Package evaluation of BifurcationKit on Julia 1.13.0-DEV.897 (a39797a4fb*) started at 2025-07-24T20:42:48.206 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.94s ################################################################################ # Installation # Installing BifurcationKit... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [0f109fa4] + BifurcationKit v0.5.0 Updating `~/.julia/environments/v1.13/Manifest.toml` [47edcb42] + ADTypes v1.15.0 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.3.0 [ec485272] + ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] + Arpack v0.5.3 [4fba245c] + ArrayInterface v7.19.0 [4c555306] + ArrayLayouts v1.11.2 [0f109fa4] + BifurcationKit v0.5.0 [8e7c35d0] + BlockArrays v1.7.0 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.17.0 [a33af91c] + CompositionsBase v0.1.2 [187b0558] + ConstructionBase v1.6.0 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [ffbed154] + DocStringExtensions v0.9.5 [4e289a0a] + EnumX v1.0.5 [e2ba6199] + ExprTools v0.1.10 [55351af7] + ExproniconLite v0.10.14 [442a2c76] + FastGaussQuadrature v1.0.2 [1a297f60] + FillArrays v1.13.0 [f6369f11] + ForwardDiff v1.0.1 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.4 [42fd0dbc] + IterativeSolvers v0.9.4 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.1 [ae98c720] + Jieko v0.2.1 [ba0b0d4f] + Krylov v0.10.1 [0b1a1467] + KrylovKit v0.9.5 [b964fa9f] + LaTeXStrings v1.4.0 [7a12625a] + LinearMaps v3.11.4 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 [2e0e35c7] + Moshi v0.3.7 [77ba4419] + NaNMath v1.1.3 [bac558e1] + OrderedCollections v1.8.1 [65ce6f38] + PackageExtensionCompat v1.0.2 [d96e819e] + Parameters v0.12.3 [d236fae5] + PreallocationTools v0.4.29 [aea7be01] + PrecompileTools v1.3.2 [21216c6a] + Preferences v1.4.3 [08abe8d2] + PrettyTables v2.4.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.35.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [7e49a35a] + RuntimeGeneratedFunctions v0.5.15 [0bca4576] + SciMLBase v2.104.0 [c0aeaf25] + SciMLOperators v1.3.1 [53ae85a6] + SciMLStructures v1.7.0 [276daf66] + SpecialFunctions v2.5.1 [90137ffa] + StaticArrays v1.9.14 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [892a3eda] + StringManipulation v0.4.1 [09ab397b] + StructArrays v0.7.1 [2efcf032] + SymbolicIndexingInterface v0.3.42 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [3a884ed6] + UnPack v1.0.2 [409d34a3] + VectorInterface v0.5.0 ⌅ [68821587] + Arpack_jll v3.5.1+1 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.14.1+1 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.7.15 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.5+0 [458c3c95] + OpenSSL_jll v3.5.1+0 [efcefdf7] + PCRE2_jll v10.45.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [8e850b90] + libblastrampoline_jll v5.13.1+0 [8e850ede] + nghttp2_jll v1.65.0+0 [3f19e933] + p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.77s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... ERROR: LoadError: The following 1 direct dependency failed to precompile: SciMLSensitivity Failed to precompile SciMLSensitivity [1ed8b502-d754-442c-8d5d-10ac956f44a1] to "/home/pkgeval/.julia/compiled/v1.13/SciMLSensitivity/jl_R2ii0T" (ProcessExited(1)). ERROR: LoadError: FieldError: type Core.TypeName has no field `mt`, available fields: `name`, `module`, `singletonname`, `names`, `atomicfields`, `constfields`, `wrapper`, `Typeofwrapper`, `cache`, `linearcache`, `partial`, `hash`, `max_args`, `n_uninitialized`, `flags`, `cache_entry_count`, `max_methods`, `constprop_heuristic` Stacktrace: [1] getproperty(x::Core.TypeName, f::Symbol) @ Base ./Base_compiler.jl:57 [2] top-level scope @ ~/.julia/packages/Enzyme/12QGc/src/rules/jitrules.jl:1773 [3] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:312 [4] top-level scope @ ~/.julia/packages/Enzyme/12QGc/src/rules/llvmrules.jl:120 [5] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:312 [6] top-level scope @ ~/.julia/packages/Enzyme/12QGc/src/compiler.jl:1151 [7] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:312 [8] top-level scope @ ~/.julia/packages/Enzyme/12QGc/src/Enzyme.jl:139 [9] include(mod::Module, _path::String) @ Base ./Base.jl:311 [10] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::String) @ Base ./loading.jl:3002 [11] top-level scope @ stdin:5 [12] eval(m::Module, e::Any) @ Core ./boot.jl:489 [13] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String) @ Base ./loading.jl:2848 [14] include_string @ ./loading.jl:2858 [inlined] [15] exec_options(opts::Base.JLOptions) @ Base ./client.jl:318 [16] _start() @ Base ./client.jl:553 in expression starting at /home/pkgeval/.julia/packages/Enzyme/12QGc/src/rules/jitrules.jl:1773 in expression starting at /home/pkgeval/.julia/packages/Enzyme/12QGc/src/rules/llvmrules.jl:120 in expression starting at /home/pkgeval/.julia/packages/Enzyme/12QGc/src/compiler.jl:1 in expression starting at /home/pkgeval/.julia/packages/Enzyme/12QGc/src/Enzyme.jl:1 in expression starting at stdin:5 ERROR: LoadError: Failed to precompile Enzyme [7da242da-08ed-463a-9acd-ee780be4f1d9] to "/home/pkgeval/.julia/compiled/v1.13/Enzyme/jl_jPaODS" (ProcessExited(1)). Stacktrace: [1] error(s::String) @ Base ./error.jl:44 [2] compilecache(pkg::Base.PkgId, path::String, internal_stderr::IO, internal_stdout::IO, keep_loaded_modules::Bool; flags::Cmd, cacheflags::Base.CacheFlags, reasons::Dict{String, Int64}, loadable_exts::Nothing) @ Base ./loading.jl:3289 [3] (::Base.var"#__require_prelocked##0#__require_prelocked##1"{Base.PkgId})() @ Base ./loading.jl:2654 [4] mkpidlock(f::Base.var"#__require_prelocked##0#__require_prelocked##1"{Base.PkgId}, at::String, pid::Int32; kwopts::@Kwargs{stale_age::Int64, wait::Bool}) @ FileWatching.Pidfile /opt/julia/share/julia/stdlib/v1.13/FileWatching/src/pidfile.jl:94 [5] #mkpidlock#7 @ /opt/julia/share/julia/stdlib/v1.13/FileWatching/src/pidfile.jl:89 [inlined] [6] trymkpidlock(::Function, ::Vararg{Any}; kwargs::@Kwargs{stale_age::Int64}) @ FileWatching.Pidfile /opt/julia/share/julia/stdlib/v1.13/FileWatching/src/pidfile.jl:115 [7] #invokelatest_gr#235 @ ./reflection.jl:1333 [inlined] [8] invokelatest_gr @ ./reflection.jl:1325 [inlined] [9] maybe_cachefile_lock(f::Base.var"#__require_prelocked##0#__require_prelocked##1"{Base.PkgId}, pkg::Base.PkgId, srcpath::String; stale_age::Int64) @ Base ./loading.jl:3860 [10] maybe_cachefile_lock @ ./loading.jl:3857 [inlined] [11] __require_prelocked(pkg::Base.PkgId, env::String) @ Base ./loading.jl:2640 [12] _require_prelocked(uuidkey::Base.PkgId, env::String) @ Base ./loading.jl:2468 [13] macro expansion @ ./loading.jl:2396 [inlined] [14] macro expansion @ ./lock.jl:376 [inlined] [15] __require(into::Module, mod::Symbol) @ Base ./loading.jl:2360 [16] require @ ./loading.jl:2336 [inlined] [17] eval_import_path @ ./module.jl:36 [inlined] [18] eval_import_path_all(at::Module, path::Expr, keyword::String) @ Base ./module.jl:60 [19] _eval_import(::Bool, ::Module, ::Expr, ::Expr, ::Vararg{Expr}) @ Base ./module.jl:101 [20] top-level scope @ ~/.julia/packages/SciMLSensitivity/esFDj/src/SciMLSensitivity.jl:46 [21] include(mod::Module, _path::String) @ Base ./Base.jl:311 [22] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing) @ Base ./loading.jl:3002 [23] top-level scope @ stdin:5 [24] eval(m::Module, e::Any) @ Core ./boot.jl:489 [25] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String) @ Base ./loading.jl:2848 [26] include_string @ ./loading.jl:2858 [inlined] [27] exec_options(opts::Base.JLOptions) @ Base ./client.jl:318 [28] _start() @ Base ./client.jl:553 in expression starting at /home/pkgeval/.julia/packages/SciMLSensitivity/esFDj/src/SciMLSensitivity.jl:1 in expression starting at stdin: in expression starting at /PkgEval.jl/scripts/precompile.jl:37 Precompilation failed after 1220.69s ################################################################################ # Testing # Testing BifurcationKit Status `/tmp/jl_pYkJFx/Project.toml` ⌃ [c29ec348] AbstractDifferentiation v0.4.4 [7d9f7c33] Accessors v0.1.42 [ec485272] ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] Arpack v0.5.3 [0f109fa4] BifurcationKit v0.5.0 [8e7c35d0] BlockArrays v1.7.0 [13f3f980] CairoMakie v0.15.4 [b0b7db55] ComponentArrays v0.15.29 [864edb3b] DataStructures v0.18.22 [ffbed154] DocStringExtensions v0.9.5 [442a2c76] FastGaussQuadrature v1.0.2 [f6369f11] ForwardDiff v1.0.1 [42fd0dbc] IterativeSolvers v0.9.4 [ba0b0d4f] Krylov v0.10.1 [0b1a1467] KrylovKit v0.9.5 [7a12625a] LinearMaps v3.11.4 [1dea7af3] OrdinaryDiffEq v6.101.0 [d96e819e] Parameters v0.12.3 [91a5bcdd] Plots v1.40.17 [d236fae5] PreallocationTools v0.4.29 [731186ca] RecursiveArrayTools v3.35.0 [189a3867] Reexport v1.2.2 [0bca4576] SciMLBase v2.104.0 [1ed8b502] SciMLSensitivity v7.88.0 [09ab397b] StructArrays v0.7.1 [e88e6eb3] Zygote v0.7.10 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_pYkJFx/Manifest.toml` [47edcb42] ADTypes v1.15.0 ⌃ [c29ec348] AbstractDifferentiation v0.4.4 [621f4979] AbstractFFTs v1.5.0 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [35492f91] AdaptivePredicates v1.2.0 [66dad0bd] AliasTables v1.1.3 [27a7e980] Animations v0.4.2 [ec485272] ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] Arpack v0.5.3 [4fba245c] ArrayInterface v7.19.0 [4c555306] ArrayLayouts v1.11.2 [a9b6321e] Atomix v1.1.1 [67c07d97] Automa v1.1.0 [13072b0f] AxisAlgorithms v1.1.0 [39de3d68] AxisArrays v0.4.7 [18cc8868] BaseDirs v1.3.2 [0f109fa4] BifurcationKit v0.5.0 [d1d4a3ce] BitFlags v0.1.9 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] BlockArrays v1.7.0 [70df07ce] BracketingNonlinearSolve v1.3.0 [fa961155] CEnum v0.5.0 [2a0fbf3d] CPUSummary v0.2.6 [96374032] CRlibm v1.0.2 [159f3aea] Cairo v1.1.1 [13f3f980] CairoMakie v0.15.4 [7057c7e9] Cassette v0.3.14 [082447d4] ChainRules v1.72.5 [d360d2e6] ChainRulesCore v1.25.2 [fb6a15b2] CloseOpenIntervals v0.1.13 [944b1d66] CodecZlib v0.7.8 [a2cac450] ColorBrewer v0.4.1 [35d6a980] ColorSchemes v3.30.0 [3da002f7] ColorTypes v0.12.1 [c3611d14] ColorVectorSpace v0.11.0 [5ae59095] Colors v0.13.1 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.17.0 [b0b7db55] ComponentArrays v0.15.29 [a33af91c] CompositionsBase v0.1.2 [95dc2771] ComputePipeline v0.1.3 [2569d6c7] ConcreteStructs v0.2.3 [f0e56b4a] ConcurrentUtilities v2.5.0 [187b0558] ConstructionBase v1.6.0 [d38c429a] Contour v0.6.3 [adafc99b] CpuId v0.3.1 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [927a84f5] DelaunayTriangulation v1.6.4 [8bb1440f] DelimitedFiles v1.9.1 [2b5f629d] DiffEqBase v6.178.0 [459566f4] DiffEqCallbacks v4.8.0 [77a26b50] DiffEqNoiseProcess v5.24.1 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [a0c0ee7d] DifferentiationInterface v0.7.3 [31c24e10] Distributions v0.25.120 [ffbed154] DocStringExtensions v0.9.5 [4e289a0a] EnumX v1.0.5 [7da242da] Enzyme v0.13.62 [f151be2c] EnzymeCore v0.8.12 [429591f6] ExactPredicates v2.2.8 [460bff9d] ExceptionUnwrapping v0.1.11 [d4d017d3] ExponentialUtilities v1.27.0 [e2ba6199] ExprTools v0.1.10 [55351af7] ExproniconLite v0.10.14 [411431e0] Extents v0.1.6 [c87230d0] FFMPEG v0.4.2 [7a1cc6ca] FFTW v1.9.0 [7034ab61] FastBroadcast v0.3.5 [9aa1b823] FastClosures v0.3.2 [442a2c76] FastGaussQuadrature v1.0.2 [a4df4552] FastPower v1.1.3 [5789e2e9] FileIO v1.17.0 ⌅ [8fc22ac5] FilePaths v0.8.3 [48062228] FilePathsBase v0.9.24 [1a297f60] FillArrays v1.13.0 [6a86dc24] FiniteDiff v2.27.0 [53c48c17] FixedPointNumbers v0.8.5 [1fa38f19] Format v1.3.7 [f6369f11] ForwardDiff v1.0.1 [b38be410] FreeType v4.1.1 [663a7486] FreeTypeAbstraction v0.10.8 [f62d2435] FunctionProperties v0.1.2 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 [d9f16b24] Functors v0.5.2 [46192b85] GPUArraysCore v0.2.0 [61eb1bfa] GPUCompiler v1.6.1 [28b8d3ca] GR v0.73.17 [c145ed77] GenericSchur v0.5.5 [5c1252a2] GeometryBasics v0.5.10 [a2bd30eb] Graphics v1.1.3 [3955a311] GridLayoutBase v0.11.1 [42e2da0e] Grisu v1.0.2 [cd3eb016] HTTP v1.10.17 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [7869d1d1] IRTools v0.4.15 [615f187c] IfElse v0.1.1 [2803e5a7] ImageAxes v0.6.12 [c817782e] ImageBase v0.1.7 [a09fc81d] ImageCore v0.10.5 [82e4d734] ImageIO v0.6.9 [bc367c6b] ImageMetadata v0.9.10 [9b13fd28] IndirectArrays v1.0.0 [d25df0c9] Inflate v0.1.5 ⌅ [a98d9a8b] Interpolations v0.15.1 [d1acc4aa] IntervalArithmetic v0.22.36 [8197267c] IntervalSets v0.7.11 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [f1662d9f] Isoband v0.1.1 [c8e1da08] IterTools v1.10.0 [42fd0dbc] IterativeSolvers v0.9.4 [82899510] IteratorInterfaceExtensions v1.0.0 [1019f520] JLFzf v0.1.11 [692b3bcd] JLLWrappers v1.7.1 [682c06a0] JSON v0.21.4 [ae98c720] Jieko v0.2.1 [b835a17e] JpegTurbo v0.1.6 [63c18a36] KernelAbstractions v0.9.38 [5ab0869b] KernelDensity v0.6.10 [ba0b0d4f] Krylov v0.10.1 [0b1a1467] KrylovKit v0.9.5 [929cbde3] LLVM v9.4.2 [b964fa9f] LaTeXStrings v1.4.0 [23fbe1c1] Latexify v0.16.8 [10f19ff3] LayoutPointers v0.1.17 [5078a376] LazyArrays v2.6.2 [8cdb02fc] LazyModules v0.3.1 [87fe0de2] LineSearch v0.1.4 [d3d80556] LineSearches v7.4.0 [7a12625a] LinearMaps v3.11.4 [7ed4a6bd] LinearSolve v3.23.0 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.1.0 [1914dd2f] MacroTools v0.5.16 [ee78f7c6] Makie v0.24.4 [d125e4d3] ManualMemory v0.1.8 [dbb5928d] MappedArrays v0.4.2 [0a4f8689] MathTeXEngine v0.6.5 [bb5d69b7] MaybeInplace v0.1.4 [739be429] MbedTLS v1.1.9 [442fdcdd] Measures v0.3.2 [e1d29d7a] Missings v1.2.0 [e94cdb99] MosaicViews v0.3.4 [2e0e35c7] Moshi v0.3.7 [46d2c3a1] MuladdMacro v0.2.4 [d41bc354] NLSolversBase v7.10.0 [872c559c] NNlib v0.9.31 [77ba4419] NaNMath v1.1.3 [f09324ee] Netpbm v1.1.1 [8913a72c] NonlinearSolve v4.10.0 [be0214bd] NonlinearSolveBase v1.13.0 [5959db7a] NonlinearSolveFirstOrder v1.6.0 [9a2c21bd] NonlinearSolveQuasiNewton v1.7.0 [26075421] NonlinearSolveSpectralMethods v1.2.0 ⌅ [d8793406] ObjectFile v0.4.4 [510215fc] Observables v0.5.5 [6fe1bfb0] OffsetArrays v1.17.0 [52e1d378] OpenEXR v0.3.3 [4d8831e6] OpenSSL v1.5.0 [429524aa] Optim v1.13.2 [3bd65402] Optimisers v0.4.6 [bac558e1] OrderedCollections v1.8.1 [1dea7af3] OrdinaryDiffEq v6.101.0 [89bda076] OrdinaryDiffEqAdamsBashforthMoulton v1.2.0 [6ad6398a] OrdinaryDiffEqBDF v1.7.0 [bbf590c4] OrdinaryDiffEqCore v1.26.2 [50262376] OrdinaryDiffEqDefault v1.5.0 [4302a76b] OrdinaryDiffEqDifferentiation v1.10.1 [9286f039] OrdinaryDiffEqExplicitRK v1.1.0 [e0540318] OrdinaryDiffEqExponentialRK v1.5.0 [becaefa8] OrdinaryDiffEqExtrapolation v1.5.0 [5960d6e9] OrdinaryDiffEqFIRK v1.13.0 [101fe9f7] OrdinaryDiffEqFeagin v1.1.0 [d3585ca7] OrdinaryDiffEqFunctionMap v1.2.0 [d28bc4f8] OrdinaryDiffEqHighOrderRK v1.2.0 [9f002381] OrdinaryDiffEqIMEXMultistep v1.4.0 [521117fe] OrdinaryDiffEqLinear v1.3.0 [1344f307] OrdinaryDiffEqLowOrderRK v1.3.0 [b0944070] OrdinaryDiffEqLowStorageRK v1.3.0 [127b3ac7] OrdinaryDiffEqNonlinearSolve v1.11.0 [c9986a66] OrdinaryDiffEqNordsieck v1.1.0 [5dd0a6cf] OrdinaryDiffEqPDIRK v1.3.1 [5b33eab2] OrdinaryDiffEqPRK v1.1.0 [04162be5] OrdinaryDiffEqQPRK v1.1.0 [af6ede74] OrdinaryDiffEqRKN v1.2.0 [43230ef6] OrdinaryDiffEqRosenbrock v1.12.0 [2d112036] OrdinaryDiffEqSDIRK v1.4.0 [669c94d9] OrdinaryDiffEqSSPRK v1.3.0 [e3e12d00] OrdinaryDiffEqStabilizedIRK v1.3.0 [358294b1] OrdinaryDiffEqStabilizedRK v1.2.0 [fa646aed] OrdinaryDiffEqSymplecticRK v1.4.0 [b1df2697] OrdinaryDiffEqTsit5 v1.2.0 [79d7bb75] OrdinaryDiffEqVerner v1.3.0 [90014a1f] PDMats v0.11.35 [f57f5aa1] PNGFiles v0.4.4 [65ce6f38] PackageExtensionCompat v1.0.2 [19eb6ba3] Packing v0.5.1 [5432bcbf] PaddedViews v0.5.12 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 [eebad327] PkgVersion v0.3.3 [ccf2f8ad] PlotThemes v3.3.0 [995b91a9] PlotUtils v1.4.3 [91a5bcdd] Plots v1.40.17 [e409e4f3] PoissonRandom v0.4.5 [f517fe37] Polyester v0.7.18 [1d0040c9] PolyesterWeave v0.2.2 [647866c9] PolygonOps v0.1.2 [85a6dd25] PositiveFactorizations v0.2.4 [d236fae5] PreallocationTools v0.4.29 [aea7be01] PrecompileTools v1.3.2 [21216c6a] Preferences v1.4.3 [08abe8d2] PrettyTables v2.4.0 [92933f4c] ProgressMeter v1.10.4 [43287f4e] PtrArrays v1.3.0 [4b34888f] QOI v1.0.1 [1fd47b50] QuadGK v2.11.2 [74087812] Random123 v1.7.1 [e6cf234a] RandomNumbers v1.6.0 [b3c3ace0] RangeArrays v0.3.2 [c84ed2f1] Ratios v0.4.5 [c1ae055f] RealDot v0.1.0 [3cdcf5f2] RecipesBase v1.3.4 [01d81517] RecipesPipeline v0.6.12 [731186ca] RecursiveArrayTools v3.35.0 [189a3867] Reexport v1.2.2 [05181044] RelocatableFolders v1.0.1 [ae029012] Requires v1.3.1 [ae5879a3] ResettableStacks v1.1.1 [37e2e3b7] ReverseDiff v1.16.1 [79098fc4] Rmath v0.8.0 [5eaf0fd0] RoundingEmulator v0.2.1 [7e49a35a] RuntimeGeneratedFunctions v0.5.15 [fdea26ae] SIMD v3.7.1 [94e857df] SIMDTypes v0.1.0 [0bca4576] SciMLBase v2.104.0 [19f34311] SciMLJacobianOperators v0.1.8 [c0aeaf25] SciMLOperators v1.3.1 [1ed8b502] SciMLSensitivity v7.88.0 [53ae85a6] SciMLStructures v1.7.0 [7e506255] ScopedValues v1.4.0 [6c6a2e73] Scratch v1.3.0 [efcf1570] Setfield v1.1.2 [65257c39] ShaderAbstractions v0.5.0 [992d4aef] Showoff v1.0.3 [73760f76] SignedDistanceFields v0.4.0 [777ac1f9] SimpleBufferStream v1.2.0 [727e6d20] SimpleNonlinearSolve v2.7.0 [699a6c99] SimpleTraits v0.9.4 [ce78b400] SimpleUnPack v1.1.0 [45858cf5] Sixel v0.1.5 [a2af1166] SortingAlgorithms v1.2.1 [dc90abb0] SparseInverseSubset v0.1.2 [0a514795] SparseMatrixColorings v0.4.21 [276daf66] SpecialFunctions v2.5.1 [860ef19b] StableRNGs v1.0.3 [cae243ae] StackViews v0.1.2 [aedffcd0] Static v1.2.0 [0d7ed370] StaticArrayInterface v1.8.0 [90137ffa] StaticArrays v1.9.14 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.5 [4c63d2b9] StatsFuns v1.5.0 [7792a7ef] StrideArraysCore v0.5.7 [892a3eda] StringManipulation v0.4.1 [09ab397b] StructArrays v0.7.1 [53d494c1] StructIO v0.3.1 [2efcf032] SymbolicIndexingInterface v0.3.42 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [62fd8b95] TensorCore v0.1.1 [8290d209] ThreadingUtilities v0.5.5 [731e570b] TiffImages v0.11.4 [a759f4b9] TimerOutputs v0.5.29 [9f7883ad] Tracker v0.2.38 [e689c965] Tracy v0.1.5 [3bb67fe8] TranscodingStreams v0.11.3 [981d1d27] TriplotBase v0.1.0 [781d530d] TruncatedStacktraces v1.4.0 [5c2747f8] URIs v1.6.1 [3a884ed6] UnPack v1.0.2 [1cfade01] UnicodeFun v0.4.1 [1986cc42] Unitful v1.23.1 [45397f5d] UnitfulLatexify v1.7.0 [013be700] UnsafeAtomics v0.3.0 [41fe7b60] Unzip v0.2.0 [409d34a3] VectorInterface v0.5.0 [e3aaa7dc] WebP v0.1.3 [efce3f68] WoodburyMatrices v1.0.0 [e88e6eb3] Zygote v0.7.10 [700de1a5] ZygoteRules v0.2.7 ⌅ [68821587] Arpack_jll v3.5.1+1 [6e34b625] Bzip2_jll v1.0.9+0 [4e9b3aee] CRlibm_jll v1.0.1+0 [83423d85] Cairo_jll v1.18.5+0 [ee1fde0b] Dbus_jll v1.16.2+0 [5ae413db] EarCut_jll v2.2.4+0 [7cc45869] Enzyme_jll v0.0.186+0 [2702e6a9] EpollShim_jll v0.0.20230411+1 [2e619515] Expat_jll v2.6.5+0 ⌅ [b22a6f82] FFMPEG_jll v4.4.4+1 [f5851436] FFTW_jll v3.3.11+0 [a3f928ae] Fontconfig_jll v2.16.0+0 [d7e528f0] FreeType2_jll v2.13.4+0 [559328eb] FriBidi_jll v1.0.17+0 [0656b61e] GLFW_jll v3.4.0+2 [d2c73de3] GR_jll v0.73.17+0 [b0724c58] GettextRuntime_jll v0.22.4+0 [59f7168a] Giflib_jll v5.2.3+0 [7746bdde] Glib_jll v2.84.3+0 [3b182d85] Graphite2_jll v1.3.15+0 [2e76f6c2] HarfBuzz_jll v8.5.1+0 [905a6f67] Imath_jll v3.1.11+0 [1d5cc7b8] IntelOpenMP_jll v2025.2.0+0 [aacddb02] JpegTurbo_jll v3.1.1+0 [c1c5ebd0] LAME_jll v3.100.3+0 [88015f11] LERC_jll v4.0.1+0 [dad2f222] LLVMExtra_jll v0.0.37+2 [1d63c593] LLVMOpenMP_jll v18.1.8+0 [dd4b983a] LZO_jll v2.10.3+0 [ad6e5548] LibTracyClient_jll v0.9.1+6 [e9f186c6] Libffi_jll v3.4.7+0 [7e76a0d4] Libglvnd_jll v1.7.1+1 [94ce4f54] Libiconv_jll v1.18.0+0 [4b2f31a3] Libmount_jll v2.41.0+0 [89763e89] Libtiff_jll v4.7.1+0 [38a345b3] Libuuid_jll v2.41.0+0 [856f044c] MKL_jll v2025.2.0+0 [c8ffd9c3] MbedTLS_jll v2.28.6+2 [e7412a2a] Ogg_jll v1.3.6+0 [6cdc7f73] OpenBLASConsistentFPCSR_jll v0.3.29+0 [18a262bb] OpenEXR_jll v3.2.4+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [91d4177d] Opus_jll v1.5.2+0 [36c8627f] Pango_jll v1.56.3+0 ⌅ [30392449] Pixman_jll v0.44.2+0 [c0090381] Qt6Base_jll v6.8.2+1 [629bc702] Qt6Declarative_jll v6.8.2+1 [ce943373] Qt6ShaderTools_jll v6.8.2+1 [e99dba38] Qt6Wayland_jll v6.8.2+1 [f50d1b31] Rmath_jll v0.5.1+0 [a44049a8] Vulkan_Loader_jll v1.3.243+0 [a2964d1f] Wayland_jll v1.24.0+0 [ffd25f8a] XZ_jll v5.8.1+0 [f67eecfb] Xorg_libICE_jll v1.1.2+0 [c834827a] Xorg_libSM_jll v1.2.6+0 [4f6342f7] Xorg_libX11_jll v1.8.12+0 [0c0b7dd1] Xorg_libXau_jll v1.0.13+0 [935fb764] Xorg_libXcursor_jll v1.2.4+0 [a3789734] Xorg_libXdmcp_jll v1.1.6+0 [1082639a] Xorg_libXext_jll v1.3.7+0 [d091e8ba] Xorg_libXfixes_jll v6.0.1+0 [a51aa0fd] Xorg_libXi_jll v1.8.3+0 [d1454406] Xorg_libXinerama_jll v1.1.6+0 [ec84b674] Xorg_libXrandr_jll v1.5.5+0 [ea2f1a96] Xorg_libXrender_jll v0.9.12+0 [c7cfdc94] Xorg_libxcb_jll v1.17.1+0 [cc61e674] Xorg_libxkbfile_jll v1.1.3+0 [e920d4aa] Xorg_xcb_util_cursor_jll v0.1.5+0 [12413925] Xorg_xcb_util_image_jll v0.4.1+0 [2def613f] Xorg_xcb_util_jll v0.4.1+0 [975044d2] Xorg_xcb_util_keysyms_jll v0.4.1+0 [0d47668e] Xorg_xcb_util_renderutil_jll v0.3.10+0 [c22f9ab0] Xorg_xcb_util_wm_jll v0.4.2+0 [35661453] Xorg_xkbcomp_jll v1.4.7+0 [33bec58e] Xorg_xkeyboard_config_jll v2.44.0+0 [c5fb5394] Xorg_xtrans_jll v1.6.0+0 [35ca27e7] eudev_jll v3.2.14+0 [214eeab7] fzf_jll v0.61.1+0 [9a68df92] isoband_jll v0.2.3+0 [a4ae2306] libaom_jll v3.12.1+0 ⌅ [0ac62f75] libass_jll v0.15.2+0 [1183f4f0] libdecor_jll v0.2.2+0 [2db6ffa8] libevdev_jll v1.13.4+0 [f638f0a6] libfdk_aac_jll v2.0.4+0 [36db933b] libinput_jll v1.28.1+0 [b53b4c65] libpng_jll v1.6.50+0 [075b6546] libsixel_jll v1.10.5+0 [f27f6e37] libvorbis_jll v1.3.8+0 [c5f90fcd] libwebp_jll v1.6.0+0 [009596ad] mtdev_jll v1.1.7+0 [1317d2d5] oneTBB_jll v2022.0.0+0 ⌅ [1270edf5] x264_jll v2021.5.5+0 ⌅ [dfaa095f] x265_jll v3.5.0+0 [d8fb68d0] xkbcommon_jll v1.9.2+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [8bf52ea8] CRC32c v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [1a1011a3] SharedArrays v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.14.1+1 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.7.15 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.5+0 [458c3c95] OpenSSL_jll v3.5.1+0 [efcefdf7] PCRE2_jll v10.45.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.65.0+0 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... --> There are 1 threads Precompiling packages... 102429.6 ms ✓ BifurcationKit 1 dependency successfully precompiled in 105 seconds. 136 already precompiled. Problem wrap of ┌─ Bifurcation Problem with uType Vector{Float64} ├─ Inplace: false ├─ Dimension: 2 ├─ Symmetric: false └─ Parameter: p1Problem wrap for curve of PD of periodic orbits. Based on the formulation: ┌─ Bifurcation Problem with uType Vector{Float64} ├─ Inplace: false ├─ Dimension: 2 ├─ Symmetric: false └─ Parameter: p10.3769095904384214 0.15091720421876786 │ 1 │ │ 1 │ GMRES: system of size 100 pass k ‖rₖ‖ hₖ₊₁.ₖ timer 0 0 5.7e+00 ✗ ✗ ✗ ✗ 0.00s 1 2 1.1e+00 3.7e-01 0.00s 1 4 7.3e-02 2.8e-01 0.00s 1 6 6.7e-03 3.1e-01 0.00s 1 8 4.7e-04 2.4e-01 0.00s 1 10 3.2e-05 2.4e-01 0.00s 1 12 2.7e-06 3.0e-01 0.00s 1 14 1.8e-07 2.3e-01 0.00s 1 16 1.2e-08 2.6e-01 0.00s Linear Solvers: Error During Test at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:8 Got exception outside of a @test LoadError: MethodError: no method matching iterate(::BorderedArray{Vector{Float64}, Float64}) The function `iterate` exists, but no method is defined for this combination of argument types. Closest candidates are: iterate(!Matched::ExproniconLite.JLIfElse) @ ExproniconLite ~/.julia/packages/ExproniconLite/4LrQ4/src/types.jl:129 iterate(!Matched::ExproniconLite.JLIfElse, !Matched::Any) @ ExproniconLite ~/.julia/packages/ExproniconLite/4LrQ4/src/types.jl:129 iterate(!Matched::CompositeException, Any...) @ Base task.jl:55 ... Stacktrace: [1] isempty(itr::BorderedArray{Vector{Float64}, Float64}) @ Base ./essentials.jl:1122 [2] norm(itr::BorderedArray{Vector{Float64}, Float64}) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.13/LinearAlgebra/src/generic.jl:727 [3] linsolve(f::BifurcationKit.MatrixFreeBLSmap{Matrix{Float64}, Vector{Float64}, Vector{Float64}, Float64, Float64, typeof(dot)}, b::BorderedArray{Vector{Float64}, Float64}, x₀::BorderedArray{Vector{Float64}, Float64}, a₀::Int64, a₁::Int64; kwargs::@Kwargs{rtol::Float64, verbosity::Int64, krylovdim::Int64, maxiter::Int64, atol::Float64, issymmetric::Bool, ishermitian::Bool, isposdef::Bool}) @ KrylovKit ~/.julia/packages/KrylovKit/jC5gU/src/linsolve/linsolve.jl:116 [4] linsolve(f::BifurcationKit.MatrixFreeBLSmap{Matrix{Float64}, Vector{Float64}, Vector{Float64}, Float64, Float64, typeof(dot)}, b::BorderedArray{Vector{Float64}, Float64}, a₀::Int64, a₁::Int64; kwargs::@Kwargs{rtol::Float64, verbosity::Int64, krylovdim::Int64, maxiter::Int64, atol::Float64, issymmetric::Bool, ishermitian::Bool, isposdef::Bool}) @ KrylovKit ~/.julia/packages/KrylovKit/jC5gU/src/linsolve/linsolve.jl:107 [5] (::GMRESKrylovKit{Float64, Nothing})(J::BifurcationKit.MatrixFreeBLSmap{Matrix{Float64}, Vector{Float64}, Vector{Float64}, Float64, Float64, typeof(dot)}, rhs::BorderedArray{Vector{Float64}, Float64}; a₀::Int64, a₁::Int64, kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/LinearSolver.jl:254 [6] (::GMRESKrylovKit{Float64, Nothing})(J::BifurcationKit.MatrixFreeBLSmap{Matrix{Float64}, Vector{Float64}, Vector{Float64}, Float64, Float64, typeof(dot)}, rhs::BorderedArray{Vector{Float64}, Float64}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/LinearSolver.jl:252 [7] (::MatrixFreeBLS{GMRESKrylovKit{Float64, Nothing}})(J::Matrix{Float64}, dR::Vector{Float64}, dzu::Vector{Float64}, dzp::Float64, R::Vector{Float64}, n::Float64, ξu::Int64, ξp::Int64; shift::Float64, dotp::Function, applyξu!::Nothing) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/LinearBorderSolver.jl:414 [8] MatrixFreeBLS @ ~/.julia/packages/BifurcationKit/I0BRP/src/LinearBorderSolver.jl:403 [inlined] [9] top-level scope @ ~/.julia/packages/BifurcationKit/I0BRP/test/test_linear.jl:189 [10] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:312 [11] top-level scope @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:8 [12] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1858 [inlined] [13] macro expansion @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:9 [inlined] [14] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1858 [inlined] [15] macro expansion @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:11 [inlined] [16] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:312 [17] top-level scope @ none:6 [18] eval(m::Module, e::Any) @ Core ./boot.jl:489 [19] exec_options(opts::Base.JLOptions) @ Base ./client.jl:286 [20] _start() @ Base ./client.jl:553 in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/test_linear.jl:158 [ Info: Entry in test-record-from-solution.jl WARNING: Method definition f(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/test-record-from-solution.jl:5 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/test_results.jl:5. ┌─ Deflation operator with 1 root(s) ├─ eltype = Float64 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false ┌─ Deflation operator with 1 root(s) ├─ eltype = Float32 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false ┌─ Deflation operator with 1 root(s) ├─ eltype = Float16 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false ┌─ Deflated Problem with uType Vector{Float64} ├─ Symmetric: false ├─ jacobian: nothing ├─ Parameter p └─ deflation operator: ┌─ Deflation operator with 1 root(s) ├─ eltype = Float64 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false WARNING: Method definition F4def(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/test_newton.jl:64 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/test_newton.jl:155. Precompiling packages... 5279.8 ms ✓ StatsBase 9476.4 ms ✓ RecipesPipeline 110365.6 ms ✓ Plots 18883.5 ms ✓ Plots → UnitfulExt 4 dependencies successfully precompiled in 147 seconds. 176 already precompiled. Precompiling packages... 1889.3 ms ✓ ColorVectorSpace → SpecialFunctionsExt 1 dependency successfully precompiled in 2 seconds. 19 already precompiled. Precompiling packages... 2314.9 ms ✓ Unitful → ForwardDiffExt 26509.5 ms ✓ BifurcationKit → PlotsExt 2 dependencies successfully precompiled in 36 seconds. 273 already precompiled. | 1 │ 1.0000e+00 │ ( 1, 1) | │ 1 │ │ ( 1, 1) │ 6.072056 seconds (6.01 M allocations: 329.476 MiB, 1.56% gc time, 99.98% compilation time) ┌ Error: Unrecognized keyword arguments found. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Continuation.jl:55 Unrecognized keyword arguments: (:essai,) 5.468885 seconds (2.09 M allocations: 115.979 MiB, 99.98% compilation time) ┌─ Bifurcation Problem with uType Vector{Float64} ├─ Inplace: false ├─ Dimension: 1 ├─ Symmetric: false └─ Parameter: p 4.029672 seconds (2.11 M allocations: 117.130 MiB, 99.97% compilation time) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ────────────────── AutoSwitch ────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -1.5, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -1.4999333333333333, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.0000e-02 Parameter p = -1.5000e+00 ──▶ -1.4859e+00 [guess] Parameter p = -1.5000e+00 ──▶ -1.4859e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 1.3200e-02 Parameter p = -1.4859e+00 ──▶ -1.4672e+00 [guess] Parameter p = -1.4859e+00 ──▶ -1.4672e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 1.7424e-02 Parameter p = -1.4672e+00 ──▶ -1.4425e+00 [guess] Parameter p = -1.4672e+00 ──▶ -1.4425e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 2.3000e-02 Parameter p = -1.4425e+00 ──▶ -1.4100e+00 [guess] Parameter p = -1.4425e+00 ──▶ -1.4100e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 3.0360e-02 Parameter p = -1.4100e+00 ──▶ -1.3671e+00 [guess] Parameter p = -1.4100e+00 ──▶ -1.3671e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 4.0075e-02 Parameter p = -1.3671e+00 ──▶ -1.3104e+00 [guess] Parameter p = -1.3671e+00 ──▶ -1.3104e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 4.7288e-02 Parameter p = -1.3104e+00 ──▶ -1.2435e+00 [guess] Parameter p = -1.3104e+00 ──▶ -1.2435e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 5.1000e-02 Parameter p = -1.2435e+00 ──▶ -1.1714e+00 [guess] Parameter p = -1.2435e+00 ──▶ -1.1714e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 5.1000e-02 Parameter p = -1.1714e+00 ──▶ -1.0993e+00 [guess] Parameter p = -1.1714e+00 ──▶ -1.0993e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 5.1000e-02 Parameter p = -1.0993e+00 ──▶ -1.0272e+00 [guess] Parameter p = -1.0993e+00 ──▶ -1.0272e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 5.1000e-02 Parameter p = -1.0272e+00 ──▶ -9.5505e-01 [guess] Parameter p = -1.0272e+00 ──▶ -9.5505e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 5.1000e-02 Parameter p = -9.5505e-01 ──▶ -8.8293e-01 [guess] Parameter p = -9.5505e-01 ──▶ -8.8293e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 5.1000e-02 Parameter p = -8.8293e-01 ──▶ -8.1081e-01 [guess] Parameter p = -8.8293e-01 ──▶ -8.1081e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 5.1000e-02 Parameter p = -8.1081e-01 ──▶ -7.3870e-01 [guess] Parameter p = -8.1081e-01 ──▶ -7.3870e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 5.1000e-02 Parameter p = -7.3870e-01 ──▶ -6.6658e-01 [guess] Parameter p = -7.3870e-01 ──▶ -6.6658e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 5.1000e-02 Parameter p = -6.6658e-01 ──▶ -5.9448e-01 [guess] Parameter p = -6.6658e-01 ──▶ -5.9448e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 5.1000e-02 Parameter p = -5.9448e-01 ──▶ -5.2238e-01 [guess] Parameter p = -5.9448e-01 ──▶ -5.2238e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 5.1000e-02 Parameter p = -5.2238e-01 ──▶ -4.5030e-01 [guess] Parameter p = -5.2238e-01 ──▶ -4.5030e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 5.1000e-02 Parameter p = -4.5030e-01 ──▶ -3.7827e-01 [guess] Parameter p = -4.5030e-01 ──▶ -3.7827e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 5.1000e-02 Parameter p = -3.7827e-01 ──▶ -3.0632e-01 [guess] Parameter p = -3.7827e-01 ──▶ -3.0632e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 5.1000e-02 Parameter p = -3.0632e-01 ──▶ -2.3460e-01 [guess] Parameter p = -3.0632e-01 ──▶ -2.3460e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 5.1000e-02 Parameter p = -2.3460e-01 ──▶ -1.6366e-01 [guess] Parameter p = -2.3460e-01 ──▶ -1.6366e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 5.1000e-02 Parameter p = -1.6366e-01 ──▶ -9.6358e-02 [guess] Parameter p = -1.6366e-01 ──▶ -9.6358e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 5.1000e-02 Parameter p = -9.6358e-02 ──▶ -5.1902e-02 [guess] Parameter p = -9.6358e-02 ──▶ -6.6989e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 5.1000e-02 Parameter p = -6.6989e-02 ──▶ -5.2693e-02 [guess] Parameter p = -6.6989e-02 ──▶ -6.0828e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 5.1000e-02 Parameter p = -6.0828e-02 ──▶ -6.1182e-02 [guess] Parameter p = -6.0828e-02 ──▶ -6.5523e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 5.1000e-02 Parameter p = -6.5523e-02 ──▶ -7.3919e-02 [guess] Parameter p = -6.5523e-02 ──▶ -7.6829e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 5.1000e-02 Parameter p = -7.6829e-02 ──▶ -9.0753e-02 [guess] Parameter p = -7.6829e-02 ──▶ -9.3007e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 5.1000e-02 Parameter p = -9.3007e-02 ──▶ -1.1128e-01 [guess] Parameter p = -9.3007e-02 ──▶ -1.1317e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 5.1000e-02 Parameter p = -1.1317e-01 ──▶ -1.3511e-01 [guess] Parameter p = -1.1317e-01 ──▶ -1.3677e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 5.1000e-02 Parameter p = -1.3677e-01 ──▶ -1.6194e-01 [guess] Parameter p = -1.3677e-01 ──▶ -1.6342e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 5.1000e-02 Parameter p = -1.6342e-01 ──▶ -1.9149e-01 [guess] Parameter p = -1.6342e-01 ──▶ -1.9283e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 5.1000e-02 Parameter p = -1.9283e-01 ──▶ -2.2352e-01 [guess] Parameter p = -1.9283e-01 ──▶ -2.2474e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 5.1000e-02 Parameter p = -2.2474e-01 ──▶ -2.5782e-01 [guess] Parameter p = -2.2474e-01 ──▶ -2.5894e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 5.1000e-02 Parameter p = -2.5894e-01 ──▶ -2.9422e-01 [guess] Parameter p = -2.5894e-01 ──▶ -2.9525e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 5.1000e-02 Parameter p = -2.9525e-01 ──▶ -3.3254e-01 [guess] Parameter p = -2.9525e-01 ──▶ -3.3349e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 5.1000e-02 Parameter p = -3.3349e-01 ──▶ -3.7264e-01 [guess] Parameter p = -3.3349e-01 ──▶ -3.7351e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 5.1000e-02 Parameter p = -3.7351e-01 ──▶ -4.1437e-01 [guess] Parameter p = -3.7351e-01 ──▶ -4.1517e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 5.1000e-02 Parameter p = -4.1517e-01 ──▶ -4.5761e-01 [guess] Parameter p = -4.1517e-01 ──▶ -4.5835e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 5.1000e-02 Parameter p = -4.5835e-01 ──▶ -5.0224e-01 [guess] Parameter p = -4.5835e-01 ──▶ -5.0293e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 5.1000e-02 Parameter p = -5.0293e-01 ──▶ -5.4817e-01 [guess] Parameter p = -5.0293e-01 ──▶ -5.4881e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 5.1000e-02 Parameter p = -5.4881e-01 ──▶ -5.9530e-01 [guess] Parameter p = -5.4881e-01 ──▶ -5.9530e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 5.1000e-02 Parameter p = -5.9530e-01 ──▶ -6.4294e-01 [guess] Parameter p = -5.9530e-01 ──▶ -6.4294e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 5.1000e-02 Parameter p = -6.4294e-01 ──▶ -6.9164e-01 [guess] Parameter p = -6.4294e-01 ──▶ -6.9164e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 5.1000e-02 Parameter p = -6.9164e-01 ──▶ -7.4133e-01 [guess] Parameter p = -6.9164e-01 ──▶ -7.4133e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 5.1000e-02 Parameter p = -7.4133e-01 ──▶ -7.9194e-01 [guess] Parameter p = -7.4133e-01 ──▶ -7.9194e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 5.1000e-02 Parameter p = -7.9194e-01 ──▶ -8.4343e-01 [guess] Parameter p = -7.9194e-01 ──▶ -8.4343e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 5.1000e-02 Parameter p = -8.4343e-01 ──▶ -8.9571e-01 [guess] Parameter p = -8.4343e-01 ──▶ -8.9571e-01 Predictor: Bordered 6.778779 seconds (2.80 M allocations: 155.320 MiB, 1.81% gc time, 99.86% compilation time) 4.708749 seconds (1.93 M allocations: 105.472 MiB, 99.94% compilation time) ┌ Warning: Assignment to `br0` in soft scope is ambiguous because a global variable by the same name exists: `br0` will be treated as a new local. Disambiguate by using `local br0` to suppress this warning or `global br0` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/I0BRP/test/simple_continuation.jl:174 ┌─ Curve type: EquilibriumCont ├─ Number of points: 89 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -1.5, ends at -3.0 ├─ Algo: PALC └─ Special points: - # 1, bp at p ≈ -0.06090827 ∈ (-0.06090827, -0.06089831), |δp|=1e-05, [converged], δ = ( 1, 0), step = 30 - # 2, endpoint at p ≈ -3.00000000, step = 88 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ────────────────── Multiple ────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -1.5, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -1.4999, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.5000e-02 Parameter p = -1.5000e+00 ──▶ -1.4788e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.195, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5000e+00 ──▶ -1.4788e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 dsnew = 0.0225 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 2.2500e-02 Parameter p = -1.4788e+00 ──▶ -1.4470e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.2925, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4788e+00 ──▶ -1.4470e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 dsnew = 0.03375 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 3.3750e-02 Parameter p = -1.4470e+00 ──▶ -1.3992e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4470e+00 ──▶ -1.3992e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 3.3750e-02 Parameter p = -1.3992e+00 ──▶ -1.3515e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3992e+00 ──▶ -1.3515e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 3.3750e-02 Parameter p = -1.3515e+00 ──▶ -1.3038e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3515e+00 ──▶ -1.3038e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 3.3750e-02 Parameter p = -1.3038e+00 ──▶ -1.2561e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3038e+00 ──▶ -1.2561e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 3.3750e-02 Parameter p = -1.2561e+00 ──▶ -1.2083e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2561e+00 ──▶ -1.2083e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 3.3750e-02 Parameter p = -1.2083e+00 ──▶ -1.1606e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2083e+00 ──▶ -1.1606e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 3.3750e-02 Parameter p = -1.1606e+00 ──▶ -1.1129e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1606e+00 ──▶ -1.1129e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 3.3750e-02 Parameter p = -1.1129e+00 ──▶ -1.0651e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1129e+00 ──▶ -1.0651e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 3.3750e-02 Parameter p = -1.0651e+00 ──▶ -1.0174e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0651e+00 ──▶ -1.0174e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 3.3750e-02 Parameter p = -1.0174e+00 ──▶ -9.6968e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0174e+00 ──▶ -9.6968e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 3.3750e-02 Parameter p = -9.6968e-01 ──▶ -9.2196e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.6968e-01 ──▶ -9.2196e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 3.3750e-02 Parameter p = -9.2196e-01 ──▶ -8.7423e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.2196e-01 ──▶ -8.7423e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 3.3750e-02 Parameter p = -8.7423e-01 ──▶ -8.2650e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.7423e-01 ──▶ -8.2651e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 3.3750e-02 Parameter p = -8.2651e-01 ──▶ -7.7878e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.2651e-01 ──▶ -7.7878e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 3.3750e-02 Parameter p = -7.7878e-01 ──▶ -7.3106e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.7878e-01 ──▶ -7.3106e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 3.3750e-02 Parameter p = -7.3106e-01 ──▶ -6.8334e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.3106e-01 ──▶ -6.8334e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 3.3750e-02 Parameter p = -6.8334e-01 ──▶ -6.3562e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.8334e-01 ──▶ -6.3562e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 3.3750e-02 Parameter p = -6.3562e-01 ──▶ -5.8790e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.3562e-01 ──▶ -5.8791e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 3.3750e-02 Parameter p = -5.8791e-01 ──▶ -5.4020e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.8791e-01 ──▶ -5.4020e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 3.3750e-02 Parameter p = -5.4020e-01 ──▶ -4.9250e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.4020e-01 ──▶ -4.9250e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 3.3750e-02 Parameter p = -4.9250e-01 ──▶ -4.4481e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -4.9250e-01 ──▶ -4.4482e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 3.3750e-02 Parameter p = -4.4482e-01 ──▶ -3.9714e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -4.4482e-01 ──▶ -3.9717e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 3.3750e-02 Parameter p = -3.9717e-01 ──▶ -3.4951e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.9717e-01 ──▶ -3.4956e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 3.3750e-02 Parameter p = -3.4956e-01 ──▶ -3.0195e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.4956e-01 ──▶ -3.0203e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 3.3750e-02 Parameter p = -3.0203e-01 ──▶ -2.5451e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.0203e-01 ──▶ -2.5467e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 3.3750e-02 Parameter p = -2.5467e-01 ──▶ -2.0735e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5467e-01 ──▶ -2.0771e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 3.3750e-02 Parameter p = -2.0771e-01 ──▶ -1.6083e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.0771e-01 ──▶ -1.6179e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 3.3750e-02 Parameter p = -1.6179e-01 ──▶ -1.1613e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] └─ i = 12, s(i) = 0.405, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6179e-01 ──▶ -1.1904e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 3.3750e-02 Parameter p = -1.1904e-01 ──▶ -7.7200e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] ├─ i = 12, s(i) = 0.405, converged = [ NO] └─ i = 11, s(i) = 0.37125, converged = [YES] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.1904e-01 ──▶ -8.5672e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 3.3750e-02 Parameter p = -8.5672e-02 ──▶ -5.4366e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] ├─ i = 12, s(i) = 0.405, converged = [ NO] └─ i = 11, s(i) = 0.37125, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.5672e-02 ──▶ -6.7992e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 3.3750e-02 Parameter p = -6.7992e-02 ──▶ -5.1454e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.7992e-02 ──▶ -6.1556e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 3.3750e-02 Parameter p = -6.1556e-02 ──▶ -5.5277e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.1556e-02 ──▶ -6.1281e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ──▶ Bifurcation detected before p = -0.06128105033038877 Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.21937500000000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.10968750000000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.054843750000000004, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.027421875000000002, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.013710937500000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0068554687500000005, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0034277343750000002, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0017138671875000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0008569335937500001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00042846679687500003, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00021423339843750001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00010711669921875001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -5.3558349609375004e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -2.6779174804687502e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.3389587402343751e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -6.6947937011718754e-6, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -3.3473968505859377e-6, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.6736984252929689e-6, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -8.368492126464844e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -4.184246063232422e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -2.092123031616211e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.0460615158081055e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -5.230307579040528e-8, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -2.615153789520264e-8, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.307576894760132e-8, converged = [YES] Predictor: Secant Predictor: Secant Predictor: Secant ──> bp Bifurcation point at p ≈ -0.06496328859565723, δn_unstable = 1, δn_imag = 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 3.3750e-02 Parameter p = -6.4963e-02 ──▶ -7.5203e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.4963e-02 ──▶ -7.1589e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 3.3750e-02 Parameter p = -7.1589e-02 ──▶ -7.8194e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.1589e-02 ──▶ -8.0562e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 3.3750e-02 Parameter p = -8.0562e-02 ──▶ -8.9523e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.0562e-02 ──▶ -9.1534e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 3.3750e-02 Parameter p = -9.1534e-02 ──▶ -1.0250e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.1534e-02 ──▶ -1.0427e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 3.3750e-02 Parameter p = -1.0427e-01 ──▶ -1.1699e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0427e-01 ──▶ -1.1859e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 3.3750e-02 Parameter p = -1.1859e-01 ──▶ -1.3291e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1859e-01 ──▶ -1.3438e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 3.3750e-02 Parameter p = -1.3438e-01 ──▶ -1.5015e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3438e-01 ──▶ -1.5151e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 3.3750e-02 Parameter p = -1.5151e-01 ──▶ -1.6863e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5151e-01 ──▶ -1.6990e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 3.3750e-02 Parameter p = -1.6990e-01 ──▶ -1.8828e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6990e-01 ──▶ -1.8947e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 3.3750e-02 Parameter p = -1.8947e-01 ──▶ -2.0903e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.8947e-01 ──▶ -2.1014e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 3.3750e-02 Parameter p = -2.1014e-01 ──▶ -2.3081e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.1014e-01 ──▶ -2.3186e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 3.3750e-02 Parameter p = -2.3186e-01 ──▶ -2.5357e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.3186e-01 ──▶ -2.5457e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 3.3750e-02 Parameter p = -2.5457e-01 ──▶ -2.7726e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5457e-01 ──▶ -2.7820e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 3.3750e-02 Parameter p = -2.7820e-01 ──▶ -3.0183e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.7820e-01 ──▶ -3.0271e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 48 Step size = 3.3750e-02 Parameter p = -3.0271e-01 ──▶ -3.2722e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.0271e-01 ──▶ -3.2806e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ┌ Error: --> Decrease ds └ @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/continuation/Multiple.jl:139 ┌ Error: --> Decrease ds └ @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/continuation/Multiple.jl:139 Continuation: Error During Test at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:27 Got exception outside of a @test LoadError: MethodError: no method matching iterate(::BorderedArray{Vector{Float64}, Float64}) The function `iterate` exists, but no method is defined for this combination of argument types. Closest candidates are: iterate(!Matched::ExproniconLite.JLIfElse) @ ExproniconLite ~/.julia/packages/ExproniconLite/4LrQ4/src/types.jl:129 iterate(!Matched::ExproniconLite.JLIfElse, !Matched::Any) @ ExproniconLite ~/.julia/packages/ExproniconLite/4LrQ4/src/types.jl:129 iterate(!Matched::CompositeException, Any...) @ Base task.jl:55 ... Stacktrace: [1] isempty(itr::BorderedArray{Vector{Float64}, Float64}) @ Base ./essentials.jl:1122 [2] norm(itr::BorderedArray{Vector{Float64}, Float64}) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.13/LinearAlgebra/src/generic.jl:727 [3] newton_moore_penrose(iter::ContIterable{BifurcationKit.EquilibriumCont, BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#119#120"{typeof(F_simple)}, Nothing, Nothing, typeof(Jac_simple), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#77#78", typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}, Float64, DefaultLS, DefaultEig{typeof(real)}, typeof(norm), typeof(BifurcationKit.finalise_default), typeof(BifurcationKit.cb_default), Nothing}, state::ContState{BorderedArray{Vector{Float64}, Float64}, Float64, Vector{ComplexF64}, Matrix{ComplexF64}, Tuple{Nothing, Nothing}}, dotθ::BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}; normN::typeof(norm), callback::typeof(BifurcationKit.cb_default), kwargs::@Kwargs{iterationC::Int64, z0::BorderedArray{Vector{Float64}, Float64}}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/continuation/MoorePenrose.jl:174 [4] newton_moore_penrose @ ~/.julia/packages/BifurcationKit/I0BRP/src/continuation/MoorePenrose.jl:121 [inlined] [5] corrector!(state::ContState{BorderedArray{Vector{Float64}, Float64}, Float64, Vector{ComplexF64}, Matrix{ComplexF64}, Tuple{Nothing, Nothing}}, it::ContIterable{BifurcationKit.EquilibriumCont, BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#119#120"{typeof(F_simple)}, Nothing, Nothing, typeof(Jac_simple), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#77#78", typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}, Float64, DefaultLS, DefaultEig{typeof(real)}, typeof(norm), typeof(BifurcationKit.finalise_default), typeof(BifurcationKit.cb_default), Nothing}, algo::MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}; kwargs::@Kwargs{iterationC::Int64, z0::BorderedArray{Vector{Float64}, Float64}}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/continuation/MoorePenrose.jl:108 [6] corrector! @ ~/.julia/packages/BifurcationKit/I0BRP/src/continuation/MoorePenrose.jl:100 [inlined] [7] corrector! @ ~/.julia/packages/BifurcationKit/I0BRP/src/continuation/Contbase.jl:22 [inlined] [8] iterate(it::ContIterable{BifurcationKit.EquilibriumCont, BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#119#120"{typeof(F_simple)}, Nothing, Nothing, typeof(Jac_simple), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#77#78", typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}, Float64, DefaultLS, DefaultEig{typeof(real)}, typeof(norm), typeof(BifurcationKit.finalise_default), typeof(BifurcationKit.cb_default), Nothing}, state::ContState{BorderedArray{Vector{Float64}, Float64}, Float64, Vector{ComplexF64}, Matrix{ComplexF64}, Tuple{Nothing, Nothing}}; _verbosity::UInt8) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Continuation.jl:446 [9] iterate @ ~/.julia/packages/BifurcationKit/I0BRP/src/Continuation.jl:429 [inlined] [10] continuation!(it::ContIterable{BifurcationKit.EquilibriumCont, BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#119#120"{typeof(F_simple)}, Nothing, Nothing, typeof(Jac_simple), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#77#78", typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}, Float64, DefaultLS, DefaultEig{typeof(real)}, typeof(norm), typeof(BifurcationKit.finalise_default), typeof(BifurcationKit.cb_default), Nothing}, state::ContState{BorderedArray{Vector{Float64}, Float64}, Float64, Vector{ComplexF64}, Matrix{ComplexF64}, Tuple{Nothing, Nothing}}, contRes::ContResult{BifurcationKit.EquilibriumCont, @NamedTuple{x::Float64, param::Float64, itnewton::Int64, itlinear::Int64, ds::Float64, n_unstable::Int64, n_imag::Int64, stable::Bool, step::Int64}, Vector{ComplexF64}, Matrix{ComplexF64}, SpecialPoint{Float64, @NamedTuple{x::Float64}, Vector{Float64}, Vector{Float64}}, Vector{@NamedTuple{x::Vector{Float64}, p::Float64, step::Int64}}, ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#119#120"{typeof(F_simple)}, Nothing, Nothing, typeof(Jac_simple), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#77#78", typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Continuation.jl:561 [11] continuation(it::ContIterable{BifurcationKit.EquilibriumCont, BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#119#120"{typeof(F_simple)}, Nothing, Nothing, typeof(Jac_simple), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#77#78", typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}, Float64, DefaultLS, DefaultEig{typeof(real)}, typeof(norm), typeof(BifurcationKit.finalise_default), typeof(BifurcationKit.cb_default), Nothing}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Continuation.jl:588 [12] continuation(prob::BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#119#120"{typeof(F_simple)}, Nothing, Nothing, typeof(Jac_simple), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#77#78", typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, alg::MoorePenrose{PALC{Secant, MatrixBLS{Nothing}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}, contparams::ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}; linear_algo::Nothing, bothside::Bool, kwargs::@Kwargs{verbosity::Int64}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Continuation.jl:659 [13] top-level scope @ ~/.julia/packages/BifurcationKit/I0BRP/test/simple_continuation.jl:309 [14] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:312 [15] top-level scope @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:8 [16] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1858 [inlined] [17] macro expansion @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:28 [inlined] [18] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1858 [inlined] [19] macro expansion @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:28 [inlined] [20] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:312 [21] top-level scope @ none:6 [22] eval(m::Module, e::Any) @ Core ./boot.jl:489 [23] exec_options(opts::Base.JLOptions) @ Base ./client.jl:286 [24] _start() @ Base ./client.jl:553 in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/simple_continuation.jl:309 WARNING: Method definition F0_simple(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/simple_continuation.jl:10 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/plots-utils.jl:8. Transcritical bifurcation point at μ ≈ 0.0005310637271224761 Normal form (aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6) ┌─ a = 7.187319746485116e-14 ├─ b1 = 3.2300000000172466 ├─ b2 = -2.239999999999969 └─ b3 = 1.4040000000000001 ──> For μ = 0.0005310637271224761 ──> There are 1 unstable eigenvalues ──> Eigenvalues for continuation step 1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌─ Normal form computation for 1d kernel ├─ analyse bifurcation at p = 0.0005310640141772467 ├─ smallest eigenvalue at bifurcation = 0.0017153367657925067 ┌── left eigenvalues = 2-element Vector{ComplexF64}: 0.0017153367657925067 + 0.0im -1.0 + 0.0im ├── right eigenvalue = 0.0017153367657925067 └── left eigenvalue = 0.0017153367657925067 + 0.0im ┌── Normal form: aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6 ├─── a = 2.682912478025423e-12 ├─── b1 = 3.23 ├─── b2/2 = -5.830973868649681e-13 └─── b3/6 = -0.234 SuperCritical - Pitchfork bifurcation point at μ ≈ 0.0005310640141772467 Normal form x ─▶ x + a⋅δp + x⋅(b1⋅δp + b3⋅x²/6) ┌─ a = 2.682912478025423e-12 ├─ b1 = 3.23 ├─ b2 = -1.1661947737299363e-12 └─ b3 = -1.4040000000000001 ┌─ Curve type: EquilibriumCont from Pitchfork bifurcation point. ├─ Number of points: 20 ├─ Type of vectors: Vector{Float64} ├─ Parameter μ starts at 0.0005310640141772467, ends at 0.00633354489275113 ├─ Algo: PALC └─ Special points: - # 1, bp at μ ≈ +0.00000029 ∈ (+0.00000029, +0.00053106), |δp|=5e-04, [ guess], δ = (-1, 0), step = 1 - # 2, endpoint at μ ≈ +0.00721756, step = 20 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ───▶ Automatic computation of bifurcation diagram ──────────────────────────────────────────────────────────────────────────────── ──▶ New branch, level = 2, dim(Kernel) = 1, code = (0,), from bp #1 at p = 4.531578045579016e-6, type = bp ────▶ From Pitchfork - # 1, bp at p ≈ +0.00000453 ∈ (-0.00000410, +0.00000453), |δp|=9e-06, [converged], δ = ( 1, 0), step = 6 ┌ Info: │ autodiff = true └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.8339151298192827e-18, -1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 0.0 0.0 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 6.76782e-19 9.32786e-20 9.32786e-20 3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: 6.47628e-19 -8.91189e-19 -8.91189e-19 3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 0.0162978 0.0162978 0.00358594 [:, :, 2] = 0.0162978 0.00358594 0.00358594 0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0863631 0.0273946 0.0273946 -0.0513304 [:, :, 2] = 0.0273946 -0.0513304 -0.0513304 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.8339151298192827e-18, -1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 0.0 0.0 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 6.76782e-19 9.32786e-20 9.32786e-20 3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: 6.47628e-19 -8.91189e-19 -8.91189e-19 3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 0.0162978 0.0162978 0.00358594 [:, :, 2] = 0.0162978 0.00358594 0.00358594 0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0863631 0.0273946 0.0273946 -0.0513304 [:, :, 2] = 0.0273946 -0.0513304 -0.0513304 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.8339151298192827e-18, -1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 0.0 0.0 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 6.76782e-19 9.32786e-20 9.32786e-20 3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: 6.47628e-19 -8.91189e-19 -8.91189e-19 3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 0.0162978 0.0162978 0.00358594 [:, :, 2] = 0.0162978 0.00358594 0.00358594 0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0863631 0.0273946 0.0273946 -0.0513304 [:, :, 2] = 0.0273946 -0.0513304 -0.0513304 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.8339151298192827e-18, -1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 0.0 0.0 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 6.76782e-19 9.32786e-20 9.32786e-20 3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: 6.47628e-19 -8.91189e-19 -8.91189e-19 3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 0.0162978 0.0162978 0.00358594 [:, :, 2] = 0.0162978 0.00358594 0.00358594 0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0863631 0.0273946 0.0273946 -0.0513304 [:, :, 2] = 0.0273946 -0.0513304 -0.0513304 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──▶ (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.8339151298192827e-18, -1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 0.0 0.0 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 6.76782e-19 9.32786e-20 9.32786e-20 3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: 6.47628e-19 -8.91189e-19 -8.91189e-19 3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 0.0162978 0.0162978 0.00358594 [:, :, 2] = 0.0162978 0.00358594 0.00358594 0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0863631 0.0273946 0.0273946 -0.0513304 [:, :, 2] = 0.0273946 -0.0513304 -0.0513304 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──▶ (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.8339151298192827e-18, -1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 0.0 0.0 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 6.76782e-19 9.32786e-20 9.32786e-20 3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: 6.47628e-19 -8.91189e-19 -8.91189e-19 3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 0.0162978 0.0162978 0.00358594 [:, :, 2] = 0.0162978 0.00358594 0.00358594 0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0863631 0.0273946 0.0273946 -0.0513304 [:, :, 2] = 0.0273946 -0.0513304 -0.0513304 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──▶ (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.8339151298192827e-18, -1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 0.0 0.0 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 6.76782e-19 9.32786e-20 9.32786e-20 3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: 6.47628e-19 -8.91189e-19 -8.91189e-19 3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 0.0162978 0.0162978 0.00358594 [:, :, 2] = 0.0162978 0.00358594 0.00358594 0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0863631 0.0273946 0.0273946 -0.0513304 [:, :, 2] = 0.0273946 -0.0513304 -0.0513304 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──▶ (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.8339151298192827e-18, -1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 0.0 0.0 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 6.76782e-19 9.32786e-20 9.32786e-20 3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: 6.47628e-19 -8.91189e-19 -8.91189e-19 3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 0.0162978 0.0162978 0.00358594 [:, :, 2] = 0.0162978 0.00358594 0.00358594 0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0863631 0.0273946 0.0273946 -0.0513304 [:, :, 2] = 0.0273946 -0.0513304 -0.0513304 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.8339151298192827e-18, 1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 0.0 0.0 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -6.76782e-19 -9.32786e-20 -9.32786e-20 -3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: -6.47628e-19 8.91189e-19 8.91189e-19 -3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 -0.0162978 -0.0162978 -0.00358594 [:, :, 2] = -0.0162978 -0.00358594 -0.00358594 -0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0863631 -0.0273946 -0.0273946 0.0513304 [:, :, 2] = -0.0273946 0.0513304 0.0513304 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.8339151298192827e-18, 1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 0.0 0.0 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -6.76782e-19 -9.32786e-20 -9.32786e-20 -3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: -6.47628e-19 8.91189e-19 8.91189e-19 -3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 -0.0162978 -0.0162978 -0.00358594 [:, :, 2] = -0.0162978 -0.00358594 -0.00358594 -0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0863631 -0.0273946 -0.0273946 0.0513304 [:, :, 2] = -0.0273946 0.0513304 0.0513304 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.8339151298192827e-18, 1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 0.0 0.0 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -6.76782e-19 -9.32786e-20 -9.32786e-20 -3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: -6.47628e-19 8.91189e-19 8.91189e-19 -3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 -0.0162978 -0.0162978 -0.00358594 [:, :, 2] = -0.0162978 -0.00358594 -0.00358594 -0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0863631 -0.0273946 -0.0273946 0.0513304 [:, :, 2] = -0.0273946 0.0513304 0.0513304 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.8339151298192827e-18, 1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 0.0 0.0 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -6.76782e-19 -9.32786e-20 -9.32786e-20 -3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: -6.47628e-19 8.91189e-19 8.91189e-19 -3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 -0.0162978 -0.0162978 -0.00358594 [:, :, 2] = -0.0162978 -0.00358594 -0.00358594 -0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0863631 -0.0273946 -0.0273946 0.0513304 [:, :, 2] = -0.0273946 0.0513304 0.0513304 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──▶ (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.8339151298192827e-18, 1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 0.0 0.0 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -6.76782e-19 -9.32786e-20 -9.32786e-20 -3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: -6.47628e-19 8.91189e-19 8.91189e-19 -3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 -0.0162978 -0.0162978 -0.00358594 [:, :, 2] = -0.0162978 -0.00358594 -0.00358594 -0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0863631 -0.0273946 -0.0273946 0.0513304 [:, :, 2] = -0.0273946 0.0513304 0.0513304 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──▶ (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.8339151298192827e-18, 1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 0.0 0.0 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -6.76782e-19 -9.32786e-20 -9.32786e-20 -3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: -6.47628e-19 8.91189e-19 8.91189e-19 -3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 -0.0162978 -0.0162978 -0.00358594 [:, :, 2] = -0.0162978 -0.00358594 -0.00358594 -0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0863631 -0.0273946 -0.0273946 0.0513304 [:, :, 2] = -0.0273946 0.0513304 0.0513304 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──▶ (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.8339151298192827e-18, 1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 0.0 0.0 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -6.76782e-19 -9.32786e-20 -9.32786e-20 -3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: -6.47628e-19 8.91189e-19 8.91189e-19 -3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 -0.0162978 -0.0162978 -0.00358594 [:, :, 2] = -0.0162978 -0.00358594 -0.00358594 -0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0863631 -0.0273946 -0.0273946 0.0513304 [:, :, 2] = -0.0273946 0.0513304 0.0513304 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──▶ (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.8339151298192827e-18, 1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 0.0 0.0 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -6.76782e-19 -9.32786e-20 -9.32786e-20 -3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: -6.47628e-19 8.91189e-19 8.91189e-19 -3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 -0.0162978 -0.0162978 -0.00358594 [:, :, 2] = -0.0162978 -0.00358594 -0.00358594 -0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0863631 -0.0273946 -0.0273946 0.0513304 [:, :, 2] = -0.0273946 0.0513304 0.0513304 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). [Bifurcation diagram] ┌─ From 0-th bifurcation point. ├─ Children number: 4 └─ Root (recursion level 1) ┌─ Curve type: EquilibriumCont ├─ Number of points: 76 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -0.2, ends at 0.3 ├─ Algo: PALC └─ Special points: - # 1, bp at p ≈ +0.00000281 ∈ (-0.00000065, +0.00000281), |δp|=3e-06, [converged], δ = ( 1, 0), step = 31 - # 2, bp at p ≈ +0.15000005 ∈ (+0.14999995, +0.15000005), |δp|=1e-07, [converged], δ = (-1, 0), step = 53 - # 3, endpoint at p ≈ +0.30000000, step = 75 ┌ Warning: Gram matrix not equal to identity. Switching to LU algorithm. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/NormalForms.jl:440 G (det = -1.0) = 3×3 Matrix{Float64}: 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 3×3 Matrix{Float64}: 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 ──▶ BS from Non simple branch point ──▶ we find 2 (resp. 2) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ Looking for solutions after the bifurcation point... ──▶ Looking for solutions before the bifurcation point... ──▶ we find 2 (resp. 2) roots after (resp. before) the bifurcation point. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ BS from Non simple branch point ──▶ we find 2 (resp. 2) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ Looking for solutions after the bifurcation point... ──▶ Looking for solutions before the bifurcation point... ──▶ we find 2 (resp. 2) roots after (resp. before) the bifurcation point. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ BS from Non simple branch point ──▶ we find 4 (resp. 4) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ Looking for solutions after the bifurcation point... ──▶ Looking for solutions before the bifurcation point... ──▶ we find 4 (resp. 4) roots after (resp. before) the bifurcation point. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ BS from Non simple branch point ──▶ we find 4 (resp. 4) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ Looking for solutions after the bifurcation point... ──▶ Looking for solutions before the bifurcation point... ──▶ we find 4 (resp. 4) roots after (resp. before) the bifurcation point. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ SuperCritical - Hopf bifurcation point at r ≈ 0.0025304832720493943. Frequency ω ≈ 1.0 Period of the periodic orbit ≈ 6.283185307179586 Normal form z⋅(iω + a⋅δp + b⋅|z|²): ┌─ a = 1.0 + 0.0im └─ b = -2.2460000000000004 + 0.2640000000000001im SuperCritical - Hopf bifurcation point at r ≈ 0.0025304832720493943. Frequency ω ≈ 1.0 Period of the periodic orbit ≈ 6.283185307179586 Normal form z⋅(iω + a⋅δp + b⋅|z|²): ┌─ a = 1.0 + 0.0im └─ b = -2.2460000000000004 + 0.2640000000000001im SuperCritical - Hopf bifurcation point at r ≈ 0.0025304832720493943. Frequency ω ≈ 1.0 Period of the periodic orbit ≈ 6.283185307179586 Normal form z⋅(iω + a⋅δp + b⋅|z|²): ┌─ a = 1.0 + 0.0im └─ b = -2.2460000000000004 + 0.2640000000000001im SuperCritical - Hopf bifurcation point at r ≈ 0.0025304832720493943. Frequency ω ≈ 1.0 Period of the periodic orbit ≈ 6.283185307179586 Normal form z⋅(iω + a⋅δp + b⋅|z|²): ┌─ a = 1.0 + 0.0im └─ b = -2.2460000000000004 + 0.2640000000000001im Normal forms: Error During Test at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:37 Got exception outside of a @test LoadError: MethodError: no method matching iterate(::BorderedArray{Vector{Float64}, Float64}) The function `iterate` exists, but no method is defined for this combination of argument types. Closest candidates are: iterate(!Matched::ExproniconLite.JLIfElse) @ ExproniconLite ~/.julia/packages/ExproniconLite/4LrQ4/src/types.jl:129 iterate(!Matched::ExproniconLite.JLIfElse, !Matched::Any) @ ExproniconLite ~/.julia/packages/ExproniconLite/4LrQ4/src/types.jl:129 iterate(!Matched::CompositeException, Any...) @ Base task.jl:55 ... Stacktrace: [1] isempty(itr::BorderedArray{Vector{Float64}, Float64}) @ Base ./essentials.jl:1122 [2] norm(itr::BorderedArray{Vector{Float64}, Float64}) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.13/LinearAlgebra/src/generic.jl:727 [3] _newton(prob::BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#417#418"{BifurcationKit.var"#419#420"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}}}}, x0::BorderedArray{Vector{Float64}, Float64}, p0::@NamedTuple{β1::Float64, β2::Float64, c::Float64}, options::NewtonPar{Float64, FoldLinearSolverMinAug, BifurcationKit.FoldEig{BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#417#418"{BifurcationKit.var"#419#420"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}}}}, DefaultEig{typeof(real)}}}; normN::typeof(norm), callback::typeof(BifurcationKit.cb_default), kwargs::@Kwargs{iterationC::Int64, p::Float64}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Newton.jl:78 [4] solve(prob::BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#417#418"{BifurcationKit.var"#419#420"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}}}}, ::Newton, options::NewtonPar{Float64, FoldLinearSolverMinAug, BifurcationKit.FoldEig{BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#417#418"{BifurcationKit.var"#419#420"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}}}}, DefaultEig{typeof(real)}}}; kwargs::@Kwargs{normN::typeof(norm), callback::typeof(BifurcationKit.cb_default), iterationC::Int64, p::Float64}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Newton.jl:149 [5] iterate(it::ContIterable{BifurcationKit.FoldCont, BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#417#418"{BifurcationKit.var"#419#420"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}}}}, PALC{Secant, BorderingBLS{FoldLinearSolverMinAug, Float64}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, Float64, FoldLinearSolverMinAug, BifurcationKit.FoldEig{BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#417#418"{BifurcationKit.var"#419#420"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}}}}, DefaultEig{typeof(real)}}, typeof(norm), BifurcationKit.var"#update_minaug_fold#415"{BifurcationKit.var"#update_minaug_fold#410#416"{Int64, typeof(norm), @Kwargs{}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, PropertyLens{:β2}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}}}, typeof(BifurcationKit.cb_default), PairOfEvents{ContinuousEvent{ComposedFunction{typeof(BifurcationKit.convert_to_tuple_eve), typeof(BifurcationKit.test_bt_cusp)}, Tuple{String, String}, Int64, typeof(BifurcationKit.default_finalise_event!), Nothing}, DiscreteEvent{ComposedFunction{typeof(BifurcationKit.convert_to_tuple_eve), typeof(BifurcationKit.test_zh)}, Tuple{String}, typeof(BifurcationKit.default_finalise_event!), Nothing}}}; _verbosity::UInt8) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Continuation.jl:350 [6] iterate(it::ContIterable{BifurcationKit.FoldCont, BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#417#418"{BifurcationKit.var"#419#420"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}}}}, PALC{Secant, BorderingBLS{FoldLinearSolverMinAug, Float64}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, Float64, FoldLinearSolverMinAug, BifurcationKit.FoldEig{BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#417#418"{BifurcationKit.var"#419#420"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}}}}, DefaultEig{typeof(real)}}, typeof(norm), BifurcationKit.var"#update_minaug_fold#415"{BifurcationKit.var"#update_minaug_fold#410#416"{Int64, typeof(norm), @Kwargs{}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, PropertyLens{:β2}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}}}, typeof(BifurcationKit.cb_default), PairOfEvents{ContinuousEvent{ComposedFunction{typeof(BifurcationKit.convert_to_tuple_eve), typeof(BifurcationKit.test_bt_cusp)}, Tuple{String, String}, Int64, typeof(BifurcationKit.default_finalise_event!), Nothing}, DiscreteEvent{ComposedFunction{typeof(BifurcationKit.convert_to_tuple_eve), typeof(BifurcationKit.test_zh)}, Tuple{String}, typeof(BifurcationKit.default_finalise_event!), Nothing}}}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Continuation.jl:330 [7] continuation(it::ContIterable{BifurcationKit.FoldCont, BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#417#418"{BifurcationKit.var"#419#420"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}}}}, PALC{Secant, BorderingBLS{FoldLinearSolverMinAug, Float64}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, Float64, FoldLinearSolverMinAug, BifurcationKit.FoldEig{BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#417#418"{BifurcationKit.var"#419#420"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}}}}, DefaultEig{typeof(real)}}, typeof(norm), BifurcationKit.var"#update_minaug_fold#415"{BifurcationKit.var"#update_minaug_fold#410#416"{Int64, typeof(norm), @Kwargs{}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, PropertyLens{:β2}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}}}, typeof(BifurcationKit.cb_default), PairOfEvents{ContinuousEvent{ComposedFunction{typeof(BifurcationKit.convert_to_tuple_eve), typeof(BifurcationKit.test_bt_cusp)}, Tuple{String, String}, Int64, typeof(BifurcationKit.default_finalise_event!), Nothing}, DiscreteEvent{ComposedFunction{typeof(BifurcationKit.convert_to_tuple_eve), typeof(BifurcationKit.test_zh)}, Tuple{String}, typeof(BifurcationKit.default_finalise_event!), Nothing}}}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Continuation.jl:581 [8] continuation(prob::BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#417#418"{BifurcationKit.var"#419#420"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}}}}, alg::PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, contparams::ContinuationPar{Float64, FoldLinearSolverMinAug, BifurcationKit.FoldEig{BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β2}, typeof(BifurcationKit.plot_default), BifurcationKit.var"#417#418"{BifurcationKit.var"#419#420"{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Tuple{Symbol, Symbol}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}}}}, DefaultEig{typeof(real)}}}; linear_algo::BorderingBLS{FoldLinearSolverMinAug, Float64}, bothside::Bool, kwargs::@Kwargs{kind::BifurcationKit.FoldCont, normC::typeof(norm), finalise_solution::BifurcationKit.var"#update_minaug_fold#415"{BifurcationKit.var"#update_minaug_fold#410#416"{Int64, typeof(norm), @Kwargs{}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, PropertyLens{:β2}, FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{Nothing}, UniformScaling{Bool}, typeof(norm)}}}, event::PairOfEvents{ContinuousEvent{ComposedFunction{typeof(BifurcationKit.convert_to_tuple_eve), typeof(BifurcationKit.test_bt_cusp)}, Tuple{String, String}, Int64, typeof(BifurcationKit.default_finalise_event!), Nothing}, DiscreteEvent{ComposedFunction{typeof(BifurcationKit.convert_to_tuple_eve), typeof(BifurcationKit.test_zh)}, Tuple{String}, typeof(BifurcationKit.default_finalise_event!), Nothing}}}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Continuation.jl:659 [9] continuation_fold(prob::BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, alg::PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, foldpointguess::BorderedArray{Vector{Float64}, Float64}, par::@NamedTuple{β1::Float64, β2::Float64, c::Float64}, lens1::PropertyLens{:β1}, lens2::PropertyLens{:β2}, eigenvec::SubArray{Float64, 1, Vector{Float64}, Tuple{UnitRange{Int64}}, true}, eigenvec_ad::SubArray{Float64, 1, Vector{Float64}, Tuple{UnitRange{Int64}}, true}, options_cont::ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}; update_minaug_every_step::Int64, normC::typeof(norm), bdlinsolver::MatrixBLS{Nothing}, bdlinsolver_adjoint::MatrixBLS{Nothing}, jacobian_ma::BifurcationKit.MinAug, compute_eigen_elements::Bool, usehessian::Bool, kind::BifurcationKit.FoldCont, record_from_solution::Nothing, kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/codim2/MinAugFold.jl:495 [10] continuation_fold(prob::BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, br::ContResult{BifurcationKit.EquilibriumCont, @NamedTuple{x::Float64, param::Float64, itnewton::Int64, itlinear::Int64, ds::Float64, n_unstable::Int64, n_imag::Int64, stable::Bool, step::Int64}, Vector{ComplexF64}, Matrix{ComplexF64}, SpecialPoint{Float64, @NamedTuple{x::Float64}, Vector{Float64}, Vector{Float64}}, Vector{@NamedTuple{x::Vector{Float64}, p::Float64, step::Int64}}, ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, BifurcationProblem{BifFunction{typeof(Fcusp), BifurcationKit.var"#119#120"{typeof(Fcusp)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{β1::Float64, β2::Float64, c::Float64}, PropertyLens{:β1}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}}, ind_fold::Int64, lens2::PropertyLens{:β2}, options_cont::ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}; alg::PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, normC::typeof(norm), nev::Int64, start_with_eigen::Bool, bdlinsolver::MatrixBLS{Nothing}, bdlinsolver_adjoint::MatrixBLS{Nothing}, a::Nothing, b::Nothing, kwargs::@Kwargs{compute_eigen_elements::Bool, update_minaug_every_step::Int64, jacobian_ma::BifurcationKit.MinAug}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/codim2/MinAugFold.jl:571 [11] continuation_fold @ ~/.julia/packages/BifurcationKit/I0BRP/src/codim2/MinAugFold.jl:509 [inlined] [12] #continuation#401 @ ~/.julia/packages/BifurcationKit/I0BRP/src/codim2/codim2.jl:311 [inlined] [13] top-level scope @ ~/.julia/packages/BifurcationKit/I0BRP/test/testNF.jl:310 [14] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:312 [15] top-level scope @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:8 [16] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1858 [inlined] [17] macro expansion @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:39 [inlined] [18] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1858 [inlined] [19] macro expansion @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:39 [inlined] [20] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:312 [21] top-level scope @ none:6 [22] eval(m::Module, e::Any) @ Core ./boot.jl:489 [23] exec_options(opts::Base.JLOptions) @ Base ./client.jl:286 [24] _start() @ Base ./client.jl:553 in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/testNF.jl:310 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ────────────────── PALC ────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -3.0, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -2.9999933333333333, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.0000e-03 Parameter p1 = -3.0000e+00 ──▶ -2.9986e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -3.0000e+00 ──▶ -2.9986e+00 Predictor: Secant ──▶ Event values: (-1.0,) ──▶ (-0.9986180397827904,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 1.3200e-03 Parameter p1 = -2.9986e+00 ──▶ -2.9968e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9986e+00 ──▶ -2.9968e+00 Predictor: Secant ──▶ Event values: (-0.9986180397827904,) ──▶ (-0.9967938908852547,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 1.7424e-03 Parameter p1 = -2.9968e+00 ──▶ -2.9944e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9968e+00 ──▶ -2.9944e+00 Predictor: Secant ──▶ Event values: (-0.9967938908852547,) ──▶ (-0.9943860817140209,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 2.3000e-03 Parameter p1 = -2.9944e+00 ──▶ -2.9912e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9944e+00 ──▶ -2.9912e+00 Predictor: Secant ──▶ Event values: (-0.9943860817140209,) ──▶ (-0.9912078912990223,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 3.0360e-03 Parameter p1 = -2.9912e+00 ──▶ -2.9870e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9912e+00 ──▶ -2.9870e+00 Predictor: Secant ──▶ Event values: (-0.9912078912990223,) ──▶ (-0.9870128857077405,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 4.0075e-03 Parameter p1 = -2.9870e+00 ──▶ -2.9815e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9870e+00 ──▶ -2.9815e+00 Predictor: Secant ──▶ Event values: (-0.9870128857077405,) ──▶ (-0.9814758384373605,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 5.2899e-03 Parameter p1 = -2.9815e+00 ──▶ -2.9742e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9815e+00 ──▶ -2.9742e+00 Predictor: Secant ──▶ Event values: (-0.9814758384373605,) ──▶ (-0.9741675672042343,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 6.9826e-03 Parameter p1 = -2.9742e+00 ──▶ -2.9645e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9742e+00 ──▶ -2.9645e+00 Predictor: Secant ──▶ Event values: (-0.9741675672042343,) ──▶ (-0.96452175753054,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 9.2170e-03 Parameter p1 = -2.9645e+00 ──▶ -2.9518e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.9645e+00 ──▶ -2.9518e+00 Predictor: Secant ──▶ Event values: (-0.96452175753054,) ──▶ (-0.9517912400484199,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 1.0876e-02 Parameter p1 = -2.9518e+00 ──▶ -2.9368e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.9518e+00 ──▶ -2.9368e+00 Predictor: Secant ──▶ Event values: (-0.9517912400484199,) ──▶ (-0.9367721236855182,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 1.2834e-02 Parameter p1 = -2.9368e+00 ──▶ -2.9190e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.9368e+00 ──▶ -2.9191e+00 Predictor: Secant ──▶ Event values: (-0.9367721236855182,) ──▶ (-0.9190536628212209,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 1.5144e-02 Parameter p1 = -2.9191e+00 ──▶ -2.8981e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.9191e+00 ──▶ -2.8982e+00 Predictor: Secant ──▶ Event values: (-0.9190536628212209,) ──▶ (-0.8981516940574208,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 1.7870e-02 Parameter p1 = -2.8982e+00 ──▶ -2.8735e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.8982e+00 ──▶ -2.8735e+00 Predictor: Secant ──▶ Event values: (-0.8981516940574208,) ──▶ (-0.8734956562166514,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 2.1086e-02 Parameter p1 = -2.8735e+00 ──▶ -2.8444e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.8735e+00 ──▶ -2.8444e+00 Predictor: Secant ──▶ Event values: (-0.8734956562166514,) ──▶ (-0.8444133892830563,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 2.4882e-02 Parameter p1 = -2.8444e+00 ──▶ -2.8101e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.8444e+00 ──▶ -2.8101e+00 Predictor: Secant ──▶ Event values: (-0.8444133892830563,) ──▶ (-0.8101133767613113,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 2.9361e-02 Parameter p1 = -2.8101e+00 ──▶ -2.7696e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.8101e+00 ──▶ -2.7697e+00 Predictor: Secant ──▶ Event values: (-0.8101133767613113,) ──▶ (-0.7696640758044886,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 3.4646e-02 Parameter p1 = -2.7697e+00 ──▶ -2.7219e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.7697e+00 ──▶ -2.7220e+00 Predictor: Secant ──▶ Event values: (-0.7696640758044886,) ──▶ (-0.7219699866515135,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 4.0882e-02 Parameter p1 = -2.7220e+00 ──▶ -2.6657e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.7220e+00 ──▶ -2.6657e+00 Predictor: Secant ──▶ Event values: (-0.7219699866515135,) ──▶ (-0.665744179332389,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 4.8240e-02 Parameter p1 = -2.6657e+00 ──▶ -2.5994e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.6657e+00 ──▶ -2.5995e+00 Predictor: Secant ──▶ Event values: (-0.665744179332389,) ──▶ (-0.5994771888264152,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 5.6924e-02 Parameter p1 = -2.5995e+00 ──▶ -2.5213e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.5995e+00 ──▶ -2.5214e+00 Predictor: Secant ──▶ Event values: (-0.5994771888264152,) ──▶ (-0.5214026576247006,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 6.7170e-02 Parameter p1 = -2.5214e+00 ──▶ -2.4293e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.5214e+00 ──▶ -2.4295e+00 Predictor: Secant ──▶ Event values: (-0.5214026576247006,) ──▶ (-0.42946118865407445,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 7.9261e-02 Parameter p1 = -2.4295e+00 ──▶ -2.3210e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.4295e+00 ──▶ -2.3213e+00 Predictor: Secant ──▶ Event values: (-0.42946118865407445,) ──▶ (-0.3212664214828238,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 9.3528e-02 Parameter p1 = -2.3213e+00 ──▶ -2.1936e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.3213e+00 ──▶ -2.1941e+00 Predictor: Secant ──▶ Event values: (-0.3212664214828238,) ──▶ (-0.19408367690357897,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 1.0000e-01 Parameter p1 = -2.1941e+00 ──▶ -2.0581e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.1941e+00 ──▶ -2.0588e+00 Predictor: Secant ──▶ Event values: (-0.19408367690357897,) ──▶ (-0.05881845865952107,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 1.0000e-01 Parameter p1 = -2.0588e+00 ──▶ -1.9236e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.0588e+00 ──▶ -1.9245e+00 Predictor: Secant ──▶ Event values: (-0.05881845865952107,) ──▶ (0.07549051070721369,) ──▶ Event detected before p = -1.9245094892927863 ────▶ Entering [Event], indicator of 2 last events = (1, 0) ────▶ [Bisection] initial ds = 0.1 ────▶ [Bisection] state.ds = -0.1 ──▶ eve (initial) (-0.05881845865952107,) ──▶ (0.07549051070721369,) ────▶ eve (current) (0.07549051070721369,) ──▶ (0.07549051070721369,) ────▶ 0 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -0.05, p = -1.9245094892927863, #reverse = 0 ────▶ event ∈ (-2.058818458659521, -1.9245094892927863), precision = 1.343E-01 Predictor: Secant ────▶ eve (current) (0.07549051070721369,) ──▶ (0.008492072644623372,) ────▶ 1 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -0.025, p = -1.9915079273553766, #reverse = 0 ────▶ event ∈ (-2.058818458659521, -1.9915079273553766), precision = 6.731E-02 Predictor: Secant ────▶ eve (current) (0.008492072644623372,) ──▶ (-0.025114103463261817,) ────▶ 2 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.0125, p = -2.025114103463262, #reverse = 1 ────▶ event ∈ (-2.025114103463262, -1.9915079273553766), precision = 3.361E-02 Predictor: Secant ────▶ eve (current) (-0.025114103463261817,) ──▶ (-0.008303466162076223,) ────▶ 3 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.00625, p = -2.0083034661620762, #reverse = 1 ────▶ event ∈ (-2.0083034661620762, -1.9915079273553766), precision = 1.680E-02 Predictor: Secant ────▶ eve (current) (-0.008303466162076223,) ──▶ (9.56526144793024e-5,) ────▶ 4 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -0.003125, p = -1.9999043473855207, #reverse = 2 ────▶ event ∈ (-2.0083034661620762, -1.9999043473855207), precision = 8.399E-03 Predictor: Secant ────▶ eve (current) (9.56526144793024e-5,) ──▶ (-0.004103370599878975,) ────▶ 5 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.0015625, p = -2.004103370599879, #reverse = 3 ────▶ event ∈ (-2.004103370599879, -1.9999043473855207), precision = 4.199E-03 Predictor: Secant ────▶ eve (current) (-0.004103370599878975,) ──▶ (-0.0020037272833750563,) ────▶ 6 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.00078125, p = -2.002003727283375, #reverse = 3 ────▶ event ∈ (-2.002003727283375, -1.9999043473855207), precision = 2.099E-03 Predictor: Secant ────▶ eve (current) (-0.0020037272833750563,) ──▶ (-0.0009540044314153562,) ────▶ 7 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.000390625, p = -2.0009540044314154, #reverse = 3 ────▶ event ∈ (-2.0009540044314154, -1.9999043473855207), precision = 1.050E-03 Predictor: Secant ────▶ eve (current) (-0.0009540044314153562,) ──▶ (-0.00042916779351820367,) ────▶ 8 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.0001953125, p = -2.000429167793518, #reverse = 3 ────▶ event ∈ (-2.000429167793518, -1.9999043473855207), precision = 5.248E-04 Predictor: Secant ────▶ eve (current) (-0.00042916779351820367,) ──▶ (-0.00016675567748913878,) ────▶ 9 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 9.765625e-5, p = -2.000166755677489, #reverse = 3 ────▶ event ∈ (-2.000166755677489, -1.9999043473855207), precision = 2.624E-04 Predictor: Secant ────▶ eve (current) (-0.00016675567748913878,) ──▶ (-3.5551170945780086e-5,) ────▶ 10 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 4.8828125e-5, p = -2.000035551170946, #reverse = 3 ────▶ event ∈ (-2.000035551170946, -1.9999043473855207), precision = 1.312E-04 Predictor: Secant ────▶ eve (current) (-3.5551170945780086e-5,) ──▶ (3.005069436556873e-5,) ────▶ 11 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -2.44140625e-5, p = -1.9999699493056344, #reverse = 4 ────▶ event ∈ (-2.000035551170946, -1.9999699493056344), precision = 6.560E-05 Predictor: Secant ────▶ eve (current) (3.005069436556873e-5,) ──▶ (-2.75020595363884e-6,) ────▶ 12 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 1.220703125e-5, p = -2.0000027502059536, #reverse = 5 ────▶ event ∈ (-2.0000027502059536, -1.9999699493056344), precision = 3.280E-05 Predictor: Secant ────▶ eve (current) (-2.75020595363884e-6,) ──▶ (1.3650244205853923e-5,) ────▶ 13 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -6.103515625e-6, p = -1.9999863497557941, #reverse = 6 ────▶ event ∈ (-2.0000027502059536, -1.9999863497557941), precision = 1.640E-05 Predictor: Secant ────▶ eve (current) (1.3650244205853923e-5,) ──▶ (5.450019125996519e-6,) ────▶ 14 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -3.0517578125e-6, p = -1.999994549980874, #reverse = 6 ────▶ event ∈ (-2.0000027502059536, -1.999994549980874), precision = 8.200E-06 Predictor: Secant ────▶ eve (current) (5.450019125996519e-6,) ──▶ (1.3499065860678172e-6,) ────▶ 15 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -1.52587890625e-6, p = -1.999998650093414, #reverse = 6 ────▶ event ∈ (-2.0000027502059536, -1.999998650093414), precision = 4.100E-06 Predictor: Secant ────▶ eve (current) (1.3499065860678172e-6,) ──▶ (-7.001496840075561e-7,) ────▶ 16 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 7.62939453125e-7, p = -2.000000700149684, #reverse = 7 ────▶ event ∈ (-2.000000700149684, -1.999998650093414), precision = 2.050E-06 Predictor: Secant ────▶ eve (current) (-7.001496840075561e-7,) ──▶ (3.248784510301306e-7,) ────▶ 17 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -3.814697265625e-7, p = -1.999999675121549, #reverse = 8 ────▶ event ∈ (-2.000000700149684, -1.999999675121549), precision = 1.025E-06 ────▶ Found at p = -1.999999675121549 ∈ (-2.000000700149684, -1.999999675121549), δn = 1, from p = -1.9245094892927863 ──────────────────────────────────────── ────▶ Stopping reason: ──────▶ isnothing(next) = false ──────▶ |ds| < dsmin_bisection = false ──────▶ step >= max_bisection_steps = false ──────▶ n_inversion >= n_inversion = true ──────▶ eventlocated = false ────▶ Leaving [Loc-Bif] !! Continuous user point at p ≈ -1.999999675121549 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 1.0000e-01 Parameter p1 = -2.0000e+00 ──▶ -1.8656e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.0000e+00 ──▶ -1.8662e+00 Predictor: Secant ──▶ Event values: (3.248784510301306e-7,) ──▶ (0.13376907259808446,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 1.0000e-01 Parameter p1 = -1.8662e+00 ──▶ -1.7325e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.8662e+00 ──▶ -1.7339e+00 Predictor: Secant ──▶ Event values: (0.13376907259808446,) ──▶ (0.2661007198163412,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 1.0000e-01 Parameter p1 = -1.7339e+00 ──▶ -1.6016e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.7339e+00 ──▶ -1.6037e+00 Predictor: Secant ──▶ Event values: (0.2661007198163412,) ──▶ (0.39634082668118786,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 1.0000e-01 Parameter p1 = -1.6037e+00 ──▶ -1.4735e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.6037e+00 ──▶ -1.4766e+00 Predictor: Secant ──▶ Event values: (0.39634082668118786,) ──▶ (0.5233942744616238,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 1.0000e-01 Parameter p1 = -1.4766e+00 ──▶ -1.3498e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.4766e+00 ──▶ -1.3549e+00 Predictor: Secant ──▶ Event values: (0.5233942744616238,) ──▶ (0.645113120545397,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 1.0000e-01 Parameter p1 = -1.3549e+00 ──▶ -1.2336e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.3549e+00 ──▶ -1.2434e+00 Predictor: Secant ──▶ Event values: (0.645113120545397,) ──▶ (0.7565581496409486,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 1.0000e-01 Parameter p1 = -1.2434e+00 ──▶ -1.1330e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.2434e+00 ──▶ -1.1565e+00 Predictor: Secant ──▶ Event values: (0.7565581496409486,) ──▶ (0.843533165755711,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 1.0000e-01 Parameter p1 = -1.1565e+00 ──▶ -1.0725e+00 [guess] ──▶ Step Converged in 4 Nonlinear Iteration(s) Parameter p1 = -1.1565e+00 ──▶ -1.1401e+00 Predictor: Secant ──▶ Event values: (0.843533165755711,) ──▶ (0.859856445339866,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 1.0000e-01 Parameter p1 = -1.1401e+00 ──▶ -1.1261e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.1401e+00 ──▶ -1.2170e+00 Predictor: Secant ──▶ Event values: (0.859856445339866,) ──▶ (0.7830454777064411,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 1.0000e-01 Parameter p1 = -1.2170e+00 ──▶ -1.2814e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.2170e+00 ──▶ -1.3157e+00 Predictor: Secant ──▶ Event values: (0.7830454777064411,) ──▶ (0.6843239057500137,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 1.0000e-01 Parameter p1 = -1.3157e+00 ──▶ -1.4109e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.3157e+00 ──▶ -1.4228e+00 Predictor: Secant ──▶ Event values: (0.6843239057500137,) ──▶ (0.5771656121054785,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 1.0000e-01 Parameter p1 = -1.4228e+00 ──▶ -1.5293e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -1.4228e+00 ──▶ -1.5348e+00 Predictor: Secant ──▶ Event values: (0.5771656121054785,) ──▶ (0.46516753224958163,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 1.0000e-01 Parameter p1 = -1.5348e+00 ──▶ -1.6466e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -1.5348e+00 ──▶ -1.6493e+00 Predictor: Secant ──▶ Event values: (0.46516753224958163,) ──▶ (0.3506902873778335,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 1.0000e-01 Parameter p1 = -1.6493e+00 ──▶ -1.7637e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -1.6493e+00 ──▶ -1.7647e+00 Predictor: Secant ──▶ Event values: (0.3506902873778335,) ──▶ (0.23529609391134554,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 1.0000e-01 Parameter p1 = -1.7647e+00 ──▶ -1.8801e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -1.7647e+00 ──▶ -1.8797e+00 Predictor: Secant ──▶ Event values: (0.23529609391134554,) ──▶ (0.12028173206190695,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 1.0000e-01 Parameter p1 = -1.8797e+00 ──▶ -1.9947e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -1.8797e+00 ──▶ -1.9929e+00 Predictor: Secant ──▶ Event values: (0.12028173206190695,) ──▶ (0.007072528817887669,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 1.0000e-01 Parameter p1 = -1.9929e+00 ──▶ -2.1061e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.9929e+00 ──▶ -2.1023e+00 Predictor: Secant ──▶ Event values: (0.007072528817887669,) ──▶ (-0.10226139090966058,) ──▶ Event detected before p = -2.1022613909096606 ────▶ Entering [Event], indicator of 2 last events = (0, 1) ────▶ [Bisection] initial ds = 0.1 ────▶ [Bisection] state.ds = -0.1 ──▶ eve (initial) (0.007072528817887669,) ──▶ (-0.10226139090966058,) ────▶ eve (current) (-0.10226139090966058,) ──▶ (-0.10226139090966058,) ────▶ 0 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -0.05, p = -2.1022613909096606, #reverse = 0 ────▶ event ∈ (-2.1022613909096606, -1.9929274711821123), precision = 1.093E-01 Predictor: Secant ────▶ eve (current) (-0.10226139090966058,) ──▶ (-0.04833608289578972,) ────▶ 1 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -0.025, p = -2.0483360828957897, #reverse = 0 ────▶ event ∈ (-2.0483360828957897, -1.9929274711821123), precision = 5.541E-02 Predictor: Secant ────▶ eve (current) (-0.04833608289578972,) ──▶ (-0.020830735714093773,) ────▶ 2 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -0.0125, p = -2.0208307357140938, #reverse = 0 ────▶ event ∈ (-2.0208307357140938, -1.9929274711821123), precision = 2.790E-02 Predictor: Secant ────▶ eve (current) (-0.020830735714093773,) ──▶ (-0.0069715838769197624,) ────▶ 3 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -0.00625, p = -2.0069715838769198, #reverse = 0 ────▶ event ∈ (-2.0069715838769198, -1.9929274711821123), precision = 1.404E-02 Predictor: Secant ────▶ eve (current) (-0.0069715838769197624,) ──▶ (-1.7439125403306832e-5,) ────▶ 4 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -0.003125, p = -2.0000174391254033, #reverse = 0 ────▶ event ∈ (-2.0000174391254033, -1.9929274711821123), precision = 7.090E-03 Predictor: Secant ────▶ eve (current) (-1.7439125403306832e-5,) ──▶ (0.003465515391908758,) ────▶ 5 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 0.0015625, p = -1.9965344846080912, #reverse = 1 ────▶ event ∈ (-2.0000174391254033, -1.9965344846080912), precision = 3.483E-03 Predictor: Secant ────▶ eve (current) (0.003465515391908758,) ──▶ (0.0017235585119625974,) ────▶ 6 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 0.00078125, p = -1.9982764414880374, #reverse = 1 ────▶ event ∈ (-2.0000174391254033, -1.9982764414880374), precision = 1.741E-03 Predictor: Secant ────▶ eve (current) (0.0017235585119625974,) ──▶ (0.0008529423156780069,) ────▶ 7 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 0.000390625, p = -1.999147057684322, #reverse = 1 ────▶ event ∈ (-2.0000174391254033, -1.999147057684322), precision = 8.704E-04 Predictor: Secant ────▶ eve (current) (0.0008529423156780069,) ──▶ (0.00041772541266538177,) ────▶ 8 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 0.0001953125, p = -1.9995822745873346, #reverse = 1 ────▶ event ∈ (-2.0000174391254033, -1.9995822745873346), precision = 4.352E-04 Predictor: Secant ────▶ eve (current) (0.00041772541266538177,) ──▶ (0.0002001398248798747,) ────▶ 9 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 9.765625e-5, p = -1.9997998601751201, #reverse = 1 ────▶ event ∈ (-2.0000174391254033, -1.9997998601751201), precision = 2.176E-04 Predictor: Secant ────▶ eve (current) (0.0002001398248798747,) ──▶ (9.135275504923435e-5,) ────▶ 10 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 4.8828125e-5, p = -1.9999086472449508, #reverse = 1 ────▶ event ∈ (-2.0000174391254033, -1.9999086472449508), precision = 1.088E-04 Predictor: Secant ────▶ eve (current) (9.135275504923435e-5,) ──▶ (3.696065216596267e-5,) ────▶ 11 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 2.44140625e-5, p = -1.999963039347834, #reverse = 1 ────▶ event ∈ (-2.0000174391254033, -1.999963039347834), precision = 5.440E-05 Predictor: Secant ────▶ eve (current) (3.696065216596267e-5,) ──▶ (9.764958859515005e-6,) ────▶ 12 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 1.220703125e-5, p = -1.9999902350411405, #reverse = 1 ────▶ event ∈ (-2.0000174391254033, -1.9999902350411405), precision = 2.720E-05 Predictor: Secant ────▶ eve (current) (9.764958859515005e-6,) ──▶ (-3.832798244118862e-6,) ────▶ 13 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -6.103515625e-6, p = -2.000003832798244, #reverse = 2 ────▶ event ∈ (-2.000003832798244, -1.9999902350411405), precision = 1.360E-05 Predictor: Secant ────▶ eve (current) (-3.832798244118862e-6,) ──▶ (2.9660803073650044e-6,) ────▶ 14 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 3.0517578125e-6, p = -1.9999970339196926, #reverse = 3 ────▶ event ∈ (-2.000003832798244, -1.9999970339196926), precision = 6.799E-06 Predictor: Secant ────▶ eve (current) (2.9660803073650044e-6,) ──▶ (-4.333589682659067e-7,) ────▶ 15 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -1.52587890625e-6, p = -2.0000004333589683, #reverse = 4 ────▶ event ∈ (-2.0000004333589683, -1.9999970339196926), precision = 3.399E-06 Predictor: Secant ────▶ eve (current) (-4.333589682659067e-7,) ──▶ (1.2663606696605711e-6,) ────▶ 16 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 7.62939453125e-7, p = -1.9999987336393303, #reverse = 5 ────▶ event ∈ (-2.0000004333589683, -1.9999987336393303), precision = 1.700E-06 Predictor: Secant ────▶ eve (current) (1.2663606696605711e-6,) ──▶ (4.165008506973322e-7,) ────▶ 17 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 3.814697265625e-7, p = -1.9999995834991493, #reverse = 5 ────▶ event ∈ (-2.0000004333589683, -1.9999995834991493), precision = 8.499E-07 Predictor: Secant ────▶ eve (current) (4.165008506973322e-7,) ──▶ (-8.429058784287236e-9,) ────▶ 18 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -1.9073486328125e-7, p = -2.000000008429059, #reverse = 6 ────▶ event ∈ (-2.000000008429059, -1.9999995834991493), precision = 4.249E-07 Predictor: Secant ────▶ eve (current) (-8.429058784287236e-9,) ──▶ (2.040358959565225e-7,) ────▶ 19 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 9.5367431640625e-8, p = -1.999999795964104, #reverse = 7 ────▶ event ∈ (-2.000000008429059, -1.999999795964104), precision = 2.125E-07 Predictor: Secant ────▶ eve (current) (2.040358959565225e-7,) ──▶ (9.780341869713993e-8,) ────▶ 20 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 4.76837158203125e-8, p = -1.9999999021965813, #reverse = 7 ────▶ event ∈ (-2.000000008429059, -1.9999999021965813), precision = 1.062E-07 Predictor: Secant ────▶ eve (current) (9.780341869713993e-8,) ──▶ (4.468717995642635e-8,) ────▶ 21 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 2.384185791015625e-8, p = -1.99999995531282, #reverse = 7 ────▶ event ∈ (-2.000000008429059, -1.99999995531282), precision = 5.312E-08 Predictor: Secant ────▶ eve (current) (4.468717995642635e-8,) ──▶ (1.812906069709186e-8,) ────▶ 22 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 1.1920928955078126e-8, p = -1.9999999818709393, #reverse = 7 ────▶ event ∈ (-2.000000008429059, -1.9999999818709393), precision = 2.656E-08 Predictor: Secant ────▶ eve (current) (1.812906069709186e-8,) ──▶ (4.850001067424614e-9,) ────▶ 23 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 5.960464477539063e-9, p = -1.999999995149999, #reverse = 7 ────▶ event ∈ (-2.000000008429059, -1.999999995149999), precision = 1.328E-08 Predictor: Secant ────▶ eve (current) (4.850001067424614e-9,) ──▶ (-1.7895289694536132e-9,) ────▶ 24 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -2.9802322387695314e-9, p = -2.000000001789529, #reverse = 8 ────▶ event ∈ (-2.000000001789529, -1.999999995149999), precision = 6.640E-09 ────▶ Found at p = -2.000000001789529 ∈ (-2.000000001789529, -1.999999995149999), δn = 1, from p = -2.1022613909096606 ──────────────────────────────────────── ────▶ Stopping reason: ──────▶ isnothing(next) = false ──────▶ |ds| < dsmin_bisection = false ──────▶ step >= max_bisection_steps = false ──────▶ n_inversion >= n_inversion = true ──────▶ eventlocated = false ────▶ Leaving [Loc-Bif] !! Continuous user point at p ≈ -2.000000001789529 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 1.0000e-01 Parameter p1 = -2.0000e+00 ──▶ -2.1114e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.0000e+00 ──▶ -2.1089e+00 Predictor: Secant ──▶ Event values: (-1.7895289694536132e-9,) ──▶ (-0.10890835885567185,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 1.0000e-01 Parameter p1 = -2.1089e+00 ──▶ -2.2178e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.1089e+00 ──▶ -2.2098e+00 Predictor: Secant ──▶ Event values: (-0.10890835885567185,) ──▶ (-0.20978632802030273,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 1.0000e-01 Parameter p1 = -2.2098e+00 ──▶ -2.3103e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.2098e+00 ──▶ -2.2925e+00 Predictor: Secant ──▶ Event values: (-0.20978632802030273,) ──▶ (-0.2924701488272867,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 1.0000e-01 Parameter p1 = -2.2925e+00 ──▶ -2.3738e+00 [guess] ──▶ Step Converged in 4 Nonlinear Iteration(s) Parameter p1 = -2.2925e+00 ──▶ -2.3234e+00 Predictor: Secant ──▶ Event values: (-0.2924701488272867,) ──▶ (-0.3233667252269701,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 1.0000e-01 Parameter p1 = -2.3234e+00 ──▶ -2.3516e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.3234e+00 ──▶ -2.2370e+00 Predictor: Secant ──▶ Event values: (-0.3233667252269701,) ──▶ (-0.23703871354801942,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 1.0000e-01 Parameter p1 = -2.2370e+00 ──▶ -2.1710e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.2370e+00 ──▶ -2.1183e+00 Predictor: Secant ──▶ Event values: (-0.23703871354801942,) ──▶ (-0.11833171560464839,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 48 Step size = 1.0000e-01 Parameter p1 = -2.1183e+00 ──▶ -2.0095e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.1183e+00 ──▶ -1.9961e+00 Predictor: Secant ──▶ Event values: (-0.11833171560464839,) ──▶ (0.003928127321359609,) ──▶ Event detected before p = -1.9960718726786404 ────▶ Entering [Event], indicator of 2 last events = (1, 0) ────▶ [Bisection] initial ds = 0.1 ────▶ [Bisection] state.ds = -0.1 ──▶ eve (initial) (-0.11833171560464839,) ──▶ (0.003928127321359609,) ────▶ eve (current) (0.003928127321359609,) ──▶ (0.003928127321359609,) ────▶ 0 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -0.05, p = -1.9960718726786404, #reverse = 0 ────▶ event ∈ (-2.1183317156046484, -1.9960718726786404), precision = 1.223E-01 Predictor: Secant ────▶ eve (current) (0.003928127321359609,) ──▶ (-0.05726063351211952,) ────▶ 1 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.025, p = -2.0572606335121195, #reverse = 1 ────▶ event ∈ (-2.0572606335121195, -1.9960718726786404), precision = 6.119E-02 Predictor: Secant ────▶ eve (current) (-0.05726063351211952,) ──▶ (-0.026850515268071806,) ────▶ 2 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.0125, p = -2.026850515268072, #reverse = 1 ────▶ event ∈ (-2.026850515268072, -1.9960718726786404), precision = 3.078E-02 Predictor: Secant ────▶ eve (current) (-0.026850515268071806,) ──▶ (-0.011511713646775945,) ────▶ 3 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.00625, p = -2.011511713646776, #reverse = 1 ────▶ event ∈ (-2.011511713646776, -1.9960718726786404), precision = 1.544E-02 Predictor: Secant ────▶ eve (current) (-0.011511713646775945,) ──▶ (-0.0038138853701057407,) ────▶ 4 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.003125, p = -2.0038138853701057, #reverse = 1 ────▶ event ∈ (-2.0038138853701057, -1.9960718726786404), precision = 7.742E-03 Predictor: Secant ────▶ eve (current) (-0.0038138853701057407,) ──▶ (4.189180612179655e-5,) ────▶ 5 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -0.0015625, p = -1.9999581081938782, #reverse = 2 ────▶ event ∈ (-2.0038138853701057, -1.9999581081938782), precision = 3.856E-03 Predictor: Secant ────▶ eve (current) (4.189180612179655e-5,) ──▶ (-0.0018865490239239335,) ────▶ 6 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.00078125, p = -2.001886549023924, #reverse = 3 ────▶ event ∈ (-2.001886549023924, -1.9999581081938782), precision = 1.928E-03 Predictor: Secant ────▶ eve (current) (-0.0018865490239239335,) ──▶ (-0.0009224706948671724,) ────▶ 7 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.000390625, p = -2.000922470694867, #reverse = 3 ────▶ event ∈ (-2.000922470694867, -1.9999581081938782), precision = 9.644E-04 Predictor: Secant ────▶ eve (current) (-0.0009224706948671724,) ──▶ (-0.0004403250183258045,) ────▶ 8 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.0001953125, p = -2.000440325018326, #reverse = 3 ────▶ event ∈ (-2.000440325018326, -1.9999581081938782), precision = 4.822E-04 Predictor: Secant ────▶ eve (current) (-0.0004403250183258045,) ──▶ (-0.00019922567926533574,) ────▶ 9 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 9.765625e-5, p = -2.0001992256792653, #reverse = 3 ────▶ event ∈ (-2.0001992256792653, -1.9999581081938782), precision = 2.411E-04 Predictor: Secant ────▶ eve (current) (-0.00019922567926533574,) ──▶ (-7.866939260958716e-5,) ────▶ 10 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 4.8828125e-5, p = -2.0000786693926096, #reverse = 3 ────▶ event ∈ (-2.0000786693926096, -1.9999581081938782), precision = 1.206E-04 Predictor: Secant ────▶ eve (current) (-7.866939260958716e-5,) ──▶ (-1.8389596001977537e-5,) ────▶ 11 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 2.44140625e-5, p = -2.000018389596002, #reverse = 3 ────▶ event ∈ (-2.000018389596002, -1.9999581081938782), precision = 6.028E-05 Predictor: Secant ────▶ eve (current) (-1.8389596001977537e-5,) ──▶ (1.175071549641693e-5,) ────▶ 12 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -1.220703125e-5, p = -1.9999882492845036, #reverse = 4 ────▶ event ∈ (-2.000018389596002, -1.9999882492845036), precision = 3.014E-05 Predictor: Secant ────▶ eve (current) (1.175071549641693e-5,) ──▶ (-3.319474676022338e-6,) ────▶ 13 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 6.103515625e-6, p = -2.000003319474676, #reverse = 5 ────▶ event ∈ (-2.000003319474676, -1.9999882492845036), precision = 1.507E-05 Predictor: Secant ────▶ eve (current) (-3.319474676022338e-6,) ──▶ (4.215620410086274e-6,) ────▶ 14 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -3.0517578125e-6, p = -1.99999578437959, #reverse = 6 ────▶ event ∈ (-2.000003319474676, -1.99999578437959), precision = 7.535E-06 Predictor: Secant ────▶ eve (current) (4.215620410086274e-6,) ──▶ (4.480728670319678e-7,) ────▶ 15 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -1.52587890625e-6, p = -1.999999551927133, #reverse = 6 ────▶ event ∈ (-2.000003319474676, -1.999999551927133), precision = 3.768E-06 Predictor: Secant ────▶ eve (current) (4.480728670319678e-7,) ──▶ (-1.4357009043841629e-6,) ────▶ 16 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 7.62939453125e-7, p = -2.0000014357009044, #reverse = 7 ────▶ event ∈ (-2.0000014357009044, -1.999999551927133), precision = 1.884E-06 Predictor: Secant ────▶ eve (current) (-1.4357009043841629e-6,) ──▶ (-4.938140185650752e-7,) ────▶ 17 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 3.814697265625e-7, p = -2.0000004938140186, #reverse = 7 ────▶ event ∈ (-2.0000004938140186, -1.999999551927133), precision = 9.419E-07 Predictor: Secant ────▶ eve (current) (-4.938140185650752e-7,) ──▶ (-2.287057565553141e-8,) ────▶ 18 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 1.9073486328125e-7, p = -2.0000000228705757, #reverse = 7 ────▶ event ∈ (-2.0000000228705757, -1.999999551927133), precision = 4.709E-07 Predictor: Secant ────▶ eve (current) (-2.287057565553141e-8,) ──▶ (2.126011457992405e-7,) ────▶ 19 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -9.5367431640625e-8, p = -1.9999997873988542, #reverse = 8 ────▶ event ∈ (-2.0000000228705757, -1.9999997873988542), precision = 2.355E-07 ────▶ Found at p = -1.9999997873988542 ∈ (-2.0000000228705757, -1.9999997873988542), δn = 1, from p = -1.9960718726786404 ──────────────────────────────────────── ────▶ Stopping reason: ──────▶ isnothing(next) = false ──────▶ |ds| < dsmin_bisection = false ──────▶ step >= max_bisection_steps = false ──────▶ n_inversion >= n_inversion = true ──────▶ eventlocated = false ────▶ Leaving [Loc-Bif] !! Continuous user point at p ≈ -1.9999997873988542 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 49 Step size = 1.0000e-01 Parameter p1 = -2.0000e+00 ──▶ -1.8765e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.0000e+00 ──▶ -1.8746e+00 Predictor: Secant ──▶ Event values: (2.126011457992405e-7,) ──▶ (0.12541454498532234,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 50 Step size = 1.0000e-01 Parameter p1 = -1.8746e+00 ──▶ -1.7493e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.8746e+00 ──▶ -1.7468e+00 Predictor: Secant ──▶ Event values: (0.12541454498532234,) ──▶ (0.2532050055403856,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 51 Step size = 1.0000e-01 Parameter p1 = -1.7468e+00 ──▶ -1.6193e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.7468e+00 ──▶ -1.6185e+00 Predictor: Secant ──▶ Event values: (0.2532050055403856,) ──▶ (0.3815317944448464,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 52 Step size = 1.0000e-01 Parameter p1 = -1.6185e+00 ──▶ -1.4904e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.6185e+00 ──▶ -1.4909e+00 Predictor: Secant ──▶ Event values: (0.3815317944448464,) ──▶ (0.5091366130302286,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 53 Step size = 1.0000e-01 Parameter p1 = -1.4909e+00 ──▶ -1.3635e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.4909e+00 ──▶ -1.3656e+00 Predictor: Secant ──▶ Event values: (0.5091366130302286,) ──▶ (0.6343913554035898,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 54 Step size = 1.0000e-01 Parameter p1 = -1.3656e+00 ──▶ -1.2408e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.3656e+00 ──▶ -1.2455e+00 Predictor: Secant ──▶ Event values: (0.6343913554035898,) ──▶ (0.7544753094687404,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 55 Step size = 1.0000e-01 Parameter p1 = -1.2455e+00 ──▶ -1.1263e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.2455e+00 ──▶ -1.1364e+00 Predictor: Secant ──▶ Event values: (0.7544753094687404,) ──▶ (0.8635986779685172,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 56 Step size = 1.0000e-01 Parameter p1 = -1.1364e+00 ──▶ -1.0290e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.1364e+00 ──▶ -1.0494e+00 Predictor: Secant ──▶ Event values: (0.8635986779685172,) ──▶ (0.9506084141369897,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 57 Step size = 1.0000e-01 Parameter p1 = -1.0494e+00 ──▶ -9.6554e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.0494e+00 ──▶ -9.9309e-01 Predictor: Secant ──▶ Event values: (0.9506084141369897,) ──▶ (1.0069144000262225,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 58 Step size = 1.0000e-01 Parameter p1 = -9.9309e-01 ──▶ -9.3932e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -9.9309e-01 ──▶ -9.5230e-01 Predictor: Secant ──▶ Event values: (1.0069144000262225,) ──▶ (1.0477009623370268,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 59 Step size = 1.0000e-01 Parameter p1 = -9.5230e-01 ──▶ -9.1236e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -9.5230e-01 ──▶ -9.0310e-01 Predictor: Secant ──▶ Event values: (1.0477009623370268,) ──▶ (1.0969013178742912,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 60 Step size = 1.0000e-01 Parameter p1 = -9.0310e-01 ──▶ -8.5462e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -9.0310e-01 ──▶ -8.3422e-01 Predictor: Secant ──▶ Event values: (1.0969013178742912,) ──▶ (1.1657841705131626,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 61 Step size = 1.0000e-01 Parameter p1 = -8.3422e-01 ──▶ -7.6674e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -8.3422e-01 ──▶ -7.4772e-01 Predictor: Secant ──▶ Event values: (1.1657841705131626,) ──▶ (1.2522822772796536,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 62 Step size = 1.0000e-01 Parameter p1 = -7.4772e-01 ──▶ -6.6271e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -7.4772e-01 ──▶ -6.4971e-01 Predictor: Secant ──▶ Event values: (1.2522822772796536,) ──▶ (1.3502929305611229,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 63 Step size = 1.0000e-01 Parameter p1 = -6.4971e-01 ──▶ -5.5267e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -6.4971e-01 ──▶ -5.4462e-01 Predictor: Secant ──▶ Event values: (1.3502929305611229,) ──▶ (1.4553817482413955,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 64 Step size = 1.0000e-01 Parameter p1 = -5.4462e-01 ──▶ -4.4005e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -5.4462e-01 ──▶ -4.3511e-01 Predictor: Secant ──▶ Event values: (1.4553817482413955,) ──▶ (1.5648883530692472,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 65 Step size = 1.0000e-01 Parameter p1 = -4.3511e-01 ──▶ -3.2587e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -4.3511e-01 ──▶ -3.2282e-01 Predictor: Secant ──▶ Event values: (1.5648883530692472,) ──▶ (1.677183275755629,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 66 Step size = 1.0000e-01 Parameter p1 = -3.2282e-01 ──▶ -2.1065e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -3.2282e-01 ──▶ -2.0879e-01 Predictor: Secant ──▶ Event values: (1.677183275755629,) ──▶ (1.7912091849513005,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 67 Step size = 1.0000e-01 Parameter p1 = -2.0879e-01 ──▶ -9.4823e-02 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.0879e-01 ──▶ -9.3776e-02 Predictor: Secant ──▶ Event values: (1.7912091849513005,) ──▶ (1.9062244542808213,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 68 Step size = 1.0000e-01 Parameter p1 = -9.3776e-02 ──▶ 2.1219e-02 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -9.3776e-02 ──▶ 2.1652e-02 Predictor: Secant ──▶ Event values: (1.9062244542808213,) ──▶ (2.0216517793398854,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 69 Step size = 1.0000e-01 Parameter p1 = 2.1652e-02 ──▶ 1.3708e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.1652e-02 ──▶ 1.3698e-01 Predictor: Secant ──▶ Event values: (2.0216517793398854,) ──▶ (2.1369780139096477,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 70 Step size = 1.0000e-01 Parameter p1 = 1.3698e-01 ──▶ 2.5230e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 1.3698e-01 ──▶ 2.5167e-01 Predictor: Secant ──▶ Event values: (2.1369780139096477,) ──▶ (2.2516729746800506,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 71 Step size = 1.0000e-01 Parameter p1 = 2.5167e-01 ──▶ 3.6636e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.5167e-01 ──▶ 3.6510e-01 Predictor: Secant ──▶ Event values: (2.2516729746800506,) ──▶ (2.3651026972002307,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 72 Step size = 1.0000e-01 Parameter p1 = 3.6510e-01 ──▶ 4.7850e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.6510e-01 ──▶ 4.7641e-01 Predictor: Secant ──▶ Event values: (2.3651026972002307,) ──▶ (2.476410232124028,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 73 Step size = 1.0000e-01 Parameter p1 = 4.7641e-01 ──▶ 5.8764e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 4.7641e-01 ──▶ 5.8432e-01 Predictor: Secant ──▶ Event values: (2.476410232124028,) ──▶ (2.5843244502911666,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 74 Step size = 1.0000e-01 Parameter p1 = 5.8432e-01 ──▶ 6.9207e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 5.8432e-01 ──▶ 6.8684e-01 Predictor: Secant ──▶ Event values: (2.5843244502911666,) ──▶ (2.686836588721522,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 75 Step size = 1.0000e-01 Parameter p1 = 6.8684e-01 ──▶ 7.8903e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 6.8684e-01 ──▶ 7.8070e-01 Predictor: Secant ──▶ Event values: (2.686836588721522,) ──▶ (2.7806968185807444,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 76 Step size = 1.0000e-01 Parameter p1 = 7.8070e-01 ──▶ 8.7396e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 7.8070e-01 ──▶ 8.6100e-01 Predictor: Secant ──▶ Event values: (2.7806968185807444,) ──▶ (2.8609966965979323,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 77 Step size = 1.0000e-01 Parameter p1 = 8.6100e-01 ──▶ 9.4031e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 8.6100e-01 ──▶ 9.2260e-01 Predictor: Secant ──▶ Event values: (2.8609966965979323,) ──▶ (2.922600575438644,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 78 Step size = 1.0000e-01 Parameter p1 = 9.2260e-01 ──▶ 9.8302e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 9.2260e-01 ──▶ 9.6691e-01 Predictor: Secant ──▶ Event values: (2.922600575438644,) ──▶ (2.9669107068862424,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 79 Step size = 1.0000e-01 Parameter p1 = 9.6691e-01 ──▶ 1.0104e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 9.6691e-01 ──▶ 1.0094e+00 Predictor: Secant ──▶ Event values: (2.9669107068862424,) ──▶ (3.0094192948188434,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 80 Step size = 1.0000e-01 Parameter p1 = 1.0094e+00 ──▶ 1.0513e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.0094e+00 ──▶ 1.0744e+00 Predictor: Secant ──▶ Event values: (3.0094192948188434,) ──▶ (3.0744445773076166,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 81 Step size = 1.0000e-01 Parameter p1 = 1.0744e+00 ──▶ 1.1376e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.0744e+00 ──▶ 1.1722e+00 Predictor: Secant ──▶ Event values: (3.0744445773076166,) ──▶ (3.172207127378895,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 82 Step size = 1.0000e-01 Parameter p1 = 1.1722e+00 ──▶ 1.2654e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.1722e+00 ──▶ 1.2882e+00 Predictor: Secant ──▶ Event values: (3.172207127378895,) ──▶ (3.2882375375531687,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 83 Step size = 1.0000e-01 Parameter p1 = 1.2882e+00 ──▶ 1.4009e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.2882e+00 ──▶ 1.4115e+00 Predictor: Secant ──▶ Event values: (3.2882375375531687,) ──▶ (3.4115204155053718,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 84 Step size = 1.0000e-01 Parameter p1 = 1.4115e+00 ──▶ 1.5333e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.4115e+00 ──▶ 1.5382e+00 Predictor: Secant ──▶ Event values: (3.4115204155053718,) ──▶ (3.5381942223448575,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 85 Step size = 1.0000e-01 Parameter p1 = 1.5382e+00 ──▶ 1.6642e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.5382e+00 ──▶ 1.6663e+00 Predictor: Secant ──▶ Event values: (3.5381942223448575,) ──▶ (3.6663317571389515,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 86 Step size = 1.0000e-01 Parameter p1 = 1.6663e+00 ──▶ 1.7941e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.6663e+00 ──▶ 1.7946e+00 Predictor: Secant ──▶ Event values: (3.6663317571389515,) ──▶ (3.7946030314208166,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 87 Step size = 1.0000e-01 Parameter p1 = 1.7946e+00 ──▶ 1.9226e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.7946e+00 ──▶ 1.9217e+00 Predictor: Secant ──▶ Event values: (3.7946030314208166,) ──▶ (3.921744385288159,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 88 Step size = 1.0000e-01 Parameter p1 = 1.9217e+00 ──▶ 2.0486e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.9217e+00 ──▶ 2.0460e+00 Predictor: Secant ──▶ Event values: (3.921744385288159,) ──▶ (4.046023593531713,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 89 Step size = 1.0000e-01 Parameter p1 = 2.0460e+00 ──▶ 2.1699e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.0460e+00 ──▶ 2.1641e+00 Predictor: Secant ──▶ Event values: (4.046023593531713,) ──▶ (4.164129866974651,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 90 Step size = 1.0000e-01 Parameter p1 = 2.1641e+00 ──▶ 2.2815e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.1641e+00 ──▶ 2.2674e+00 Predictor: Secant ──▶ Event values: (4.164129866974651,) ──▶ (4.267444993331688,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 91 Step size = 1.0000e-01 Parameter p1 = 2.2674e+00 ──▶ 2.3687e+00 [guess] ──▶ Step Converged in 4 Nonlinear Iteration(s) Parameter p1 = 2.2674e+00 ──▶ 2.3248e+00 Predictor: Secant ──▶ Event values: (4.267444993331688,) ──▶ (4.32483080528498,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 92 Step size = 1.0000e-01 Parameter p1 = 2.3248e+00 ──▶ 2.3768e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.3248e+00 ──▶ 2.2685e+00 Predictor: Secant ──▶ Event values: (4.32483080528498,) ──▶ (4.268512666749669,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 93 Step size = 1.0000e-01 Parameter p1 = 2.2685e+00 ──▶ 2.2254e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.2685e+00 ──▶ 2.1710e+00 Predictor: Secant ──▶ Event values: (4.268512666749669,) ──▶ (4.1709751610279655,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 94 Step size = 1.0000e-01 Parameter p1 = 2.1710e+00 ──▶ 2.0807e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.1710e+00 ──▶ 2.0653e+00 Predictor: Secant ──▶ Event values: (4.1709751610279655,) ──▶ (4.065300427118338,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 95 Step size = 1.0000e-01 Parameter p1 = 2.0653e+00 ──▶ 1.9607e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.0653e+00 ──▶ 1.9541e+00 Predictor: Secant ──▶ Event values: (4.065300427118338,) ──▶ (3.9541233264145603,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 96 Step size = 1.0000e-01 Parameter p1 = 1.9541e+00 ──▶ 1.8432e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 1.9541e+00 ──▶ 1.8400e+00 Predictor: Secant ──▶ Event values: (3.9541233264145603,) ──▶ (3.84003868168836,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 97 Step size = 1.0000e-01 Parameter p1 = 1.8400e+00 ──▶ 1.7260e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 1.8400e+00 ──▶ 1.7247e+00 Predictor: Secant ──▶ Event values: (3.84003868168836,) ──▶ (3.72473172076223,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 98 Step size = 1.0000e-01 Parameter p1 = 1.7247e+00 ──▶ 1.6094e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 1.7247e+00 ──▶ 1.6095e+00 Predictor: Secant ──▶ Event values: (3.72473172076223,) ──▶ (3.609522573980209,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 99 Step size = 1.0000e-01 Parameter p1 = 1.6095e+00 ──▶ 1.4943e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 1.6095e+00 ──▶ 1.4958e+00 Predictor: Secant ──▶ Event values: (3.609522573980209,) ──▶ (3.495772482037899,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 100 Step size = 1.0000e-01 Parameter p1 = 1.4958e+00 ──▶ 1.3820e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 1.4958e+00 ──▶ 1.3853e+00 Predictor: Secant ──▶ Event values: (3.495772482037899,) ──▶ (3.385337399046192,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 101 Step size = 1.0000e-01 Parameter p1 = 1.3853e+00 ──▶ 1.2750e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.3853e+00 ──▶ 1.2815e+00 Predictor: Secant ──▶ Event values: (3.385337399046192,) ──▶ (3.281465701189963,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 102 Step size = 1.0000e-01 Parameter p1 = 1.2815e+00 ──▶ 1.1779e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.2815e+00 ──▶ 1.1914e+00 Predictor: Secant ──▶ Event values: (3.281465701189963,) ──▶ (3.1913640781766954,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 103 Step size = 1.0000e-01 Parameter p1 = 1.1914e+00 ──▶ 1.1022e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.1914e+00 ──▶ 1.1356e+00 Predictor: Secant ──▶ Event values: (3.1913640781766954,) ──▶ (3.135597978397435,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 104 Step size = 1.0000e-01 Parameter p1 = 1.1356e+00 ──▶ 1.0823e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.1356e+00 ──▶ 1.1702e+00 Predictor: Secant ──▶ Event values: (3.135597978397435,) ──▶ (3.1701783862625046,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 105 Step size = 1.0000e-01 Parameter p1 = 1.1702e+00 ──▶ 1.1988e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.1702e+00 ──▶ 1.2776e+00 Predictor: Secant ──▶ Event values: (3.1701783862625046,) ──▶ (3.2776372880167233,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 106 Step size = 1.0000e-01 Parameter p1 = 1.2776e+00 ──▶ 1.3709e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.2776e+00 ──▶ 1.3957e+00 Predictor: Secant ──▶ Event values: (3.2776372880167233,) ──▶ (3.3957484980259682,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 107 Step size = 1.0000e-01 Parameter p1 = 1.3957e+00 ──▶ 1.5107e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.3957e+00 ──▶ 1.5202e+00 Predictor: Secant ──▶ Event values: (3.3957484980259682,) ──▶ (3.5201631136735507,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 108 Step size = 1.0000e-01 Parameter p1 = 1.5202e+00 ──▶ 1.6438e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.5202e+00 ──▶ 1.6487e+00 Predictor: Secant ──▶ Event values: (3.5201631136735507,) ──▶ (3.6486658661718128,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 109 Step size = 1.0000e-01 Parameter p1 = 1.6487e+00 ──▶ 1.7768e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.6487e+00 ──▶ 1.7798e+00 Predictor: Secant ──▶ Event values: (3.6486658661718128,) ──▶ (3.7798009519623803,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 110 Step size = 1.0000e-01 Parameter p1 = 1.7798e+00 ──▶ 1.9108e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.7798e+00 ──▶ 1.9127e+00 Predictor: Secant ──▶ Event values: (3.7798009519623803,) ──▶ (3.9127359396364834,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 111 Step size = 1.0000e-01 Parameter p1 = 1.9127e+00 ──▶ 2.0456e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.9127e+00 ──▶ 2.0470e+00 Predictor: Secant ──▶ Event values: (3.9127359396364834,) ──▶ (4.04696714728299,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 112 Step size = 1.0000e-01 Parameter p1 = 2.0470e+00 ──▶ 2.1811e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.0470e+00 ──▶ 2.1822e+00 Predictor: Secant ──▶ Event values: (4.04696714728299,) ──▶ (4.182171043239362,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 113 Step size = 1.0000e-01 Parameter p1 = 2.1822e+00 ──▶ 2.3173e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.1822e+00 ──▶ 2.3181e+00 Predictor: Secant ──▶ Event values: (4.182171043239362,) ──▶ (4.318129123462045,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 114 Step size = 1.0000e-01 Parameter p1 = 2.3181e+00 ──▶ 2.4541e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.3181e+00 ──▶ 2.4547e+00 Predictor: Secant ──▶ Event values: (4.318129123462045,) ──▶ (4.454687608927973,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 115 Step size = 1.0000e-01 Parameter p1 = 2.4547e+00 ──▶ 2.5912e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.4547e+00 ──▶ 2.5917e+00 Predictor: Secant ──▶ Event values: (4.454687608927973,) ──▶ (4.5917345298399415,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 116 Step size = 1.0000e-01 Parameter p1 = 2.5917e+00 ──▶ 2.7288e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.5917e+00 ──▶ 2.7292e+00 Predictor: Secant ──▶ Event values: (4.5917345298399415,) ──▶ (4.72918601439873,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 117 Step size = 1.0000e-01 Parameter p1 = 2.7292e+00 ──▶ 2.8666e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.7292e+00 ──▶ 2.8670e+00 Predictor: Secant ──▶ Event values: (4.72918601439873,) ──▶ (4.866977717877386,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 118 Step size = 1.0000e-01 Parameter p1 = 2.8670e+00 ──▶ 3.0048e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.8670e+00 ──▶ 3.0051e+00 Predictor: Secant ──▶ Event values: (4.866977717877386,) ──▶ (5.005059259802331,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 119 Step size = 1.0000e-01 Parameter p1 = 3.0051e+00 ──▶ 3.1431e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.0051e+00 ──▶ 3.1434e+00 Predictor: Secant ──▶ Event values: (5.005059259802331,) ──▶ (5.143390494716593,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 120 Step size = 1.0000e-01 Parameter p1 = 3.1434e+00 ──▶ 3.2817e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.1434e+00 ──▶ 3.2819e+00 Predictor: Secant ──▶ Event values: (5.143390494716593,) ──▶ (5.281938940897032,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 121 Step size = 1.0000e-01 Parameter p1 = 3.2819e+00 ──▶ 3.4205e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.2819e+00 ──▶ 3.4207e+00 Predictor: Secant ──▶ Event values: (5.281938940897032,) ──▶ (5.42067796338077,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 122 Step size = 1.0000e-01 Parameter p1 = 3.4207e+00 ──▶ 3.5594e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.4207e+00 ──▶ 3.5596e+00 Predictor: Secant ──▶ Event values: (5.42067796338077,) ──▶ (5.5595854619459635,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 123 Step size = 1.0000e-01 Parameter p1 = 3.5596e+00 ──▶ 3.6985e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.5596e+00 ──▶ 3.6986e+00 Predictor: Secant ──▶ Event values: (5.5595854619459635,) ──▶ (5.698642905380923,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 124 Step size = 1.0000e-01 Parameter p1 = 3.6986e+00 ──▶ 3.8377e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.6986e+00 ──▶ 3.8378e+00 Predictor: Secant ──▶ Event values: (5.698642905380923,) ──▶ (5.837834608389984,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 125 Step size = 1.0000e-01 Parameter p1 = 3.8378e+00 ──▶ 3.9770e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.8378e+00 ──▶ 3.9771e+00 Predictor: Secant ──▶ Event values: (5.837834608389984,) ──▶ (5.977147181812193,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 126 Step size = 1.0000e-01 Parameter p1 = 3.9771e+00 ──▶ 4.0000e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 3.9771e+00 ──▶ 4.0000e+00 Predictor: Secant ──▶ Event values: (5.977147181812193,) ──▶ (6.0,) ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/events/EventDetection.jl:387 ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/events/EventDetection.jl:387 ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/events/EventDetection.jl:387 ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/events/EventDetection.jl:387 ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/events/EventDetection.jl:387 ┌ Error: Failure to converge with given tolerance = 1.0e-10. │ Step = 91 │ You can decrease the tolerance or pass a different norm using the argument `normC`. │ We reached the smallest value [dsmin] valid for ds, namely 0.0001. │ Stopping continuation at continuation step 91. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/continuation/Contbase.jl:67 ┌─ Deflation operator with 1 root(s) ├─ eltype = Float64 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false Fold Codim 2: Error During Test at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:47 Got exception outside of a @test LoadError: MethodError: no method matching iterate(::BorderedArray{Vector{Float64}, Float64}) The function `iterate` exists, but no method is defined for this combination of argument types. Closest candidates are: iterate(!Matched::ExproniconLite.JLIfElse) @ ExproniconLite ~/.julia/packages/ExproniconLite/4LrQ4/src/types.jl:129 iterate(!Matched::ExproniconLite.JLIfElse, !Matched::Any) @ ExproniconLite ~/.julia/packages/ExproniconLite/4LrQ4/src/types.jl:129 iterate(!Matched::CompositeException, Any...) @ Base task.jl:55 ... Stacktrace: [1] isempty(itr::BorderedArray{Vector{Float64}, Float64}) @ Base ./essentials.jl:1122 [2] norm(itr::BorderedArray{Vector{Float64}, Float64}) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.13/LinearAlgebra/src/generic.jl:727 [3] _newton(prob::BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(F_chan), BifurcationKit.var"#119#120"{typeof(F_chan)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64}, PropertyLens{:α}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{DefaultLS}, UniformScaling{Bool}, typeof(norm)}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{α::Float64, β::Float64}, Nothing, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default)}, x0::BorderedArray{Vector{Float64}, Float64}, p0::@NamedTuple{α::Float64, β::Float64}, options::NewtonPar{Float64, FoldLinearSolverMinAug, DefaultEig{typeof(real)}}; normN::typeof(norm), callback::typeof(BifurcationKit.cb_default), kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Newton.jl:78 [4] solve(prob::BifurcationKit.FoldMAProblem{FoldProblemMinimallyAugmented{BifurcationProblem{BifFunction{typeof(F_chan), BifurcationKit.var"#119#120"{typeof(F_chan)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64}, PropertyLens{:α}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{Float64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{DefaultLS}, UniformScaling{Bool}, typeof(norm)}, Nothing, BorderedArray{Vector{Float64}, Float64}, @NamedTuple{α::Float64, β::Float64}, Nothing, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default)}, ::Newton, options::NewtonPar{Float64, FoldLinearSolverMinAug, DefaultEig{typeof(real)}}; kwargs::@Kwargs{normN::typeof(norm)}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Newton.jl:149 [5] newton_fold(prob::BifurcationProblem{BifFunction{typeof(F_chan), BifurcationKit.var"#119#120"{typeof(F_chan)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64}, PropertyLens{:α}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, foldpointguess::BorderedArray{Vector{Float64}, Float64}, par::@NamedTuple{α::Float64, β::Float64}, eigenvec::Vector{Float64}, eigenvec_ad::Vector{Float64}, options::NewtonPar{Float64, DefaultLS, DefaultEig{typeof(real)}}; normN::Function, bdlinsolver::MatrixBLS{Nothing}, usehessian::Bool, kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/codim2/MinAugFold.jl:259 [6] newton_fold(br::ContResult{BifurcationKit.EquilibriumCont, @NamedTuple{x::Float64, param::Float64, itnewton::Int64, itlinear::Int64, ds::Float64, n_unstable::Int64, n_imag::Int64, stable::Bool, step::Int64}, Vector{ComplexF64}, Matrix{ComplexF64}, SpecialPoint{Float64, @NamedTuple{x::Float64}, Vector{Float64}, Vector{Float64}}, Vector{@NamedTuple{x::Vector{Float64}, p::Float64, step::Int64}}, ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, BifurcationProblem{BifFunction{typeof(F_chan), BifurcationKit.var"#119#120"{typeof(F_chan)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64}, PropertyLens{:α}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}}, ind_fold::Int64; prob::BifurcationProblem{BifFunction{typeof(F_chan), BifurcationKit.var"#119#120"{typeof(F_chan)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64}, PropertyLens{:α}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, normN::typeof(norm), options::NewtonPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, nev::Int64, start_with_eigen::Bool, bdlinsolver::MatrixBLS{Nothing}, kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/codim2/MinAugFold.jl:295 [7] newton(br::ContResult{BifurcationKit.EquilibriumCont, @NamedTuple{x::Float64, param::Float64, itnewton::Int64, itlinear::Int64, ds::Float64, n_unstable::Int64, n_imag::Int64, stable::Bool, step::Int64}, Vector{ComplexF64}, Matrix{ComplexF64}, SpecialPoint{Float64, @NamedTuple{x::Float64}, Vector{Float64}, Vector{Float64}}, Vector{@NamedTuple{x::Vector{Float64}, p::Float64, step::Int64}}, ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, BifurcationProblem{BifFunction{typeof(F_chan), BifurcationKit.var"#119#120"{typeof(F_chan)}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64}, PropertyLens{:α}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}}, ind_bif::Int64; normN::Function, options::NewtonPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, start_with_eigen::Bool, lens2::typeof(identity), kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/codim2/codim2.jl:0 [8] top-level scope @ ~/.julia/packages/BifurcationKit/I0BRP/test/testJacobianFoldDeflation.jl:51 [9] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:312 [10] top-level scope @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:8 [11] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1858 [inlined] [12] macro expansion @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:48 [inlined] [13] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1858 [inlined] [14] macro expansion @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:49 [inlined] [15] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:312 [16] top-level scope @ none:6 [17] eval(m::Module, e::Any) @ Core ./boot.jl:489 [18] exec_options(opts::Base.JLOptions) @ Base ./client.jl:286 [19] _start() @ Base ./client.jl:553 in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/testJacobianFoldDeflation.jl:51 Hopf Codim 2: Error During Test at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:53 Got exception outside of a @test LoadError: MethodError: no method matching iterate(::BorderedArray{Vector{Float64}, Vector{Float64}}) The function `iterate` exists, but no method is defined for this combination of argument types. Closest candidates are: iterate(!Matched::ExproniconLite.JLIfElse) @ ExproniconLite ~/.julia/packages/ExproniconLite/4LrQ4/src/types.jl:129 iterate(!Matched::ExproniconLite.JLIfElse, !Matched::Any) @ ExproniconLite ~/.julia/packages/ExproniconLite/4LrQ4/src/types.jl:129 iterate(!Matched::CompositeException, Any...) @ Base task.jl:55 ... Stacktrace: [1] isempty(itr::BorderedArray{Vector{Float64}, Vector{Float64}}) @ Base ./essentials.jl:1122 [2] norm(itr::BorderedArray{Vector{Float64}, Vector{Float64}}) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.13/LinearAlgebra/src/generic.jl:727 [3] _newton(prob::BifurcationKit.HopfMAProblem{HopfProblemMinimallyAugmented{BifurcationProblem{BifFunction{BifurcationKit.var"#117#118"{typeof(Fbru!), PropertyLens{:l}}, typeof(Fbru!), Nothing, Nothing, typeof(Jbru_ana), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, PropertyLens{:l}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{ComplexF64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{DefaultLS}, UniformScaling{Bool}, typeof(norm)}, Nothing, BorderedArray{Vector{Float64}, Vector{Float64}}, @NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, Nothing, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default)}, x0::BorderedArray{Vector{Float64}, Vector{Float64}}, p0::@NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, options::NewtonPar{Float64, HopfLinearSolverMinAug, DefaultEig{typeof(real)}}; normN::typeof(norm), callback::typeof(BifurcationKit.cb_default), kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Newton.jl:78 [4] solve(prob::BifurcationKit.HopfMAProblem{HopfProblemMinimallyAugmented{BifurcationProblem{BifFunction{BifurcationKit.var"#117#118"{typeof(Fbru!), PropertyLens{:l}}, typeof(Fbru!), Nothing, Nothing, typeof(Jbru_ana), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, PropertyLens{:l}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, Vector{ComplexF64}, Float64, DefaultLS, DefaultLS, MatrixBLS{DefaultLS}, MatrixBLS{DefaultLS}, UniformScaling{Bool}, typeof(norm)}, Nothing, BorderedArray{Vector{Float64}, Vector{Float64}}, @NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, Nothing, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default)}, ::Newton, options::NewtonPar{Float64, HopfLinearSolverMinAug, DefaultEig{typeof(real)}}; kwargs::@Kwargs{normN::typeof(norm)}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Newton.jl:149 [5] newton_hopf(prob::BifurcationProblem{BifFunction{BifurcationKit.var"#117#118"{typeof(Fbru!), PropertyLens{:l}}, typeof(Fbru!), Nothing, Nothing, typeof(Jbru_ana), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, PropertyLens{:l}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, hopfpointguess::BorderedArray{Vector{Float64}, Vector{Float64}}, par::@NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, eigenvec::Vector{ComplexF64}, eigenvec_ad::Vector{ComplexF64}, options::NewtonPar{Float64, DefaultLS, DefaultEig{typeof(real)}}; normN::Function, bdlinsolver::MatrixBLS{Nothing}, usehessian::Bool, kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/codim2/MinAugHopf.jl:266 [6] newton_hopf(br::ContResult{BifurcationKit.EquilibriumCont, @NamedTuple{x::Float64, param::Float64, itnewton::Int64, itlinear::Int64, ds::Float64, n_unstable::Int64, n_imag::Int64, stable::Bool, step::Int64}, Vector{ComplexF64}, Matrix{ComplexF64}, SpecialPoint{Float64, @NamedTuple{x::Float64}, Vector{Float64}, Vector{Float64}}, Vector{@NamedTuple{x::Vector{Float64}, p::Float64, step::Int64}}, ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, BifurcationProblem{BifFunction{BifurcationKit.var"#117#118"{typeof(Fbru!), PropertyLens{:l}}, typeof(Fbru!), Nothing, Nothing, typeof(Jbru_ana), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, PropertyLens{:l}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}}, ind_hopf::Int64; prob::BifurcationProblem{BifFunction{BifurcationKit.var"#117#118"{typeof(Fbru!), PropertyLens{:l}}, typeof(Fbru!), Nothing, Nothing, typeof(Jbru_ana), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, PropertyLens{:l}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, normN::typeof(norm), options::NewtonPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, verbose::Bool, nev::Int64, start_with_eigen::Bool, kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/codim2/MinAugHopf.jl:303 [7] newton(br::ContResult{BifurcationKit.EquilibriumCont, @NamedTuple{x::Float64, param::Float64, itnewton::Int64, itlinear::Int64, ds::Float64, n_unstable::Int64, n_imag::Int64, stable::Bool, step::Int64}, Vector{ComplexF64}, Matrix{ComplexF64}, SpecialPoint{Float64, @NamedTuple{x::Float64}, Vector{Float64}, Vector{Float64}}, Vector{@NamedTuple{x::Vector{Float64}, p::Float64, step::Int64}}, ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, BifurcationProblem{BifFunction{BifurcationKit.var"#117#118"{typeof(Fbru!), PropertyLens{:l}}, typeof(Fbru!), Nothing, Nothing, typeof(Jbru_ana), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, @NamedTuple{α::Float64, β::Float64, D1::Float64, D2::Float64, l::Float64}, PropertyLens{:l}, typeof(BifurcationKit.plot_default), typeof(BifurcationKit.record_sol_default), typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}}, ind_bif::Int64; normN::Function, options::NewtonPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, start_with_eigen::Bool, lens2::typeof(identity), kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/codim2/codim2.jl:0 [8] top-level scope @ ~/.julia/packages/BifurcationKit/I0BRP/test/testHopfMA.jl:84 [9] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:312 [10] top-level scope @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:8 [11] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1858 [inlined] [12] macro expansion @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:54 [inlined] [13] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1858 [inlined] [14] macro expansion @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:54 [inlined] [15] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:312 [16] top-level scope @ none:6 [17] eval(m::Module, e::Any) @ Core ./boot.jl:489 [18] exec_options(opts::Base.JLOptions) @ Base ./client.jl:286 [19] _start() @ Base ./client.jl:553 in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/testHopfMA.jl:84 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 449 running 1 of 1 signal (10): User defined signal 1 _ZNK4llvm11Instruction17mayReadFromMemoryEv at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm26mayHaveNonDefUseDependencyERKNS_11InstructionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvmL22areAllOperandsNonInstsEPNS_5ValueE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvmL24doesNotNeedToBeScheduledEPNS_5ValueE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm13slpvectorizer7BoUpSLP13buildTree_recENS_8ArrayRefIPNS_5ValueEEEjRKNS1_8EdgeInfoEj at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm17SLPVectorizerPass18tryToVectorizeListENS_8ArrayRefIPNS_5ValueEEERNS_13slpvectorizer7BoUpSLPEb at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm17SLPVectorizerPass14tryToVectorizeEPNS_11InstructionERNS_13slpvectorizer7BoUpSLPE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm17SLPVectorizerPass14tryToVectorizeENS_8ArrayRefINS_14WeakTrackingVHEEERNS_13slpvectorizer7BoUpSLPE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm17SLPVectorizerPass24vectorizeRootInstructionEPNS_7PHINodeEPNS_11InstructionEPNS_10BasicBlockERNS_13slpvectorizer7BoUpSLPE.constprop.0 at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm17SLPVectorizerPass22vectorizeChainsInBlockEPNS_10BasicBlockERNS_13slpvectorizer7BoUpSLPE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm17SLPVectorizerPass7runImplERNS_8FunctionEPNS_15ScalarEvolutionEPNS_19TargetTransformInfoEPNS_17TargetLibraryInfoEPNS_9AAResultsEPNS_8LoopInfoEPNS_13DominatorTreeEPNS_15AssumptionCacheEPNS_12DemandedBitsEPNS_25OptimizationRemarkEmitterE.part.0 at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm17SLPVectorizerPass3runERNS_8FunctionERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm11PassManagerINS_8FunctionENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm27ModuleToFunctionPassAdaptor3runERNS_6ModuleERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm11PassManagerINS_6ModuleENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/src/pipeline.cpp:791 operator() at /source/src/jitlayers.cpp:1511 withModuleDo<(anonymous namespace)::sizedOptimizerT::operator()(llvm::orc::ThreadSafeModule) [with long unsigned int N = 4]:: > at /source/usr/include/llvm/ExecutionEngine/Orc/ThreadSafeModule.h:136 [inlined] operator() at /source/src/jitlayers.cpp:1472 [inlined] operator() at /source/src/jitlayers.cpp:1624 [inlined] addModule at /source/src/jitlayers.cpp:2081 jl_compile_codeinst_now at /source/src/jitlayers.cpp:685 jl_compile_codeinst_impl at /source/src/jitlayers.cpp:876 jl_compile_method_internal at /source/src/gf.c:3527 _jl_invoke at /source/src/gf.c:4007 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2346 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:708 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 include_string at ./loading.jl:2848 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 _include at ./loading.jl:2908 include at ./Base.jl:312 IncludeInto at ./Base.jl:313 jfptr_IncludeInto_67279.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2346 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:708 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 include_string at ./loading.jl:2848 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 _include at ./loading.jl:2908 include at ./Base.jl:312 IncludeInto at ./Base.jl:313 jfptr_IncludeInto_67279.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2346 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:708 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 exec_options at ./client.jl:286 _start at ./client.jl:553 jfptr__start_66188.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2346 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7084627ed249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1192 wait_forever at ./task.jl:1129 jfptr_wait_forever_54969.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2346 [inlined] start_task at /source/src/task.c:1249 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x000079d190401780 Total snapshots: 550. Utilization: 0% ╎550 @Base/task.jl:1129 wait_forever() 549╎ 550 @Base/task.jl:1192 wait() [449] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/test_potrap.jl:215 _ZNK4llvm9LiveRange6verifyEv at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm16LiveRangeUpdater5flushEv.part.0 at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm9LiveRange19MergeValueInAsValueERKS0_PKNS_6VNInfoEPS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN12_GLOBAL__N_113InlineSpiller24eliminateRedundantSpillsERN4llvm12LiveIntervalEPNS1_6VNInfoE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN12_GLOBAL__N_113InlineSpiller15spillAroundUsesEN4llvm8RegisterE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN12_GLOBAL__N_113InlineSpiller5spillERN4llvm13LiveRangeEditE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm8RAGreedy17selectOrSplitImplERKNS_12LiveIntervalERNS_15SmallVectorImplINS_8RegisterEEERNS_8SmallSetIS5_Lj16ESt4lessIS5_EEERNS_11SmallVectorISt4pairIPS2_NS_10MCRegisterEELj8EEEj at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm8RAGreedy13selectOrSplitERKNS_12LiveIntervalERNS_15SmallVectorImplINS_8RegisterEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm12RegAllocBase16allocatePhysRegsEv at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm8RAGreedy20runOnMachineFunctionERNS_15MachineFunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm19MachineFunctionPass13runOnFunctionERNS_8FunctionE.part.0 at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm13FPPassManager13runOnFunctionERNS_8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm13FPPassManager11runOnModuleERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm6legacy15PassManagerImpl3runERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm3orc14SimpleCompilerclERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) operator() at /source/src/jitlayers.cpp:1613 addModule at /source/src/jitlayers.cpp:2094 jl_compile_codeinst_now at /source/src/jitlayers.cpp:685 jl_compile_codeinst_impl at /source/src/jitlayers.cpp:876 jl_compile_method_internal at /source/src/gf.c:3527 _jl_invoke at /source/src/gf.c:4007 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2346 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:708 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 include_string at ./loading.jl:2848 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 _include at ./loading.jl:2908 include at ./Base.jl:312 IncludeInto at ./Base.jl:313 jfptr_IncludeInto_67279.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2346 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:708 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 include_string at ./loading.jl:2848 _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 _include at ./loading.jl:2908 include at ./Base.jl:312 IncludeInto at ./Base.jl:313 jfptr_IncludeInto_67279.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2346 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:708 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 exec_options at ./client.jl:286 _start at ./client.jl:553 jfptr__start_66188.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4015 [inlined] ijl_apply_generic at /source/src/gf.c:4212 jl_apply at /source/src/julia.h:2346 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7084627ed249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 716127698 (Pool: 716120615; Big: 7083); GC: 240 PkgEval terminated after 2740.82s: test duration exceeded the time limit