⡜⠀⢰⢳⠀⠱⡄⠀⠀⡏⠀⠀⢸⢹⠀⠀⢹⡄⠀⠀⠙⣄⢸⠀⣰⠃⠀⠀⠀⠙⠻⢭⡏⣯⠽⠛⠋⠀│ │⠀⡏⠀⠀⢸⢼⠀⠀⢘⠆⠀⠳⡀⠀⠘⡞⠀⢀⠞⠀⠀⠀⠀⠘⣾⣰⠃⠀⠀⠀⢀⡤⠖⠚⣇⡏⠓⠢⢤⠀│ │⠀⢹⡀⠀⢸⢸⠀⠀⡎⠀⠀⠀⠙⣆⠀⡇⣠⠋⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⣀⣀⣱⣄⣈⣏⣀⣞⣁⣀⣀⣀⣀⣈⣆⣷⣃⣀⣀⣀⣀⣀⣀⣀⚬⣇⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀│ │⠀⠀⠀⢣⠀⡇⣸⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⚬⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⢳⡿⠁⠀⠀⠀⠀⠀⠀⠀⠘⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -2.22918│⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.486⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀4.514⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.72844│⠀⠀⠀⠀⠀⠀⣶⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡸⠉⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⢿⡀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡸⠁⠀⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⡎⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠞⠀⠳⡄⠀⠀⠀⠀│ │⠀⠀⠀⢠⠇⠀⠀⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⣠⠇⠀⠀⠸⣄⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⠹⡀⠀⠀⠀│ │⠀⠀⡠⠋⠀⠀⠀⠀⠀⠙⢆⠀⠀⠀⠀⢠⠞⠁⠀⠀⠀⠀⠈⠳⡄⠀⠀⠀⠀⡔⠁⠀⠀⠀⠀⠀⠈⢢⠀⠀│ │⠀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠈⢳⠀⠀⢠⠋⠀⠀⠀⠀⠀⠀⠀⠀⠙⡄⠀⠀⢀⠇⠀⠀⠀⠀⠀⠀⠀⢸⡀⠀│ │⠀⠙⡄⠀⠀⠀⠀⠀⠀⠀⢠⠎⠀⠀⠸⣄⠀⠀⠀⠀⠀⠀⠀⠀⣠⠇⠀⠀⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⠀│ │⠀⠀⠳⡀⠀⠀⠀⠀⠀⢀⠜⠀⠀⠀⠀⠘⢆⠀⠀⠀⠀⠀⠀⡰⠃⠀⠀⠀⠙⢄⠀⠀⠀⠀⠀⠀⠀⡠⠋⠀│ │⠒⠒⠒⠚⡖⠒⠒⠒⢲⠓⠒⠒⠒⠒⠒⠒⠚⢳⠒⠒⠒⠒⡞⠓⠒⠒⠒⠒⠒⠒⠳⣖⠒⠒⠒⣲⠚⠒⠒⠒│ │⠀⠀⠀⠀⠱⡄⠀⢀⠞⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⠀⠀⡼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠸⡄⠀⢠⠃⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠸⣤⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢇⡸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣀⡏⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢿⠀⠀⠀⠀⠀⠀│ -2.15981│⠀⠀⠀⠀⠀⠀⠻⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.77039│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠗⚬⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠴⠋⠀⡇⠙⠦⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠔⠉⠀⠀⠀⠀⡇⠀⠀⠀⠉⠢⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠴⠊⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠑⠦⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡠⠤⠒⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⢠⠤⠤⠧⠤⡄⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠒⠤⢄⠀⠀⠀⠀│ │⠀⡠⠖⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠲⢄⠀│ │⠀⠣⣄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠉⠉⠉⠉⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣠⠜⠀│ │⠀⠀⠀⠉⠓⠤⢄⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠒⠒⡖⠒⠃⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⡠⠤⠚⠉⠀⠀⠀│ │⠒⠒⠒⠒⠒⠒⠒⠒⠚⠛⠒⢶⡒⠒⠒⠒⠒⠒⠒⠒⡗⠒⠒⠒⠒⠒⠒⢒⡶⠒⠛⠓⠒⠒⠒⠒⠒⠒⠒⠒│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠓⠦⣄⡀⠀⠀⠀⡇⠀⠀⢀⣠⠴⠚⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠲⣄⠀⡇⣠⠖⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠨⢧⚬⠅⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -2.20176│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.576⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1.424⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.77039│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠗⚬⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠴⠋⠀⡇⠙⠦⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠔⠉⠀⠀⠀⠀⡇⠀⠀⠀⠉⠢⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠴⠊⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠑⠦⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡠⠤⠒⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⢠⠤⠤⠧⠤⡄⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠒⠤⢄⠀⠀⠀⠀│ │⠀⡠⠖⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠲⢄⠀│ │⠀⠣⣄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠉⠉⠉⠉⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣠⠜⠀│ │⠀⠀⠀⠉⠓⠤⢄⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠒⠒⡖⠒⠃⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⡠⠤⠚⠉⠀⠀⠀│ │⠒⠒⠒⠒⠒⠒⠒⠒⠚⠛⠒⢶⡒⠒⠒⠒⠒⠒⠒⠒⡗⠒⠒⠒⠒⠒⠒⢒⡶⠒⠛⠓⠒⠒⠒⠒⠒⠒⠒⠒│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠓⠦⣄⡀⠀⠀⠀⡇⠀⠀⢀⣠⠴⠚⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠲⣄⠀⡇⣠⠖⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠨⢧⚬⠅⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -2.20176│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.576⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1.424⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 5.66907│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠋⚬⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠁⠀⡇⠈⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠚⠁⠀⠀⠀⡇⠀⠀⠈⠓⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠈⠉⠒⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡠⠖⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠤⠤⠧⠤⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠲⢄⠀⠀⠀⠀│ │⠀⢀⡠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⢄⡀⠀│ │⠀⣏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠉⠉⠉⠉⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣹⠀│ │⠀⠀⠉⠲⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠤⠤⡤⠤⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠖⠉⠀⠀│ │⠀⠀⠀⠀⠀⠀⠈⠉⠒⠢⢄⣀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⣀⡠⠴⠒⠉⠁⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠓⠢⢄⡀⠀⠀⠀⡇⠀⠀⢀⡠⠔⠚⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠛⠓⢖⠒⡗⡲⠚⠛⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡦⢷⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -1.13707│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.576⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1.424⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 6.55969│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠉⡏⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠴⠊⠀⠀⡇⠀⠑⠦⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡤⠋⠁⠀⠀⠀⠀⡇⠀⠀⠀⠈⠙⢤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠒⠊⠁⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠈⠑⠒⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⣠⠤⠒⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠒⠒⠓⠒⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠑⠒⠤⣄⠀⠀│ │⠀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣀⣀⣀⣀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢳⠀│ │⠀⠉⠒⠤⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠤⠒⠉⠀│ │⠀⠀⠀⠀⠀⠑⠢⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠉⡏⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠔⠊⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⠢⣄⡀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⢀⣠⠔⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠢⢄⡀⠀⠀⡇⠀⢀⡠⠔⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⠀⡇⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠠⣧⚬⠄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -0.392045│⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠙⚬⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉│ └────────────────────────────────────────┘ ⠀0.576⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1.424⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 2.03│⠀⠀⢤⡤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢴⠶⠶⠶⠶⡦⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢤⡤⠀⠀│ │⠀⠀⠀⠈⠑⠒⠢⠤⣀⣀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⣀⣀⠤⠔⠒⠉⠁⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠒⠢⠤⣀⡀⢸⠀⠀⠀⠀⡇⠀⣀⠤⠔⠒⠋⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⢺⢄⠀⠀⡠⡗⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢳⡞⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⡼⢧⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⢼⠊⠀⠀⠑⡧⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣀⠤⠤⠒⠊⠁⠀⢸⠀⠀⠀⠀⡇⠀⠉⠑⠒⠤⠤⣀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⢀⣀⠤⠔⠒⠉⠉⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠒⠢⠤⢄⡀⠀⠀│ 0.97│⠀⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠤⠤⠤⠤⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠀│ └────────────────────────────────────────┘ ⠀0.576⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1.424⠀ plot() with violinplot seriestype ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.77039│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡰⢹⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠏⡿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣿⡀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡸⠁⢸⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⡇⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⡇⠳⡀⠀⠀⠀⠀│ │⠀⠀⠀⢠⠇⠀⢸⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⣠⠇⠀⡇⠸⣄⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⡇⠀⠹⡀⠀⠀⠀│ │⠀⠀⡠⠋⠀⢰⠚⡆⠀⠙⢆⠀⠀⠀⠀⢠⠞⠁⠀⡤⢧⠀⠈⠳⡄⠀⠀⠀⠀⡔⠉⠀⢠⠧⡄⠀⠉⢢⠀⠀│ │⠀⡞⠁⠀⠀⢸⣀⡇⠀⠀⠈⢳⠀⠀⢠⠋⠀⠀⠀⡇⢸⠀⠀⠀⠙⡄⠀⠀⢀⠇⠀⠀⢸⠀⡇⠀⠀⢸⡀⠀│ │⠀⠙⡄⠀⠀⢸⠀⡇⠀⠀⢠⠎⠀⠀⠸⣄⠀⠀⠀⡏⢹⠀⠀⠀⣠⠇⠀⠀⡏⠀⠀⠀⢸⠉⡇⠀⠀⠀⢹⠀│ │⠀⠀⠳⡀⠀⠘⢲⠃⠀⢀⠜⠀⠀⠀⠀⠘⢦⠀⠀⠓⡞⠀⠀⡴⠃⠀⠀⠀⠙⢆⠀⠀⠸⡤⠇⠀⠀⡰⠋⠀│ │⠒⠒⠒⠚⡖⠒⢺⠒⢲⠓⠒⠒⠒⠒⠒⠒⠚⢳⠒⠒⡗⠒⡞⠓⠒⠒⠒⠒⠒⠒⠛⣖⠒⡗⠒⣲⠛⠒⠒⠒│ │⠀⠀⠀⠀⠱⣄⢸⢠⠞⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⠀⡇⡼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⡇⢰⠃⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠘⣼⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⡿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣇⠏⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ -2.20176│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 5.66907│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣾⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢰⢻⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡏⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡏⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⣠⠃⢸⠘⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⡸⠁⡏⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠋⡇⠹⣄⠀⠀⠀⠀│ │⠀⠀⠀⣸⠁⠀⢸⠀⠈⢇⠀⠀⠀⠀⠀⠀⢀⡜⠁⠀⡇⠈⢣⡀⠀⠀⠀⠀⠀⣀⠜⠁⠀⡇⠀⠈⠢⡀⠀⠀│ │⠀⠀⡴⠃⠀⢠⠼⡄⠀⠈⢦⠀⠀⠀⠀⢀⡞⠀⠀⡤⢧⠀⠀⢳⡀⠀⠀⠀⢸⠁⠀⠀⢰⠓⡆⠀⠀⠈⡆⠀│ │⠀⠀⡇⠀⠀⢸⠀⡇⠀⠀⢸⠀⠀⠀⢠⠎⠀⠀⠀⡇⢸⠀⠀⠀⠱⡄⠀⠀⡞⠀⠀⠀⢸⣀⡇⠀⠀⠀⢳⠀│ │⠀⡜⠁⠀⠀⢸⠒⡇⠀⠀⠀⢣⠀⠀⢸⡀⠀⠀⠀⡏⢹⠀⠀⠀⢀⡇⠀⠀⣇⠀⠀⠀⢸⠀⡇⠀⠀⠀⡸⠀│ │⠀⠳⡀⠀⠀⢸⣀⡇⠀⠀⢀⠜⠀⠀⠀⢳⡀⠀⠀⠓⡞⠀⠀⢀⡞⠀⠀⠀⠈⢦⡀⠀⠘⡖⠃⠀⢀⡴⠁⠀│ │⠀⠀⠙⢆⠀⠀⢸⠀⠀⡠⠋⠀⠀⠀⠀⠀⠙⢦⠀⠀⡇⠀⡴⠋⠀⠀⠀⠀⠀⠀⠳⡄⠀⡇⠀⢠⠎⠀⠀⠀│ │⠀⠀⠀⠀⢣⡀⢸⢀⡜⠁⠀⠀⠀⠀⠀⠀⠀⠀⢳⡀⣇⡞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣆⡇⣰⠃⠀⠀⠀⠀│ │⠒⠒⠒⠒⠒⢻⣺⡟⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⢳⡟⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠺⣷⠗⠒⠒⠒⠒⠒│ │⠀⠀⠀⠀⠀⠀⣿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀│ -1.13707│⠀⠀⠀⠀⠀⠀⠛⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 6.55969│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢀⢶⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⡿⡄⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡼⢸⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡎⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⡇⢣⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡸⠀⢸⠀⢧⠀⠀⠀⠀⠀⠀⠀⠀⢀⡎⠀⡇⢱⡀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠁⡇⠘⡆⠀⠀⠀⠀│ │⠀⠀⠀⡰⠃⠀⢸⠀⠘⢆⠀⠀⠀⠀⠀⠀⣠⠞⠀⠀⡇⠀⠳⣄⠀⠀⠀⠀⠀⢀⡴⠃⠀⡇⠀⠙⢦⡀⠀⠀│ │⠀⠀⡼⠁⠀⢰⠚⡆⠀⠈⢧⠀⠀⠀⢀⡞⠁⠀⠀⡖⢳⠀⠀⠈⢳⡀⠀⠀⡴⠋⠀⠀⢰⠓⡆⠀⠀⠙⢦⠀│ │⠀⡞⠁⠀⠀⢸⣀⡇⠀⠀⠈⢳⠀⠀⢸⠀⠀⠀⠀⣇⣸⠀⠀⠀⠀⡇⠀⠀⣇⠀⠀⠀⢸⠤⡇⠀⠀⠀⡸⠀│ │⠀⠳⡄⠀⠀⢸⠀⡇⠀⠀⢠⠞⠀⠀⠘⣆⠀⠀⠀⡇⢸⠀⠀⠀⣰⠃⠀⠀⠘⡆⠀⠀⢸⠀⡇⠀⠀⢰⠃⠀│ │⠀⠀⠱⡀⠀⠘⢲⠃⠀⢀⡞⠀⠀⠀⠀⠈⠧⡀⠀⠉⡏⠀⢀⠼⠁⠀⠀⠀⠀⠳⡀⠀⠘⡖⠃⠀⢠⠞⠀⠀│ │⠀⠀⠀⠙⣆⠀⢸⠀⣠⠋⠀⠀⠀⠀⠀⠀⠀⠸⡄⠀⡇⢠⠇⠀⠀⠀⠀⠀⠀⠀⠹⣄⠀⡇⠀⣠⠇⠀⠀⠀│ │⠀⠀⠀⠀⠈⢦⢸⡴⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢧⠀⡇⡼⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢣⡇⡜⠁⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠈⣿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⡿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣿⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠿⠀⠀⠀⠀⠀⠀│ -0.392045│⠉⠉⠉⠉⠉⠉⚬⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠙⚬⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 2.03│⠀⢤⠤⠤⠤⢴⠶⡦⠤⠤⠤⡤⠀⠀⠀⣤⠤⠤⠤⡶⢶⠤⠤⠤⣤⠀⠀⠀⡤⠤⠤⠤⢴⠶⡦⠤⠤⠤⢤⠀│ │⠀⠈⠣⣄⠀⢸⠀⡇⠀⣀⠔⠁⠀⠀⠀⠈⠢⡀⠀⡇⢸⠀⢀⠔⠁⠀⠀⠀⠘⠦⡀⠀⢸⠀⡇⠀⢀⠔⠁⠀│ │⠀⠀⠀⠈⠳⣼⠀⣇⠞⠁⠀⠀⠀⠀⠀⠀⠀⠈⢦⡇⢸⡴⠁⠀⠀⠀⠀⠀⠀⠀⠈⠢⣸⠀⣇⠔⠁⠀⠀⠀│ │⠀⠀⠀⠀⠀⢹⣤⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣧⣼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣠⡏⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⢹⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡏⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡧⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⣸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣇⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⢸⣿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⡇⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⣸⠋⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡟⢻⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠙⣇⠀⠀⠀⠀⠀│ │⠀⠀⠀⢀⠔⢹⠀⡏⠢⡀⠀⠀⠀⠀⠀⠀⠀⡠⠊⡇⢸⠑⢄⠀⠀⠀⠀⠀⠀⠀⢀⠔⢹⠀⡏⠢⡀⠀⠀⠀│ │⠀⢀⠔⠁⠀⢸⠀⡇⠀⠈⠲⡄⠀⠀⠀⡴⠊⠀⠀⡇⢸⠀⠀⠑⢦⠀⠀⠀⢠⠖⠁⠀⢸⠀⡇⠀⠈⠢⡀⠀│ 0.97│⠀⠃⠀⠀⠀⠸⠤⠇⠀⠀⠀⠘⠀⠀⠘⠀⠀⠀⠀⠧⠼⠀⠀⠀⠀⠃⠀⠀⠃⠀⠀⠀⠸⠤⠇⠀⠀⠀⠘⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.77039│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡰⢹⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠏⡿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣿⡀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡸⠁⢸⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⠀⡇⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠞⡇⠳⡀⠀⠀⠀⠀│ │⠀⠀⠀⢠⠇⠀⢸⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⣠⠇⠀⡇⠸⣄⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⡇⠀⠹⡀⠀⠀⠀│ │⠀⠀⡠⠋⠀⢰⠚⡆⠀⠙⢆⠀⠀⠀⠀⢠⠞⠁⠀⡤⢧⠀⠈⠳⡄⠀⠀⠀⠀⡔⠉⠀⢠⠧⡄⠀⠉⢢⠀⠀│ │⠀⡞⠁⠀⠀⢸⣀⡇⠀⠀⠈⢳⠀⠀⢠⠋⠀⠀⠀⡇⢸⠀⠀⠀⠙⡄⠀⠀⢀⠇⠀⠀⢸⠀⡇⠀⠀⢸⡀⠀│ │⠀⠙⡄⠀⠀⢸⠀⡇⠀⠀⢠⠎⠀⠀⠸⣄⠀⠀⠀⡏⢹⠀⠀⠀⣠⠇⠀⠀⡏⠀⠀⠀⢸⠉⡇⠀⠀⠀⢹⠀│ │⠀⠀⠳⡀⠀⠘⢲⠃⠀⢀⠜⠀⠀⠀⠀⠘⢦⠀⠀⠓⡞⠀⠀⡴⠃⠀⠀⠀⠙⢆⠀⠀⠸⡤⠇⠀⠀⡰⠋⠀│ │⠒⠒⠒⠚⡖⠒⢺⠒⢲⠓⠒⠒⠒⠒⠒⠒⠚⢳⠒⠒⡗⠒⡞⠓⠒⠒⠒⠒⠒⠒⠛⣖⠒⡗⠒⣲⠛⠒⠒⠒│ │⠀⠀⠀⠀⠱⣄⢸⢠⠞⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⠀⡇⡼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⡇⢰⠃⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠘⣼⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⡿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣇⠏⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀│ -2.20176│⠀⠀⠀⠀⠀⠀⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.72844│⠀⠀⠀⠀⠀⠀⣶⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⡸⠉⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠏⠹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⢿⡀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡸⠁⠀⠈⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⡎⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠞⠀⠳⡄⠀⠀⠀⠀│ │⠀⠀⠀⢠⠇⠀⠀⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⣠⠇⠀⠀⠸⣄⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⠹⡀⠀⠀⠀│ │⠀⠀⡠⠋⠀⠀⠀⠀⠀⠙⢆⠀⠀⠀⠀⢠⠞⠁⠀⠀⠀⠀⠈⠳⡄⠀⠀⠀⠀⡔⠁⠀⠀⠀⠀⠀⠈⢢⠀⠀│ │⠀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠈⢳⠀⠀⢠⠋⠀⠀⠀⠀⠀⠀⠀⠀⠙⡄⠀⠀⢀⠇⠀⠀⠀⠀⠀⠀⠀⢸⡀⠀│ │⠀⠙⡄⠀⠀⠀⠀⠀⠀⠀⢠⠎⠀⠀⠸⣄⠀⠀⠀⠀⠀⠀⠀⠀⣠⠇⠀⠀⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⠀│ │⠀⠀⠳⡀⠀⠀⠀⠀⠀⢀⠜⠀⠀⠀⠀⠘⢆⠀⠀⠀⠀⠀⠀⡰⠃⠀⠀⠀⠙⢄⠀⠀⠀⠀⠀⠀⠀⡠⠋⠀│ │⠒⠒⠒⠚⡖⠒⠒⠒⢲⠓⠒⠒⠒⠒⠒⠒⠚⢳⠒⠒⠒⠒⡞⠓⠒⠒⠒⠒⠒⠒⠳⣖⠒⠒⠒⣲⠚⠒⠒⠒│ │⠀⠀⠀⠀⠱⡄⠀⢀⠞⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⠀⠀⡼⠁⠀⠀⠀⠀⠀⠀⠀⠀⠸⡄⠀⢠⠃⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠸⣤⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢇⡸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣀⡏⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢿⠀⠀⠀⠀⠀⠀│ -2.15981│⠀⠀⠀⠀⠀⠀⠻⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.516⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3.484⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 4.77039│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠗⚬⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠴⠋⠀⡇⠙⠦⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠔⠉⠀⠀⠀⠀⡇⠀⠀⠀⠉⠢⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠴⠊⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠑⠦⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡠⠤⠒⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⢠⠤⠤⠧⠤⡄⠀⠀⠀⠀⠀⠀⠀⠈⠉⠒⠒⠤⢄⠀⠀⠀⠀│ │⠀⡠⠖⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠲⢄⠀│ │⠀⠣⣄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠉⠉⠉⠉⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣠⠜⠀│ │⠀⠀⠀⠉⠓⠤⢄⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠒⠒⡖⠒⠃⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⡠⠤⠚⠉⠀⠀⠀│ │⠒⠒⠒⠒⠒⠒⠒⠒⠚⠛⠒⢶⡒⠒⠒⠒⠒⠒⠒⠒⡗⠒⠒⠒⠒⠒⠒⢒⡶⠒⠛⠓⠒⠒⠒⠒⠒⠒⠒⠒│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠓⠦⣄⡀⠀⠀⠀⡇⠀⠀⢀⣠⠴⠚⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠲⣄⠀⡇⣠⠖⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠨⢧⚬⠅⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -2.20176│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.576⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1.424⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 5.66907│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⠋⚬⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⠁⠀⡇⠈⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠚⠁⠀⠀⠀⡇⠀⠀⠈⠓⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠈⠉⠒⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⡠⠖⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠤⠤⠧⠤⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠲⢄⠀⠀⠀⠀│ │⠀⢀⡠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⢄⡀⠀│ │⠀⣏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠉⠉⠉⠉⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣹⠀│ │⠀⠀⠉⠲⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠤⠤⡤⠤⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠖⠉⠀⠀│ │⠀⠀⠀⠀⠀⠀⠈⠉⠒⠢⢄⣀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⣀⡠⠴⠒⠉⠁⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠓⠢⢄⡀⠀⠀⠀⡇⠀⠀⢀⡠⠔⠚⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠛⠓⢖⠒⡗⡲⠚⠛⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡦⢷⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -1.13707│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀0.576⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1.424⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 6.55969│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⠉⡏⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⠴⠊⠀⠀⡇⠀⠑⠦⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡤⠋⠁⠀⠀⠀⠀⡇⠀⠀⠀⠈⠙⢤⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠒⠊⠁⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠈⠑⠒⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⣠⠤⠒⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠒⠒⠓⠒⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠑⠒⠤⣄⠀⠀│ │⠀⡞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣀⣀⣀⣀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢳⠀│ │⠀⠉⠒⠤⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠤⠒⠉⠀│ │⠀⠀⠀⠀⠀⠑⠢⠤⣀⡀⠀⠀⠀⠀⠀⠀⠀⠈⠉⠉⡏⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⣀⠤⠔⠊⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⠢⣄⡀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⢀⣠⠔⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠑⠢⢄⡀⠀⠀⡇⠀⢀⡠⠔⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⠀⡇⡴⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠠⣧⚬⠄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -0.392045│⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠙⚬⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉│ └────────────────────────────────────────┘ ⠀0.576⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1.424⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 2.03│⠀⠀⢤⡤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢴⠶⠶⠶⠶⡦⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⢤⡤⠀⠀│ │⠀⠀⠀⠈⠑⠒⠢⠤⣀⣀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⣀⣀⠤⠔⠒⠉⠁⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠒⠢⠤⣀⡀⢸⠀⠀⠀⠀⡇⠀⣀⠤⠔⠒⠋⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⢺⢄⠀⠀⡠⡗⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢳⡞⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢸⡇⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⡼⢧⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⢼⠊⠀⠀⠑⡧⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣀⠤⠤⠒⠊⠁⠀⢸⠀⠀⠀⠀⡇⠀⠉⠑⠒⠤⠤⣀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⢀⣀⠤⠔⠒⠉⠉⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠒⠢⠤⢄⡀⠀⠀│ 0.97│⠀⠊⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠤⠤⠤⠤⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠑⠀│ └────────────────────────────────────────┘ ⠀0.576⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1.424⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 4.77039│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.430407│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⢀⡤⣤⢶⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⡜⢰⢫⢫⠈⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⢀⡄⢰⠀⠀⠀⠀⠀⡆⢰⠀⠀⢠⠀⠀⣾⠀⢀⡆⠀⠀⠀⠀⠀⢸⠀⢸⠀⢠⡇⡆⠀⠀⠀⡄⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢰⢁⢧⠃⠀⠣⣜⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⢰⣼⣷⣿⠀⡇⣰⢠⢠⣧⣸⠀⡀⣸⡆⠀⣿⢰⢸⣿⠀⠀⠀⢀⡀⢸⢀⢸⡆⢸⣿⡇⠀⠀⢰⣇⢸⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⡇⡾⠃⠀⠀⠀⠀⢹⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⢸⣿⣿⣿⣾⣿⣿⣾⣾⣿⣿⣀⣷⣿⣧⡇⣿⢸⣸⣿⣸⣤⣇⣾⣧⣸⣿⢸⣇⣾⣿⣿⠀⡇⢸⣿⣾⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢸⡼⠁⠀⠀⠀⠀⠀⠀⢿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣧⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣆⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣷⠃⠀⠀⠀⠀⠀⠀⠀⠘⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⣻⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⡻⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠣⣣⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠒⣿⣿⣿⣿⣿⣿⡟⣿⣿⣿⣿⢺⣿⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⣿⣿⣿⣿⣿⡟⣿⣿⣿⠒│ │⠀⠀⠀⠀⠀⠀⠀⠀⢠⡟⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⢳⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⠇⡿⢿⠏⠇⡿⢸⠀⢿⠘⢹⢸⡿⡏⣿⡟⣿⠏⣿⡿⡿⠈⡏⣿⣿⣿⡇⣿⣿⢻⢿⣿⡇⢿⣿⡿⠀│ │⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡿⠿⠀⡇⢸⠀⠀⠃⠘⠀⠸⠀⠀⠘⠇⠃⢸⡇⠀⠀⠉⠁⠇⠀⠇⢹⠁⡟⠀⣿⡏⢸⢸⣿⡇⢸⣿⠁⠀│ │⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣄⠱⡄⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠁⠸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⢸⠀⠁⠀⣿⡇⠀⠘⠀⠃⢸⠙⠀⠀│ │⠀⠀⠀⢀⣠⡾⠋⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠦⣝⣦⡀⠀⠀⠀⠀⠀⠀│ -2.20176│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠋⠃⠀⠀⠀⠀⠀⠀⠀⠀│ -0.00938728│⠤⠶⠶⠿⠯⠤⠤⠤⠤⠤⠤⠤⢼⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠬⠽⠶⠦⠤⠤⠤│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ ⠀-2.16608⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀4.73471⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 5.66907│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.430876│⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⢢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡄⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⣠⢇⠖⠛⢷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⣷⠀⢀⡄⠀⡇⣷⠀⢸⠀⣧⣀⠀⠀⠀⠀⠀⠀⠀⡀⠀⠀⠀⢀⠀⠀⠀⡄⡄⣀⢸⡇⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⣰⢏⠎⠱⡀⠀⠹⡒⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡆⡀⣿⡄⢸⣇⡀⡇⣿⠀⢸⡄⣿⣿⡇⢀⠀⣶⠀⠀⢸⣇⠀⢀⡆⢸⠀⠀⣤⣿⡇⣿⢸⡇⡇⡀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⢰⢏⠎⠀⠀⠑⣄⠀⢱⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣷⣿⣧⣿⡇⢸⣿⣷⡇⣿⠀⣼⡇⣿⣿⡇⣼⡄⣿⣷⢸⣸⣿⡇⣿⡇⣸⣧⡄⣿⣿⣧⣿⣼⡇⡇⣧⢰⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⢀⡟⡜⠀⠀⠀⠀⠀⠉⠪⣆⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣧⣿⣿⣿⣧⣿⣿⣿⡇⣿⣿⣷⣿⣧⣿⣿⣼⣿⣿⣷⣿⣧⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣾⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⣼⣹⠀⠀⠀⠀⠀⠀⠀⠀⠙⣦⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⢰⣏⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢯⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Density│⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⢀⢷⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣾⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⣎⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⡜⡼⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡿⣿⣿⣿⣿⢿⣿⣿⢹⣿⣿⣿⣿⣿⡿⣿⣿⣿⡿⣿⣿⣿⣿⣿⣿⡏⣿⣿⣿⣿⢿⢹⡿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⡰⡱⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢻⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⣿⣿⢻⠙⢸⣿⣿⠸⣿⣿⡿⣿⣿⡇⢿⢹⣿⠁⢻⡟⠹⢹⣿⣿⡇⠃⡟⡏⡿⠀⢸⡇⢿⢸⢹⢿⢻⠀│ │⠀⠀⠀⠀⠀⠀⢸⢠⡳⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢻⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠒⡗⠟⠗⠚⠒⠚⣿⣿⠒⡗⡗⡗⣿⣿⡗⠚⠒⡟⠒⠚⡗⠒⠚⠒⠚⠗⠒⠒⠒⠓⠒⢺⡗⠺⢺⢺⢺⠚⠒│ │⠀⠀⠀⠀⠀⠀⣸⣷⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⡟⢹⠀⠃⠃⡇⠀⡟⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠈⠈⠀⠀│ │⠀⠀⠀⣀⣤⣾⣿⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⠦⣄⡀⠀⠀⠀⠀⠀│ -1.13707│⠀⡇⠀⠀⠀⠀⠀⠁⠸⠀⠀⠀⠃⠀⠁⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠀⠀⠀⠀⠀⠀⠀│ -0.00977269│⠤⠾⠿⠿⠭⠥⢼⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠬⠽⠿⠦⠤⠤⠤│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ ⠀-1.1268⠀⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀5.63376⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 6.55969│⠀⡇⠀⠀⠀⠀⠀⠀⢰⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.414692│⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⢦⣤⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⢸⣄⡆⠀⠀⠀⠀⠀⠀⡀⠀⠀⢠⠀⠀⠀⠀⡄⢀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⡠⠋⢫⢣⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⢰⡆⠀⠀⠀⣾⣿⡇⠀⠀⡀⢰⢀⢀⡇⡇⠀⢸⠀⠀⢠⡀⡇⣸⡆⣤⡀⠀⠀⢀⢀⠀⠀⠀⠀⢠⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⡜⠀⠀⠀⢣⢻⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⢸⢸⣿⣀⢠⡀⣿⣿⣿⠀⠀⣷⢸⣾⣼⣧⣇⢸⣾⡀⡆⢸⣧⡇⣿⡇⣿⣇⢠⡄⣾⢸⠀⣠⡄⠀⣼⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣼⠋⠀⠀⠀⠀⠘⡄⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣼⣿⣿⢸⡇⣿⣿⣿⣾⣶⣿⣿⣿⣿⣿⣿⣸⣿⣷⡇⣼⣿⣇⣿⣷⣿⣿⢸⣷⣿⣿⢰⣿⣷⣴⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣼⠇⠀⠀⠀⠀⠀⠀⠘⡼⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣾⣿⣿⣿⣼⣿⣿⣿⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⡹⠀⠀⠀⠀⠀⠀⠀⠀⠸⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⢧⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Density│⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⢀⠎⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡜⡸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⣸⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣗⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⡿⣿⣿⣿⡇⣿⣿⣿⣿⡏⡇⢹⣿⣿⣿⣿⡏⣿⣿⣿⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢿⣿⣿⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⢀⢼⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⢾⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⢻⠏⠀⢻⣿⣿⠃⣿⡟⣿⡿⠃⠇⠸⠟⡿⡇⢿⠁⣿⠻⠁⢸⠛⢿⠁⡇⢻⣿⢻⣿⣿⢹⢸⣿⡟⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⢠⢊⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢻⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⢸⠘⡟⠀⢻⠁⠉⡇⠀⠀⠀⠀⠇⠃⢸⠀⣿⠀⠀⠘⠀⠸⠀⠀⢸⡏⢸⢸⢻⠈⢸⡟⡇⠉⠀│ │⠀⠀⡇⠀⠀⠀⢠⢃⡾⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢫⣷⣄⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠸⠀⠁⠀⠸⠀⠀⠇⠀⠀⠀⠀⠀⠀⠀⠀⠸⠀⠀⠀⠀⠀⠀⠀⠸⡇⠘⢸⠀⠀⠘⠃⡇⠀⠀│ │⠀⠀⡇⢀⣀⣠⡷⠛⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠛⢷⣤⢄⡀⠀⠀⠀│ -0.392045│⠉⡏⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠏⠉⠙⠉⠉⠉⠉⠉⠉⠉│ -0.00790231│⠤⠶⡯⠿⠯⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠭⠭⠶⠦⠤│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ ⠀-0.372442⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀6.54008⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 2.03│⠀⣷⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⠀│ 268│⠀⠀⡯⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡏⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⢻⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⢹⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Frequency│⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ 0.97│⠀⡿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠀│ 0│⠀⠀⣇⣸⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⣇⣸⠀⠀│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ ⠀0.93511⠀⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀2.11489⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 4.77039│⠀⡇⠀⠀⠀⠀⢰⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.419162│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡴⠲⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⡜⠀⠀⠈⢦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⢰⠀⢸⢰⠀⠀⠀⣷⠀⠀⢠⡆⠀⠀⠀⢰⠀⠀⢸⠀⠀⠀⠀⡀⠀⢰⠀⡄⠀⠀⠀⢸⢠⠀⡄⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⡜⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣇⠀⣷⣼⢀⣾⢸⡇⡀⡀⣿⠀⣾⣾⡇⣦⡀⢰⢸⠀⠀⣸⠀⡇⢠⡇⣿⢀⢸⢀⡇⣰⠀⠀⢸⢸⠀⡇⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⡸⠀⠀⠀⠀⠀⠀⠀⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣸⣿⢸⣿⣷⣧⣿⡇⣿⣿⣿⣿⣷⣿⣾⣸⣴⣿⢰⡇⣾⣿⣿⣾⣾⣼⡇⣿⡆⣆⢸⣿⡄⣧⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢠⠃⠀⠀⠀⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⣿⣿⣿⣿⣿⣿⣿⣿⡇⣿⣾⣿⣷⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⢾⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠊⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠒⣿⣿⢺⣿⣿⣿⣿⢿⣿⣿⣿⣿⣿⣿⣿⢿⢻⣿⣿⣿⣿⣿⣿⣿⢻⣿⢿⣿⢻⣿⣿⣿⣿⢿⣿⡗⣿⣿⠒│ │⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡿⠟⠸⢿⠁⢿⢻⠈⣿⢿⡿⠹⣿⣿⠏⢸⢸⢻⣿⢻⢿⣿⢹⣿⢸⣿⢸⢿⠀⢻⣿⡿⢻⢸⣿⡇⢿⡿⠀│ │⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠸⠀⢸⠈⠀⠏⢸⡇⠀⡇⢻⠀⠘⠀⠘⡇⠈⠘⠁⠈⣿⢸⠹⢸⠘⠀⠘⠏⠀⠸⢸⡇⠁⢸⡇⠀│ │⠀⠀⠀⠀⠀⠀⣠⠃⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⢸⡇⠀⠃⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⢸⠀⠸⠀⠀⠀⠀⠀⠀⢸⠁⠀⠘⠁⠀│ │⠀⠀⠀⠀⣀⠔⠁⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⢤⣀⠀⠀⠀⠀⠀⠀│ -2.20176│⠀⡇⠀⠀⠀⠀⠸⠀⠀⠀⠘⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ -0.0112109│⠤⠶⠶⠯⠥⠤⠤⠤⠤⠤⠤⠤⢼⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠭⠷⠦⠤⠤⠤│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-43.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀1544.97⠀ ⠀-2.15981⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀4.72844⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 5.66907│⠀⡇⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.408394│⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⡰⠲⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡄⠀⠀⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⡜⠀⠀⠈⢦⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡆⡄⡇⢠⠀⠀⠀⠀⡀⡄⡇⠀⢸⢀⡇⠀⡇⠀⠀⠀⠀⠀⣄⡇⠀⠀⠀⡆⡇⠀⠀⢀⠀⠀⢀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣇⡇⣧⡇⢸⠀⡆⠀⢀⣧⡇⣇⠀⣸⣾⡇⢠⡇⣰⢸⣀⣶⠀⣿⡇⣴⣧⢀⡇⡇⡇⠀⢸⠀⠀⣼⢸⡀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⢰⠁⠀⠀⠀⠀⠀⠀⠀⢱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⡇⣿⡇⢸⢠⣷⣿⣸⣿⣧⣿⢠⣿⣿⡇⣼⡇⣿⣿⣿⣿⣄⣿⡇⣿⣿⢸⣧⣧⣇⣤⢸⣿⡄⣿⣼⡇⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⢀⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣧⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⣿⣷⣿⣿⣿⣿⣿⣿⡇⣿⣿⣸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Density│⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⣸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢻⣿⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⢿⣿⣿⡏⣿⢻⣿⡏⣿⣿⢻⣿⣿⣿⡟⣿⡇⣿⣿⣿⢿⣿⣿⣿⣿⣿⡿⡏⣿⡿⣿⢸⣿⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⢀⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⡿⢿⣿⠘⢻⠿⠇⣿⢸⣿⡇⢹⢹⢸⣿⢸⡏⡇⣿⠃⡿⡇⣿⢸⡏⢹⣿⣿⢿⡇⠇⢹⠃⢸⠘⢹⠀│ │⠀⠀⠀⠀⠀⠀⢸⢀⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠒⡗⠛⡗⢺⣿⠒⢺⠒⠒⠒⢺⢿⡗⠒⢺⢺⠒⠒⡗⠓⠓⠒⠓⡗⣿⠺⠗⢺⢺⣿⠚⠓⠒⠺⠒⢺⠒⠚⠒│ │⠀⠀⠀⠀⠀⠀⢸⠎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⡇⢸⢸⠀⠀⠀⠀⠀⠀⠀⠁⠀⠘⠘⠀⠀⡇⠀⠀⠀⠀⠀⠈⠀⠀⢸⠘⠘⠀⠀⠀⠀⠀⢸⠀⠀⠀│ │⠀⠀⠀⠀⣠⠴⢻⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠢⢄⡀⠀⠀⠀⠀⠀│ -1.13707│⠀⡇⠀⠁⠘⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠸⠀⠀⠀⠀⠀⠀⠀⠘⠀⠀⠀│ -0.0104675│⠤⠶⠯⠭⠤⠤⢼⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠭⠷⠦⠤⠤⠤│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-43.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀1544.97⠀ ⠀-1.10587⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀5.63787⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 6.55969│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 0.413161│⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠢⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣷⠀⠀⡀⡄⢠⡀⠀⠀⠀⠀⠀⠀⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡜⠀⠀⠈⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⢰⠀⠀⡀⠀⢀⠀⡄⢀⠀⢠⢰⠀⣿⠀⢀⡇⡇⣼⡇⡀⠀⠀⡄⠀⢰⡇⣰⠀⡇⠀⢠⠀⠀⡀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠁⠀⠀⠀⠀⢳⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⢸⡇⠀⡇⠀⢸⡄⡇⣼⢠⣸⢸⣠⣿⠀⣾⣇⡇⣿⡇⡇⡆⠀⣿⢀⢸⡇⣿⣾⣿⡆⢸⢀⡄⣇⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡴⠁⠀⠀⠀⠀⠀⠈⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣧⡇⣼⣷⢰⣷⣾⣾⡇⣧⣿⣿⣿⣼⣿⣿⣆⣿⣿⣿⣿⣷⣿⣇⢠⣿⢸⢸⣿⣿⣿⣿⣧⣸⣾⣧⣿⡄⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⠀⠀⠀⠀⠀⠀⢱⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣼⣿⣿⣿⣧⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣾⣿⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣧⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Density│⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⡸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡜⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⡟⣿⡏⢻⣿⣿⡇⣿⣿⢹⣿⡿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟⣿⣿⣿⢹⡿⣿⣿⣿⡟⣿⢿⣿⣿⣿⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⢰⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠑⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⢸⠃⣿⠇⠘⣿⡇⠃⣿⢸⢸⣿⠃⣿⡟⡟⠿⣿⡿⢹⠇⡟⠁⣿⡟⠁⢸⡇⠁⢿⣿⡇⢻⠘⢸⣿⡇⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⢸⠀⢹⠀⠀⠏⡇⠀⠘⢸⢸⡇⠀⢸⠃⠁⠀⠃⠇⠘⠀⡇⠀⠈⠁⠀⠘⡇⠀⠸⡟⡇⠸⠀⢸⡏⠃⠀│ │⠀⠀⡇⠀⠀⠀⠀⡠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⢄⡀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠸⠀⠸⠀⠀⠀⠇⠀⠀⢸⠘⡇⠀⠈⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠇⠀⠀⠀⠀⠀⠀⠘⠀⠀⠀│ │⠀⠀⡇⠀⣀⡠⠞⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠲⢄⡀⠀⠀⠀⠀│ -0.392045│⠉⡏⠉⠉⠉⠉⠉⠉⠉⠉⠉⠙⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠏⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉⠉│ -0.0103763│⠤⠶⡷⠭⠥⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠬⠶⠦⠤⠤│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-43.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀1544.97⠀ ⠀-0.356535⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀6.52418⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 2.03│⠀⣷⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⣶⠀│ 775│⠀⠀⡏⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⣀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Frequency│⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ 0.97│⠀⡿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠀│ 0│⠀⠀⣇⣸⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⣇⣸⠀⠀│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-43.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀1544.97⠀ ⠀0.93511⠀⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀2.11489⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 0.430407│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⢀⡤⣤⢶⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 1.03259│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⡜⢰⢫⢫⠈⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢰⢁⢧⠃⠀⠣⣜⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⡇⡾⠃⠀⠀⠀⠀⢹⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢸⡼⠁⠀⠀⠀⠀⠀⠀⢿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣷⠃⠀⠀⠀⠀⠀⠀⠀⠘⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Autocorrelation│⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡞⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠱⣻⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⡻⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠣⣣⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢠⡟⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⢳⢧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⢠⠏⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⡄⢳⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣠⠏⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣄⠱⡄⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⢀⠜⡄⡠⠻⣠⣀⡀⡠⡀⠀⣤⠀⠀⠀⢀⠀⠀⠀⡰⢄⢠⠚⡄⠀⠀⡰⢲⢦⡔⠒⡆⠀⡜⠀│ │⠀⠀⠀⢀⣠⡾⠋⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠦⣝⣦⡀⠀⠀⠀⠀⠀⠀│ │⠒⡗⣷⣲⣖⡺⠖⢳⢓⢶⢿⠞⠻⡶⣷⡺⠛⣷⡶⢶⠚⢻⣷⣲⣓⣲⡳⢖⠞⠶⡶⠷⠓⠚⡗⡻⠚⣾⠞⠒│ -0.00938728│⠤⠶⠶⠿⠯⠤⠤⠤⠤⠤⠤⠤⢼⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠬⠽⠶⠦⠤⠤⠤│ -0.118903│⠀⡇⠘⠁⠀⠈⠢⠊⠉⠉⠀⠀⠀⠑⠁⠀⠀⠈⠉⠁⠑⠁⠀⠈⠒⠁⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠁⠀⠀│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-2.16608⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀4.73471⠀ ⠀-0.81⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Lag⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀27.81⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 0.430876│⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠔⢢⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 1.03303│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⣠⢇⠖⠛⢷⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⣰⢏⠎⠱⡀⠀⠹⡒⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⢰⢏⠎⠀⠀⠑⣄⠀⢱⠀⢣⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⢀⡟⡜⠀⠀⠀⠀⠀⠉⠪⣆⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⣼⣹⠀⠀⠀⠀⠀⠀⠀⠀⠙⣦⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⢰⣏⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢯⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Density│⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⢀⢷⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣾⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Autocorrelation│⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⣎⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡿⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⠀⡜⡼⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⠀⡰⡱⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢻⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⢸⢠⡳⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢻⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⣸⣷⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⣇⢀⠀⠀⠀⢀⡤⣤⠀⠀⡤⣀⣀⡄⠀⢠⣀⠀⠀⠀⢀⡀⣀⣠⣳⣀⠀⡀⠀⢀⡀⠀⡠⣤⡆⠀⣀⠀│ │⠀⠀⠀⣀⣤⣾⣿⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠙⠦⣄⡀⠀⠀⠀⠀⠀│ │⠒⡗⢻⠛⠛⠻⣟⠿⠞⠚⢷⡾⠾⠶⠛⠻⣶⠛⠻⣛⠟⢟⡷⠛⢖⡞⠲⣳⢿⡾⠶⣷⣾⠟⣖⠟⠿⣿⡞⠒│ -0.00977269│⠤⠾⠿⠿⠭⠥⢼⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠬⠽⠿⠦⠤⠤⠤│ -0.134064│⠀⡇⠀⠑⠢⠜⠈⠀⠀⠀⠈⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠀⠁⠀⠈⠀⠀⠈⠁⠀⠀⠀⠀⠀⠈⠀⠀⠋⠀⠀│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-1.1268⠀⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀5.63376⠀ ⠀-0.81⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Lag⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀27.81⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 0.414692│⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡴⢦⣤⢄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 1.03299│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡞⡠⠋⢫⢣⢇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡼⡜⠀⠀⠀⢣⢻⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣼⠋⠀⠀⠀⠀⠘⡄⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣼⠇⠀⠀⠀⠀⠀⠀⠘⡼⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⡹⠀⠀⠀⠀⠀⠀⠀⠀⠸⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⢧⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Density│⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⢀⠎⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢣⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Autocorrelation│⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡜⡸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⢧⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡏⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⣸⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣗⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⠀⢀⢼⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⢾⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⠀⢠⢊⡟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢻⣆⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⠀⠀⠀⢠⢃⡾⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢫⣷⣄⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⣇⠔⡄⣀⡠⡀⠀⠀⢀⠤⢢⠀⠀⡀⠀⠀⠀⣀⣀⠤⠒⠢⣀⠀⠀⢀⣀⢄⡦⡀⠀⠀⣠⣀⡀⠀⠀⠀│ │⠀⠀⡇⢀⣀⣠⡷⠛⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠛⢷⣤⢄⡀⠀⠀⠀│ │⠒⡗⠚⠛⠻⣞⣛⣛⢿⡖⡻⢶⣒⣗⠺⠞⢲⡚⡶⡷⠾⠓⠒⡷⢞⢷⠒⢳⠓⠓⠛⠳⢶⢾⠛⠛⢞⣒⠖⠒│ -0.00790231│⠤⠶⡯⠿⠯⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠤⠭⠭⠶⠦⠤│ -0.13258│⠀⡇⠀⠀⠀⠁⠀⠀⠀⠈⠀⠀⠋⠀⠑⠔⠁⠈⠀⠀⠀⠀⠀⠀⠀⠀⠋⠁⠀⠀⠀⠀⠀⠁⠀⠀⠀⠁⠀⠀│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-0.372442⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀6.54008⠀ ⠀-0.81⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Lag⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀27.81⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_4⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 268│⠀⠀⡯⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 1.03281│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡏⚬⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⢻⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⚬⢹⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Frequency│⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ Autocorrelation│⠀⣿⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⡿⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠀⡇⣿⢤⣠⠳⡀⠀⣠⣒⡲⡤⢄⠜⡄⠀⢀⣠⣰⣽⡤⡀⠀⠀⡠⠤⢄⠀⢠⢢⣀⣠⡊⠑⡴⡀⠀⣀⡀⠀│ │⠀⠀⡇⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢸⠀⠀│ │⠒⡗⢻⠺⠻⡒⠾⠛⡗⠛⠲⡚⠚⢖⡷⡲⡷⣶⠟⠒⠓⠚⢳⣖⡷⢖⢻⠻⠛⠳⡻⠛⠳⡲⠛⠓⠾⠲⡓⠒│ 0│⠀⠀⣇⣸⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⚬⣀⚬⣀⚬⣇⣸⠀⠀│ -0.126566│⠀⡇⠀⠀⠀⠉⠑⠉⠀⠀⠀⠘⠤⠒⠁⠁⠈⠀⠀⠀⠀⠀⠀⠋⠀⠀⠁⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀0.93511⠀⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀2.11489⠀ ⠀-0.81⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Lag⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀27.81⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 1⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 5.71189│⠀⡇⠀⠀⠀⠀⠀⠀⢰⠀⡆⠀⠀⠀⠀⠀⢀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⣠⠀⠀⠀⢀⠀⠀⠀⠀⠀⢠⠀│ 1.62413│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⢸⠀⠀⠀⢸⡄⣿⠀⠀⠀⠀⠀⣼⡄⠀⠀⠀⠀⠀⢸⣧⠀⠀⠀⣿⠀⠀⡄⢸⠀⢀⢠⡄⠀⣼⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⡇⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⢰⢸⢀⠀⣇⣼⣷⣿⡀⡇⠀⣷⣦⣿⡇⣾⡀⣧⢰⢀⣼⣿⣧⠀⢰⣿⠀⢰⣿⣿⡇⢸⣿⣷⢸⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⢰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣇⡇⣿⣼⢸⢰⣿⣿⣿⣿⣧⣇⡄⣿⣿⣿⡇⣿⣧⣿⣸⣼⣿⣿⣿⡆⣸⣿⠀⣿⣿⣿⣧⢸⣿⣿⣾⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣇⣿⣿⣿⣇⣿⣿⣿⣿⣿⣿⣿⣿⣧⣿⣿⣧⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣏⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⡜⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢹⣿⣿⢿⣿⣿⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡇⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⣀⣿⣿⣿⣟⣿⣿⣿⣻⣿⣏⣿⣿⣻⣟⣿⣸⣿⣿⣸⣿⣿⣸⣿⣿⣿⣿⣸⣿⣿⣿⣿⣿⣿⣹⣿⣿⣿⣿⣀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢀⡇⠀⠀⡇⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠻⡇⡇⡟⠇⡇⢸⠁⠃⣿⣿⠘⡇⢹⠈⣿⣿⠀⠘⡟⠈⠟⠻⡟⡇⢸⢸⡇⣿⡿⠏⡿⠘⡏⡟⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⢀⣠⠔⠚⣁⡿⠻⢍⡗⢤⣤⣴⡊⠁⠉⠓⢄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⠀⠁⠀⠀⠀⠃⠀⠀⠀⢸⠃⠀⠁⠀⠀⢻⡇⠀⠀⠃⠀⠀⠀⡇⠃⠈⠀⠀⣿⡇⠀⠀⠀⠁⠁⢿⠃⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣀⡷⠋⠀⣠⠖⠁⢇⠀⣸⠕⠯⣀⡀⠈⠑⠦⣄⠀⠉⠳⢄⡀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⠀⠀⠀⠀⠸⠀⠀│ │⠀⠀⠀⠀⠀⠀⢀⡴⠚⠉⠀⣇⡤⠊⠁⠀⢀⣼⠚⢹⠀⠀⠀⠉⠑⠦⣀⠀⠙⠦⣄⠀⠈⠑⠲⢄⡀⠀⠀⠀│ -2.22918│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠏⠃⠀⠀⠀⠀⠀⠀⠀⠀│ -0.0453546│⠤⠤⠤⠴⠶⠾⠵⠶⠶⠶⠽⡷⠶⠶⠶⠮⠭⠬⠦⠯⠤⠤⠤⠤⠤⠤⠤⠭⠶⠶⠶⠭⠵⠶⠶⠶⠬⠭⠶⠤│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ ⠀-2.19426⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀5.70209⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 6.60471│⠀⡇⠀⠀⠀⠀⠀⠀⢰⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 1.6971│⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⢰⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⠀⠀⠀⠀⠀⣸⢠⡇⠀⠀⠀⠀⠀⠀⡄⠀⠀⢰⠀⠀⠀⠀⡆⢠⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⢸⡇⠀⠀⠀⣿⢸⡇⠀⠀⠀⠀⣰⢠⡇⠀⠀⢸⠀⠀⢸⠀⡇⢸⡇⠀⡆⠀⠀⡀⠀⠀⡀⠀⠀⢸⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠘⡄⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠀⣸⡇⢰⢸⡇⣿⣾⣇⡄⠀⠀⡆⣿⣼⡇⣴⠀⢸⡇⡆⢸⣄⡇⢸⣧⡄⡇⢰⡀⣷⣆⠀⡇⠀⡀⢸⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⡇⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣷⣇⣿⣷⣸⣸⣇⣿⣿⣿⡇⠀⣇⡇⣿⣿⣇⣿⢰⣼⣇⣿⣿⣿⣧⣾⣿⡇⡇⣼⣷⣿⣿⣤⡇⢸⣿⣼⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⡇⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣾⣿⣧⣿⣿⣿⣿⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣧⣿⣿⣿⣿⣿⣷⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⢸⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⢿⣿⣿⣿⡟⡟⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟⣿⣿⣿⣿⣿⣿⣿⣿⡇⣿⡿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⢀⢸⠀⠀⣎⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠤⣿⣿⢿⣿⡿⣿⢼⠥⣿⣿⠧⠥⣿⢽⢿⣿⢼⡧⣿⡿⣿⣿⣿⠽⣿⡧⣿⣿⡯⣿⢿⣿⣿⡯⠧⢽⠤⡿⠤│ │⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⢀⡤⠊⠉⢹⠷⢮⡏⠉⢓⣦⡒⠉⠉⠓⠦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⡟⠈⡿⠇⠙⠘⠀⢸⠃⠀⠀⢻⠘⠸⡟⢸⡇⡟⠃⢹⣿⠟⠀⡇⠃⣿⠉⠃⠀⢸⢻⢹⡇⠀⢸⠀⡇⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⣸⠔⠉⠀⢀⠔⢹⠀⠀⣗⣴⠋⠀⠈⠳⢤⡀⠀⠙⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⠃⠀⡇⠀⠀⠀⠀⠘⠀⠀⠀⠀⠀⠀⠁⠸⠃⠀⠀⠈⠁⠀⠀⠁⠀⠁⠀⠀⠀⠈⢸⢸⡇⠀⢸⠀⠁⠀│ │⠀⠀⠀⠀⢀⡠⠖⠋⢸⠀⣠⠔⠋⣀⡬⡖⢚⠏⠈⠑⠒⠤⢤⡀⠉⠢⣄⡀⠉⠒⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀│ -1.938│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠸⠀⠀⠀│ -0.0475492│⠤⠶⠶⠮⠭⠤⠶⠶⢾⠯⠴⠶⠯⠥⠤⠷⠾⠤⠤⠤⠤⠤⠤⠬⠽⠶⠶⠬⠭⠷⠶⠾⠯⠶⠶⠶⠶⠦⠤⠤│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ ⠀-1.89955⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀6.58456⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ ┌────────────────────────────────────────┐ 6.06323│⠀⡇⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ 1.57932│⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢲⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡇⢀⠀⠀⠀⠀⠀⣾⡇⣀⠀⠀⡄⢸⠀⠀⡄⡇⢀⡀⠀⡀⠀⠀⠀⣴⠀⠀⠀⠀⠀⠀⢠⠀⠀⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣧⣼⠀⠀⡄⠀⠀⣿⡇⣿⢀⢰⣿⣼⢸⠀⣷⡇⢸⡇⡄⡇⠀⠀⠀⣿⢀⠀⢰⢸⣄⠀⢸⠀⣦⠀⠀⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⠀⣆⡇⠀⣤⣿⡇⣿⢸⣸⣿⣿⣾⡆⣿⡇⣾⣿⣿⡇⡇⣷⢰⣿⣸⠀⣸⣸⣿⢸⣿⣠⣿⡆⣧⠀⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⢸⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣼⣿⣿⣷⣿⣿⣇⣿⣾⣿⣿⣿⣿⣇⣿⣧⣿⣿⣿⣧⣧⣿⣾⣿⣿⣦⣿⣿⣿⣿⣿⣿⣿⣇⣿⡇⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠈⡆⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Density│⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⡇⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⣿⣿⣿⡟⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡏⣿⣿⣿⣿⢻⣿⣿⡿⡿⣿⣿⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⠀⣀⣀⡀⢣⠀⠀⣜⣀⡀⠀⠀⠀⢀⣀⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠒⣿⣿⡟⠿⣿⡗⡿⣿⠓⢻⣿⢻⡗⣿⣿⡟⡗⣿⣿⣿⢻⣿⣿⠟⢿⢿⡗⣿⣿⣿⠒⢺⢺⢻⡗⡗⣿⢻⠒│ │⠀⠀⠀⠀⠀⠀⠀⠀⠀⡇⡠⠊⠁⠀⠈⢻⡶⠺⣏⠀⣉⡽⠖⠺⣍⠀⠈⠳⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⣿⣿⠀⠀⢿⠇⠇⣿⠀⠀⠁⠘⠀⢸⡿⠁⠀⡇⢹⠇⠀⠟⡿⠀⠀⢸⠇⣿⡇⣿⠀⢸⠸⢸⡇⠃⡿⠸⠀│ │⠀⠀⠀⠀⠀⠀⠀⠀⣠⡟⠁⠀⠀⢀⠔⢻⠀⢀⡿⠻⣅⠀⠀⠀⠈⠢⡀⠀⠈⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ │⠀⡏⠻⠀⠀⢸⠀⠀⠛⠀⠀⠀⠀⠀⠘⠇⠀⠀⠁⠈⠀⠀⠀⠃⠀⠀⢸⠀⡟⠀⠁⠀⠈⠀⠸⡇⠀⡇⠀⠀│ │⠀⠀⠀⠀⢀⡠⠔⠊⠁⡇⣀⡤⠚⠁⠀⣸⡜⢁⠇⠀⠀⠙⠢⣀⠀⠀⠉⠢⣄⡀⠈⠓⠦⢤⣀⡀⠀⠀⠀⠀│ -1.86122│⠀⡇⠀⠀⠀⠘⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⠀⠁⠀⠀⠀⠀⠀⠀⠃⠀⠁⠀⠀│ -0.044031│⠤⠶⠶⠯⠥⠤⠶⠶⠾⡯⠵⠶⠶⠶⠭⠥⠷⠼⠤⠤⠤⠤⠤⠬⠭⠶⠶⠶⠶⠭⠭⠷⠶⠦⠤⠬⠭⠶⠶⠤│ └────────────────────────────────────────┘ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ ⠀-1.849⠀⠀⠀⠀⠀⠀⠀Sample value⠀⠀⠀⠀⠀⠀⠀⠀6.02805⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀param_2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 5.66907│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│Chain 1 │⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⡇⠀⢀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⡄⠀⠀⠀⠀│Chain 2 │⠀⡇⠀⠀⣷⠀⢀⡄⠀⡇⣷⠀⢸⠀⣧⣀⠀⠀⠀⠀⠀⠀⠀⡀⠀⠀⠀⢀⠀⠀⠀⡄⡄⣀⢸⡇⠀⠀⠀⠀│Chain 3 │⠀⡇⡆⡀⣿⡄⢸⣇⡀⡇⣿⠀⢸⡄⣿⣿⡇⢀⠀⣶⠀⠀⢸⣇⠀⢀⡆⢸⠀⠀⣤⣿⡇⣿⢸⡇⡇⡀⠀⠀│ │⠀⣷⣿⣧⣿⡇⢸⣿⣷⡇⣿⠀⣼⡇⣿⣿⡇⣼⡄⣿⣷⢸⣸⣿⡇⣿⡇⣸⣧⡄⣿⣿⣧⣿⣼⡇⡇⣧⢰⠀│ │⠀⣿⣿⣿⣿⣧⣿⣿⣿⣧⣿⣿⣿⡇⣿⣿⣷⣿⣧⣿⣿⣼⣿⣿⣷⣿⣧⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣾⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⡿⣿⣿⣿⣿⢿⣿⣿⢹⣿⣿⣿⣿⣿⡿⣿⣿⣿⡿⣿⣿⣿⣿⣿⣿⡏⣿⣿⣿⣿⢿⢹⡿⣿⣿⣿⣿⣿⠀│ │⠀⡇⣿⣿⢻⠙⢸⣿⣿⠸⣿⣿⡿⣿⣿⡇⢿⢹⣿⠁⢻⡟⠹⢹⣿⣿⡇⠃⡟⡏⡿⠀⢸⡇⢿⢸⢹⢿⢻⠀│ │⠒⡗⠟⠗⠚⠒⠚⣿⣿⠒⡗⡗⡗⣿⣿⡗⠚⠒⡟⠒⠚⡗⠒⠚⠒⠚⠗⠒⠒⠒⠓⠒⢺⡗⠺⢺⢺⢺⠚⠒│ │⠀⡇⠀⠀⠀⠀⠀⡟⢹⠀⠃⠃⡇⠀⡟⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠈⠈⠀⠀│ -1.13707│⠀⡇⠀⠀⠀⠀⠀⠁⠸⠀⠀⠀⠃⠀⠁⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Chain 2⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ┌────────────────────────────────────────┐ 6.60471│⠀⡇⠀⠀⠀⠀⠀⠀⢰⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│param_1 │⠀⡇⠀⠀⠀⠀⠀⠀⣸⢠⡇⠀⠀⠀⠀⠀⠀⡄⠀⠀⢰⠀⠀⠀⠀⡆⢠⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│param_2 │⠀⡇⠀⢸⡇⠀⠀⠀⣿⢸⡇⠀⠀⠀⠀⣰⢠⡇⠀⠀⢸⠀⠀⢸⠀⡇⢸⡇⠀⡆⠀⠀⡀⠀⠀⡀⠀⠀⢸⠀│param_3 │⠀⡇⠀⣸⡇⢰⢸⡇⣿⣾⣇⡄⠀⠀⡆⣿⣼⡇⣴⠀⢸⡇⡆⢸⣄⡇⢸⣧⡄⡇⢰⡀⣷⣆⠀⡇⠀⡀⢸⠀│param_4 │⠀⣷⣇⣿⣷⣸⣸⣇⣿⣿⣿⡇⠀⣇⡇⣿⣿⣇⣿⢰⣼⣇⣿⣿⣿⣧⣾⣿⡇⡇⣼⣷⣿⣿⣤⡇⢸⣿⣼⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣾⣿⣧⣿⣿⣿⣿⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣧⣿⣿⣿⣿⣿⣷⣿⣿⣿⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ Sample value│⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀│ │⠀⣿⣿⣿⣿⣿⣿⢿⣿⣿⣿⡟⡟⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟⣿⣿⣿⣿⣿⣿⣿⣿⡇⣿⡿⣿⠀│ │⠤⣿⣿⢿⣿⡿⣿⢼⠥⣿⣿⠧⠥⣿⢽⢿⣿⢼⡧⣿⡿⣿⣿⣿⠽⣿⡧⣿⣿⡯⣿⢿⣿⣿⡯⠧⢽⠤⡿⠤│ │⠀⣿⡟⠈⡿⠇⠙⠘⠀⢸⠃⠀⠀⢻⠘⠸⡟⢸⡇⡟⠃⢹⣿⠟⠀⡇⠃⣿⠉⠃⠀⢸⢻⢹⡇⠀⢸⠀⡇⠀│ │⠀⡇⠃⠀⡇⠀⠀⠀⠀⠘⠀⠀⠀⠀⠀⠀⠁⠸⠃⠀⠀⠈⠁⠀⠀⠁⠀⠁⠀⠀⠀⠈⢸⢸⡇⠀⢸⠀⠁⠀│ -1.938│⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠸⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-13.97⠀⠀⠀⠀⠀⠀⠀⠀⠀Iteration⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀514.97⠀ 480.866663 seconds (75.51 M allocations: 4.323 GiB, 0.62% gc time, 27.41% compilation time: 3% of which was recompilation) Diagnostics ┌ Warning: Section mapping does not contain all parameter names, [:param_2, :param_3, :param_4] assigned to :parameters. └ @ MCMCChains ~/.julia/packages/MCMCChains/c1Xmr/src/chains.jl:717 84.507743 seconds (41.84 M allocations: 2.534 GiB, 1.37% gc time, 99.41% compilation time: 3% of which was recompilation) Missing values 7.503742 seconds (4.13 M allocations: 237.539 MiB, 1.11% gc time, 99.04% compilation time) Sections 18.493097 seconds (8.95 M allocations: 521.137 MiB, 1.03% gc time, 99.21% compilation time: 20% of which was recompilation) Accessing parameters ┌ Warning: `MvNormal(μ::AbstractVector{<:Real}, σ::Real)` is deprecated, use `MvNormal(μ, σ ^ 2 * I)` instead. │ caller = ip:0x0 └ @ Core :-1 6.302649 seconds (1.73 M allocations: 98.053 MiB, 1.26% gc time, 95.23% compilation time: <1% of which was recompilation) Serialization 3.605094 seconds (1.86 M allocations: 100.833 MiB, 98.86% compilation time) Sampling 7.642847 seconds (3.20 M allocations: 182.839 MiB, 1.11% gc time, 99.21% compilation time) Array 13.631945 seconds (5.96 M allocations: 340.277 MiB, 0.65% gc time, 98.32% compilation time: <1% of which was recompilation) Summary compact display: (2 x 8) verbose display: parameters mean std mcse ess_bulk ess_tail rhat ess_per_sec Symbol Float64 Float64 Float64 Float64 Float64 Float64 Missing a 0.4974 0.2900 0.0046 3959.0580 3694.7112 0.9995 missing b 0.4956 0.2925 0.0045 4150.2818 3771.8912 1.0002 missing 8.110654 seconds (2.50 M allocations: 155.684 MiB, 1.23% gc time, 97.88% compilation time) Model statistics 4.032256 seconds (1.80 M allocations: 97.453 MiB, 3.30% gc time, 95.40% compilation time) Concatenation 6.166379 seconds (3.61 M allocations: 198.094 MiB, 96.48% compilation time: <1% of which was recompilation) Rstar Precompiling packages... 7595.4 ms ✓ CategoricalArrays 16523.7 ms ✓ FLoops 7861.6 ms ✓ KernelAbstractions 9181.5 ms ✓ ScientificTypes 4029.5 ms ✓ CategoricalArrays → CategoricalArraysRecipesBaseExt 3359.1 ms ✓ KernelAbstractions → SparseArraysExt 2826.9 ms ✓ KernelAbstractions → LinearAlgebraExt 10946.5 ms ✓ CategoricalDistributions 13832.5 ms ✓ NNlib 3463.7 ms ✓ NNlib → NNlibSpecialFunctionsExt 22316.0 ms ✓ MLUtils 21342.3 ms ✓ StatisticalMeasuresBase 20768.2 ms ✓ MLJBase 13 dependencies successfully precompiled in 148 seconds. 133 already precompiled. Precompiling packages... 5503.8 ms ✓ CategoricalArrays → CategoricalArraysSentinelArraysExt 1 dependency successfully precompiled in 6 seconds. 11 already precompiled. Precompiling packages... 1952.2 ms ✓ CategoricalArrays → CategoricalArraysJSONExt 1 dependency successfully precompiled in 2 seconds. 16 already precompiled. Precompiling packages... 13357.8 ms ✓ CategoricalDistributions → UnivariateFiniteDisplayExt 1 dependency successfully precompiled in 16 seconds. 78 already precompiled. Precompiling packages... 3470.7 ms ✓ NNlib → NNlibFFTWExt 1 dependency successfully precompiled in 4 seconds. 59 already precompiled. Precompiling packages... 6962.8 ms ✓ MLJDecisionTreeInterface 1 dependency successfully precompiled in 7 seconds. 28 already precompiled. 250.812982 seconds (47.99 M allocations: 2.852 GiB, 1.05% gc time, 24.67% compilation time: 19% of which was recompilation) ┌ Warning: Unable to determine HTML(edit_link = ...) from remote HEAD branch, defaulting to "master". │ Calling `git remote` failed with an exception. Set JULIA_DEBUG=Documenter to see the error. │ Unless this is due to a configuration error, the relevant variable should be set explicitly. └ @ Documenter ~/.julia/packages/Documenter/eoWm2/src/utilities/utilities.jl:665 Test Summary: | Pass Total Time MCMCChains | 36542 36542 22m17.2s Testing MCMCChains tests passed Testing completed after 1354.07s PkgEval succeeded after 1472.72s