Package evaluation of GeometryOptimization on Julia 1.13.0-DEV.811 (41570e9800*) started at 2025-07-03T20:36:23.434 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 7.44s ################################################################################ # Installation # Installing GeometryOptimization... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [673bf261] + GeometryOptimization v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [47edcb42] + ADTypes v1.15.0 [79e6a3ab] + Adapt v4.3.0 [66dad0bd] + AliasTables v1.1.3 [4fba245c] + ArrayInterface v7.19.0 [a963bdd2] + AtomsBase v0.5.1 [a3e0e189] + AtomsCalculators v0.2.3 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.17.0 [187b0558] + ConstructionBase v1.6.0 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.1 [ffbed154] + DocStringExtensions v0.9.5 [4e289a0a] + EnumX v1.0.5 [e2ba6199] + ExprTools v0.1.10 [1a297f60] + FillArrays v1.13.0 [6a86dc24] + FiniteDiff v2.27.0 [f6369f11] + ForwardDiff v1.0.1 [673bf261] + GeometryOptimization v0.1.4 [92d709cd] + IrrationalConstants v0.2.4 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.0 [b964fa9f] + LaTeXStrings v1.4.0 [d3d80556] + LineSearches v7.4.0 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 [e1d29d7a] + Missings v1.2.0 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 [429524aa] + Optim v1.13.2 [bac558e1] + OrderedCollections v1.8.1 [d96e819e] + Parameters v0.12.3 [7b2266bf] + PeriodicTable v1.2.1 [85a6dd25] + PositiveFactorizations v0.2.4 [aea7be01] + PrecompileTools v1.3.2 [21216c6a] + Preferences v1.4.3 [08abe8d2] + PrettyTables v2.4.0 [43287f4e] + PtrArrays v1.3.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [efcf1570] + Setfield v1.1.2 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.1 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.5 [892a3eda] + StringManipulation v0.4.1 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [a759f4b9] + TimerOutputs v0.5.29 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.23.1 [a7773ee8] + UnitfulAtomic v1.0.0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.12.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Installation completed after 4.56s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Warning: Could not use exact versions of packages in manifest, re-resolving └ @ TestEnv ~/.julia/packages/TestEnv/iS95e/src/julia-1.11/activate_set.jl:75 Precompiling package dependencies... Precompilation completed after 488.9s ################################################################################ # Testing # Testing GeometryOptimization Test Could not use exact versions of packages in manifest. Re-resolving dependencies Updating `/tmp/jl_LdtfpN/Project.toml` [f5cc8831] + AtomsBuilder v0.2.2 [38527215] + EmpiricalPotentials v0.2.4 [673bf261] + GeometryOptimization v0.1.4 [7f7a1694] + Optimization v4.4.0 [4e6fcdb7] + OptimizationNLopt v0.3.2 ⌅ [f8b46487] + TestItemRunner v0.2.3 Updating `/tmp/jl_LdtfpN/Manifest.toml` [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [dce04be8] + ArgCheck v2.5.0 [f5cc8831] + AtomsBuilder v0.2.2 [9855a07e] + AtomsCalculatorsUtilities v0.1.7 [198e06fe] + BangBang v0.4.4 [9718e550] + Baselet v0.1.1 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8ce10254] + Bumper v0.7.1 [fa961155] + CEnum v0.5.0 [2a0fbf3d] + CPUSummary v0.2.6 [ae650224] + ChunkSplitters v3.1.2 [fb6a15b2] + CloseOpenIntervals v0.1.13 [38540f10] + CommonSolve v0.2.4 [f70d9fcc] + CommonWorldInvalidations v1.0.0 [a33af91c] + CompositionsBase v0.1.2 [88cd18e8] + ConsoleProgressMonitor v0.1.2 [adafc99b] + CpuId v0.3.1 [244e2a9f] + DefineSingletons v0.1.2 [38527215] + EmpiricalPotentials v0.2.4 [55351af7] + ExproniconLite v0.10.14 [e189563c] + ExternalDocstrings v0.1.1 [9aa1b823] + FastClosures v0.3.2 [41a02a25] + Folds v0.2.10 ⌅ [f6369f11] ↓ ForwardDiff v1.0.1 ⇒ v0.10.38 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [673bf261] + GeometryOptimization v0.1.4 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [22cec73e] + InitialValues v0.3.1 [3587e190] + InverseFunctions v0.1.17 [682c06a0] + JSON v0.21.4 [ae98c720] + Jieko v0.2.1 [5be7bae1] + LBFGSB v0.4.1 [10f19ff3] + LayoutPointers v0.1.17 [1d6d02ad] + LeftChildRightSiblingTrees v0.2.0 [e6f89c97] + LoggingExtras v1.1.0 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [128add7d] + MicroCollections v0.2.0 [2e0e35c7] + Moshi v0.3.6 [76087f3c] + NLopt v1.1.4 [2fcf5ba9] + NeighbourLists v0.5.10 [6fd5a793] + Octavian v0.3.29 [6fe1bfb0] + OffsetArrays v1.17.0 [7f7a1694] + Optimization v4.4.0 [bca83a33] + OptimizationBase v2.8.0 [4e6fcdb7] + OptimizationNLopt v0.3.2 [90014a1f] + PDMats v0.11.35 [69de0a69] + Parsers v2.8.3 [1d0040c9] + PolyesterWeave v0.2.2 [33c8b6b6] + ProgressLogging v0.1.5 [92933f4c] + ProgressMeter v1.10.4 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.33.0 [42d2dcc6] + Referenceables v0.1.3 [7e49a35a] + RuntimeGeneratedFunctions v0.5.15 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 [0bca4576] + SciMLBase v2.102.1 [c0aeaf25] + SciMLOperators v1.3.1 [53ae85a6] + SciMLStructures v1.7.0 [9f842d2f] + SparseConnectivityTracer v0.6.21 [0a514795] + SparseMatrixColorings v0.4.21 [171d559e] + SplittablesBase v0.1.15 [aedffcd0] + Static v1.2.0 [0d7ed370] + StaticArrayInterface v1.8.0 [d1fa6d79] + StrideArrays v0.1.29 [7792a7ef] + StrideArraysCore v0.5.7 [2efcf032] + SymbolicIndexingInterface v0.3.41 [5d786b92] + TerminalLoggers v0.1.7 ⌅ [f8b46487] + TestItemRunner v0.2.3 ⌅ [1c621080] + TestItems v0.1.1 [24d252fe] + ThreadedScans v0.1.0 [8290d209] + ThreadingUtilities v0.5.5 [28d57a85] + Transducers v0.4.84 [c4a57d5a] + UnsafeArrays v1.0.8 [3d5dd08c] + VectorizationBase v0.21.71 [33b4df10] + VectorizedRNG v0.2.25 [3b853605] + VectorizedStatistics v0.5.10 [81d17ec3] + L_BFGS_B_jll v3.0.1+0 [079eb43e] + NLopt_jll v2.10.0+0 [0dad84c5] + ArgTools v1.1.2 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [4607b0f0] + SuiteSparse [a4e569a6] + Tar v1.10.0 [deac9b47] + LibCURL_jll v8.14.1+1 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.5.20 [458c3c95] + OpenSSL_jll v3.5.1+0 [efcefdf7] + PCRE2_jll v10.45.0+0 [83775a58] + Zlib_jll v1.3.1+2 [8e850ede] + nghttp2_jll v1.65.0+0 [3f19e933] + p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Test Successfully re-resolved Status `/tmp/jl_LdtfpN/Project.toml` [a963bdd2] AtomsBase v0.5.1 [f5cc8831] AtomsBuilder v0.2.2 [a3e0e189] AtomsCalculators v0.2.3 [ffbed154] DocStringExtensions v0.9.5 [38527215] EmpiricalPotentials v0.2.4 [673bf261] GeometryOptimization v0.1.4 [d3d80556] LineSearches v7.4.0 [429524aa] Optim v1.13.2 [7f7a1694] Optimization v4.4.0 [4e6fcdb7] OptimizationNLopt v0.3.2 [08abe8d2] PrettyTables v2.4.0 [90137ffa] StaticArrays v1.9.13 ⌅ [f8b46487] TestItemRunner v0.2.3 [a759f4b9] TimerOutputs v0.5.29 [1986cc42] Unitful v1.23.1 [a7773ee8] UnitfulAtomic v1.0.0 [37e2e46d] LinearAlgebra v1.12.0 [de0858da] Printf v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_LdtfpN/Manifest.toml` [47edcb42] ADTypes v1.15.0 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 [4fba245c] ArrayInterface v7.19.0 [a963bdd2] AtomsBase v0.5.1 [f5cc8831] AtomsBuilder v0.2.2 [a3e0e189] AtomsCalculators v0.2.3 [9855a07e] AtomsCalculatorsUtilities v0.1.7 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [8ce10254] Bumper v0.7.1 [fa961155] CEnum v0.5.0 [2a0fbf3d] CPUSummary v0.2.6 [ae650224] ChunkSplitters v3.1.2 [fb6a15b2] CloseOpenIntervals v0.1.13 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.17.0 [a33af91c] CompositionsBase v0.1.2 [88cd18e8] ConsoleProgressMonitor v0.1.2 [187b0558] ConstructionBase v1.6.0 [adafc99b] CpuId v0.3.1 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [a0c0ee7d] DifferentiationInterface v0.7.1 [ffbed154] DocStringExtensions v0.9.5 [38527215] EmpiricalPotentials v0.2.4 [4e289a0a] EnumX v1.0.5 [e2ba6199] ExprTools v0.1.10 [55351af7] ExproniconLite v0.10.14 [e189563c] ExternalDocstrings v0.1.1 [9aa1b823] FastClosures v0.3.2 [1a297f60] FillArrays v1.13.0 [6a86dc24] FiniteDiff v2.27.0 [41a02a25] Folds v0.2.10 ⌅ [f6369f11] ForwardDiff v0.10.38 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 [46192b85] GPUArraysCore v0.2.0 [673bf261] GeometryOptimization v0.1.4 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [22cec73e] InitialValues v0.3.1 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [ae98c720] Jieko v0.2.1 [5be7bae1] LBFGSB v0.4.1 [b964fa9f] LaTeXStrings v1.4.0 [10f19ff3] LayoutPointers v0.1.17 [1d6d02ad] LeftChildRightSiblingTrees v0.2.0 [d3d80556] LineSearches v7.4.0 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.1.0 [bdcacae8] LoopVectorization v0.12.172 [1914dd2f] MacroTools v0.5.16 [d125e4d3] ManualMemory v0.1.8 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [2e0e35c7] Moshi v0.3.6 [d41bc354] NLSolversBase v7.10.0 [76087f3c] NLopt v1.1.4 [77ba4419] NaNMath v1.1.3 [2fcf5ba9] NeighbourLists v0.5.10 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [429524aa] Optim v1.13.2 [7f7a1694] Optimization v4.4.0 [bca83a33] OptimizationBase v2.8.0 [4e6fcdb7] OptimizationNLopt v0.3.2 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.35 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 [7b2266bf] PeriodicTable v1.2.1 [1d0040c9] PolyesterWeave v0.2.2 [85a6dd25] PositiveFactorizations v0.2.4 [aea7be01] PrecompileTools v1.3.2 [21216c6a] Preferences v1.4.3 [08abe8d2] PrettyTables v2.4.0 [33c8b6b6] ProgressLogging v0.1.5 [92933f4c] ProgressMeter v1.10.4 [43287f4e] PtrArrays v1.3.0 [3cdcf5f2] RecipesBase v1.3.4 [731186ca] RecursiveArrayTools v3.33.0 [189a3867] Reexport v1.2.2 [42d2dcc6] Referenceables v0.1.3 [ae029012] Requires v1.3.1 [7e49a35a] RuntimeGeneratedFunctions v0.5.15 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 [0bca4576] SciMLBase v2.102.1 [c0aeaf25] SciMLOperators v1.3.1 [53ae85a6] SciMLStructures v1.7.0 [efcf1570] Setfield v1.1.2 [a2af1166] SortingAlgorithms v1.2.1 [9f842d2f] SparseConnectivityTracer v0.6.21 [0a514795] SparseMatrixColorings v0.4.21 [276daf66] SpecialFunctions v2.5.1 [171d559e] SplittablesBase v0.1.15 [aedffcd0] Static v1.2.0 [0d7ed370] StaticArrayInterface v1.8.0 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.5 [d1fa6d79] StrideArrays v0.1.29 [7792a7ef] StrideArraysCore v0.5.7 [892a3eda] StringManipulation v0.4.1 [2efcf032] SymbolicIndexingInterface v0.3.41 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [5d786b92] TerminalLoggers v0.1.7 ⌅ [f8b46487] TestItemRunner v0.2.3 ⌅ [1c621080] TestItems v0.1.1 [24d252fe] ThreadedScans v0.1.0 [8290d209] ThreadingUtilities v0.5.5 [a759f4b9] TimerOutputs v0.5.29 [28d57a85] Transducers v0.4.84 [3a884ed6] UnPack v1.0.2 [1986cc42] Unitful v1.23.1 [a7773ee8] UnitfulAtomic v1.0.0 [c4a57d5a] UnsafeArrays v1.0.8 [3d5dd08c] VectorizationBase v0.21.71 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.10 [81d17ec3] L_BFGS_B_jll v3.0.1+0 [079eb43e] NLopt_jll v2.10.0+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.14.1+1 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.5.20 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.5+0 [458c3c95] OpenSSL_jll v3.5.1+0 [efcefdf7] PCRE2_jll v10.45.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.65.0+0 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Precompiling packages... 9034.7 ms ✓ AtomsBuilder 1 dependency successfully precompiled in 9 seconds. 19 already precompiled. Precompiling packages... 8560.3 ms ✓ Transducers 1870.5 ms ✓ Accessors → StaticArraysExt 2109.0 ms ✓ BangBang → BangBangStaticArraysExt 44349.7 ms ✓ LoopVectorization 3995.9 ms ✓ Transducers → TransducersAdaptExt 4775.3 ms ✓ Transducers → TransducersReferenceablesExt 46756.9 ms ✓ VectorizedStatistics 6095.2 ms ✓ LoopVectorization → SpecialFunctionsExt 16858.4 ms ✓ Octavian 8279.9 ms ✓ Folds 16628.4 ms ✓ Octavian → ForwardDiffExt 18216.0 ms ✓ StrideArrays 18536.0 ms ✓ AtomsCalculatorsUtilities Info Given EmpiricalPotentials was explicitly requested, output will be shown live  WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in __init() at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/VectorizedRNG.jl WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in initXoshiro!(Ptr{UInt64}, Any, UInt64, UInt64, UInt64, UInt64) at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/xoshiro.jl 14609.1 ms ✓ EmpiricalPotentials 14 dependencies successfully precompiled in 213 seconds. 110 already precompiled. 5 dependencies had output during precompilation: ┌ EmpiricalPotentials │ [Output was shown above] └ ┌ VectorizedStatistics │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in vsum(AbstractArray{T, N} where N) where {T<:Union{Bool, Float16, Float32, Float64, Int16, Int32, Int64, Int8, UInt16, UInt32, UInt64, UInt8, SIMDTypes.Bit}} at /home/pkgeval/.julia/packages/LoopVectorization/ImqiY/src/simdfunctionals/mapreduce.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vmean(Any, Base.Colon, Static.False) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vmean.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vvar(Nothing, Bool, Any, Base.Colon, Static.False) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vvar.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vminimum(Any, Base.Colon) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vreducibles.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vmaximum(Any, Base.Colon) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vreducibles.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vsum!(AbstractArray{Tₒ, N}, AbstractArray{T, N}, D, Any) where {Tₒ, T, N, M, D<:Tuple{Vararg{Union{Integer, Static.StaticInt{N} where N}, M}}} at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vsum.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vmean!(AbstractArray{Tₒ, N}, AbstractArray{T, N}, D, Any) where {Tₒ, T, N, M, D<:Tuple{Vararg{Union{Integer, Static.StaticInt{N} where N}, M}}} at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vmean.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in sqrt!(AbstractArray{T, N} where N where T, Static.False) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vstd.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vvar!(AbstractArray{Tₒ, N}, Bool, AbstractArray{T, N}, D, Any) where {Tₒ, T, N, M, D<:Tuple{Vararg{Union{Integer, Static.StaticInt{N} where N}, M}}} at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vvar.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vminimum(Any, Int64) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vreducibles.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vmaximum(Any, Int64) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vreducibles.jl └ ┌ LoopVectorization │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vreduce(typeof(Base.:(+)), Any) at /home/pkgeval/.julia/packages/LoopVectorization/ImqiY/src/simdfunctionals/mapreduce.jl └ ┌ AtomsCalculatorsUtilities │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in __init() at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/VectorizedRNG.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initXoshiro!(Ptr{UInt64}, Any, UInt64, UInt64, UInt64, UInt64) at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/xoshiro.jl └ ┌ StrideArrays │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in __init() at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/VectorizedRNG.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initXoshiro!(Ptr{UInt64}, Any, UInt64, UInt64, UInt64, UInt64) at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/xoshiro.jl └ WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in __init() at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/VectorizedRNG.jl WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in initXoshiro!(Ptr{UInt64}, Any, UInt64, UInt64, UInt64, UInt64) at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/xoshiro.jl Precompiling packages... 1451.7 ms ✓ SciMLOperators → SciMLOperatorsStaticArraysCoreExt 1960.1 ms ✓ SciMLOperators → SciMLOperatorsSparseArraysExt 5915.9 ms ✓ SymbolicIndexingInterface 6219.6 ms ✓ RecursiveArrayTools 4298.6 ms ✓ RecursiveArrayTools → RecursiveArrayToolsSparseArraysExt 26106.7 ms ✓ SciMLBase 9497.3 ms ✓ OptimizationBase 9635.7 ms ✓ Optimization 8349.5 ms ✓ OptimizationNLopt 9 dependencies successfully precompiled in 75 seconds. 105 already precompiled. Precompiling packages... 7480.2 ms ✓ RecursiveArrayTools → RecursiveArrayToolsForwardDiffExt 1 dependency successfully precompiled in 8 seconds. 58 already precompiled. Precompiling packages... 4363.6 ms ✓ SparseConnectivityTracer → SparseConnectivityTracerLogExpFunctionsExt 1 dependency successfully precompiled in 4 seconds. 10 already precompiled. Precompiling packages... 5211.4 ms ✓ SparseConnectivityTracer → SparseConnectivityTracerSpecialFunctionsExt 1 dependency successfully precompiled in 5 seconds. 20 already precompiled. Precompiling packages... 1630.4 ms ✓ OptimizationBase → OptimizationForwardDiffExt 1 dependency successfully precompiled in 3 seconds. 100 already precompiled. Precompiling packages... 11486.7 ms ✓ GeometryOptimization → GeometryOptimizationOptimizationExt 1 dependency successfully precompiled in 13 seconds. 172 already precompiled. ┌ Warning: The selected optimization algorithm requires second order derivatives, but `SecondOrder` ADtype was not provided. │ So a `SecondOrder` with SciMLBase.NoAD() for both inner and outer will be created, this can be suboptimal and not work in some cases so │ an explicit `SecondOrder` ADtype is recommended. └ @ OptimizationBase ~/.julia/packages/OptimizationBase/SX92W/src/cache.jl:49 ┌ Warning: NLopt failed to converge: FORCED_STOP └ @ OptimizationNLopt ~/.julia/packages/OptimizationNLopt/YE3fr/src/OptimizationNLopt.jl:299 Geometry optimisation convergence (in atomic units) ┌─────┬─────────────────┬───────────┬─────────────┬────────┐ │ n │ Energy │ log10(ΔE) │ max(Force) │ Δtime │ ├─────┼─────────────────┼───────────┼─────────────┼────────┤ │ 0 │ -1.218133345336 │ │ 0.103901 │ 10.8ms │ │ 1 │ -1.266081798701 │ │ 0.0323629 │ 6.68s │ │ 2 │ -1.272356621866 │ -2.20 │ 0.0102101 │ 1.19s │ │ 3 │ -1.273535894202 │ -2.93 │ 0.00715592 │ 18.9ms │ │ 4 │ -1.274219144719 │ -3.17 │ 0.00452376 │ 2.95ms │ │ 5 │ -1.274460649318 │ -3.62 │ 0.000858422 │ 2.88ms │ │ 6 │ -1.274465280632 │ -5.33 │ 0.000291987 │ 2.89ms │ │ 7 │ -1.274465847434 │ -6.25 │ 6.59637e-5 │ 2.85ms │ │ 8 │ -1.274465937300 │ -7.05 │ 6.67388e-5 │ 2.77ms │ │ 9 │ -1.274465976734 │ -7.40 │ 2.30839e-5 │ 2.69ms │ │ 10 │ -1.274465979890 │ -8.50 │ 5.79628e-6 │ 2.57ms │ │ 11 │ -1.274465980149 │ -9.59 │ 9.97661e-7 │ 2.89ms │ │ 12 │ -1.274465980158 │ -11.04 │ 7.75735e-7 │ 2.51ms │ │ 13 │ -1.274465980167 │ -11.04 │ 4.32308e-7 │ 2.43ms │ │ 14 │ -1.274465980168 │ -11.99 │ 9.89896e-8 │ 2.49ms │ │ 15 │ -1.274465980169 │ -13.11 │ 2.82762e-8 │ 2.46ms │ │ 16 │ -1.274465980169 │ -14.28 │ 9.0855e-9 │ 2.94ms │ ┌ Warning: Geometry optimisation not converged. └ @ GeometryOptimization ~/.julia/packages/GeometryOptimization/y8zYr/src/minimize_energy.jl:184 Geometry optimisation convergence (in atomic units) ┌─────┬─────────────────┬───────────┬─────────────┬─────────────┬──────────┬────────┐ │ n │ Energy │ log10(ΔE) │ max(Force) │ max(Virial) │ Pressure │ Δtime │ ├─────┼─────────────────┼───────────┼─────────────┼─────────────┼──────────┼────────┤ │ 0 │ -5.075616930255 │ │ 0.0368898 │ 0.0706014 │ -0.048 │ 3.28ms │ │ 1 │ -5.077857181708 │ │ 0.0384436 │ 0.0933849 │ 0.088 │ 110ms │ │ 2 │ -5.088183291211 │ -1.99 │ 0.0193716 │ 0.321948 │ -0.27 │ 5.52ms │ │ 3 │ -5.094496848594 │ -2.20 │ 0.00688232 │ 0.105137 │ 0.0037 │ 5.33ms │ │ 4 │ -5.095402143681 │ -3.04 │ 0.00563339 │ 0.0309465 │ 0.029 │ 5.28ms │ │ 5 │ -5.095505981358 │ -3.98 │ 0.00554154 │ 0.0315175 │ -0.018 │ 5.31ms │ │ 6 │ -5.095901390710 │ -3.40 │ 0.00494234 │ 0.062901 │ 0.029 │ 5.30ms │ │ 7 │ -5.096967892581 │ -2.97 │ 0.00380805 │ 0.0148596 │ 0.01 │ 5.28ms │ │ 8 │ -5.096992447167 │ -4.61 │ 0.00364082 │ 0.0166893 │ -0.015 │ 5.27ms │ │ 9 │ -5.097239841231 │ -3.61 │ 0.00234285 │ 0.0358586 │ 0.0077 │ 5.30ms │ │ 10 │ -5.097407480246 │ -3.78 │ 0.00253914 │ 0.0312862 │ 0.00047 │ 5.26ms │ │ 11 │ -5.097538927898 │ -3.88 │ 0.00247673 │ 0.00918445 │ -0.0074 │ 5.36ms │ │ 12 │ -5.097550147441 │ -4.95 │ 0.00240638 │ 0.0142991 │ 0.01 │ 5.32ms │ │ 13 │ -5.097723565549 │ -3.76 │ 0.00134083 │ 0.0178652 │ 0.001 │ 5.37ms │ │ 14 │ -5.097741050872 │ -4.76 │ 0.00103919 │ 0.00227983 │ -0.0015 │ 5.52ms │ │ 15 │ -5.097745912740 │ -5.31 │ 0.000958586 │ 0.0101259 │ 0.0094 │ 5.36ms │ │ 16 │ -5.097770915385 │ -4.60 │ 0.000698995 │ 0.015518 │ -0.0015 │ 5.30ms │ │ 17 │ -5.097802171040 │ -4.51 │ 0.000941269 │ 0.00568432 │ -0.0025 │ 5.34ms │ │ 18 │ -5.097805826337 │ -5.44 │ 0.00103848 │ 0.00275857 │ 0.0017 │ 5.30ms │ │ 19 │ -5.097810249959 │ -5.35 │ 0.000988262 │ 0.0089654 │ -0.0083 │ 5.32ms │ │ 20 │ -5.097846196844 │ -4.44 │ 0.000684527 │ 0.00181159 │ -0.00062 │ 5.46ms │ │ 21 │ -5.097847515795 │ -5.88 │ 0.00058602 │ 0.00253188 │ 0.0024 │ 5.42ms │ │ 22 │ -5.097849896560 │ -5.62 │ 0.000546609 │ 0.00695008 │ -0.0027 │ 5.40ms │ │ 23 │ -5.097853210589 │ -5.48 │ 0.000540842 │ 0.0056433 │ 0.003 │ 5.43ms │ │ 24 │ -5.097861778925 │ -5.07 │ 0.000319584 │ 0.000636187 │ 0.00048 │ 5.41ms │ │ 25 │ -5.097862011949 │ -6.63 │ 0.000306184 │ 0.00192095 │ -0.0019 │ 5.53ms │ │ 26 │ -5.097864210087 │ -5.66 │ 0.000166217 │ 0.0036576 │ 0.0012 │ 5.49ms │ │ 27 │ -5.097864923814 │ -6.15 │ 0.0001322 │ 0.000902318 │ 5.1e-5 │ 5.46ms │ │ 28 │ -5.097865059801 │ -6.87 │ 0.00012638 │ 0.000866324 │ -0.00045 │ 5.53ms │ │ 29 │ -5.097865114739 │ -7.26 │ 0.000115546 │ 0.00120347 │ 0.00075 │ 5.43ms │ │ 30 │ -5.097865635507 │ -6.28 │ 6.43457e-5 │ 0.00102554 │ -2.8e-5 │ 5.48ms │ │ 31 │ -5.097865680473 │ -7.35 │ 6.02733e-5 │ 7.03476e-5 │ -5.2e-5 │ 5.55ms │ │ 32 │ -5.097865714038 │ -7.47 │ 5.27278e-5 │ 0.000897277 │ 0.00084 │ 5.39ms │ │ 33 │ -5.097865848126 │ -6.87 │ 4.0349e-5 │ 0.000437975 │ -1.8e-5 │ 5.26ms │ │ 34 │ -5.097865865441 │ -7.76 │ 3.80739e-5 │ 0.000211923 │ -6.1e-5 │ 5.26ms │ │ 35 │ -5.097865873140 │ -8.11 │ 4.14979e-5 │ 0.000218511 │ 7.8e-5 │ 5.43ms │ │ 36 │ -5.097865887066 │ -7.86 │ 3.54067e-5 │ 0.000562483 │ -0.00047 │ 5.47ms │ │ 37 │ -5.097865932245 │ -7.35 │ 1.87499e-5 │ 4.50818e-5 │ -1.3e-5 │ 5.63ms │ │ 38 │ -5.097865933655 │ -8.85 │ 2.06754e-5 │ 0.000127691 │ 7.1e-5 │ 5.82ms │ │ 39 │ -5.097865945456 │ -7.93 │ 1.38013e-5 │ 0.000416399 │ -0.00028 │ 5.93ms │ │ 40 │ -5.097865952500 │ -8.15 │ 1.48943e-5 │ 0.000147458 │ 2.8e-5 │ 5.31ms │ │ 41 │ -5.097865955338 │ -8.55 │ 1.70533e-5 │ 4.02889e-5 │ 1.4e-5 │ 5.49ms │ │ 42 │ -5.097865956313 │ -9.01 │ 1.59964e-5 │ 0.000134073 │ -0.00011 │ 5.24ms │ │ 43 │ -5.097865964058 │ -8.11 │ 1.18732e-5 │ 0.000170147 │ 0.00014 │ 5.23ms │ │ 44 │ -5.097865967549 │ -8.46 │ 1.21276e-5 │ 1.5675e-5 │ 1.1e-6 │ 5.24ms │ │ 45 │ -5.097865969260 │ -8.77 │ 7.52134e-6 │ 0.000174658 │ -9.8e-5 │ 5.26ms │ │ 46 │ -5.097865970398 │ -8.94 │ 4.04676e-6 │ 0.000122886 │ 4.9e-5 │ 5.23ms │ │ 47 │ -5.097865971429 │ -8.99 │ 3.81072e-6 │ 5.33467e-5 │ -1.3e-5 │ 5.22ms │ │ 48 │ -5.097865971607 │ -9.75 │ 3.00716e-6 │ 3.49519e-6 │ -1.7e-6 │ 5.31ms │ │ 49 │ -5.097865971700 │ -10.03 │ 2.23654e-6 │ 4.99146e-5 │ 4.8e-5 │ 5.32ms │ │ 50 │ -5.097865971966 │ -9.57 │ 1.65566e-6 │ 1.90274e-5 │ -7.9e-6 │ 5.26ms │ │ 51 │ -5.097865971984 │ -10.76 │ 1.72622e-6 │ 6.41707e-6 │ 2.4e-6 │ 5.26ms │ │ 52 │ -5.097865971996 │ -10.90 │ 1.65839e-6 │ 3.54604e-6 │ -5.3e-7 │ 5.24ms │ │ 53 │ -5.097865972024 │ -10.55 │ 1.20083e-6 │ 1.4793e-5 │ 1.8e-6 │ 5.22ms │ │ 54 │ -5.097865972053 │ -10.54 │ 9.65825e-7 │ 6.4527e-6 │ -1.9e-6 │ 5.20ms │ │ 55 │ -5.097865972059 │ -11.19 │ 8.87022e-7 │ 4.36269e-6 │ 4.2e-6 │ 5.25ms │ │ 56 │ -5.097865972062 │ -11.62 │ 8.11387e-7 │ 5.38678e-6 │ -2.9e-6 │ 5.31ms │ │ 57 │ -5.097865972070 │ -11.11 │ 7.06081e-7 │ 8.23087e-6 │ 2.6e-6 │ 5.21ms │ │ 58 │ -5.097865972079 │ -11.01 │ 5.5661e-7 │ 3.83188e-6 │ 1.0e-7 │ 5.27ms │ │ 59 │ -5.097865972081 │ -11.72 │ 4.84439e-7 │ 1.90698e-6 │ -7.8e-7 │ 5.23ms │ │ 60 │ -5.097865972082 │ -12.18 │ 4.49709e-7 │ 2.7728e-6 │ 1.4e-6 │ 5.28ms │ │ 61 │ -5.097865972084 │ -11.80 │ 3.73135e-7 │ 4.19629e-6 │ -3.1e-6 │ 5.32ms │ │ 62 │ -5.097865972086 │ -11.70 │ 2.88244e-7 │ 1.59993e-6 │ -9.1e-7 │ 5.27ms │ │ 63 │ -5.097865972086 │ -12.60 │ 2.72512e-7 │ 1.52618e-6 │ 9.1e-7 │ 5.22ms │ │ 64 │ -5.097865972086 │ -12.48 │ 2.5416e-7 │ 1.72183e-6 │ -9.2e-7 │ 5.37ms │ │ 65 │ -5.097865972087 │ -12.31 │ 2.41607e-7 │ 2.41436e-6 │ -8.3e-8 │ 7.36ms │ │ 66 │ -5.097865972088 │ -11.73 │ 1.27375e-7 │ 4.8865e-6 │ 4.2e-6 │ 6.09ms │ │ 67 │ -5.097865972089 │ -12.05 │ 1.69153e-7 │ 6.85495e-7 │ -1.1e-7 │ 5.35ms │ │ 68 │ -5.097865972089 │ -13.27 │ 1.70913e-7 │ 2.24475e-7 │ -5.8e-8 │ 5.32ms │ │ 69 │ -5.097865972089 │ -13.78 │ 1.69643e-7 │ 2.26809e-7 │ -1.1e-8 │ 7.01ms │ │ 70 │ -5.097865972090 │ -13.21 │ 1.62363e-7 │ 5.87952e-7 │ 1.6e-7 │ 8.18ms │ │ 71 │ -5.097865972090 │ -12.77 │ 1.31233e-7 │ 1.16165e-6 │ 3.8e-7 │ 7.08ms │ │ 72 │ -5.097865972090 │ -12.68 │ 8.27414e-8 │ 1.44306e-6 │ -7.0e-7 │ 6.55ms │ │ 73 │ -5.097865972090 │ -12.61 │ 9.14644e-8 │ 1.30221e-6 │ 7.9e-7 │ 5.28ms │ │ 74 │ -5.097865972090 │ -13.30 │ 1.00311e-7 │ 3.31348e-7 │ -1.4e-7 │ 5.32ms │ │ 75 │ -5.097865972090 │ -13.57 │ 1.05583e-7 │ 3.54871e-7 │ -1.5e-7 │ 37.3ms │ │ 76 │ -5.097865972090 │ -13.23 │ 9.00787e-8 │ 1.16104e-6 │ 8.6e-7 │ 5.63ms │ │ 77 │ -5.097865972090 │ -12.87 │ 5.4992e-8 │ 9.10908e-7 │ -2.2e-7 │ 5.38ms │ │ 78 │ -5.097865972090 │ -13.07 │ 5.27412e-8 │ 6.92799e-7 │ -3.2e-7 │ 5.29ms │ │ 79 │ -5.097865972091 │ -13.78 │ 5.35057e-8 │ 3.68109e-7 │ 2.7e-7 │ 8.73ms │ │ 80 │ -5.097865972091 │ -14.20 │ 5.40639e-8 │ 2.48698e-7 │ 2.0e-7 │ 7.94ms │ │ 81 │ -5.097865972091 │ -14.28 │ 5.44337e-8 │ 1.63974e-7 │ -1.5e-7 │ 7.74ms │ │ 82 │ -5.097865972091 │ -13.90 │ 5.12221e-8 │ 2.00333e-7 │ -1.2e-7 │ 5.50ms │ │ 83 │ -5.097865972091 │ -13.78 │ 4.51581e-8 │ 2.81081e-7 │ 8.6e-8 │ 5.25ms │ │ 84 │ -5.097865972091 │ -13.94 │ 3.88309e-8 │ 4.70003e-7 │ 2.3e-7 │ 5.42ms │ │ 85 │ -5.097865972091 │ -13.57 │ 2.7326e-8 │ 4.34854e-7 │ 1.9e-7 │ 5.28ms │ │ 86 │ -5.097865972091 │ -14.98 │ 2.74506e-8 │ 3.54939e-7 │ 1.3e-7 │ 7.66ms │ │ 87 │ -5.097865972091 │ -14.14 │ 2.81889e-8 │ 1.63878e-7 │ -4.2e-8 │ 7.38ms │ │ 88 │ -5.097865972091 │ -14.50 │ 2.90055e-8 │ 1.67318e-7 │ -1.2e-7 │ 7.86ms │ │ 89 │ -5.097865972091 │ -14.38 │ 2.79399e-8 │ 1.51584e-7 │ 7.3e-8 │ 7.80ms │ │ 90 │ -5.097865972091 │ + -Inf │ 2.76662e-8 │ 1.45325e-7 │ 6.5e-8 │ 7.82ms │ │ 91 │ -5.097865972091 │ + -Inf │ 2.76153e-8 │ 1.42454e-7 │ 6.2e-8 │ 7.92ms │ │ 92 │ -5.097865972091 │ + -Inf │ 2.76108e-8 │ 1.42095e-7 │ 6.2e-8 │ 8.82ms │ │ 93 │ -5.097865972091 │ -14.98 │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 10.9ms │ │ 94 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 21.0ms │ │ 95 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 8.39ms │ │ 96 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 8.05ms │ │ 97 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 8.09ms │ │ 98 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 508μs │ │ 99 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 166μs │ │ 100 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 167μs │ │ 101 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 171μs │ │ 102 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 183μs │ │ 103 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 181μs │ │ 104 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 198μs │ │ 105 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 171μs │ │ 106 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 168μs │ │ 107 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 170μs │ │ 108 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 190μs │ │ 109 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 118μs │ │ 110 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 100μs │ │ 111 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.9μs │ │ 112 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.1μs │ │ 113 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.2μs │ │ 114 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.4μs │ │ 115 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.0μs │ │ 116 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.5μs │ │ 117 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 277μs │ │ 118 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 179μs │ │ 119 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 180μs │ │ 120 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 170μs │ │ 121 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 119μs │ │ 122 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 122μs │ │ 123 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 102μs │ │ 124 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 98.7μs │ │ 125 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.4μs │ │ 126 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 98.3μs │ │ 127 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.7μs │ │ 128 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.4μs │ │ 129 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.6μs │ │ 130 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 98.0μs │ │ 131 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.2μs │ │ 132 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 113μs │ │ 133 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 100μs │ │ 134 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.0μs │ │ 135 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 93.0μs │ │ 136 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.8μs │ │ 137 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.3μs │ │ 138 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.3μs │ │ 139 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.2μs │ │ 140 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.5μs │ │ 141 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.7μs │ │ 142 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.4μs │ │ 143 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 111μs │ │ 144 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 98.0μs │ │ 145 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.7μs │ │ 146 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.0μs │ │ 147 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 98.0μs │ │ 148 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.9μs │ │ 149 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.2μs │ │ 150 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.8μs │ │ 151 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.1μs │ │ 152 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.9μs │ │ 153 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 399μs │ │ 154 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 185μs │ │ 155 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 171μs │ │ 156 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 169μs │ │ 157 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 178μs │ │ 158 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 185μs │ │ 159 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 182μs │ │ 160 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 170μs │ │ 161 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 171μs │ │ 162 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 169μs │ │ 163 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 186μs │ │ 164 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 172μs │ │ 165 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 171μs │ │ 166 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 169μs │ │ 167 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 173μs │ │ 168 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 172μs │ │ 169 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 200μs │ │ 170 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 190μs │ │ 171 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 115μs │ │ 172 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 98.4μs │ │ 173 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 98.4μs │ │ 174 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.9μs │ │ 175 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.0μs │ │ 176 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.1μs │ │ 177 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 114μs │ │ 178 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 106μs │ │ 179 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.9μs │ │ 180 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.8μs │ │ 181 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.4μs │ │ 182 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.2μs │ │ 183 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.8μs │ │ 184 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.5μs │ │ 185 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 93.8μs │ │ 186 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.1μs │ │ 187 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 286μs │ │ 188 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 156μs │ │ 189 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 154μs │ │ 190 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 168μs │ │ 191 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 167μs │ │ 192 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 192μs │ │ 193 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 182μs │ │ 194 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 171μs │ │ 195 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 169μs │ │ 196 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 175μs │ │ 197 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 174μs │ │ 198 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 186μs │ │ 199 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 181μs │ │ 200 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 171μs │ │ 201 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 168μs │ │ 202 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 115μs │ │ 203 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.7μs │ │ 204 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 92.9μs │ │ 205 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 127μs │ │ 206 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 100μs │ │ 207 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.0μs │ │ 208 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.9μs │ │ 209 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.0μs │ │ 210 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.1μs │ │ 211 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.9μs │ │ 212 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.5μs │ │ 213 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 105μs │ │ 214 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 103μs │ │ 215 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 295μs │ │ 216 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 174μs │ │ 217 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 177μs │ │ 218 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 170μs │ │ 219 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 166μs │ │ 220 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 189μs │ │ 221 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 170μs │ │ 222 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 166μs │ │ 223 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 167μs │ │ 224 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 167μs │ │ 225 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 180μs │ │ 226 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 192μs │ │ 227 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 174μs │ │ 228 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 115μs │ │ 229 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 99.0μs │ │ 230 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.2μs │ │ 231 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 98.5μs │ │ 232 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 98.6μs │ │ 233 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.8μs │ │ 234 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 111μs │ │ 235 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 99.1μs │ │ 236 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.9μs │ │ 237 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.5μs │ │ 238 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.8μs │ │ 239 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.8μs │ │ 240 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.3μs │ │ 241 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.3μs │ │ 242 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.3μs │ │ 243 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.8μs │ │ 244 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 245μs │ │ 245 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 183μs │ │ 246 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 169μs │ │ 247 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 177μs │ │ 248 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 169μs │ │ 249 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 180μs │ │ 250 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 174μs │ │ 251 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 182μs │ │ 252 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 169μs │ │ 253 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 167μs │ │ 254 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 169μs │ │ 255 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 185μs │ │ 256 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 170μs │ │ 257 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 171μs │ │ 258 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 180μs │ │ 259 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 168μs │ │ 260 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 169μs │ │ 261 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 184μs │ │ 262 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 129μs │ │ 263 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 106μs │ │ 264 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 98.8μs │ │ 265 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 98.4μs │ │ 266 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.8μs │ │ 267 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.1μs │ │ 268 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 93.9μs │ │ 269 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.1μs │ │ 270 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 229μs │ │ 271 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 160μs │ │ 272 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 183μs │ │ 273 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 171μs │ │ 274 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 169μs │ │ 275 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 183μs │ │ 276 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 176μs │ │ 277 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 169μs │ │ 278 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 118μs │ │ 279 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.6μs │ │ 280 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.2μs │ │ 281 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 93.9μs │ │ 282 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.0μs │ │ 283 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.6μs │ │ 284 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 111μs │ │ 285 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 105μs │ │ 286 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.7μs │ │ 287 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 93.9μs │ │ 288 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.5μs │ │ 289 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.7μs │ │ 290 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.4μs │ │ 291 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 98.3μs │ │ 292 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.7μs │ │ 293 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.0μs │ │ 294 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 115μs │ │ 295 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 110μs │ │ 296 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 106μs │ │ 297 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.6μs │ │ 298 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.6μs │ │ 299 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.5μs │ │ 300 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.6μs │ │ 301 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.4μs │ │ 302 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.9μs │ │ 303 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.0μs │ │ 304 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 384μs │ │ 305 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 182μs │ │ 306 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 173μs │ │ 307 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 169μs │ │ 308 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 188μs │ │ 309 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 174μs │ │ 310 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 173μs │ │ 311 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 178μs │ │ 312 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 165μs │ │ 313 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 170μs │ │ 314 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 173μs │ │ 315 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 177μs │ │ 316 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 180μs │ │ 317 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 172μs │ │ 318 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 176μs │ │ 319 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 168μs │ │ 320 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 184μs │ │ 321 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 180μs │ │ 322 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 169μs │ │ 323 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 168μs │ │ 324 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 186μs │ │ 325 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 183μs │ │ 326 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 179μs │ │ 327 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 168μs │ │ 328 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 167μs │ │ 329 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 170μs │ │ 330 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 119μs │ │ 331 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.2μs │ │ 332 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 106μs │ │ 333 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 99.2μs │ │ 334 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 103μs │ │ 335 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.8μs │ │ 336 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 93.5μs │ │ 337 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.6μs │ │ 338 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 99.0μs │ │ 339 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.5μs │ │ 340 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.4μs │ │ 341 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.6μs │ │ 342 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 116μs │ │ 343 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 93.5μs │ │ 344 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.6μs │ │ 345 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 98.1μs │ │ 346 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.7μs │ │ 347 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.3μs │ │ 348 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.1μs │ │ 349 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.4μs │ │ 350 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 98.1μs │ │ 351 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 108μs │ │ 352 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 123μs │ │ 353 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 115μs │ │ 354 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 100μs │ │ 355 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 109μs │ │ 356 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 104μs │ │ 357 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.6μs │ │ 358 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.0μs │ │ 359 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.7μs │ │ 360 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.6μs │ │ 361 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.7μs │ │ 362 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 561μs │ │ 363 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 188μs │ │ 364 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 172μs │ │ 365 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 290μs │ │ 366 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 173μs │ │ 367 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 166μs │ │ 368 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 178μs │ │ 369 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 171μs │ │ 370 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 180μs │ │ 371 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 183μs │ │ 372 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 169μs │ │ 373 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 170μs │ │ 374 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 168μs │ │ 375 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 169μs │ │ 376 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 183μs │ │ 377 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 189μs │ │ 378 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 170μs │ │ 379 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 180μs │ │ 380 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 166μs │ │ 381 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 170μs │ │ 382 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 131μs │ │ 383 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 101μs │ │ 384 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 98.2μs │ │ 385 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 98.0μs │ │ 386 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.0μs │ │ 387 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.9μs │ │ 388 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.3μs │ │ 389 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.2μs │ │ 390 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.7μs │ │ 391 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.5μs │ │ 392 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 286μs │ │ 393 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 175μs │ │ 394 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 170μs │ │ 395 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 174μs │ │ 396 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 170μs │ │ 397 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 183μs │ │ 398 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 173μs │ │ 399 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 117μs │ │ 400 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 99.4μs │ │ 401 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 86.9μs │ │ 402 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 81.6μs │ │ 403 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 93.2μs │ │ 404 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.2μs │ │ 405 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.6μs │ │ 406 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 107μs │ │ 407 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 98.4μs │ │ 408 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 99.0μs │ │ 409 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.1μs │ │ 410 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.7μs │ │ 411 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.7μs │ │ 412 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.8μs │ │ 413 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.5μs │ │ 414 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.6μs │ │ 415 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.6μs │ │ 416 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 117μs │ │ 417 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 102μs │ │ 418 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.1μs │ │ 419 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.7μs │ │ 420 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.3μs │ │ 421 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.5μs │ │ 422 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.8μs │ │ 423 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.9μs │ │ 424 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.9μs │ │ 425 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.6μs │ │ 426 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 320μs │ │ 427 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 202μs │ │ 428 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 172μs │ │ 429 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 171μs │ │ 430 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 168μs │ │ 431 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 183μs │ │ 432 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 175μs │ │ 433 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 172μs │ │ 434 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 175μs │ │ 435 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 167μs │ │ 436 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 167μs │ │ 437 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 195μs │ │ 438 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 173μs │ │ 439 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 170μs │ │ 440 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 167μs │ │ 441 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 167μs │ │ 442 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 179μs │ │ 443 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 181μs │ │ 444 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 166μs │ │ 445 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 163μs │ │ 446 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 159μs │ │ 447 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 170μs │ │ 448 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 116μs │ │ 449 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 109μs │ │ 450 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 103μs │ │ 451 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 98.1μs │ │ 452 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 93.7μs │ │ 453 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 93.1μs │ │ 454 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.0μs │ │ 455 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.1μs │ │ 456 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.4μs │ │ 457 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.5μs │ │ 458 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.1μs │ │ 459 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 276μs │ │ 460 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 176μs │ │ 461 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 172μs │ │ 462 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 171μs │ │ 463 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 169μs │ │ 464 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 182μs │ │ 465 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 172μs │ │ 466 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 168μs │ │ 467 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 118μs │ │ 468 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.7μs │ │ 469 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.8μs │ │ 470 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.1μs │ │ 471 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.2μs │ │ 472 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 117μs │ │ 473 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 100μs │ │ 474 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.1μs │ │ 475 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 93.2μs │ │ 476 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.2μs │ │ 477 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.2μs │ │ 478 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.3μs │ │ 479 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 99.2μs │ │ 480 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.2μs │ │ 481 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.9μs │ │ 482 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 110μs │ │ 483 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.9μs │ │ 484 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 96.5μs │ │ 485 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 95.7μs │ │ 486 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.2μs │ │ 487 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 93.7μs │ │ 488 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 94.6μs │ │ 489 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 93.7μs │ │ 490 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.3μs │ │ 491 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.1μs │ │ 492 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 97.3μs │ │ 493 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 399μs │ │ 494 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 172μs │ │ 495 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 168μs │ │ 496 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 173μs │ │ 497 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 187μs │ │ 498 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 173μs │ │ 499 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 168μs │ │ 500 │ -5.097865972091 │ + -Inf │ 2.76104e-8 │ 1.42058e-7 │ 6.2e-8 │ 182μs │ ┌ Warning: Geometry optimisation not converged. └ @ GeometryOptimization ~/.julia/packages/GeometryOptimization/y8zYr/src/minimize_energy.jl:184 ┌ Warning: Geometry optimisation not converged. └ @ GeometryOptimization ~/.julia/packages/GeometryOptimization/y8zYr/src/minimize_energy.jl:184 ┌ Warning: Geometry optimisation not converged. └ @ GeometryOptimization ~/.julia/packages/GeometryOptimization/y8zYr/src/minimize_energy.jl:184 Test Summary: | Pass Total Time Package | 76 76 7m48.0s test/nlopt.jl | 2 2 7m12.0s Test NLopt solver via Optimization.jl interface | 2 2 7m11.9s test/minimization.jl | 48 48 25.1s Test silicon StillingerWeber fixed cell minimisation | 36 36 17.6s Test silicon StillingerWeber variable cell minimisation | 12 12 7.4s test/dofmgr.jl | 18 18 5.3s DofManager | 18 18 5.3s Fixed cell getter / setter (no clamped) | 4 4 2.5s Variable cell getter / setter (no clamped) | 6 6 1.8s eval_objective / eval_gradient agrees with raw energy | 8 8 0.7s test/calculator_interface.jl | 8 8 5.6s Test GeometryOptimization with AtomsCalculators interface | 8 8 5.6s minimize_energy! with fixed cell | 4 4 2.9s minimize_energy! with variable cell | 4 4 0.7s Testing GeometryOptimization tests passed Testing completed after 507.2s PkgEval succeeded after 1050.23s