Package evaluation of GaussianMixtures on Julia 1.13.0-DEV.843 (7634fdf1d6*) started at 2025-07-10T17:59:00.933 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.77s ################################################################################ # Installation # Installing GaussianMixtures... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [cc18c42c] + GaussianMixtures v0.3.13 Updating `~/.julia/environments/v1.13/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [7d9fca2a] + Arpack v0.5.4 [aaaa29a8] + Clustering v0.15.8 [34da2185] + Compat v4.17.0 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [8bb1440f] + DelimitedFiles v1.9.1 [b4f34e82] + Distances v0.10.12 [31c24e10] + Distributions v0.25.120 [ffbed154] + DocStringExtensions v0.9.5 [5789e2e9] + FileIO v1.17.0 [1a297f60] + FillArrays v1.13.0 [cc18c42c] + GaussianMixtures v0.3.13 [076d061b] + HashArrayMappedTries v0.2.0 [34004b35] + HypergeometricFunctions v0.3.28 [92d709cd] + IrrationalConstants v0.2.4 [033835bb] + JLD2 v0.5.15 [692b3bcd] + JLLWrappers v1.7.0 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 [e1d29d7a] + Missings v1.2.0 [b8a86587] + NearestNeighbors v0.4.21 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.35 [aea7be01] + PrecompileTools v1.3.2 [21216c6a] + Preferences v1.4.3 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.8.0 [6e75b9c4] + ScikitLearnBase v0.5.0 [7e506255] + ScopedValues v1.3.0 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.1 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.5 [4c63d2b9] + StatsFuns v1.5.0 [3bb67fe8] + TranscodingStreams v0.11.3 ⌅ [68821587] + Arpack_jll v3.5.1+1 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.12.0 [f489334b] + StyledStrings v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.14.1+1 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.5.20 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.5+0 [458c3c95] + OpenSSL_jll v3.5.1+0 [efcefdf7] + PCRE2_jll v10.45.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [8e850b90] + libblastrampoline_jll v5.13.1+0 [8e850ede] + nghttp2_jll v1.65.0+0 [3f19e933] + p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.26s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 38.87s ################################################################################ # Testing # Testing GaussianMixtures Status `/tmp/jl_83cub7/Project.toml` [7d9fca2a] Arpack v0.5.4 [aaaa29a8] Clustering v0.15.8 [34da2185] Compat v4.17.0 [8bb1440f] DelimitedFiles v1.9.1 [31c24e10] Distributions v0.25.120 [5789e2e9] FileIO v1.17.0 [cc18c42c] GaussianMixtures v0.3.13 [033835bb] JLD2 v0.5.15 [90014a1f] PDMats v0.11.35 [ce6b1742] RDatasets v0.7.7 [6e75b9c4] ScikitLearnBase v0.5.0 [276daf66] SpecialFunctions v2.5.1 [10745b16] Statistics v1.11.1 [2913bbd2] StatsBase v0.34.5 [8ba89e20] Distributed v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_83cub7/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [7d9fca2a] Arpack v0.5.4 [336ed68f] CSV v0.10.15 [324d7699] CategoricalArrays v0.10.8 [aaaa29a8] Clustering v0.15.8 [944b1d66] CodecZlib v0.7.8 [34da2185] Compat v4.17.0 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [a93c6f00] DataFrames v1.7.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [8bb1440f] DelimitedFiles v1.9.1 [b4f34e82] Distances v0.10.12 [31c24e10] Distributions v0.25.120 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 [5789e2e9] FileIO v1.17.0 [48062228] FilePathsBase v0.9.24 [1a297f60] FillArrays v1.13.0 [cc18c42c] GaussianMixtures v0.3.13 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [842dd82b] InlineStrings v1.4.4 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.4 [82899510] IteratorInterfaceExtensions v1.0.0 [033835bb] JLD2 v0.5.15 [692b3bcd] JLLWrappers v1.7.0 [b964fa9f] LaTeXStrings v1.4.0 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [e1d29d7a] Missings v1.2.0 [78c3b35d] Mocking v0.8.1 [b8a86587] NearestNeighbors v0.4.21 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.35 [69de0a69] Parsers v2.8.3 [2dfb63ee] PooledArrays v1.4.3 [aea7be01] PrecompileTools v1.3.2 [21216c6a] Preferences v1.4.3 [08abe8d2] PrettyTables v2.4.0 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 ⌅ [df47a6cb] RData v0.8.3 [ce6b1742] RDatasets v0.7.7 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.8.0 [6e75b9c4] ScikitLearnBase v0.5.0 [7e506255] ScopedValues v1.3.0 [6c6a2e73] Scratch v1.3.0 [91c51154] SentinelArrays v1.4.8 [a2af1166] SortingAlgorithms v1.2.1 [276daf66] SpecialFunctions v2.5.1 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.5 [4c63d2b9] StatsFuns v1.5.0 [892a3eda] StringManipulation v0.4.1 [dc5dba14] TZJData v1.5.0+2025b [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [f269a46b] TimeZones v1.21.3 [3bb67fe8] TranscodingStreams v0.11.3 [ea10d353] WeakRefStrings v1.4.2 [76eceee3] WorkerUtilities v1.6.1 ⌅ [68821587] Arpack_jll v3.5.1+1 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.14.1+1 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.5.20 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.5+0 [458c3c95] OpenSSL_jll v3.5.1+0 [efcefdf7] PCRE2_jll v10.45.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.65.0+0 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Precompiling packages... 86542.4 ms ✓ DataFrames 22634.2 ms ✓ RData 19569.8 ms ✓ RDatasets 3 dependencies successfully precompiled in 130 seconds. 70 already precompiled. (100000, -953377.6253972234, [36168.46968731489, 63831.530312685114], [-24012.18186775629 -6845.712352117569 26916.92441510712; 23919.316483993338 6260.152746192148 -27146.925918004566], [[42621.083100086194 -1421.5788601341442 -6265.8572720005595; -1421.5788601341442 36790.59972951779 -4999.018546095495; -6265.8572720005595 -4999.018546095495 41759.2032085603], [57353.29115666922 1726.9328728181326 6217.543040416754; 1726.9328728181326 62980.58396787934 5144.791173077394; 6217.543040416753 5144.791173077395 58732.42984942378]]) Test Summary: | Pass Total Time data.jl | 8 8 4m46.9s [ Info: Initializing GMM, 2 Gaussians diag covariance 1 dimensions using 272 data points K-means converged with 5 iterations (objv = 8855.79069767458) ┌ Info: K-means with 272 data points using 5 iterations └ 68.0 data points per parameter [ Info: Initializing GMM, 8 Gaussians diag covariance 2 dimensions using 272 data points K-means converged with 7 iterations (objv = 1002.4737467876503) ┌ Info: K-means with 272 data points using 7 iterations └ 11.3 data points per parameter ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = lowerbound(vg::VGMM{Float64}, N::Vector{Float64}, mx::Matrix{Float64}, S::Vector{Matrix{Float64}}, Elogπ::Vector{Float64}, ElogdetΛ::Vector{Float64}, ElogpZπqZ::Float64) at bayes.jl:221 └ @ Core ~/.julia/packages/GaussianMixtures/RYvNa/src/bayes.jl:221 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = lowerbound(vg::VGMM{Float64}, N::Vector{Float64}, mx::Matrix{Float64}, S::Vector{Matrix{Float64}}, Elogπ::Vector{Float64}, ElogdetΛ::Vector{Float64}, ElogpZπqZ::Float64) at bayes.jl:221 └ @ Core ~/.julia/packages/GaussianMixtures/RYvNa/src/bayes.jl:221 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = _broadcast_getindex_evalf at broadcast.jl:701 [inlined] └ @ Core ./broadcast.jl:701 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = lowerbound(vg::VGMM{Float64}, N::Vector{Float64}, mx::Matrix{Float64}, S::Vector{Matrix{Float64}}, Elogπ::Vector{Float64}, ElogdetΛ::Vector{Float64}, ElogpZπqZ::Float64) at bayes.jl:230 └ @ Core ~/.julia/packages/GaussianMixtures/RYvNa/src/bayes.jl:230 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = _broadcast_getindex_evalf at broadcast.jl:701 [inlined] └ @ Core ./broadcast.jl:701 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = _broadcast_getindex_evalf at broadcast.jl:701 [inlined] └ @ Core ./broadcast.jl:701 History[Thu Jul 10 18:09:18 2025: Initializing GMM, 8 Gaussians diag covariance 2 dimensions using 272 data points , Thu Jul 10 18:09:20 2025: K-means with 272 data points using 7 iterations 11.3 data points per parameter , Thu Jul 10 18:09:20 2025: EM with 272 data points 0 iterations avll -2.060468 5.8 data points per parameter , Thu Jul 10 18:09:27 2025: GMM converted to Variational GMM , Thu Jul 10 18:09:38 2025: iteration 1, lowerbound -3.739616 , Thu Jul 10 18:09:38 2025: iteration 2, lowerbound -3.591831 , Thu Jul 10 18:09:38 2025: iteration 3, lowerbound -3.446621 , Thu Jul 10 18:09:38 2025: iteration 4, lowerbound -3.306892 , Thu Jul 10 18:09:38 2025: iteration 5, lowerbound -3.195577 , Thu Jul 10 18:09:38 2025: dropping number of Gaussions to 7 , Thu Jul 10 18:09:39 2025: iteration 6, lowerbound -3.120324 , Thu Jul 10 18:09:39 2025: dropping number of Gaussions to 6 , Thu Jul 10 18:09:39 2025: iteration 7, lowerbound -3.058266 , Thu Jul 10 18:09:39 2025: dropping number of Gaussions to 5 , Thu Jul 10 18:09:39 2025: iteration 8, lowerbound -2.996530 , Thu Jul 10 18:09:39 2025: iteration 9, lowerbound -2.939319 , Thu Jul 10 18:09:39 2025: dropping number of Gaussions to 4 , Thu Jul 10 18:09:39 2025: iteration 10, lowerbound -2.879101 , Thu Jul 10 18:09:39 2025: iteration 11, lowerbound -2.816881 , Thu Jul 10 18:09:39 2025: iteration 12, lowerbound -2.766548 , Thu Jul 10 18:09:39 2025: iteration 13, lowerbound -2.729263 , Thu Jul 10 18:09:39 2025: iteration 14, lowerbound -2.703300 , Thu Jul 10 18:09:39 2025: dropping number of Gaussions to 3 , Thu Jul 10 18:09:39 2025: iteration 15, lowerbound -2.666214 , Thu Jul 10 18:09:39 2025: iteration 16, lowerbound -2.625039 , Thu Jul 10 18:09:39 2025: iteration 17, lowerbound -2.583053 , Thu Jul 10 18:09:39 2025: iteration 18, lowerbound -2.538860 , Thu Jul 10 18:09:39 2025: iteration 19, lowerbound -2.495135 , Thu Jul 10 18:09:39 2025: iteration 20, lowerbound -2.454117 , Thu Jul 10 18:09:39 2025: iteration 21, lowerbound -2.416800 , Thu Jul 10 18:09:39 2025: iteration 22, lowerbound -2.382908 , Thu Jul 10 18:09:39 2025: iteration 23, lowerbound -2.352137 , Thu Jul 10 18:09:39 2025: iteration 24, lowerbound -2.326361 , Thu Jul 10 18:09:39 2025: iteration 25, lowerbound -2.310428 , Thu Jul 10 18:09:39 2025: iteration 26, lowerbound -2.308146 , Thu Jul 10 18:09:39 2025: dropping number of Gaussions to 2 , Thu Jul 10 18:09:39 2025: iteration 27, lowerbound -2.302915 , Thu Jul 10 18:09:39 2025: iteration 28, lowerbound -2.299259 , Thu Jul 10 18:09:39 2025: iteration 29, lowerbound -2.299256 , Thu Jul 10 18:09:39 2025: iteration 30, lowerbound -2.299254 , Thu Jul 10 18:09:39 2025: iteration 31, lowerbound -2.299254 , Thu Jul 10 18:09:39 2025: iteration 32, lowerbound -2.299253 , Thu Jul 10 18:09:39 2025: iteration 33, lowerbound -2.299253 , Thu Jul 10 18:09:39 2025: iteration 34, lowerbound -2.299253 , Thu Jul 10 18:09:39 2025: iteration 35, lowerbound -2.299253 , Thu Jul 10 18:09:39 2025: iteration 36, lowerbound -2.299253 , Thu Jul 10 18:09:39 2025: iteration 37, lowerbound -2.299253 , Thu Jul 10 18:09:39 2025: iteration 38, lowerbound -2.299253 , Thu Jul 10 18:09:39 2025: iteration 39, lowerbound -2.299253 , Thu Jul 10 18:09:39 2025: iteration 40, lowerbound -2.299253 , Thu Jul 10 18:09:39 2025: iteration 41, lowerbound -2.299253 , Thu Jul 10 18:09:39 2025: iteration 42, lowerbound -2.299253 , Thu Jul 10 18:09:39 2025: iteration 43, lowerbound -2.299253 , Thu Jul 10 18:09:39 2025: iteration 44, lowerbound -2.299253 , Thu Jul 10 18:09:39 2025: iteration 45, lowerbound -2.299253 , Thu Jul 10 18:09:39 2025: iteration 46, lowerbound -2.299253 , Thu Jul 10 18:09:39 2025: iteration 47, lowerbound -2.299253 , Thu Jul 10 18:09:39 2025: iteration 48, lowerbound -2.299253 , Thu Jul 10 18:09:39 2025: iteration 49, lowerbound -2.299253 , Thu Jul 10 18:09:39 2025: iteration 50, lowerbound -2.299253 , Thu Jul 10 18:09:39 2025: 50 variational Bayes EM-like iterations using 272 data points, final lowerbound -2.299253 ] α = [95.95490777385704, 178.04509222614294] β = [95.95490777385704, 178.04509222614294] m = [2.0002292577742864 53.851987172455644; 4.250300733268863 79.28686694434643] ν = [97.95490777385704, 180.04509222614294] W = LinearAlgebra.UpperTriangular{Float64, Matrix{Float64}}[[0.375876361196646 -0.008953123827367487; 0.0 0.012748664777414695], [0.1840415554747063 -0.00764404904234152; 0.0 0.008581705166314152]] Test Summary: | Pass Total Time bayes.jl | 3 3 1m59.1s Kind: diag, size256 nx: 100000 sum(zeroth order stats): 100000.0 avll from stats: -0.9937371664886963 avll from llpg: -0.9937371664886957 avll direct: -0.9937371664886958 sum posterior: 100000.0 Kind: full, size16 nx: 100000 sum(zeroth order stats): 100000.0 avll from stats: -0.9836930790011922 avll from llpg: -0.9836930790011923 avll direct: -0.9836930790011924 sum posterior: 100000.0 kind diag, method split ┌ Info: 0: avll = └ tll[1] = -1.4059490501817113 ┌ Info: 1 │ avll = │ 50-element Vector{Float64}: │ -1.406035705906589 │ -1.4059587913783116 │ -1.4054239137150086 │ -1.4000197664779166 │ ⋮ │ -1.3672131800527845 │ -1.3672097417380396 └ -1.3672077193694658 ┌ Info: 2 │ avll = │ 50-element Vector{Float64}: │ -1.3674119318351128 │ -1.3672269855787715 │ -1.3667677872860102 │ -1.3628123655783961 │ ⋮ │ -1.3124118360607449 │ -1.3122573107598103 └ -1.3121556843402202 ┌ Info: 3 │ avll = │ 50-element Vector{Float64}: │ -1.3122911285303913 │ -1.3119824305898204 │ -1.3109173953096473 │ -1.3036877680051466 │ ⋮ │ -1.2563029052149874 │ -1.2563021308964895 └ -1.256301454820666 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 1 │ 5 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 1 │ 12 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 5 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 1 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 5 │ 12 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 1 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 5 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 12 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 1 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 5 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 1 │ 12 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 5 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 1 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 5 │ 12 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 1 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 5 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 12 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 1 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 5 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 1 │ 12 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 5 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 1 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 5 │ 12 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 1 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 5 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 12 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 1 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 5 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 1 │ 12 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 5 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 1 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 5 │ 12 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Info: 4 │ avll = │ 50-element Vector{Float64}: │ -1.2565420793059698 │ -1.2562608197694523 │ -1.2547828554616396 │ -1.2412224014372906 │ ⋮ │ -1.1787243566579706 │ -1.1683937001822229 └ -1.1735242747081924 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 1 │ 2 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 8 │ 9 │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 1 │ 2 │ 12 │ 16 │ 23 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 8 │ 11 │ 12 │ 14 │ 16 │ 21 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 1 │ 2 │ 8 │ 9 │ 10 │ 12 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 11 │ 12 │ 14 │ 16 │ 23 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 8 │ 9 │ ⋮ │ 16 │ 21 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 8 │ 11 │ 12 │ 14 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 1 │ 2 │ 8 │ 12 │ 16 │ 23 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 8 │ 9 │ 10 │ 11 │ 12 │ 14 │ 16 │ 21 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 1 │ 2 │ 8 │ 12 │ 16 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 8 │ 9 │ 11 │ 12 │ 14 │ 16 │ 23 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 1 │ 2 │ 8 │ 10 │ 12 │ 16 │ 21 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 8 │ 11 │ 12 │ 14 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 8 │ 10 │ ⋮ │ 23 │ 24 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 7 │ 8 │ 11 │ 12 │ 14 │ 16 │ 21 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 1 │ 2 │ 7 │ 8 │ 10 │ 12 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 7 │ 8 │ 11 │ 12 │ ⋮ │ 23 │ 24 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 6 │ 7 │ ⋮ │ 16 │ 21 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 8 │ 11 │ 12 │ 14 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 7 │ 8 │ ⋮ │ 23 │ 24 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 7 │ 8 │ 11 │ 12 │ 14 │ 16 │ 21 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 1 │ 2 │ 7 │ 8 │ 10 │ 12 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 6 │ 7 │ 8 │ 11 │ ⋮ │ 16 │ 23 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 2 │ 8 │ 10 │ 12 │ 16 │ 21 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 7 │ 8 │ 11 │ 12 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 7 │ 8 │ ⋮ │ 23 │ 24 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 6 │ 7 │ 8 │ 11 │ 12 │ 16 │ 21 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 1 │ 2 │ 8 │ 12 │ 14 │ 16 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 7 │ 8 │ 10 │ 11 │ 12 │ 16 │ 23 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 7 │ 8 │ ⋮ │ 16 │ 21 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 6 │ 7 │ 8 │ 10 │ 11 │ 12 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 1 │ 2 │ 12 │ 14 │ 23 │ 24 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 7 │ 8 │ 11 │ 12 │ 16 │ 21 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 7 │ 8 │ ⋮ │ 14 │ 16 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 6 │ 7 │ 8 │ 11 │ 12 │ 16 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 8 │ 12 │ ⋮ │ 21 │ 23 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 7 │ 8 │ 10 │ 11 │ 12 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 7 │ 8 │ ⋮ │ 16 │ 21 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 6 │ 7 │ 8 │ 10 │ 11 │ 12 │ 16 │ 23 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 1 │ 2 │ 12 │ 14 │ 21 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 7 │ 8 │ 11 │ 12 │ 16 │ 23 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 7 │ 8 │ ⋮ │ 16 │ 21 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 6 │ 7 │ 8 │ 11 │ 12 │ 16 │ 23 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 2 │ 8 │ 12 │ 14 │ 16 │ 21 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 7 │ 8 │ 10 │ 11 │ 12 │ 16 │ 23 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 7 │ 8 │ ⋮ │ 16 │ 21 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 6 │ 7 │ 8 │ 10 │ 11 │ 12 │ 16 │ 23 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 1 │ 2 │ 12 │ 14 │ 21 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Info: 5 │ avll = │ 50-element Vector{Float64}: │ -1.1828595750623747 │ -1.1701265176310296 │ -1.167251852269754 │ -1.1503947634676563 │ ⋮ │ -1.0896188693164575 │ -1.0885425135263873 └ -1.0937830398123929 ┌ Info: Total log likelihood: │ tll = │ 251-element Vector{Float64}: │ -1.4059490501817113 │ -1.406035705906589 │ -1.4059587913783116 │ -1.4054239137150086 │ ⋮ │ -1.0896188693164575 │ -1.0885425135263873 └ -1.0937830398123929 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 7 │ 8 │ 11 │ 12 │ 16 │ 23 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 14-element Vector{Int64}: │ 1 │ 2 │ 6 │ 7 │ ⋮ │ 23 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 7 │ 8 │ 11 │ 12 │ 16 │ 23 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 14-element Vector{Int64}: │ 1 │ 2 │ 6 │ 7 │ ⋮ │ 23 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 7 │ 8 │ 11 │ 12 │ 16 │ 23 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 14-element Vector{Int64}: │ 1 │ 2 │ 6 │ 7 │ ⋮ │ 23 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 7 │ 8 │ 11 │ 12 │ 16 │ 23 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 14-element Vector{Int64}: │ 1 │ 2 │ 6 │ 7 │ ⋮ │ 23 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 7 │ 8 │ 11 │ 12 │ 16 │ 23 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 14-element Vector{Int64}: │ 1 │ 2 │ 6 │ 7 │ ⋮ │ 23 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 kind diag, method kmeans [ Info: Initializing GMM, 32 Gaussians diag covariance 26 dimensions using 100000 data points K-means terminated without convergence after 50 iterations (objv = 599115.4285140184) ┌ Info: K-means with 32000 data points using 50 iterations └ 37.0 data points per parameter ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 15 │ 16 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 5 │ 8 │ 10 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 12 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 2 │ 16 │ 20 │ 26 │ 30 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 5 │ 6 │ 15 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 10 │ 14 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 8 │ 12 │ 18 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 2 │ 5 │ 15 │ 16 │ 20 │ 26 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 1 │ 9 │ 14 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 5 │ 6 │ 12 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 2 │ 10 │ 14 │ 15 │ 16 │ 18 │ 20 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 9 │ 24 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 5 │ 8 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 12 │ 14 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 2 │ 6 │ 15 │ 16 │ 18 │ 20 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 5 │ 8 │ 9 │ 24 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 12 │ 14 │ 26 │ 28 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 1 │ 2 │ 5 │ 15 │ 16 │ 20 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 6 │ 8 │ 9 │ 24 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 14 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 2 │ 5 │ 12 │ 20 │ 28 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 15 │ 16 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 1 │ 8 │ 9 │ 14 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 5 │ 15 │ 16 │ 20 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 2 │ 6 │ 10 │ 12 │ 14 │ 24 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 8 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 5 │ 18 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 12 │ 14 │ ⋮ │ 26 │ 30 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 6 │ 9 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 5 │ 10 │ 14 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 2 │ 15 │ 16 │ 18 │ 20 │ 26 │ 30 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 1 │ 9 │ 14 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 5 │ 6 │ 10 │ 12 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 2 │ 8 │ 15 │ 16 │ 20 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 14 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 9 │ 30 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 5 │ 6 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 2 │ 8 │ 10 │ 12 │ ⋮ │ 26 │ 28 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 9 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 5 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 6 │ 18 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 6 │ 8 │ 10 │ 14 │ ⋮ │ 20 │ 30 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 2 │ 6 │ 9 │ 12 │ ⋮ │ 28 │ 30 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 6 │ 8 │ 10 │ 16 │ 18 │ 20 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 5 │ 6 │ 14 │ 15 │ 18 │ 30 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 15-element Vector{Int64}: │ 2 │ 6 │ 8 │ 9 │ ⋮ │ 28 │ 30 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 6 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 6 │ 8 │ 14 │ 15 │ ⋮ │ 26 │ 30 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 2 │ 6 │ 9 │ 10 │ ⋮ │ 28 │ 30 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 6 │ 8 │ 15 │ 16 │ 18 │ 20 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 kind full, method split ┌ Info: 0: avll = └ tll[1] = -1.413866684051007 ┌ Info: 1 │ avll = │ 50-element Vector{Float64}: │ -1.4138938575841027 │ -1.4138318188286498 │ -1.4137704108443794 │ -1.4136455968507697 │ ⋮ │ -1.4085966620869128 │ -1.4085370448803125 └ -1.4084807338722798 ┌ Info: 2 │ avll = │ 50-element Vector{Float64}: │ -1.408455197611451 │ -1.4083514504799737 │ -1.4082634031507992 │ -1.4081454662142694 │ ⋮ │ -1.4024511839649663 │ -1.4024206678396938 └ -1.402387077881554 ┌ Info: 3 │ avll = │ 50-element Vector{Float64}: │ -1.4023892432142275 │ -1.4022463451958835 │ -1.4021010023261076 │ -1.4018292459994235 │ ⋮ │ -1.3396289513615165 │ -1.339596961692745 └ -1.3395446245277816 ┌ Info: 4 │ avll = │ 50-element Vector{Float64}: │ -1.3395093850686495 │ -1.3390953058625519 │ -1.3384400359679545 │ -1.3370851018802157 │ ⋮ │ -1.3027110636851114 │ -1.3026997042241983 └ -1.3026845470342132 ┌ Info: 5 │ avll = │ 50-element Vector{Float64}: │ -1.3027341148090874 │ -1.3023535326968338 │ -1.3017731208868348 │ -1.299098545718495 │ ⋮ │ -1.2735083092567823 │ -1.273473740366409 └ -1.2734345229680686 ┌ Info: Total log likelihood: │ tll = │ 251-element Vector{Float64}: │ -1.413866684051007 │ -1.4138938575841027 │ -1.4138318188286498 │ -1.4137704108443794 │ ⋮ │ -1.2735083092567823 │ -1.273473740366409 └ -1.2734345229680686 kind full, method kmeans [ Info: Initializing GMM, 32 Gaussians diag covariance 26 dimensions using 100000 data points K-means terminated without convergence after 50 iterations (objv = 672902.6777327862) ┌ Info: K-means with 32000 data points using 50 iterations └ 37.0 data points per parameter Test Summary: | Broken Total Time train.jl | 1 1 8m20.4s [ Info: Initializing GMM, 2 Gaussians diag covariance 2 dimensions using 900 data points K-means converged with 2 iterations (objv = 7869.867369234178) ┌ Info: K-means with 900 data points using 2 iterations └ 150.0 data points per parameter Test Summary: | Pass Total Time ScikitLearnBase | 1 1 2.2s Testing GaussianMixtures tests passed Testing completed after 1082.75s PkgEval succeeded after 1152.82s