Package evaluation of BifurcationKit on Julia 1.13.0-DEV.873 (be59b3b2f4*) started at 2025-07-18T01:15:04.300 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.3s ################################################################################ # Installation # Installing BifurcationKit... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [0f109fa4] + BifurcationKit v0.5.0 Updating `~/.julia/environments/v1.13/Manifest.toml` [47edcb42] + ADTypes v1.15.0 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.3.0 [ec485272] + ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] + Arpack v0.5.3 [4fba245c] + ArrayInterface v7.19.0 [4c555306] + ArrayLayouts v1.11.1 [0f109fa4] + BifurcationKit v0.5.0 [8e7c35d0] + BlockArrays v1.7.0 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.17.0 [a33af91c] + CompositionsBase v0.1.2 [187b0558] + ConstructionBase v1.6.0 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [ffbed154] + DocStringExtensions v0.9.5 [4e289a0a] + EnumX v1.0.5 [e2ba6199] + ExprTools v0.1.10 [55351af7] + ExproniconLite v0.10.14 [442a2c76] + FastGaussQuadrature v1.0.2 [1a297f60] + FillArrays v1.13.0 [f6369f11] + ForwardDiff v1.0.1 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.4 [42fd0dbc] + IterativeSolvers v0.9.4 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.0 [ae98c720] + Jieko v0.2.1 [ba0b0d4f] + Krylov v0.10.1 [0b1a1467] + KrylovKit v0.9.5 [b964fa9f] + LaTeXStrings v1.4.0 [7a12625a] + LinearMaps v3.11.4 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 [2e0e35c7] + Moshi v0.3.7 [77ba4419] + NaNMath v1.1.3 [bac558e1] + OrderedCollections v1.8.1 [65ce6f38] + PackageExtensionCompat v1.0.2 [d96e819e] + Parameters v0.12.3 [d236fae5] + PreallocationTools v0.4.29 [aea7be01] + PrecompileTools v1.3.2 [21216c6a] + Preferences v1.4.3 [08abe8d2] + PrettyTables v2.4.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.34.1 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [7e49a35a] + RuntimeGeneratedFunctions v0.5.15 [0bca4576] + SciMLBase v2.103.1 [c0aeaf25] + SciMLOperators v1.3.1 [53ae85a6] + SciMLStructures v1.7.0 [276daf66] + SpecialFunctions v2.5.1 [90137ffa] + StaticArrays v1.9.14 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [892a3eda] + StringManipulation v0.4.1 [09ab397b] + StructArrays v0.7.1 [2efcf032] + SymbolicIndexingInterface v0.3.41 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [3a884ed6] + UnPack v1.0.2 [409d34a3] + VectorInterface v0.5.0 ⌅ [68821587] + Arpack_jll v3.5.1+1 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.12.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.14.1+1 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.7.15 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.5+0 [458c3c95] + OpenSSL_jll v3.5.1+0 [efcefdf7] + PCRE2_jll v10.45.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [8e850b90] + libblastrampoline_jll v5.13.1+0 [8e850ede] + nghttp2_jll v1.65.0+0 [3f19e933] + p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.6s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 1643.29s ################################################################################ # Testing # Testing BifurcationKit Status `/tmp/jl_DjYpwo/Project.toml` ⌃ [c29ec348] AbstractDifferentiation v0.4.4 [7d9f7c33] Accessors v0.1.42 [ec485272] ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] Arpack v0.5.3 [0f109fa4] BifurcationKit v0.5.0 [8e7c35d0] BlockArrays v1.7.0 [13f3f980] CairoMakie v0.15.3 [b0b7db55] ComponentArrays v0.15.28 [864edb3b] DataStructures v0.18.22 [ffbed154] DocStringExtensions v0.9.5 [442a2c76] FastGaussQuadrature v1.0.2 [f6369f11] ForwardDiff v1.0.1 [42fd0dbc] IterativeSolvers v0.9.4 [ba0b0d4f] Krylov v0.10.1 [0b1a1467] KrylovKit v0.9.5 [7a12625a] LinearMaps v3.11.4 [1dea7af3] OrdinaryDiffEq v6.99.0 [d96e819e] Parameters v0.12.3 [91a5bcdd] Plots v1.40.17 [d236fae5] PreallocationTools v0.4.29 [731186ca] RecursiveArrayTools v3.34.1 [189a3867] Reexport v1.2.2 [0bca4576] SciMLBase v2.103.1 [1ed8b502] SciMLSensitivity v7.88.0 [09ab397b] StructArrays v0.7.1 [e88e6eb3] Zygote v0.7.10 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.12.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_DjYpwo/Manifest.toml` [47edcb42] ADTypes v1.15.0 ⌃ [c29ec348] AbstractDifferentiation v0.4.4 [621f4979] AbstractFFTs v1.5.0 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [35492f91] AdaptivePredicates v1.2.0 [66dad0bd] AliasTables v1.1.3 [27a7e980] Animations v0.4.2 [ec485272] ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] Arpack v0.5.3 [4fba245c] ArrayInterface v7.19.0 [4c555306] ArrayLayouts v1.11.1 [a9b6321e] Atomix v1.1.1 [67c07d97] Automa v1.1.0 [13072b0f] AxisAlgorithms v1.1.0 [39de3d68] AxisArrays v0.4.7 [18cc8868] BaseDirs v1.3.1 [0f109fa4] BifurcationKit v0.5.0 [d1d4a3ce] BitFlags v0.1.9 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] BlockArrays v1.7.0 [70df07ce] BracketingNonlinearSolve v1.3.0 [fa961155] CEnum v0.5.0 [2a0fbf3d] CPUSummary v0.2.6 [96374032] CRlibm v1.0.2 [159f3aea] Cairo v1.1.1 [13f3f980] CairoMakie v0.15.3 [7057c7e9] Cassette v0.3.14 [082447d4] ChainRules v1.72.5 [d360d2e6] ChainRulesCore v1.25.2 [fb6a15b2] CloseOpenIntervals v0.1.13 [944b1d66] CodecZlib v0.7.8 [a2cac450] ColorBrewer v0.4.1 [35d6a980] ColorSchemes v3.30.0 [3da002f7] ColorTypes v0.12.1 [c3611d14] ColorVectorSpace v0.11.0 [5ae59095] Colors v0.13.1 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.17.0 [b0b7db55] ComponentArrays v0.15.28 [a33af91c] CompositionsBase v0.1.2 [95dc2771] ComputePipeline v0.1.2 [2569d6c7] ConcreteStructs v0.2.3 [f0e56b4a] ConcurrentUtilities v2.5.0 [187b0558] ConstructionBase v1.6.0 [d38c429a] Contour v0.6.3 [adafc99b] CpuId v0.3.1 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [927a84f5] DelaunayTriangulation v1.6.4 [8bb1440f] DelimitedFiles v1.9.1 [2b5f629d] DiffEqBase v6.177.2 [459566f4] DiffEqCallbacks v4.8.0 [77a26b50] DiffEqNoiseProcess v5.24.1 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [a0c0ee7d] DifferentiationInterface v0.7.3 [31c24e10] Distributions v0.25.120 [ffbed154] DocStringExtensions v0.9.5 [4e289a0a] EnumX v1.0.5 [7da242da] Enzyme v0.13.61 [f151be2c] EnzymeCore v0.8.12 [429591f6] ExactPredicates v2.2.8 [460bff9d] ExceptionUnwrapping v0.1.11 [d4d017d3] ExponentialUtilities v1.27.0 [e2ba6199] ExprTools v0.1.10 [55351af7] ExproniconLite v0.10.14 [411431e0] Extents v0.1.6 [c87230d0] FFMPEG v0.4.2 [7a1cc6ca] FFTW v1.9.0 [7034ab61] FastBroadcast v0.3.5 [9aa1b823] FastClosures v0.3.2 [442a2c76] FastGaussQuadrature v1.0.2 [a4df4552] FastPower v1.1.3 [5789e2e9] FileIO v1.17.0 ⌅ [8fc22ac5] FilePaths v0.8.3 [48062228] FilePathsBase v0.9.24 [1a297f60] FillArrays v1.13.0 [6a86dc24] FiniteDiff v2.27.0 [53c48c17] FixedPointNumbers v0.8.5 [1fa38f19] Format v1.3.7 [f6369f11] ForwardDiff v1.0.1 [b38be410] FreeType v4.1.1 [663a7486] FreeTypeAbstraction v0.10.8 [f62d2435] FunctionProperties v0.1.2 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 [d9f16b24] Functors v0.5.2 [46192b85] GPUArraysCore v0.2.0 [61eb1bfa] GPUCompiler v1.6.1 [28b8d3ca] GR v0.73.17 [c145ed77] GenericSchur v0.5.5 [5c1252a2] GeometryBasics v0.5.10 [a2bd30eb] Graphics v1.1.3 [3955a311] GridLayoutBase v0.11.1 [42e2da0e] Grisu v1.0.2 [cd3eb016] HTTP v1.10.17 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [7869d1d1] IRTools v0.4.15 [615f187c] IfElse v0.1.1 [2803e5a7] ImageAxes v0.6.12 [c817782e] ImageBase v0.1.7 [a09fc81d] ImageCore v0.10.5 [82e4d734] ImageIO v0.6.9 [bc367c6b] ImageMetadata v0.9.10 [9b13fd28] IndirectArrays v1.0.0 [d25df0c9] Inflate v0.1.5 ⌅ [a98d9a8b] Interpolations v0.15.1 [d1acc4aa] IntervalArithmetic v0.22.36 [8197267c] IntervalSets v0.7.11 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [f1662d9f] Isoband v0.1.1 [c8e1da08] IterTools v1.10.0 [42fd0dbc] IterativeSolvers v0.9.4 [82899510] IteratorInterfaceExtensions v1.0.0 [1019f520] JLFzf v0.1.11 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [ae98c720] Jieko v0.2.1 [b835a17e] JpegTurbo v0.1.6 [63c18a36] KernelAbstractions v0.9.37 [5ab0869b] KernelDensity v0.6.10 [ba0b0d4f] Krylov v0.10.1 [0b1a1467] KrylovKit v0.9.5 [929cbde3] LLVM v9.4.2 [b964fa9f] LaTeXStrings v1.4.0 [23fbe1c1] Latexify v0.16.8 [10f19ff3] LayoutPointers v0.1.17 [5078a376] LazyArrays v2.6.1 [8cdb02fc] LazyModules v0.3.1 [87fe0de2] LineSearch v0.1.4 [d3d80556] LineSearches v7.4.0 [7a12625a] LinearMaps v3.11.4 [7ed4a6bd] LinearSolve v3.19.2 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.1.0 [1914dd2f] MacroTools v0.5.16 [ee78f7c6] Makie v0.24.3 [d125e4d3] ManualMemory v0.1.8 [dbb5928d] MappedArrays v0.4.2 [0a4f8689] MathTeXEngine v0.6.5 [bb5d69b7] MaybeInplace v0.1.4 [739be429] MbedTLS v1.1.9 [442fdcdd] Measures v0.3.2 [e1d29d7a] Missings v1.2.0 [e94cdb99] MosaicViews v0.3.4 [2e0e35c7] Moshi v0.3.7 [46d2c3a1] MuladdMacro v0.2.4 [d41bc354] NLSolversBase v7.10.0 [872c559c] NNlib v0.9.30 [77ba4419] NaNMath v1.1.3 [f09324ee] Netpbm v1.1.1 [8913a72c] NonlinearSolve v4.10.0 [be0214bd] NonlinearSolveBase v1.12.0 [5959db7a] NonlinearSolveFirstOrder v1.5.0 [9a2c21bd] NonlinearSolveQuasiNewton v1.6.0 [26075421] NonlinearSolveSpectralMethods v1.2.0 ⌅ [d8793406] ObjectFile v0.4.4 [510215fc] Observables v0.5.5 [6fe1bfb0] OffsetArrays v1.17.0 [52e1d378] OpenEXR v0.3.3 [4d8831e6] OpenSSL v1.5.0 [429524aa] Optim v1.13.2 [3bd65402] Optimisers v0.4.6 [bac558e1] OrderedCollections v1.8.1 [1dea7af3] OrdinaryDiffEq v6.99.0 [89bda076] OrdinaryDiffEqAdamsBashforthMoulton v1.2.0 [6ad6398a] OrdinaryDiffEqBDF v1.6.0 [bbf590c4] OrdinaryDiffEqCore v1.26.2 [50262376] OrdinaryDiffEqDefault v1.5.0 [4302a76b] OrdinaryDiffEqDifferentiation v1.10.0 [9286f039] OrdinaryDiffEqExplicitRK v1.1.0 [e0540318] OrdinaryDiffEqExponentialRK v1.4.0 [becaefa8] OrdinaryDiffEqExtrapolation v1.5.0 [5960d6e9] OrdinaryDiffEqFIRK v1.12.0 [101fe9f7] OrdinaryDiffEqFeagin v1.1.0 [d3585ca7] OrdinaryDiffEqFunctionMap v1.1.1 [d28bc4f8] OrdinaryDiffEqHighOrderRK v1.1.0 [9f002381] OrdinaryDiffEqIMEXMultistep v1.3.0 [521117fe] OrdinaryDiffEqLinear v1.3.0 [1344f307] OrdinaryDiffEqLowOrderRK v1.2.0 [b0944070] OrdinaryDiffEqLowStorageRK v1.3.0 [127b3ac7] OrdinaryDiffEqNonlinearSolve v1.10.0 [c9986a66] OrdinaryDiffEqNordsieck v1.1.0 [5dd0a6cf] OrdinaryDiffEqPDIRK v1.3.1 [5b33eab2] OrdinaryDiffEqPRK v1.1.0 [04162be5] OrdinaryDiffEqQPRK v1.1.0 [af6ede74] OrdinaryDiffEqRKN v1.1.0 [43230ef6] OrdinaryDiffEqRosenbrock v1.11.0 [2d112036] OrdinaryDiffEqSDIRK v1.3.0 [669c94d9] OrdinaryDiffEqSSPRK v1.3.0 [e3e12d00] OrdinaryDiffEqStabilizedIRK v1.3.0 [358294b1] OrdinaryDiffEqStabilizedRK v1.1.2 [fa646aed] OrdinaryDiffEqSymplecticRK v1.3.0 [b1df2697] OrdinaryDiffEqTsit5 v1.1.0 [79d7bb75] OrdinaryDiffEqVerner v1.2.0 [90014a1f] PDMats v0.11.35 [f57f5aa1] PNGFiles v0.4.4 [65ce6f38] PackageExtensionCompat v1.0.2 [19eb6ba3] Packing v0.5.1 [5432bcbf] PaddedViews v0.5.12 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 [eebad327] PkgVersion v0.3.3 [ccf2f8ad] PlotThemes v3.3.0 [995b91a9] PlotUtils v1.4.3 [91a5bcdd] Plots v1.40.17 [e409e4f3] PoissonRandom v0.4.5 [f517fe37] Polyester v0.7.18 [1d0040c9] PolyesterWeave v0.2.2 [647866c9] PolygonOps v0.1.2 [85a6dd25] PositiveFactorizations v0.2.4 [d236fae5] PreallocationTools v0.4.29 [aea7be01] PrecompileTools v1.3.2 [21216c6a] Preferences v1.4.3 [08abe8d2] PrettyTables v2.4.0 [92933f4c] ProgressMeter v1.10.4 [43287f4e] PtrArrays v1.3.0 [4b34888f] QOI v1.0.1 [1fd47b50] QuadGK v2.11.2 [74087812] Random123 v1.7.1 [e6cf234a] RandomNumbers v1.6.0 [b3c3ace0] RangeArrays v0.3.2 [c84ed2f1] Ratios v0.4.5 [c1ae055f] RealDot v0.1.0 [3cdcf5f2] RecipesBase v1.3.4 [01d81517] RecipesPipeline v0.6.12 [731186ca] RecursiveArrayTools v3.34.1 [189a3867] Reexport v1.2.2 [05181044] RelocatableFolders v1.0.1 [ae029012] Requires v1.3.1 [ae5879a3] ResettableStacks v1.1.1 [37e2e3b7] ReverseDiff v1.16.1 [79098fc4] Rmath v0.8.0 [5eaf0fd0] RoundingEmulator v0.2.1 [7e49a35a] RuntimeGeneratedFunctions v0.5.15 [fdea26ae] SIMD v3.7.1 [94e857df] SIMDTypes v0.1.0 [0bca4576] SciMLBase v2.103.1 [19f34311] SciMLJacobianOperators v0.1.6 [c0aeaf25] SciMLOperators v1.3.1 [1ed8b502] SciMLSensitivity v7.88.0 [53ae85a6] SciMLStructures v1.7.0 [7e506255] ScopedValues v1.4.0 [6c6a2e73] Scratch v1.3.0 [efcf1570] Setfield v1.1.2 [65257c39] ShaderAbstractions v0.5.0 [992d4aef] Showoff v1.0.3 [73760f76] SignedDistanceFields v0.4.0 [777ac1f9] SimpleBufferStream v1.2.0 [727e6d20] SimpleNonlinearSolve v2.5.0 [699a6c99] SimpleTraits v0.9.4 [ce78b400] SimpleUnPack v1.1.0 [45858cf5] Sixel v0.1.5 [a2af1166] SortingAlgorithms v1.2.1 [dc90abb0] SparseInverseSubset v0.1.2 [0a514795] SparseMatrixColorings v0.4.21 [276daf66] SpecialFunctions v2.5.1 [860ef19b] StableRNGs v1.0.3 [cae243ae] StackViews v0.1.2 [aedffcd0] Static v1.2.0 [0d7ed370] StaticArrayInterface v1.8.0 [90137ffa] StaticArrays v1.9.14 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.5 [4c63d2b9] StatsFuns v1.5.0 [7792a7ef] StrideArraysCore v0.5.7 [892a3eda] StringManipulation v0.4.1 [09ab397b] StructArrays v0.7.1 [53d494c1] StructIO v0.3.1 [2efcf032] SymbolicIndexingInterface v0.3.41 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [62fd8b95] TensorCore v0.1.1 [8290d209] ThreadingUtilities v0.5.5 [731e570b] TiffImages v0.11.4 [a759f4b9] TimerOutputs v0.5.29 [9f7883ad] Tracker v0.2.38 [e689c965] Tracy v0.1.5 [3bb67fe8] TranscodingStreams v0.11.3 [981d1d27] TriplotBase v0.1.0 [781d530d] TruncatedStacktraces v1.4.0 [5c2747f8] URIs v1.6.1 [3a884ed6] UnPack v1.0.2 [1cfade01] UnicodeFun v0.4.1 [1986cc42] Unitful v1.23.1 [45397f5d] UnitfulLatexify v1.7.0 [013be700] UnsafeAtomics v0.3.0 [41fe7b60] Unzip v0.2.0 [409d34a3] VectorInterface v0.5.0 [e3aaa7dc] WebP v0.1.3 [efce3f68] WoodburyMatrices v1.0.0 [e88e6eb3] Zygote v0.7.10 [700de1a5] ZygoteRules v0.2.7 ⌅ [68821587] Arpack_jll v3.5.1+1 [6e34b625] Bzip2_jll v1.0.9+0 [4e9b3aee] CRlibm_jll v1.0.1+0 [83423d85] Cairo_jll v1.18.5+0 [ee1fde0b] Dbus_jll v1.16.2+0 [5ae413db] EarCut_jll v2.2.4+0 [7cc45869] Enzyme_jll v0.0.186+0 [2702e6a9] EpollShim_jll v0.0.20230411+1 [2e619515] Expat_jll v2.6.5+0 ⌅ [b22a6f82] FFMPEG_jll v4.4.4+1 [f5851436] FFTW_jll v3.3.11+0 [a3f928ae] Fontconfig_jll v2.16.0+0 [d7e528f0] FreeType2_jll v2.13.4+0 [559328eb] FriBidi_jll v1.0.17+0 [0656b61e] GLFW_jll v3.4.0+2 [d2c73de3] GR_jll v0.73.17+0 [b0724c58] GettextRuntime_jll v0.22.4+0 [59f7168a] Giflib_jll v5.2.3+0 [7746bdde] Glib_jll v2.84.3+0 [3b182d85] Graphite2_jll v1.3.15+0 [2e76f6c2] HarfBuzz_jll v8.5.1+0 [905a6f67] Imath_jll v3.1.11+0 [1d5cc7b8] IntelOpenMP_jll v2025.0.4+0 [aacddb02] JpegTurbo_jll v3.1.1+0 [c1c5ebd0] LAME_jll v3.100.3+0 [88015f11] LERC_jll v4.0.1+0 [dad2f222] LLVMExtra_jll v0.0.37+2 [1d63c593] LLVMOpenMP_jll v18.1.8+0 [dd4b983a] LZO_jll v2.10.3+0 [ad6e5548] LibTracyClient_jll v0.9.1+6 [e9f186c6] Libffi_jll v3.4.7+0 [7e76a0d4] Libglvnd_jll v1.7.1+1 [94ce4f54] Libiconv_jll v1.18.0+0 [4b2f31a3] Libmount_jll v2.41.0+0 [89763e89] Libtiff_jll v4.7.1+0 [38a345b3] Libuuid_jll v2.41.0+0 [856f044c] MKL_jll v2025.0.1+1 [c8ffd9c3] MbedTLS_jll v2.28.6+2 [e7412a2a] Ogg_jll v1.3.6+0 [6cdc7f73] OpenBLASConsistentFPCSR_jll v0.3.29+0 [18a262bb] OpenEXR_jll v3.2.4+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [91d4177d] Opus_jll v1.5.2+0 [36c8627f] Pango_jll v1.56.3+0 ⌅ [30392449] Pixman_jll v0.44.2+0 [c0090381] Qt6Base_jll v6.8.2+1 [629bc702] Qt6Declarative_jll v6.8.2+1 [ce943373] Qt6ShaderTools_jll v6.8.2+1 [e99dba38] Qt6Wayland_jll v6.8.2+1 [f50d1b31] Rmath_jll v0.5.1+0 [a44049a8] Vulkan_Loader_jll v1.3.243+0 [a2964d1f] Wayland_jll v1.24.0+0 [ffd25f8a] XZ_jll v5.8.1+0 [f67eecfb] Xorg_libICE_jll v1.1.2+0 [c834827a] Xorg_libSM_jll v1.2.6+0 [4f6342f7] Xorg_libX11_jll v1.8.12+0 [0c0b7dd1] Xorg_libXau_jll v1.0.13+0 [935fb764] Xorg_libXcursor_jll v1.2.4+0 [a3789734] Xorg_libXdmcp_jll v1.1.6+0 [1082639a] Xorg_libXext_jll v1.3.7+0 [d091e8ba] Xorg_libXfixes_jll v6.0.1+0 [a51aa0fd] Xorg_libXi_jll v1.8.3+0 [d1454406] Xorg_libXinerama_jll v1.1.6+0 [ec84b674] Xorg_libXrandr_jll v1.5.5+0 [ea2f1a96] Xorg_libXrender_jll v0.9.12+0 [c7cfdc94] Xorg_libxcb_jll v1.17.1+0 [cc61e674] Xorg_libxkbfile_jll v1.1.3+0 [e920d4aa] Xorg_xcb_util_cursor_jll v0.1.5+0 [12413925] Xorg_xcb_util_image_jll v0.4.1+0 [2def613f] Xorg_xcb_util_jll v0.4.1+0 [975044d2] Xorg_xcb_util_keysyms_jll v0.4.1+0 [0d47668e] Xorg_xcb_util_renderutil_jll v0.3.10+0 [c22f9ab0] Xorg_xcb_util_wm_jll v0.4.2+0 [35661453] Xorg_xkbcomp_jll v1.4.7+0 [33bec58e] Xorg_xkeyboard_config_jll v2.44.0+0 [c5fb5394] Xorg_xtrans_jll v1.6.0+0 [35ca27e7] eudev_jll v3.2.14+0 [214eeab7] fzf_jll v0.61.1+0 [9a68df92] isoband_jll v0.2.3+0 [a4ae2306] libaom_jll v3.11.0+0 ⌅ [0ac62f75] libass_jll v0.15.2+0 [1183f4f0] libdecor_jll v0.2.2+0 [2db6ffa8] libevdev_jll v1.13.4+0 [f638f0a6] libfdk_aac_jll v2.0.4+0 [36db933b] libinput_jll v1.28.1+0 [b53b4c65] libpng_jll v1.6.50+0 [075b6546] libsixel_jll v1.10.5+0 [f27f6e37] libvorbis_jll v1.3.8+0 [c5f90fcd] libwebp_jll v1.6.0+0 [009596ad] mtdev_jll v1.1.7+0 [1317d2d5] oneTBB_jll v2022.0.0+0 ⌅ [1270edf5] x264_jll v2021.5.5+0 ⌅ [dfaa095f] x265_jll v3.5.0+0 [d8fb68d0] xkbcommon_jll v1.9.2+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [8bf52ea8] CRC32c v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [1a1011a3] SharedArrays v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.14.1+1 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.7.15 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.5+0 [458c3c95] OpenSSL_jll v3.5.1+0 [efcefdf7] PCRE2_jll v10.45.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.65.0+0 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... --> There are 1 threads Precompiling packages... 93735.4 ms ✓ BifurcationKit 1 dependency successfully precompiled in 96 seconds. 136 already precompiled. Problem wrap of ┌─ Bifurcation Problem with uType Vector{Float64} ├─ Inplace: false ├─ Dimension: 2 ├─ Symmetric: false └─ Parameter: p1Problem wrap for curve of PD of periodic orbits. Based on the formulation: ┌─ Bifurcation Problem with uType Vector{Float64} ├─ Inplace: false ├─ Dimension: 2 ├─ Symmetric: false └─ Parameter: p10.36935908427409414 0.2683497279761998 │ 1 │ │ 1 │ GMRES: system of size 100 pass k ‖rₖ‖ hₖ₊₁.ₖ timer 0 0 5.4e+00 ✗ ✗ ✗ ✗ 0.00s 1 2 1.0e+00 3.5e-01 0.00s 1 4 7.5e-02 2.6e-01 0.00s 1 6 5.4e-03 2.9e-01 0.00s 1 8 3.9e-04 2.7e-01 0.00s 1 10 2.7e-05 2.7e-01 0.00s 1 12 2.2e-06 3.0e-01 0.00s 1 14 1.4e-07 2.2e-01 0.00s 1 16 9.2e-09 2.6e-01 0.00s Linear Solvers: Error During Test at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:8 Got exception outside of a @test LoadError: MethodError: no method matching iterate(::BorderedArray{Vector{Float64}, Float64}) The function `iterate` exists, but no method is defined for this combination of argument types. Closest candidates are: iterate(!Matched::Base.EnvDict) @ Base env.jl:216 iterate(!Matched::Base.EnvDict, !Matched::Any) @ Base env.jl:216 iterate(!Matched::Parameters.Lines) @ Parameters ~/.julia/packages/Parameters/MK0O4/src/Parameters.jl:78 ... Stacktrace: [1] isempty(itr::BorderedArray{Vector{Float64}, Float64}) @ Base ./essentials.jl:1122 [2] norm(itr::BorderedArray{Vector{Float64}, Float64}) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.13/LinearAlgebra/src/generic.jl:727 [3] linsolve(f::BifurcationKit.MatrixFreeBLSmap{Matrix{Float64}, Vector{Float64}, Vector{Float64}, Float64, Float64, typeof(dot)}, b::BorderedArray{Vector{Float64}, Float64}, x₀::BorderedArray{Vector{Float64}, Float64}, a₀::Int64, a₁::Int64; kwargs::@Kwargs{rtol::Float64, verbosity::Int64, krylovdim::Int64, maxiter::Int64, atol::Float64, issymmetric::Bool, ishermitian::Bool, isposdef::Bool}) @ KrylovKit ~/.julia/packages/KrylovKit/jC5gU/src/linsolve/linsolve.jl:116 [4] linsolve(f::BifurcationKit.MatrixFreeBLSmap{Matrix{Float64}, Vector{Float64}, Vector{Float64}, Float64, Float64, typeof(dot)}, b::BorderedArray{Vector{Float64}, Float64}, a₀::Int64, a₁::Int64; kwargs::@Kwargs{rtol::Float64, verbosity::Int64, krylovdim::Int64, maxiter::Int64, atol::Float64, issymmetric::Bool, ishermitian::Bool, isposdef::Bool}) @ KrylovKit ~/.julia/packages/KrylovKit/jC5gU/src/linsolve/linsolve.jl:107 [5] (::GMRESKrylovKit{Float64, Nothing})(J::BifurcationKit.MatrixFreeBLSmap{Matrix{Float64}, Vector{Float64}, Vector{Float64}, Float64, Float64, typeof(dot)}, rhs::BorderedArray{Vector{Float64}, Float64}; a₀::Int64, a₁::Int64, kwargs::@Kwargs{}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/LinearSolver.jl:254 [6] (::GMRESKrylovKit{Float64, Nothing})(J::BifurcationKit.MatrixFreeBLSmap{Matrix{Float64}, Vector{Float64}, Vector{Float64}, Float64, Float64, typeof(dot)}, rhs::BorderedArray{Vector{Float64}, Float64}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/LinearSolver.jl:252 [7] (::MatrixFreeBLS{GMRESKrylovKit{Float64, Nothing}})(J::Matrix{Float64}, dR::Vector{Float64}, dzu::Vector{Float64}, dzp::Float64, R::Vector{Float64}, n::Float64, ξu::Int64, ξp::Int64; shift::Float64, dotp::Function, applyξu!::Nothing) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/LinearBorderSolver.jl:414 [8] MatrixFreeBLS @ ~/.julia/packages/BifurcationKit/I0BRP/src/LinearBorderSolver.jl:403 [inlined] [9] top-level scope @ ~/.julia/packages/BifurcationKit/I0BRP/test/test_linear.jl:189 [10] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [11] top-level scope @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:8 [12] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1858 [inlined] [13] macro expansion @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:9 [inlined] [14] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1858 [inlined] [15] macro expansion @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:11 [inlined] [16] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [17] top-level scope @ none:6 [18] eval(m::Module, e::Any) @ Core ./boot.jl:489 [19] exec_options(opts::Base.JLOptions) @ Base ./client.jl:286 [20] _start() @ Base ./client.jl:553 in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/test_linear.jl:158 [ Info: Entry in test-record-from-solution.jl WARNING: Method definition f(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/test-record-from-solution.jl:5 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/test_results.jl:5. ┌─ Deflation operator with 1 root(s) ├─ eltype = Float64 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false ┌─ Deflation operator with 1 root(s) ├─ eltype = Float32 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false ┌─ Deflation operator with 1 root(s) ├─ eltype = Float16 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false ┌─ Deflated Problem with uType Vector{Float64} ├─ Symmetric: false ├─ jacobian: nothing ├─ Parameter p └─ deflation operator: ┌─ Deflation operator with 1 root(s) ├─ eltype = Float64 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false WARNING: Method definition F4def(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/test_newton.jl:64 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/test_newton.jl:155. Precompiling packages... 109706.9 ms ✓ Plots 20524.7 ms ✓ Plots → UnitfulExt 2 dependencies successfully precompiled in 132 seconds. 178 already precompiled. Precompiling packages... 27787.6 ms ✓ BifurcationKit → PlotsExt 1 dependency successfully precompiled in 31 seconds. 274 already precompiled. | 1 │ 1.0000e+00 │ ( 1, 1) | │ 1 │ │ ( 1, 1) │ 6.875781 seconds (6.12 M allocations: 335.241 MiB, 2.23% gc time, 99.98% compilation time) ┌ Error: Unrecognized keyword arguments found. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Continuation.jl:55 Unrecognized keyword arguments: (:essai,) 6.375697 seconds (2.09 M allocations: 115.990 MiB, 99.98% compilation time) ┌─ Bifurcation Problem with uType Vector{Float64} ├─ Inplace: false ├─ Dimension: 1 ├─ Symmetric: false └─ Parameter: p 5.620337 seconds (2.11 M allocations: 116.944 MiB, 2.32% gc time, 99.98% compilation time) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ────────────────── AutoSwitch ────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -1.5, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -1.4999333333333333, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.0000e-02 Parameter p = -1.5000e+00 ──▶ -1.4859e+00 [guess] Parameter p = -1.5000e+00 ──▶ -1.4859e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 1.3200e-02 Parameter p = -1.4859e+00 ──▶ -1.4672e+00 [guess] Parameter p = -1.4859e+00 ──▶ -1.4672e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 1.7424e-02 Parameter p = -1.4672e+00 ──▶ -1.4425e+00 [guess] Parameter p = -1.4672e+00 ──▶ -1.4425e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 2.3000e-02 Parameter p = -1.4425e+00 ──▶ -1.4100e+00 [guess] Parameter p = -1.4425e+00 ──▶ -1.4100e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 3.0360e-02 Parameter p = -1.4100e+00 ──▶ -1.3671e+00 [guess] Parameter p = -1.4100e+00 ──▶ -1.3671e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 4.0075e-02 Parameter p = -1.3671e+00 ──▶ -1.3104e+00 [guess] Parameter p = -1.3671e+00 ──▶ -1.3104e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 4.7288e-02 Parameter p = -1.3104e+00 ──▶ -1.2435e+00 [guess] Parameter p = -1.3104e+00 ──▶ -1.2435e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 5.1000e-02 Parameter p = -1.2435e+00 ──▶ -1.1714e+00 [guess] Parameter p = -1.2435e+00 ──▶ -1.1714e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 5.1000e-02 Parameter p = -1.1714e+00 ──▶ -1.0993e+00 [guess] Parameter p = -1.1714e+00 ──▶ -1.0993e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 5.1000e-02 Parameter p = -1.0993e+00 ──▶ -1.0272e+00 [guess] Parameter p = -1.0993e+00 ──▶ -1.0272e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 5.1000e-02 Parameter p = -1.0272e+00 ──▶ -9.5505e-01 [guess] Parameter p = -1.0272e+00 ──▶ -9.5505e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 5.1000e-02 Parameter p = -9.5505e-01 ──▶ -8.8293e-01 [guess] Parameter p = -9.5505e-01 ──▶ -8.8293e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 5.1000e-02 Parameter p = -8.8293e-01 ──▶ -8.1081e-01 [guess] Parameter p = -8.8293e-01 ──▶ -8.1081e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 5.1000e-02 Parameter p = -8.1081e-01 ──▶ -7.3870e-01 [guess] Parameter p = -8.1081e-01 ──▶ -7.3870e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 5.1000e-02 Parameter p = -7.3870e-01 ──▶ -6.6658e-01 [guess] Parameter p = -7.3870e-01 ──▶ -6.6658e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 5.1000e-02 Parameter p = -6.6658e-01 ──▶ -5.9448e-01 [guess] Parameter p = -6.6658e-01 ──▶ -5.9448e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 5.1000e-02 Parameter p = -5.9448e-01 ──▶ -5.2238e-01 [guess] Parameter p = -5.9448e-01 ──▶ -5.2238e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 5.1000e-02 Parameter p = -5.2238e-01 ──▶ -4.5030e-01 [guess] Parameter p = -5.2238e-01 ──▶ -4.5030e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 5.1000e-02 Parameter p = -4.5030e-01 ──▶ -3.7827e-01 [guess] Parameter p = -4.5030e-01 ──▶ -3.7827e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 5.1000e-02 Parameter p = -3.7827e-01 ──▶ -3.0632e-01 [guess] Parameter p = -3.7827e-01 ──▶ -3.0632e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 5.1000e-02 Parameter p = -3.0632e-01 ──▶ -2.3460e-01 [guess] Parameter p = -3.0632e-01 ──▶ -2.3460e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 5.1000e-02 Parameter p = -2.3460e-01 ──▶ -1.6366e-01 [guess] Parameter p = -2.3460e-01 ──▶ -1.6366e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 5.1000e-02 Parameter p = -1.6366e-01 ──▶ -9.6358e-02 [guess] Parameter p = -1.6366e-01 ──▶ -9.6358e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 5.1000e-02 Parameter p = -9.6358e-02 ──▶ -5.1902e-02 [guess] Parameter p = -9.6358e-02 ──▶ -6.6989e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 5.1000e-02 Parameter p = -6.6989e-02 ──▶ -5.2693e-02 [guess] Parameter p = -6.6989e-02 ──▶ -6.0828e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 5.1000e-02 Parameter p = -6.0828e-02 ──▶ -6.1182e-02 [guess] Parameter p = -6.0828e-02 ──▶ -6.5523e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 5.1000e-02 Parameter p = -6.5523e-02 ──▶ -7.3919e-02 [guess] Parameter p = -6.5523e-02 ──▶ -7.6829e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 5.1000e-02 Parameter p = -7.6829e-02 ──▶ -9.0753e-02 [guess] Parameter p = -7.6829e-02 ──▶ -9.3007e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 5.1000e-02 Parameter p = -9.3007e-02 ──▶ -1.1128e-01 [guess] Parameter p = -9.3007e-02 ──▶ -1.1317e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 5.1000e-02 Parameter p = -1.1317e-01 ──▶ -1.3511e-01 [guess] Parameter p = -1.1317e-01 ──▶ -1.3677e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 5.1000e-02 Parameter p = -1.3677e-01 ──▶ -1.6194e-01 [guess] Parameter p = -1.3677e-01 ──▶ -1.6342e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 5.1000e-02 Parameter p = -1.6342e-01 ──▶ -1.9149e-01 [guess] Parameter p = -1.6342e-01 ──▶ -1.9283e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 5.1000e-02 Parameter p = -1.9283e-01 ──▶ -2.2352e-01 [guess] Parameter p = -1.9283e-01 ──▶ -2.2474e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 5.1000e-02 Parameter p = -2.2474e-01 ──▶ -2.5782e-01 [guess] Parameter p = -2.2474e-01 ──▶ -2.5894e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 5.1000e-02 Parameter p = -2.5894e-01 ──▶ -2.9422e-01 [guess] Parameter p = -2.5894e-01 ──▶ -2.9525e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 5.1000e-02 Parameter p = -2.9525e-01 ──▶ -3.3254e-01 [guess] Parameter p = -2.9525e-01 ──▶ -3.3349e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 5.1000e-02 Parameter p = -3.3349e-01 ──▶ -3.7264e-01 [guess] Parameter p = -3.3349e-01 ──▶ -3.7351e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 5.1000e-02 Parameter p = -3.7351e-01 ──▶ -4.1437e-01 [guess] Parameter p = -3.7351e-01 ──▶ -4.1517e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 5.1000e-02 Parameter p = -4.1517e-01 ──▶ -4.5761e-01 [guess] Parameter p = -4.1517e-01 ──▶ -4.5835e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 5.1000e-02 Parameter p = -4.5835e-01 ──▶ -5.0224e-01 [guess] Parameter p = -4.5835e-01 ──▶ -5.0293e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 5.1000e-02 Parameter p = -5.0293e-01 ──▶ -5.4817e-01 [guess] Parameter p = -5.0293e-01 ──▶ -5.4881e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 5.1000e-02 Parameter p = -5.4881e-01 ──▶ -5.9530e-01 [guess] Parameter p = -5.4881e-01 ──▶ -5.9530e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 5.1000e-02 Parameter p = -5.9530e-01 ──▶ -6.4294e-01 [guess] Parameter p = -5.9530e-01 ──▶ -6.4294e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 5.1000e-02 Parameter p = -6.4294e-01 ──▶ -6.9164e-01 [guess] Parameter p = -6.4294e-01 ──▶ -6.9164e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 5.1000e-02 Parameter p = -6.9164e-01 ──▶ -7.4133e-01 [guess] Parameter p = -6.9164e-01 ──▶ -7.4133e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 5.1000e-02 Parameter p = -7.4133e-01 ──▶ -7.9194e-01 [guess] Parameter p = -7.4133e-01 ──▶ -7.9194e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 5.1000e-02 Parameter p = -7.9194e-01 ──▶ -8.4343e-01 [guess] Parameter p = -7.9194e-01 ──▶ -8.4343e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 5.1000e-02 Parameter p = -8.4343e-01 ──▶ -8.9571e-01 [guess] Parameter p = -8.4343e-01 ──▶ -8.9571e-01 Predictor: Bordered 7.470609 seconds (2.80 M allocations: 155.456 MiB, 99.82% compilation time) 5.638719 seconds (1.93 M allocations: 105.479 MiB, 2.18% gc time, 99.95% compilation time) ┌ Warning: Assignment to `br0` in soft scope is ambiguous because a global variable by the same name exists: `br0` will be treated as a new local. Disambiguate by using `local br0` to suppress this warning or `global br0` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/I0BRP/test/simple_continuation.jl:174 ┌─ Curve type: EquilibriumCont ├─ Number of points: 89 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -1.5, ends at -3.0 ├─ Algo: PALC └─ Special points: - # 1, bp at p ≈ -0.06090827 ∈ (-0.06090827, -0.06089831), |δp|=1e-05, [converged], δ = ( 1, 0), step = 30 - # 2, endpoint at p ≈ -3.00000000, step = 88 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ────────────────── Multiple ────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -1.5, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -1.4999, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.5000e-02 Parameter p = -1.5000e+00 ──▶ -1.4788e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.195, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5000e+00 ──▶ -1.4788e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 dsnew = 0.0225 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 2.2500e-02 Parameter p = -1.4788e+00 ──▶ -1.4470e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.2925, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4788e+00 ──▶ -1.4470e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 dsnew = 0.03375 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 3.3750e-02 Parameter p = -1.4470e+00 ──▶ -1.3992e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4470e+00 ──▶ -1.3992e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 3.3750e-02 Parameter p = -1.3992e+00 ──▶ -1.3515e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3992e+00 ──▶ -1.3515e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 3.3750e-02 Parameter p = -1.3515e+00 ──▶ -1.3038e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3515e+00 ──▶ -1.3038e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 3.3750e-02 Parameter p = -1.3038e+00 ──▶ -1.2561e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3038e+00 ──▶ -1.2561e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 3.3750e-02 Parameter p = -1.2561e+00 ──▶ -1.2083e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2561e+00 ──▶ -1.2083e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 3.3750e-02 Parameter p = -1.2083e+00 ──▶ -1.1606e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2083e+00 ──▶ -1.1606e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 3.3750e-02 Parameter p = -1.1606e+00 ──▶ -1.1129e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1606e+00 ──▶ -1.1129e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 3.3750e-02 Parameter p = -1.1129e+00 ──▶ -1.0651e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1129e+00 ──▶ -1.0651e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 3.3750e-02 Parameter p = -1.0651e+00 ──▶ -1.0174e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0651e+00 ──▶ -1.0174e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 3.3750e-02 Parameter p = -1.0174e+00 ──▶ -9.6968e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0174e+00 ──▶ -9.6968e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 3.3750e-02 Parameter p = -9.6968e-01 ──▶ -9.2196e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.6968e-01 ──▶ -9.2196e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 3.3750e-02 Parameter p = -9.2196e-01 ──▶ -8.7423e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.2196e-01 ──▶ -8.7423e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 3.3750e-02 Parameter p = -8.7423e-01 ──▶ -8.2650e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.7423e-01 ──▶ -8.2651e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 3.3750e-02 Parameter p = -8.2651e-01 ──▶ -7.7878e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.2651e-01 ──▶ -7.7878e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 3.3750e-02 Parameter p = -7.7878e-01 ──▶ -7.3106e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.7878e-01 ──▶ -7.3106e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 3.3750e-02 Parameter p = -7.3106e-01 ──▶ -6.8334e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.3106e-01 ──▶ -6.8334e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 3.3750e-02 Parameter p = -6.8334e-01 ──▶ -6.3562e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.8334e-01 ──▶ -6.3562e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 3.3750e-02 Parameter p = -6.3562e-01 ──▶ -5.8790e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.3562e-01 ──▶ -5.8791e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 3.3750e-02 Parameter p = -5.8791e-01 ──▶ -5.4020e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.8791e-01 ──▶ -5.4020e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 3.3750e-02 Parameter p = -5.4020e-01 ──▶ -4.9250e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.4020e-01 ──▶ -4.9250e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 3.3750e-02 Parameter p = -4.9250e-01 ──▶ -4.4481e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -4.9250e-01 ──▶ -4.4482e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 3.3750e-02 Parameter p = -4.4482e-01 ──▶ -3.9714e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -4.4482e-01 ──▶ -3.9717e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 3.3750e-02 Parameter p = -3.9717e-01 ──▶ -3.4951e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.9717e-01 ──▶ -3.4956e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 3.3750e-02 Parameter p = -3.4956e-01 ──▶ -3.0195e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.4956e-01 ──▶ -3.0203e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 3.3750e-02 Parameter p = -3.0203e-01 ──▶ -2.5451e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.0203e-01 ──▶ -2.5467e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 3.3750e-02 Parameter p = -2.5467e-01 ──▶ -2.0735e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5467e-01 ──▶ -2.0771e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 3.3750e-02 Parameter p = -2.0771e-01 ──▶ -1.6083e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.0771e-01 ──▶ -1.6179e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 3.3750e-02 Parameter p = -1.6179e-01 ──▶ -1.1613e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] └─ i = 12, s(i) = 0.405, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6179e-01 ──▶ -1.1904e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 3.3750e-02 Parameter p = -1.1904e-01 ──▶ -7.7200e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] ├─ i = 12, s(i) = 0.405, converged = [ NO] └─ i = 11, s(i) = 0.37125, converged = [YES] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.1904e-01 ──▶ -8.5672e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 3.3750e-02 Parameter p = -8.5672e-02 ──▶ -5.4366e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] ├─ i = 12, s(i) = 0.405, converged = [ NO] └─ i = 11, s(i) = 0.37125, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.5672e-02 ──▶ -6.7992e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 3.3750e-02 Parameter p = -6.7992e-02 ──▶ -5.1454e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.7992e-02 ──▶ -6.1556e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 3.3750e-02 Parameter p = -6.1556e-02 ──▶ -5.5277e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.1556e-02 ──▶ -6.1281e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ──▶ Bifurcation detected before p = -0.06128105033038877 Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.21937500000000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.10968750000000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.054843750000000004, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.027421875000000002, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.013710937500000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0068554687500000005, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0034277343750000002, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0017138671875000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0008569335937500001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00042846679687500003, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00021423339843750001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00010711669921875001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -5.3558349609375004e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -2.6779174804687502e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.3389587402343751e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -6.6947937011718754e-6, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -3.3473968505859377e-6, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.6736984252929689e-6, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -8.368492126464844e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -4.184246063232422e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -2.092123031616211e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.0460615158081055e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -5.230307579040528e-8, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -2.615153789520264e-8, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.307576894760132e-8, converged = [YES] Predictor: Secant Predictor: Secant Predictor: Secant ──> bp Bifurcation point at p ≈ -0.06496328859565723, δn_unstable = 1, δn_imag = 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 3.3750e-02 Parameter p = -6.4963e-02 ──▶ -7.5203e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.4963e-02 ──▶ -7.1589e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 3.3750e-02 Parameter p = -7.1589e-02 ──▶ -7.8194e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.1589e-02 ──▶ -8.0562e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 3.3750e-02 Parameter p = -8.0562e-02 ──▶ -8.9523e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.0562e-02 ──▶ -9.1534e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 3.3750e-02 Parameter p = -9.1534e-02 ──▶ -1.0250e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.1534e-02 ──▶ -1.0427e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 3.3750e-02 Parameter p = -1.0427e-01 ──▶ -1.1699e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0427e-01 ──▶ -1.1859e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 3.3750e-02 Parameter p = -1.1859e-01 ──▶ -1.3291e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1859e-01 ──▶ -1.3438e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 3.3750e-02 Parameter p = -1.3438e-01 ──▶ -1.5015e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3438e-01 ──▶ -1.5151e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 3.3750e-02 Parameter p = -1.5151e-01 ──▶ -1.6863e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5151e-01 ──▶ -1.6990e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 3.3750e-02 Parameter p = -1.6990e-01 ──▶ -1.8828e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6990e-01 ──▶ -1.8947e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 3.3750e-02 Parameter p = -1.8947e-01 ──▶ -2.0903e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.8947e-01 ──▶ -2.1014e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 3.3750e-02 Parameter p = -2.1014e-01 ──▶ -2.3081e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.1014e-01 ──▶ -2.3186e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 3.3750e-02 Parameter p = -2.3186e-01 ──▶ -2.5357e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.3186e-01 ──▶ -2.5457e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 3.3750e-02 Parameter p = -2.5457e-01 ──▶ -2.7726e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5457e-01 ──▶ -2.7820e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 3.3750e-02 Parameter p = -2.7820e-01 ──▶ -3.0183e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.7820e-01 ──▶ -3.0271e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 48 Step size = 3.3750e-02 Parameter p = -3.0271e-01 ──▶ -3.2722e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.0271e-01 ──▶ -3.2806e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ┌ Error: --> Decrease ds └ @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/continuation/Multiple.jl:139 ┌ Error: --> Decrease ds └ @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/continuation/Multiple.jl:139 Continuation: Error During Test at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:27 Got exception outside of a @test LoadError: MethodError: no method matching iterate(::BorderedArray{Vector{Float64}, Float64}) The function `iterate` exists, but no method is defined for this combination of argument types. Closest candidates are: iterate(!Matched::Base.EnvDict) @ Base env.jl:216 iterate(!Matched::Base.EnvDict, !Matched::Any) @ Base env.jl:216 iterate(!Matched::Parameters.Lines) @ Parameters ~/.julia/packages/Parameters/MK0O4/src/Parameters.jl:78 ... Stacktrace: [1] isempty(itr::BorderedArray{Vector{Float64}, Float64}) @ Base ./essentials.jl:1122 [2] norm(itr::BorderedArray{Vector{Float64}, Float64}) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.13/LinearAlgebra/src/generic.jl:727 [3] newton_moore_penrose(iter::ContIterable{BifurcationKit.EquilibriumCont, BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#119#120"{typeof(F_simple)}, Nothing, Nothing, typeof(Jac_simple), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#77#78", typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}, Float64, DefaultLS, DefaultEig{typeof(real)}, typeof(norm), typeof(BifurcationKit.finalise_default), typeof(BifurcationKit.cb_default), Nothing}, state::ContState{BorderedArray{Vector{Float64}, Float64}, Float64, Vector{ComplexF64}, Matrix{ComplexF64}, Tuple{Nothing, Nothing}}, dotθ::BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}; normN::typeof(norm), callback::typeof(BifurcationKit.cb_default), kwargs::@Kwargs{iterationC::Int64, z0::BorderedArray{Vector{Float64}, Float64}}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/continuation/MoorePenrose.jl:174 [4] newton_moore_penrose @ ~/.julia/packages/BifurcationKit/I0BRP/src/continuation/MoorePenrose.jl:121 [inlined] [5] corrector!(state::ContState{BorderedArray{Vector{Float64}, Float64}, Float64, Vector{ComplexF64}, Matrix{ComplexF64}, Tuple{Nothing, Nothing}}, it::ContIterable{BifurcationKit.EquilibriumCont, BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#119#120"{typeof(F_simple)}, Nothing, Nothing, typeof(Jac_simple), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#77#78", typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}, Float64, DefaultLS, DefaultEig{typeof(real)}, typeof(norm), typeof(BifurcationKit.finalise_default), typeof(BifurcationKit.cb_default), Nothing}, algo::MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}; kwargs::@Kwargs{iterationC::Int64, z0::BorderedArray{Vector{Float64}, Float64}}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/continuation/MoorePenrose.jl:108 [6] corrector! @ ~/.julia/packages/BifurcationKit/I0BRP/src/continuation/MoorePenrose.jl:100 [inlined] [7] corrector! @ ~/.julia/packages/BifurcationKit/I0BRP/src/continuation/Contbase.jl:22 [inlined] [8] iterate(it::ContIterable{BifurcationKit.EquilibriumCont, BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#119#120"{typeof(F_simple)}, Nothing, Nothing, typeof(Jac_simple), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#77#78", typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}, Float64, DefaultLS, DefaultEig{typeof(real)}, typeof(norm), typeof(BifurcationKit.finalise_default), typeof(BifurcationKit.cb_default), Nothing}, state::ContState{BorderedArray{Vector{Float64}, Float64}, Float64, Vector{ComplexF64}, Matrix{ComplexF64}, Tuple{Nothing, Nothing}}; _verbosity::UInt8) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Continuation.jl:446 [9] iterate @ ~/.julia/packages/BifurcationKit/I0BRP/src/Continuation.jl:429 [inlined] [10] continuation!(it::ContIterable{BifurcationKit.EquilibriumCont, BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#119#120"{typeof(F_simple)}, Nothing, Nothing, typeof(Jac_simple), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#77#78", typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}, Float64, DefaultLS, DefaultEig{typeof(real)}, typeof(norm), typeof(BifurcationKit.finalise_default), typeof(BifurcationKit.cb_default), Nothing}, state::ContState{BorderedArray{Vector{Float64}, Float64}, Float64, Vector{ComplexF64}, Matrix{ComplexF64}, Tuple{Nothing, Nothing}}, contRes::ContResult{BifurcationKit.EquilibriumCont, @NamedTuple{x::Float64, param::Float64, itnewton::Int64, itlinear::Int64, ds::Float64, n_unstable::Int64, n_imag::Int64, stable::Bool, step::Int64}, Vector{ComplexF64}, Matrix{ComplexF64}, SpecialPoint{Float64, @NamedTuple{x::Float64}, Vector{Float64}, Vector{Float64}}, Vector{@NamedTuple{x::Vector{Float64}, p::Float64, step::Int64}}, ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}, BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#119#120"{typeof(F_simple)}, Nothing, Nothing, typeof(Jac_simple), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#77#78", typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Continuation.jl:561 [11] continuation(it::ContIterable{BifurcationKit.EquilibriumCont, BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#119#120"{typeof(F_simple)}, Nothing, Nothing, typeof(Jac_simple), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#77#78", typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, MoorePenrose{PALC{Secant, MatrixBLS{DefaultLS}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}, Float64, DefaultLS, DefaultEig{typeof(real)}, typeof(norm), typeof(BifurcationKit.finalise_default), typeof(BifurcationKit.cb_default), Nothing}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Continuation.jl:588 [12] continuation(prob::BifurcationProblem{BifFunction{typeof(F_simple), BifurcationKit.var"#119#120"{typeof(F_simple)}, Nothing, Nothing, typeof(Jac_simple), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Float64, Nothing}, Vector{Float64}, Float64, typeof(identity), typeof(BifurcationKit.plot_default), var"#77#78", typeof(BifurcationKit.save_solution_default), typeof(BifurcationKit.update_default)}, alg::MoorePenrose{PALC{Secant, MatrixBLS{Nothing}, Float64, BifurcationKit.DotTheta{BifurcationKit.var"#DotTheta##0#DotTheta##1", BifurcationKit.var"#DotTheta##2#DotTheta##3"}}, MatrixBLS{Nothing}}, contparams::ContinuationPar{Float64, DefaultLS, DefaultEig{typeof(real)}}; linear_algo::Nothing, bothside::Bool, kwargs::@Kwargs{verbosity::Int64}) @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/Continuation.jl:659 [13] top-level scope @ ~/.julia/packages/BifurcationKit/I0BRP/test/simple_continuation.jl:309 [14] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [15] top-level scope @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:8 [16] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1858 [inlined] [17] macro expansion @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:28 [inlined] [18] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1858 [inlined] [19] macro expansion @ ~/.julia/packages/BifurcationKit/I0BRP/test/runtests.jl:28 [inlined] [20] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [21] top-level scope @ none:6 [22] eval(m::Module, e::Any) @ Core ./boot.jl:489 [23] exec_options(opts::Base.JLOptions) @ Base ./client.jl:286 [24] _start() @ Base ./client.jl:553 in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/simple_continuation.jl:309 WARNING: Method definition F0_simple(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/simple_continuation.jl:10 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/plots-utils.jl:8. Transcritical bifurcation point at μ ≈ 0.0005310637271224761 Normal form (aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6) ┌─ a = 7.187319746485116e-14 ├─ b1 = 3.2300000000172466 ├─ b2 = -2.239999999999969 └─ b3 = 1.4040000000000001 ──> For μ = 0.0005310637271224761 ──> There are 1 unstable eigenvalues ──> Eigenvalues for continuation step 1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌─ Normal form computation for 1d kernel ├─ analyse bifurcation at p = 0.0005310640141772467 ├─ smallest eigenvalue at bifurcation = 0.0017153367657925067 ┌── left eigenvalues = 2-element Vector{ComplexF64}: 0.0017153367657925067 + 0.0im -1.0 + 0.0im ├── right eigenvalue = 0.0017153367657925067 └── left eigenvalue = 0.0017153367657925067 + 0.0im ┌── Normal form: aδμ + b1⋅x⋅δμ + b2⋅x²/2 + b3⋅x³/6 ├─── a = 2.682912478025423e-12 ├─── b1 = 3.23 ├─── b2/2 = -5.830973868649681e-13 └─── b3/6 = -0.234 SuperCritical - Pitchfork bifurcation point at μ ≈ 0.0005310640141772467 Normal form x ─▶ x + a⋅δp + x⋅(b1⋅δp + b3⋅x²/6) ┌─ a = 2.682912478025423e-12 ├─ b1 = 3.23 ├─ b2 = -1.1661947737299363e-12 └─ b3 = -1.4040000000000001 ┌─ Curve type: EquilibriumCont from Pitchfork bifurcation point. ├─ Number of points: 20 ├─ Type of vectors: Vector{Float64} ├─ Parameter μ starts at 0.0005310640141772467, ends at 0.00633354489275113 ├─ Algo: PALC └─ Special points: - # 1, bp at μ ≈ +0.00000029 ∈ (+0.00000029, +0.00053106), |δp|=5e-04, [ guess], δ = (-1, 0), step = 1 - # 2, endpoint at μ ≈ +0.00721756, step = 20 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ───▶ Automatic computation of bifurcation diagram ──────────────────────────────────────────────────────────────────────────────── ──▶ New branch, level = 2, dim(Kernel) = 1, code = (0,), from bp #1 at p = 4.531578045579016e-6, type = bp ────▶ From Pitchfork - # 1, bp at p ≈ +0.00000453 ∈ (-0.00000410, +0.00000453), |δp|=9e-06, [converged], δ = ( 1, 0), step = 6 ┌ Info: │ autodiff = true └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.8339151298192827e-18, -1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 0.0 0.0 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 6.76782e-19 9.32786e-20 9.32786e-20 3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: 6.47628e-19 -8.91189e-19 -8.91189e-19 3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 0.0162978 0.0162978 0.00358594 [:, :, 2] = 0.0162978 0.00358594 0.00358594 0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0863631 0.0273946 0.0273946 -0.0513304 [:, :, 2] = 0.0273946 -0.0513304 -0.0513304 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.8339151298192827e-18, -1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 0.0 0.0 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 6.76782e-19 9.32786e-20 9.32786e-20 3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: 6.47628e-19 -8.91189e-19 -8.91189e-19 3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 0.0162978 0.0162978 0.00358594 [:, :, 2] = 0.0162978 0.00358594 0.00358594 0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0863631 0.0273946 0.0273946 -0.0513304 [:, :, 2] = 0.0273946 -0.0513304 -0.0513304 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.8339151298192827e-18, -1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 0.0 0.0 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 6.76782e-19 9.32786e-20 9.32786e-20 3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: 6.47628e-19 -8.91189e-19 -8.91189e-19 3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 0.0162978 0.0162978 0.00358594 [:, :, 2] = 0.0162978 0.00358594 0.00358594 0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0863631 0.0273946 0.0273946 -0.0513304 [:, :, 2] = 0.0273946 -0.0513304 -0.0513304 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.8339151298192827e-18, -1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 0.0 0.0 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 6.76782e-19 9.32786e-20 9.32786e-20 3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: 6.47628e-19 -8.91189e-19 -8.91189e-19 3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 0.0162978 0.0162978 0.00358594 [:, :, 2] = 0.0162978 0.00358594 0.00358594 0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0863631 0.0273946 0.0273946 -0.0513304 [:, :, 2] = 0.0273946 -0.0513304 -0.0513304 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──▶ (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.8339151298192827e-18, -1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 0.0 0.0 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 6.76782e-19 9.32786e-20 9.32786e-20 3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: 6.47628e-19 -8.91189e-19 -8.91189e-19 3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 0.0162978 0.0162978 0.00358594 [:, :, 2] = 0.0162978 0.00358594 0.00358594 0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0863631 0.0273946 0.0273946 -0.0513304 [:, :, 2] = 0.0273946 -0.0513304 -0.0513304 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──▶ (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.8339151298192827e-18, -1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 0.0 0.0 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 6.76782e-19 9.32786e-20 9.32786e-20 3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: 6.47628e-19 -8.91189e-19 -8.91189e-19 3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 0.0162978 0.0162978 0.00358594 [:, :, 2] = 0.0162978 0.00358594 0.00358594 0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0863631 0.0273946 0.0273946 -0.0513304 [:, :, 2] = 0.0273946 -0.0513304 -0.0513304 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──▶ (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.8339151298192827e-18, -1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 0.0 0.0 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 6.76782e-19 9.32786e-20 9.32786e-20 3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: 6.47628e-19 -8.91189e-19 -8.91189e-19 3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 0.0162978 0.0162978 0.00358594 [:, :, 2] = 0.0162978 0.00358594 0.00358594 0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0863631 0.0273946 0.0273946 -0.0513304 [:, :, 2] = 0.0273946 -0.0513304 -0.0513304 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [-0.0034996756067560268, -0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──▶ (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: -0.0034996756067560268 + 0.0im -0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [-0.0034996756067560268, -0.0034996756067560268] ──▶ VP★ = [-0.0034996756067560268, -0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [-1.8339151298192827e-18, -1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: -3.23 0.0 0.0 -3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: 6.76782e-19 9.32786e-20 9.32786e-20 3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: 6.47628e-19 -8.91189e-19 -8.91189e-19 3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.22251 0.0162978 0.0162978 0.00358594 [:, :, 2] = 0.0162978 0.00358594 0.00358594 0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = 0.0863631 0.0273946 0.0273946 -0.0513304 [:, :, 2] = 0.0273946 -0.0513304 -0.0513304 0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + -3.23 * x1 ⋅ p + 0.123 ⋅ x1³ + 0.234 ⋅ x1 ⋅ x2² + -3.23 * x2 ⋅ p + 0.456 ⋅ x1² ⋅ x2 + 0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.8339151298192827e-18, 1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 0.0 0.0 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -6.76782e-19 -9.32786e-20 -9.32786e-20 -3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: -6.47628e-19 8.91189e-19 8.91189e-19 -3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 -0.0162978 -0.0162978 -0.00358594 [:, :, 2] = -0.0162978 -0.00358594 -0.00358594 -0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0863631 -0.0273946 -0.0273946 0.0513304 [:, :, 2] = -0.0273946 0.0513304 0.0513304 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.8339151298192827e-18, 1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 0.0 0.0 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -6.76782e-19 -9.32786e-20 -9.32786e-20 -3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: -6.47628e-19 8.91189e-19 8.91189e-19 -3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 -0.0162978 -0.0162978 -0.00358594 [:, :, 2] = -0.0162978 -0.00358594 -0.00358594 -0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0863631 -0.0273946 -0.0273946 0.0513304 [:, :, 2] = -0.0273946 0.0513304 0.0513304 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.8339151298192827e-18, 1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 0.0 0.0 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -6.76782e-19 -9.32786e-20 -9.32786e-20 -3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: -6.47628e-19 8.91189e-19 8.91189e-19 -3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 -0.0162978 -0.0162978 -0.00358594 [:, :, 2] = -0.0162978 -0.00358594 -0.00358594 -0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0863631 -0.0273946 -0.0273946 0.0513304 [:, :, 2] = -0.0273946 0.0513304 0.0513304 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.8339151298192827e-18, 1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 0.0 0.0 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -6.76782e-19 -9.32786e-20 -9.32786e-20 -3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: -6.47628e-19 8.91189e-19 8.91189e-19 -3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 -0.0162978 -0.0162978 -0.00358594 [:, :, 2] = -0.0162978 -0.00358594 -0.00358594 -0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0863631 -0.0273946 -0.0273946 0.0513304 [:, :, 2] = -0.0273946 0.0513304 0.0513304 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──▶ (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.8339151298192827e-18, 1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 0.0 0.0 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -6.76782e-19 -9.32786e-20 -9.32786e-20 -3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: -6.47628e-19 8.91189e-19 8.91189e-19 -3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 -0.0162978 -0.0162978 -0.00358594 [:, :, 2] = -0.0162978 -0.00358594 -0.00358594 -0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0863631 -0.0273946 -0.0273946 0.0513304 [:, :, 2] = -0.0273946 0.0513304 0.0513304 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 6) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d! (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──▶ (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.8339151298192827e-18, 1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 0.0 0.0 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -6.76782e-19 -9.32786e-20 -9.32786e-20 -3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: -6.47628e-19 8.91189e-19 8.91189e-19 -3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 -0.0162978 -0.0162978 -0.00358594 [:, :, 2] = -0.0162978 -0.00358594 -0.00358594 -0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0863631 -0.0273946 -0.0273946 0.0513304 [:, :, 2] = -0.0273946 0.0513304 0.0513304 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = true └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──▶ (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.8339151298192827e-18, 1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 0.0 0.0 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -6.76782e-19 -9.32786e-20 -9.32786e-20 -3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: -6.47628e-19 8.91189e-19 8.91189e-19 -3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 -0.0162978 -0.0162978 -0.00358594 [:, :, 2] = -0.0162978 -0.00358594 -0.00358594 -0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0863631 -0.0273946 -0.0273946 0.0513304 [:, :, 2] = -0.0273946 0.0513304 0.0513304 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ┌ Info: │ autodiff = false └ _F = Fbp2d (generic function with 1 method) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Normal form Computation for a 2-d kernel ──▶ analyse bifurcation at p = 0.0010834908999244664 ──▶ smallest eigenvalues at bifurcation = [0.0034996756067560268, 0.0034996756067560268] [ Info: No eigenvector recorded, computing them on the fly ──▶ (λs, λs (recomputed)) = 3×2 Matrix{ComplexF64}: 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im 0.00349968+0.0im -1.0+0.0im -1.0+0.0im 3-element Vector{ComplexF64}: 0.0034996756067560268 + 0.0im 0.0034996756067560268 + 0.0im -1.0 + 0.0im ──▶ VP[1] paired with VP★[1] ──▶ VP[2] paired with VP★[2] ──▶ VP = [0.0034996756067560268, 0.0034996756067560268] ──▶ VP★ = [0.0034996756067560268, 0.0034996756067560268] ──▶ Gram matrix = 2×2 Matrix{Float64}: 1.0 5.55112e-17 -5.55112e-17 1.0 ──▶ a (∂/∂p) = [1.8339151298192827e-18, 1.9671624963894663e-17] ──▶ b1 (∂²/∂x∂p) = 2×2 Matrix{Float64}: 3.23 0.0 0.0 3.23 ──▶ b2 (∂²/∂x²) = ──▶ component 1 2×2 Matrix{Float64}: -6.76782e-19 -9.32786e-20 -9.32786e-20 -3.4841e-19 ──▶ component 2 2×2 Matrix{Float64}: -6.47628e-19 8.91189e-19 8.91189e-19 -3.97801e-18 ──▶ b3 (∂³/∂x³) = ──▶ component 1 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.22251 -0.0162978 -0.0162978 -0.00358594 [:, :, 2] = -0.0162978 -0.00358594 -0.00358594 -0.0187349 ──▶ component 2 2×2×2 Array{Float64, 3}: [:, :, 1] = -0.0863631 -0.0273946 -0.0273946 0.0513304 [:, :, 2] = -0.0273946 0.0513304 0.0513304 -0.22251 Non simple bifurcation point at μ ≈ 0.0010834908999244664. Kernel dimension = 2 Normal form: + 3.23 * x1 ⋅ p + -0.123 ⋅ x1³ + -0.234 ⋅ x1 ⋅ x2² + 3.23 * x2 ⋅ p + -0.456 ⋅ x1² ⋅ x2 + -0.123 ⋅ x2³ ──▶ BS from Non simple branch point ──▶ we find 1 (resp. 7) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ BS from Non simple branch point ──▶ we found 10 (resp. 10) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). [Bifurcation diagram] ┌─ From 0-th bifurcation point. ├─ Children number: 4 └─ Root (recursion level 1) ┌─ Curve type: EquilibriumCont ├─ Number of points: 76 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -0.2, ends at 0.3 ├─ Algo: PALC └─ Special points: - # 1, bp at p ≈ +0.00000281 ∈ (-0.00000065, +0.00000281), |δp|=3e-06, [converged], δ = ( 1, 0), step = 31 - # 2, bp at p ≈ +0.15000005 ∈ (+0.14999995, +0.15000005), |δp|=1e-07, [converged], δ = (-1, 0), step = 53 - # 3, endpoint at p ≈ +0.30000000, step = 75 ┌ Warning: Gram matrix not equal to identity. Switching to LU algorithm. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/I0BRP/src/NormalForms.jl:440 G (det = -1.0) = 3×3 Matrix{Float64}: 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 3×3 Matrix{Float64}: 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 ──▶ BS from Non simple branch point ──▶ we find 2 (resp. 2) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ Looking for solutions after the bifurcation point... ──▶ Looking for solutions before the bifurcation point... ──▶ we find 2 (resp. 2) roots after (resp. before) the bifurcation point. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ BS from Non simple branch point ──▶ we find 2 (resp. 2) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ Looking for solutions after the bifurcation point... ──▶ Looking for solutions before the bifurcation point... ──▶ we find 2 (resp. 2) roots after (resp. before) the bifurcation point. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ BS from Non simple branch point ──▶ we find 4 (resp. 4) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ Looking for solutions after the bifurcation point... ──▶ Looking for solutions before the bifurcation point... ──▶ we find 4 (resp. 4) roots after (resp. before) the bifurcation point. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ BS from Non simple branch point ──▶ we find 4 (resp. 4) roots before (resp. after) the bifurcation point counting the trivial solution (Reduced equation). ──▶ Looking for solutions after the bifurcation point... ──▶ Looking for solutions before the bifurcation point... ──▶ we find 4 (resp. 4) roots after (resp. before) the bifurcation point. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 451 running 1 of 1 signal (10): User defined signal 1 _ZNK4llvm11Instruction18getAllMetadataImplERNS_15SmallVectorImplISt4pairIjPNS_6MDNodeEEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN12_GLOBAL__N_18Verifier16visitInstructionERN4llvm11InstructionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN12_GLOBAL__N_18Verifier22visitGetElementPtrInstERN4llvm17GetElementPtrInstE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN12_GLOBAL__N_18Verifier6verifyERKN4llvm8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm14verifyFunctionERKNS_8FunctionEPNS_11raw_ostreamE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) verifyLLVMIR at /source/src/pipeline.cpp:888 runOnFunction at /source/src/llvm-alloc-opt.cpp:1338 [inlined] run at /source/src/llvm-alloc-opt.cpp:1348 run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm11PassManagerINS_8FunctionENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm27ModuleToFunctionPassAdaptor3runERNS_6ModuleERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm11PassManagerINS_6ModuleENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/src/pipeline.cpp:791 operator() at /source/src/jitlayers.cpp:1511 withModuleDo<(anonymous namespace)::sizedOptimizerT::operator()(llvm::orc::ThreadSafeModule) [with long unsigned int N = 4]:: > at /source/usr/include/llvm/ExecutionEngine/Orc/ThreadSafeModule.h:136 [inlined] operator() at /source/src/jitlayers.cpp:1472 [inlined] operator() at /source/src/jitlayers.cpp:1624 [inlined] addModule at /source/src/jitlayers.cpp:2081 jl_compile_codeinst_now at /source/src/jitlayers.cpp:685 jl_compile_codeinst_impl at /source/src/jitlayers.cpp:876 jl_compile_method_internal at /source/src/gf.c:3319 _jl_invoke at /source/src/gf.c:3799 [inlined] ijl_apply_generic at /source/src/gf.c:4004 continuation at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/src/Continuation.jl:588 #continuation#309 at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/src/Continuation.jl:659 continuation at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/src/Continuation.jl:629 unknown function (ip: 0x7d1b764e1933) at (unknown file) _jl_invoke at /source/src/gf.c:3807 [inlined] ijl_apply_generic at /source/src/gf.c:4004 top-level scope at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/testNF.jl:281 _jl_invoke at /source/src/gf.c:3807 [inlined] ijl_invoke at /source/src/gf.c:3814 jl_toplevel_eval_flex at /source/src/toplevel.c:762 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 include_string at ./loading.jl:2848 _jl_invoke at /source/src/gf.c:3807 [inlined] ijl_apply_generic at /source/src/gf.c:4004 _include at ./loading.jl:2908 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_51466.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3807 [inlined] ijl_apply_generic at /source/src/gf.c:4004 jl_apply at /source/src/julia.h:2345 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:708 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 include_string at ./loading.jl:2848 _jl_invoke at /source/src/gf.c:3807 [inlined] ijl_apply_generic at /source/src/gf.c:4004 _include at ./loading.jl:2908 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_51466.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3807 [inlined] ijl_apply_generic at /source/src/gf.c:4004 jl_apply at /source/src/julia.h:2345 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:708 jl_interpret_toplevel_thunk at /source/src/interpreter.c:899 jl_toplevel_eval_flex at /source/src/toplevel.c:773 jl_toplevel_eval_flex at /source/src/toplevel.c:713 ijl_toplevel_eval at /source/src/toplevel.c:785 ijl_toplevel_eval_in at /source/src/toplevel.c:830 eval at ./boot.jl:489 exec_options at ./client.jl:286 _start at ./client.jl:553 jfptr__start_59882.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3807 [inlined] ijl_apply_generic at /source/src/gf.c:4004 jl_apply at /source/src/julia.h:2345 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7d1b96fba249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1192 wait_forever at ./task.jl:1129 jfptr_wait_forever_68198.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3807 [inlined] ijl_apply_generic at /source/src/gf.c:4004 jl_apply at /source/src/julia.h:2345 [inlined] start_task at /source/src/task.c:1249 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007da694c895a0 Total snapshots: 481. Utilization: 0% ╎481 @Base/task.jl:1129 wait_forever() 480╎ 481 @Base/task.jl:1192 wait() [451] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/I0BRP/test/testNF.jl:273 _ZN12_GLOBAL__N_18Verifier16visitInstructionERN4llvm11InstructionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) unknown function (ip: 0x5) at (unknown file) unknown function (ip: 0x49ba73f) at (unknown file) unknown function (ip: 0x805119f) at (unknown file) unknown function (ip: (nil)) at (unknown file) Allocations: 524018696 (Pool: 524013776; Big: 4920); GC: 166 PkgEval terminated after 2745.46s: test duration exceeded the time limit