Package evaluation of GeometryOptimization on Julia 1.13.0-DEV.794 (d7c70bcbab*) started at 2025-07-02T14:39:41.457 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.4s ################################################################################ # Installation # Installing GeometryOptimization... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [673bf261] + GeometryOptimization v0.1.4 Updating `~/.julia/environments/v1.13/Manifest.toml` [47edcb42] + ADTypes v1.15.0 [79e6a3ab] + Adapt v4.3.0 [66dad0bd] + AliasTables v1.1.3 [4fba245c] + ArrayInterface v7.19.0 [a963bdd2] + AtomsBase v0.5.1 [a3e0e189] + AtomsCalculators v0.2.3 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.17.0 [187b0558] + ConstructionBase v1.6.0 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.1 [ffbed154] + DocStringExtensions v0.9.5 [4e289a0a] + EnumX v1.0.5 [e2ba6199] + ExprTools v0.1.10 [1a297f60] + FillArrays v1.13.0 [6a86dc24] + FiniteDiff v2.27.0 [f6369f11] + ForwardDiff v1.0.1 [673bf261] + GeometryOptimization v0.1.4 [92d709cd] + IrrationalConstants v0.2.4 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.0 [b964fa9f] + LaTeXStrings v1.4.0 [d3d80556] + LineSearches v7.4.0 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 [e1d29d7a] + Missings v1.2.0 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 [429524aa] + Optim v1.13.2 [bac558e1] + OrderedCollections v1.8.1 [d96e819e] + Parameters v0.12.3 [7b2266bf] + PeriodicTable v1.2.1 [85a6dd25] + PositiveFactorizations v0.2.4 [aea7be01] + PrecompileTools v1.3.2 [21216c6a] + Preferences v1.4.3 [08abe8d2] + PrettyTables v2.4.0 [43287f4e] + PtrArrays v1.3.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [efcf1570] + Setfield v1.1.2 [a2af1166] + SortingAlgorithms v1.2.1 [276daf66] + SpecialFunctions v2.5.1 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.5 [892a3eda] + StringManipulation v0.4.1 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [a759f4b9] + TimerOutputs v0.5.29 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.23.1 [a7773ee8] + UnitfulAtomic v1.0.0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.12.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.5+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.13.1+0 Installation completed after 4.59s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Warning: Could not use exact versions of packages in manifest, re-resolving └ @ TestEnv ~/.julia/packages/TestEnv/iS95e/src/julia-1.11/activate_set.jl:75 Precompiling package dependencies... Precompilation completed after 303.75s ################################################################################ # Testing # Testing GeometryOptimization Test Could not use exact versions of packages in manifest. Re-resolving dependencies Updating `/tmp/jl_AKCxIa/Project.toml` [f5cc8831] + AtomsBuilder v0.2.2 [38527215] + EmpiricalPotentials v0.2.4 [673bf261] + GeometryOptimization v0.1.4 [7f7a1694] + Optimization v4.4.0 [4e6fcdb7] + OptimizationNLopt v0.3.2 ⌅ [f8b46487] + TestItemRunner v0.2.3 Updating `/tmp/jl_AKCxIa/Manifest.toml` [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [dce04be8] + ArgCheck v2.5.0 [f5cc8831] + AtomsBuilder v0.2.2 [9855a07e] + AtomsCalculatorsUtilities v0.1.7 [198e06fe] + BangBang v0.4.4 [9718e550] + Baselet v0.1.1 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8ce10254] + Bumper v0.7.1 [fa961155] + CEnum v0.5.0 [2a0fbf3d] + CPUSummary v0.2.6 [ae650224] + ChunkSplitters v3.1.2 [fb6a15b2] + CloseOpenIntervals v0.1.13 [38540f10] + CommonSolve v0.2.4 [f70d9fcc] + CommonWorldInvalidations v1.0.0 [a33af91c] + CompositionsBase v0.1.2 [88cd18e8] + ConsoleProgressMonitor v0.1.2 [adafc99b] + CpuId v0.3.1 [244e2a9f] + DefineSingletons v0.1.2 [38527215] + EmpiricalPotentials v0.2.4 [55351af7] + ExproniconLite v0.10.14 [e189563c] + ExternalDocstrings v0.1.1 [9aa1b823] + FastClosures v0.3.2 [41a02a25] + Folds v0.2.10 ⌅ [f6369f11] ↓ ForwardDiff v1.0.1 ⇒ v0.10.38 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [673bf261] + GeometryOptimization v0.1.4 [3e5b6fbb] + HostCPUFeatures v0.1.17 [615f187c] + IfElse v0.1.1 [22cec73e] + InitialValues v0.3.1 [3587e190] + InverseFunctions v0.1.17 [682c06a0] + JSON v0.21.4 [ae98c720] + Jieko v0.2.1 [5be7bae1] + LBFGSB v0.4.1 [10f19ff3] + LayoutPointers v0.1.17 [1d6d02ad] + LeftChildRightSiblingTrees v0.2.0 [e6f89c97] + LoggingExtras v1.1.0 [bdcacae8] + LoopVectorization v0.12.172 [d125e4d3] + ManualMemory v0.1.8 [128add7d] + MicroCollections v0.2.0 [2e0e35c7] + Moshi v0.3.6 [76087f3c] + NLopt v1.1.4 [2fcf5ba9] + NeighbourLists v0.5.10 [6fd5a793] + Octavian v0.3.29 [6fe1bfb0] + OffsetArrays v1.17.0 [7f7a1694] + Optimization v4.4.0 [bca83a33] + OptimizationBase v2.8.0 [4e6fcdb7] + OptimizationNLopt v0.3.2 [90014a1f] + PDMats v0.11.35 [69de0a69] + Parsers v2.8.3 [1d0040c9] + PolyesterWeave v0.2.2 [33c8b6b6] + ProgressLogging v0.1.5 [92933f4c] + ProgressMeter v1.10.4 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.33.0 [42d2dcc6] + Referenceables v0.1.3 [7e49a35a] + RuntimeGeneratedFunctions v0.5.15 [94e857df] + SIMDTypes v0.1.0 [476501e8] + SLEEFPirates v0.6.43 [0bca4576] + SciMLBase v2.102.1 [c0aeaf25] + SciMLOperators v1.3.1 [53ae85a6] + SciMLStructures v1.7.0 [9f842d2f] + SparseConnectivityTracer v0.6.21 [0a514795] + SparseMatrixColorings v0.4.21 [171d559e] + SplittablesBase v0.1.15 [aedffcd0] + Static v1.2.0 [0d7ed370] + StaticArrayInterface v1.8.0 [d1fa6d79] + StrideArrays v0.1.29 [7792a7ef] + StrideArraysCore v0.5.7 [2efcf032] + SymbolicIndexingInterface v0.3.41 [5d786b92] + TerminalLoggers v0.1.7 ⌅ [f8b46487] + TestItemRunner v0.2.3 ⌅ [1c621080] + TestItems v0.1.1 [24d252fe] + ThreadedScans v0.1.0 [8290d209] + ThreadingUtilities v0.5.5 [28d57a85] + Transducers v0.4.84 [c4a57d5a] + UnsafeArrays v1.0.8 [3d5dd08c] + VectorizationBase v0.21.71 [33b4df10] + VectorizedRNG v0.2.25 [3b853605] + VectorizedStatistics v0.5.10 [81d17ec3] + L_BFGS_B_jll v3.0.1+0 [079eb43e] + NLopt_jll v2.10.0+0 [0dad84c5] + ArgTools v1.1.2 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [b27032c2] + LibCURL v0.6.4 [76f85450] + LibGit2 v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [4607b0f0] + SuiteSparse [a4e569a6] + Tar v1.10.0 [deac9b47] + LibCURL_jll v8.14.1+1 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.5.20 [458c3c95] + OpenSSL_jll v3.5.0+0 [efcefdf7] + PCRE2_jll v10.45.0+0 [83775a58] + Zlib_jll v1.3.1+2 [8e850ede] + nghttp2_jll v1.65.0+0 [3f19e933] + p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Test Successfully re-resolved Status `/tmp/jl_AKCxIa/Project.toml` [a963bdd2] AtomsBase v0.5.1 [f5cc8831] AtomsBuilder v0.2.2 [a3e0e189] AtomsCalculators v0.2.3 [ffbed154] DocStringExtensions v0.9.5 [38527215] EmpiricalPotentials v0.2.4 [673bf261] GeometryOptimization v0.1.4 [d3d80556] LineSearches v7.4.0 [429524aa] Optim v1.13.2 [7f7a1694] Optimization v4.4.0 [4e6fcdb7] OptimizationNLopt v0.3.2 [08abe8d2] PrettyTables v2.4.0 [90137ffa] StaticArrays v1.9.13 ⌅ [f8b46487] TestItemRunner v0.2.3 [a759f4b9] TimerOutputs v0.5.29 [1986cc42] Unitful v1.23.1 [a7773ee8] UnitfulAtomic v1.0.0 [37e2e46d] LinearAlgebra v1.12.0 [de0858da] Printf v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_AKCxIa/Manifest.toml` [47edcb42] ADTypes v1.15.0 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.3.0 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 [4fba245c] ArrayInterface v7.19.0 [a963bdd2] AtomsBase v0.5.1 [f5cc8831] AtomsBuilder v0.2.2 [a3e0e189] AtomsCalculators v0.2.3 [9855a07e] AtomsCalculatorsUtilities v0.1.7 [198e06fe] BangBang v0.4.4 [9718e550] Baselet v0.1.1 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [8ce10254] Bumper v0.7.1 [fa961155] CEnum v0.5.0 [2a0fbf3d] CPUSummary v0.2.6 [ae650224] ChunkSplitters v3.1.2 [fb6a15b2] CloseOpenIntervals v0.1.13 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.17.0 [a33af91c] CompositionsBase v0.1.2 [88cd18e8] ConsoleProgressMonitor v0.1.2 [187b0558] ConstructionBase v1.6.0 [adafc99b] CpuId v0.3.1 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [a0c0ee7d] DifferentiationInterface v0.7.1 [ffbed154] DocStringExtensions v0.9.5 [38527215] EmpiricalPotentials v0.2.4 [4e289a0a] EnumX v1.0.5 [e2ba6199] ExprTools v0.1.10 [55351af7] ExproniconLite v0.10.14 [e189563c] ExternalDocstrings v0.1.1 [9aa1b823] FastClosures v0.3.2 [1a297f60] FillArrays v1.13.0 [6a86dc24] FiniteDiff v2.27.0 [41a02a25] Folds v0.2.10 ⌅ [f6369f11] ForwardDiff v0.10.38 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 [46192b85] GPUArraysCore v0.2.0 [673bf261] GeometryOptimization v0.1.4 [3e5b6fbb] HostCPUFeatures v0.1.17 [615f187c] IfElse v0.1.1 [22cec73e] InitialValues v0.3.1 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.4 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.0 [682c06a0] JSON v0.21.4 [ae98c720] Jieko v0.2.1 [5be7bae1] LBFGSB v0.4.1 [b964fa9f] LaTeXStrings v1.4.0 [10f19ff3] LayoutPointers v0.1.17 [1d6d02ad] LeftChildRightSiblingTrees v0.2.0 [d3d80556] LineSearches v7.4.0 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.1.0 [bdcacae8] LoopVectorization v0.12.172 [1914dd2f] MacroTools v0.5.16 [d125e4d3] ManualMemory v0.1.8 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [2e0e35c7] Moshi v0.3.6 [d41bc354] NLSolversBase v7.10.0 [76087f3c] NLopt v1.1.4 [77ba4419] NaNMath v1.1.3 [2fcf5ba9] NeighbourLists v0.5.10 [6fd5a793] Octavian v0.3.29 [6fe1bfb0] OffsetArrays v1.17.0 [429524aa] Optim v1.13.2 [7f7a1694] Optimization v4.4.0 [bca83a33] OptimizationBase v2.8.0 [4e6fcdb7] OptimizationNLopt v0.3.2 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.35 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 [7b2266bf] PeriodicTable v1.2.1 [1d0040c9] PolyesterWeave v0.2.2 [85a6dd25] PositiveFactorizations v0.2.4 [aea7be01] PrecompileTools v1.3.2 [21216c6a] Preferences v1.4.3 [08abe8d2] PrettyTables v2.4.0 [33c8b6b6] ProgressLogging v0.1.5 [92933f4c] ProgressMeter v1.10.4 [43287f4e] PtrArrays v1.3.0 [3cdcf5f2] RecipesBase v1.3.4 [731186ca] RecursiveArrayTools v3.33.0 [189a3867] Reexport v1.2.2 [42d2dcc6] Referenceables v0.1.3 [ae029012] Requires v1.3.1 [7e49a35a] RuntimeGeneratedFunctions v0.5.15 [94e857df] SIMDTypes v0.1.0 [476501e8] SLEEFPirates v0.6.43 [0bca4576] SciMLBase v2.102.1 [c0aeaf25] SciMLOperators v1.3.1 [53ae85a6] SciMLStructures v1.7.0 [efcf1570] Setfield v1.1.2 [a2af1166] SortingAlgorithms v1.2.1 [9f842d2f] SparseConnectivityTracer v0.6.21 [0a514795] SparseMatrixColorings v0.4.21 [276daf66] SpecialFunctions v2.5.1 [171d559e] SplittablesBase v0.1.15 [aedffcd0] Static v1.2.0 [0d7ed370] StaticArrayInterface v1.8.0 [90137ffa] StaticArrays v1.9.13 [1e83bf80] StaticArraysCore v1.4.3 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.5 [d1fa6d79] StrideArrays v0.1.29 [7792a7ef] StrideArraysCore v0.5.7 [892a3eda] StringManipulation v0.4.1 [2efcf032] SymbolicIndexingInterface v0.3.41 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [5d786b92] TerminalLoggers v0.1.7 ⌅ [f8b46487] TestItemRunner v0.2.3 ⌅ [1c621080] TestItems v0.1.1 [24d252fe] ThreadedScans v0.1.0 [8290d209] ThreadingUtilities v0.5.5 [a759f4b9] TimerOutputs v0.5.29 [28d57a85] Transducers v0.4.84 [3a884ed6] UnPack v1.0.2 [1986cc42] Unitful v1.23.1 [a7773ee8] UnitfulAtomic v1.0.0 [c4a57d5a] UnsafeArrays v1.0.8 [3d5dd08c] VectorizationBase v0.21.71 [33b4df10] VectorizedRNG v0.2.25 [3b853605] VectorizedStatistics v0.5.10 [81d17ec3] L_BFGS_B_jll v3.0.1+0 [079eb43e] NLopt_jll v2.10.0+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.14.1+1 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.5.20 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.5+0 [458c3c95] OpenSSL_jll v3.5.0+0 [efcefdf7] PCRE2_jll v10.45.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.13.1+0 [8e850ede] nghttp2_jll v1.65.0+0 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Precompiling packages... 8414.5 ms ✓ AtomsBuilder 1 dependency successfully precompiled in 9 seconds. 19 already precompiled. Precompiling packages... 2767.0 ms ✓ Transducers → TransducersReferenceablesExt 17103.0 ms ✓ VectorizationBase 7786.0 ms ✓ Folds 5761.2 ms ✓ SLEEFPirates 6996.9 ms ✓ VectorizedRNG 41592.1 ms ✓ LoopVectorization 4327.5 ms ✓ VectorizedRNG → VectorizedRNGStaticArraysExt 43770.5 ms ✓ VectorizedStatistics 5738.5 ms ✓ LoopVectorization → SpecialFunctionsExt 15415.3 ms ✓ Octavian 16343.7 ms ✓ Octavian → ForwardDiffExt 17811.9 ms ✓ StrideArrays 18018.1 ms ✓ AtomsCalculatorsUtilities Info Given EmpiricalPotentials was explicitly requested, output will be shown live  WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in __init() at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/VectorizedRNG.jl WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in initXoshiro!(Ptr{UInt64}, Any, UInt64, UInt64, UInt64, UInt64) at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/xoshiro.jl 14155.7 ms ✓ EmpiricalPotentials 14 dependencies successfully precompiled in 219 seconds. 110 already precompiled. 7 dependencies had output during precompilation: ┌ EmpiricalPotentials │ [Output was shown above] └ ┌ VectorizationBase │ WARNING: Constructor for type "Int16" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "Int16" refers to `Base.Int16`. This behavior is deprecated and may differ in future versions. │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Int16 end`. │ Hint: To silence the warning, qualify `Int16` as `Base.Int16` in the method signature or explicitly `import Base: Int16`. │ WARNING: Constructor for type "Int64" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "Int64" refers to `Base.Int64`. This behavior is deprecated and may differ in future versions. │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Int64 end`. │ Hint: To silence the warning, qualify `Int64` as `Base.Int64` in the method signature or explicitly `import Base: Int64`. │ WARNING: Constructor for type "Int32" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "Int32" refers to `Base.Int32`. This behavior is deprecated and may differ in future versions. │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Int32 end`. │ Hint: To silence the warning, qualify `Int32` as `Base.Int32` in the method signature or explicitly `import Base: Int32`. │ WARNING: Constructor for type "UInt8" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "UInt8" refers to `Base.UInt8`. This behavior is deprecated and may differ in future versions. │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function UInt8 end`. │ Hint: To silence the warning, qualify `UInt8` as `Base.UInt8` in the method signature or explicitly `import Base: UInt8`. │ WARNING: Constructor for type "UInt16" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "UInt16" refers to `Base.UInt16`. This behavior is deprecated and may differ in future versions. │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function UInt16 end`. │ Hint: To silence the warning, qualify `UInt16` as `Base.UInt16` in the method signature or explicitly `import Base: UInt16`. │ WARNING: Constructor for type "Float32" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "Float32" refers to `Base.Float32`. This behavior is deprecated and may differ in future versions. │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Float32 end`. │ Hint: To silence the warning, qualify `Float32` as `Base.Float32` in the method signature or explicitly `import Base: Float32`. │ WARNING: Constructor for type "UInt64" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "UInt64" refers to `Base.UInt64`. This behavior is deprecated and may differ in future versions. │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function UInt64 end`. │ Hint: To silence the warning, qualify `UInt64` as `Base.UInt64` in the method signature or explicitly `import Base: UInt64`. │ WARNING: Constructor for type "Bool" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "Bool" refers to `Base.Bool`. This behavior is deprecated and may differ in future versions. │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Bool end`. │ Hint: To silence the warning, qualify `Bool` as `Base.Bool` in the method signature or explicitly `import Base: Bool`. │ WARNING: Constructor for type "Int8" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "Int8" refers to `Base.Int8`. This behavior is deprecated and may differ in future versions. │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Int8 end`. │ Hint: To silence the warning, qualify `Int8` as `Base.Int8` in the method signature or explicitly `import Base: Int8`. │ WARNING: Constructor for type "Float64" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "Float64" refers to `Base.Float64`. This behavior is deprecated and may differ in future versions. │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Float64 end`. │ Hint: To silence the warning, qualify `Float64` as `Base.Float64` in the method signature or explicitly `import Base: Float64`. │ WARNING: Constructor for type "UInt32" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "UInt32" refers to `Base.UInt32`. This behavior is deprecated and may differ in future versions. │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function UInt32 end`. │ Hint: To silence the warning, qualify `UInt32` as `Base.UInt32` in the method signature or explicitly `import Base: UInt32`. │ WARNING: Constructor for type "Float16" was extended in `VectorizationBase` without explicit qualification or import. │ NOTE: Assumed "Float16" refers to `Base.Float16`. This behavior is deprecated and may differ in future versions. │ NOTE: This behavior may have differed in Julia versions prior to 1.12. │ Hint: If you intended to create a new generic function of the same name, use `function Float16 end`. │ Hint: To silence the warning, qualify `Float16` as `Base.Float16` in the method signature or explicitly `import Base: Float16`. └ ┌ LoopVectorization │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vreduce(typeof(Base.:(+)), Any) at /home/pkgeval/.julia/packages/LoopVectorization/ImqiY/src/simdfunctionals/mapreduce.jl └ ┌ VectorizedRNG → VectorizedRNGStaticArraysExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in __init() at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/VectorizedRNG.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initXoshiro!(Ptr{UInt64}, Any, UInt64, UInt64, UInt64, UInt64) at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/xoshiro.jl └ ┌ StrideArrays │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in __init() at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/VectorizedRNG.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initXoshiro!(Ptr{UInt64}, Any, UInt64, UInt64, UInt64, UInt64) at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/xoshiro.jl └ ┌ VectorizedStatistics │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in vsum(AbstractArray{T, N} where N) where {T<:Union{Bool, Float16, Float32, Float64, Int16, Int32, Int64, Int8, UInt16, UInt32, UInt64, UInt8, SIMDTypes.Bit}} at /home/pkgeval/.julia/packages/LoopVectorization/ImqiY/src/simdfunctionals/mapreduce.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vmean(Any, Base.Colon, Static.False) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vmean.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vvar(Nothing, Bool, Any, Base.Colon, Static.False) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vvar.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vminimum(Any, Base.Colon) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vreducibles.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vmaximum(Any, Base.Colon) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vreducibles.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vsum!(AbstractArray{Tₒ, N}, AbstractArray{T, N}, D, Any) where {Tₒ, T, N, M, D<:Tuple{Vararg{Union{Integer, Static.StaticInt{N} where N}, M}}} at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vsum.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vmean!(AbstractArray{Tₒ, N}, AbstractArray{T, N}, D, Any) where {Tₒ, T, N, M, D<:Tuple{Vararg{Union{Integer, Static.StaticInt{N} where N}, M}}} at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vmean.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in sqrt!(AbstractArray{T, N} where N where T, Static.False) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vstd.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vvar!(AbstractArray{Tₒ, N}, Bool, AbstractArray{T, N}, D, Any) where {Tₒ, T, N, M, D<:Tuple{Vararg{Union{Integer, Static.StaticInt{N} where N}, M}}} at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vvar.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vminimum(Any, Int64) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vreducibles.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in _vmaximum(Any, Int64) at /home/pkgeval/.julia/packages/VectorizedStatistics/lBP0N/src/vreducibles.jl └ ┌ AtomsCalculatorsUtilities │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in __init() at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/VectorizedRNG.jl │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initXoshiro!(Ptr{UInt64}, Any, UInt64, UInt64, UInt64, UInt64) at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/xoshiro.jl └ WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in __init() at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/VectorizedRNG.jl WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in initXoshiro!(Ptr{UInt64}, Any, UInt64, UInt64, UInt64, UInt64) at /home/pkgeval/.julia/packages/VectorizedRNG/2TXSb/src/xoshiro.jl Precompiling packages... 6122.1 ms ✓ SymbolicIndexingInterface 6870.6 ms ✓ RecursiveArrayTools 4031.1 ms ✓ RecursiveArrayTools → RecursiveArrayToolsSparseArraysExt 25868.4 ms ✓ SciMLBase 9393.7 ms ✓ OptimizationBase 9856.8 ms ✓ Optimization 8193.4 ms ✓ OptimizationNLopt 7 dependencies successfully precompiled in 73 seconds. 107 already precompiled. Precompiling packages... 8700.0 ms ✓ RecursiveArrayTools → RecursiveArrayToolsForwardDiffExt 1 dependency successfully precompiled in 9 seconds. 58 already precompiled. Precompiling packages... 1593.6 ms ✓ OptimizationBase → OptimizationForwardDiffExt 1 dependency successfully precompiled in 3 seconds. 100 already precompiled. Precompiling packages... 11606.5 ms ✓ GeometryOptimization → GeometryOptimizationOptimizationExt 1 dependency successfully precompiled in 13 seconds. 172 already precompiled. ┌ Warning: The selected optimization algorithm requires second order derivatives, but `SecondOrder` ADtype was not provided. │ So a `SecondOrder` with SciMLBase.NoAD() for both inner and outer will be created, this can be suboptimal and not work in some cases so │ an explicit `SecondOrder` ADtype is recommended. └ @ OptimizationBase ~/.julia/packages/OptimizationBase/SX92W/src/cache.jl:49 ┌ Warning: Geometry optimisation not converged. └ @ GeometryOptimization ~/.julia/packages/GeometryOptimization/y8zYr/src/minimize_energy.jl:184 Geometry optimisation convergence (in atomic units) ┌─────┬─────────────────┬───────────┬─────────────┬────────┐ │ n │ Energy │ log10(ΔE) │ max(Force) │ Δtime │ ├─────┼─────────────────┼───────────┼─────────────┼────────┤ │ 0 │ -1.249758123350 │ │ 0.0660827 │ 11.0ms │ │ 1 │ -1.272269381763 │ │ 0.0133273 │ 6.85s │ │ 2 │ -1.273875902645 │ -2.79 │ 0.00496687 │ 1.19s │ │ 3 │ -1.274207872626 │ -3.48 │ 0.00375837 │ 17.0ms │ │ 4 │ -1.274433870646 │ -3.65 │ 0.00204714 │ 2.65ms │ │ 5 │ -1.274465729955 │ -4.50 │ 0.000185862 │ 2.58ms │ │ 6 │ -1.274465950937 │ -6.66 │ 5.86672e-5 │ 2.73ms │ │ 7 │ -1.274465974036 │ -7.64 │ 1.56539e-5 │ 2.64ms │ │ 8 │ -1.274465977448 │ -8.47 │ 1.56895e-5 │ 2.81ms │ │ 9 │ -1.274465979943 │ -8.60 │ 6.2983e-6 │ 2.63ms │ │ 10 │ -1.274465980163 │ -9.66 │ 9.03341e-7 │ 2.73ms │ │ 11 │ -1.274465980168 │ -11.32 │ 2.27167e-7 │ 2.80ms │ │ 12 │ -1.274465980168 │ -12.36 │ 7.15273e-8 │ 3.05ms │ │ 13 │ -1.274465980168 │ -13.21 │ 1.02839e-7 │ 3.00ms │ │ 14 │ -1.274465980169 │ -13.20 │ 2.27354e-8 │ 3.00ms │ │ 15 │ -1.274465980169 │ -14.74 │ 1.32325e-8 │ 2.69ms │ │ 16 │ -1.274465980169 │ + -Inf │ 1.26738e-8 │ 2.91ms │ │ 17 │ -1.274465980169 │ -15.58 │ 1.2663e-8 │ 2.74ms │ │ 18 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 4.90ms │ │ 19 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 2.82ms │ │ 20 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 273μs │ │ 21 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 115μs │ │ 22 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 104μs │ │ 23 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 103μs │ │ 24 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 96.1μs │ │ 25 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 130μs │ │ 26 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 101μs │ │ 27 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.2μs │ │ 28 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.3μs │ │ 29 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.2μs │ │ 30 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.4μs │ │ 31 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.8μs │ │ 32 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 77.3μs │ │ 33 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 85.6μs │ │ 34 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.2μs │ │ 35 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.9μs │ │ 36 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 103μs │ │ 37 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.3μs │ │ 38 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.2μs │ │ 39 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 78.9μs │ │ 40 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.5μs │ │ 41 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.8μs │ │ 42 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.5μs │ │ 43 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.5μs │ │ 44 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.6μs │ │ 45 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.0μs │ │ 46 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.7μs │ │ 47 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.1μs │ │ 48 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 101μs │ │ 49 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.1μs │ │ 50 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.6μs │ │ 51 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 75.3μs │ │ 52 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.1μs │ │ 53 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 94.3μs │ │ 54 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 90.0μs │ │ 55 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.8μs │ │ 56 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 90.0μs │ │ 57 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 102μs │ │ 58 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.6μs │ │ 59 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 109μs │ │ 60 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 98.9μs │ │ 61 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.3μs │ │ 62 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.9μs │ │ 63 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.8μs │ │ 64 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 91.8μs │ │ 65 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.8μs │ │ 66 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 85.0μs │ │ 67 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.2μs │ │ 68 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 76.8μs │ │ 69 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.3μs │ │ 70 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 88.8μs │ │ 71 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 108μs │ │ 72 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.8μs │ │ 73 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 85.6μs │ │ 74 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 78.6μs │ │ 75 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.4μs │ │ 76 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.8μs │ │ 77 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.6μs │ │ 78 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.1μs │ │ 79 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 90.2μs │ │ 80 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.7μs │ │ 81 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.6μs │ │ 82 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.5μs │ │ 83 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 78.8μs │ │ 84 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 72.9μs │ │ 85 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 72.8μs │ │ 86 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.4μs │ │ 87 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.9μs │ │ 88 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.7μs │ │ 89 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 85.3μs │ │ 90 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.9μs │ │ 91 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.5μs │ │ 92 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.8μs │ │ 93 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 88.2μs │ │ 94 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 114μs │ │ 95 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 104μs │ │ 96 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 93.0μs │ │ 97 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.1μs │ │ 98 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 85.2μs │ │ 99 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 76.4μs │ │ 100 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 78.3μs │ │ 101 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.6μs │ │ 102 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 85.8μs │ │ 103 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.4μs │ │ 104 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 88.1μs │ │ 105 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.5μs │ │ 106 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 103μs │ │ 107 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.6μs │ │ 108 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.5μs │ │ 109 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 73.2μs │ │ 110 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 86.6μs │ │ 111 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 85.0μs │ │ 112 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.2μs │ │ 113 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.0μs │ │ 114 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.5μs │ │ 115 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.7μs │ │ 116 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.5μs │ │ 117 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 115μs │ │ 118 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 95.8μs │ │ 119 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 94.2μs │ │ 120 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.0μs │ │ 121 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 77.5μs │ │ 122 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.2μs │ │ 123 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.6μs │ │ 124 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 78.7μs │ │ 125 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.2μs │ │ 126 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 77.7μs │ │ 127 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 76.4μs │ │ 128 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.1μs │ │ 129 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 107μs │ │ 130 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 76.1μs │ │ 131 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.8μs │ │ 132 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.1μs │ │ 133 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.8μs │ │ 134 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 78.0μs │ │ 135 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 77.6μs │ │ 136 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.9μs │ │ 137 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.6μs │ │ 138 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 76.8μs │ │ 139 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 71.3μs │ │ 140 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.5μs │ │ 141 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.6μs │ │ 142 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 121μs │ │ 143 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 102μs │ │ 144 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.6μs │ │ 145 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.9μs │ │ 146 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.8μs │ │ 147 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 91.5μs │ │ 148 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.7μs │ │ 149 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 91.7μs │ │ 150 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 90.3μs │ │ 151 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 90.4μs │ │ 152 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 103μs │ │ 153 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 93.4μs │ │ 154 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.5μs │ │ 155 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.0μs │ │ 156 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 93.5μs │ │ 157 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 93.9μs │ │ 158 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 98.0μs │ │ 159 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 88.9μs │ │ 160 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.9μs │ │ 161 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.2μs │ │ 162 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 88.3μs │ │ 163 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 117μs │ │ 164 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 109μs │ │ 165 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 96.2μs │ │ 166 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 88.3μs │ │ 167 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 100μs │ │ 168 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.5μs │ │ 169 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 88.8μs │ │ 170 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 86.7μs │ │ 171 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 90.4μs │ │ 172 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.7μs │ │ 173 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 100μs │ │ 174 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 93.5μs │ │ 175 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.8μs │ │ 176 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.9μs │ │ 177 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.0μs │ │ 178 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.3μs │ │ 179 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.3μs │ │ 180 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 85.0μs │ │ 181 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 90.6μs │ │ 182 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 90.6μs │ │ 183 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.6μs │ │ 184 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 88.3μs │ │ 185 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 120μs │ │ 186 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.3μs │ │ 187 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 78.2μs │ │ 188 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.4μs │ │ 189 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.2μs │ │ 190 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.6μs │ │ 191 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.3μs │ │ 192 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.3μs │ │ 193 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.6μs │ │ 194 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 88.6μs │ │ 195 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 93.0μs │ │ 196 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 119μs │ │ 197 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.7μs │ │ 198 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.1μs │ │ 199 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.8μs │ │ 200 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.4μs │ │ 201 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 88.4μs │ │ 202 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 93.5μs │ │ 203 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 93.4μs │ │ 204 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.0μs │ │ 205 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 96.3μs │ │ 206 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.5μs │ │ 207 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 117μs │ │ 208 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 90.5μs │ │ 209 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.0μs │ │ 210 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.5μs │ │ 211 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 86.9μs │ │ 212 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.2μs │ │ 213 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.1μs │ │ 214 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.7μs │ │ 215 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.3μs │ │ 216 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.8μs │ │ 217 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.4μs │ │ 218 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 111μs │ │ 219 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 96.3μs │ │ 220 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.8μs │ │ 221 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.4μs │ │ 222 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 98.4μs │ │ 223 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 86.2μs │ │ 224 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.7μs │ │ 225 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 85.9μs │ │ 226 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 90.5μs │ │ 227 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 85.7μs │ │ 228 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.8μs │ │ 229 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 100μs │ │ 230 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.8μs │ │ 231 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.6μs │ │ 232 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.8μs │ │ 233 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.4μs │ │ 234 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.9μs │ │ 235 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 75.2μs │ │ 236 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 71.2μs │ │ 237 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 72.7μs │ │ 238 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.3μs │ │ 239 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.6μs │ │ 240 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 86.7μs │ │ 241 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.4μs │ │ 242 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 107μs │ │ 243 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.5μs │ │ 244 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.7μs │ │ 245 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.0μs │ │ 246 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 75.2μs │ │ 247 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.1μs │ │ 248 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 93.8μs │ │ 249 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 90.9μs │ │ 250 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.5μs │ │ 251 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.9μs │ │ 252 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.5μs │ │ 253 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 117μs │ │ 254 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 93.9μs │ │ 255 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.4μs │ │ 256 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.8μs │ │ 257 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.2μs │ │ 258 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 94.9μs │ │ 259 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.9μs │ │ 260 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 94.1μs │ │ 261 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 95.1μs │ │ 262 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 95.7μs │ │ 263 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 108μs │ │ 264 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 97.8μs │ │ 265 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 93.8μs │ │ 266 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 86.7μs │ │ 267 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 90.4μs │ │ 268 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 96.4μs │ │ 269 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.2μs │ │ 270 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.0μs │ │ 271 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.4μs │ │ 272 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.9μs │ │ 273 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.0μs │ │ 274 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.7μs │ │ 275 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 105μs │ │ 276 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.4μs │ │ 277 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 97.0μs │ │ 278 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.2μs │ │ 279 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 93.7μs │ │ 280 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 97.6μs │ │ 281 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 95.4μs │ │ 282 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 97.5μs │ │ 283 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 101μs │ │ 284 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 105μs │ │ 285 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 132μs │ │ 286 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 111μs │ │ 287 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 98.1μs │ │ 288 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.9μs │ │ 289 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 98.4μs │ │ 290 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 95.5μs │ │ 291 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.0μs │ │ 292 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.9μs │ │ 293 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.0μs │ │ 294 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 78.4μs │ │ 295 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 110μs │ │ 296 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 94.9μs │ │ 297 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.3μs │ │ 298 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.5μs │ │ 299 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.3μs │ │ 300 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.2μs │ │ 301 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.4μs │ │ 302 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 94.5μs │ │ 303 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 91.9μs │ │ 304 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 76.8μs │ │ 305 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 73.6μs │ │ 306 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.3μs │ │ 307 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 122μs │ │ 308 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.5μs │ │ 309 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.5μs │ │ 310 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.3μs │ │ 311 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 78.2μs │ │ 312 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 73.7μs │ │ 313 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.4μs │ │ 314 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.9μs │ │ 315 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.5μs │ │ 316 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.6μs │ │ 317 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.2μs │ │ 318 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 103μs │ │ 319 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 95.2μs │ │ 320 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 93.1μs │ │ 321 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.5μs │ │ 322 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 86.3μs │ │ 323 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 86.8μs │ │ 324 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.6μs │ │ 325 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.4μs │ │ 326 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.6μs │ │ 327 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.6μs │ │ 328 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.0μs │ │ 329 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 86.3μs │ │ 330 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 111μs │ │ 331 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.5μs │ │ 332 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 100μs │ │ 333 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.8μs │ │ 334 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 86.9μs │ │ 335 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.7μs │ │ 336 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.6μs │ │ 337 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 78.0μs │ │ 338 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.9μs │ │ 339 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.8μs │ │ 340 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.1μs │ │ 341 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 109μs │ │ 342 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 96.2μs │ │ 343 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.9μs │ │ 344 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.4μs │ │ 345 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.0μs │ │ 346 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 78.7μs │ │ 347 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 76.1μs │ │ 348 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.1μs │ │ 349 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.1μs │ │ 350 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.3μs │ │ 351 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.6μs │ │ 352 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.9μs │ │ 353 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 107μs │ │ 354 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.9μs │ │ 355 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 78.7μs │ │ 356 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 75.7μs │ │ 357 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 86.9μs │ │ 358 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 93.8μs │ │ 359 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.3μs │ │ 360 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 90.3μs │ │ 361 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 88.9μs │ │ 362 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.0μs │ │ 363 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 78.8μs │ │ 364 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 95.1μs │ │ 365 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 88.0μs │ │ 366 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 93.3μs │ │ 367 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 88.2μs │ │ 368 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.2μs │ │ 369 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 86.7μs │ │ 370 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 86.6μs │ │ 371 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.9μs │ │ 372 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 90.3μs │ │ 373 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 78.8μs │ │ 374 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 76.3μs │ │ 375 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.7μs │ │ 376 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 103μs │ │ 377 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.2μs │ │ 378 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 78.0μs │ │ 379 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 77.0μs │ │ 380 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.8μs │ │ 381 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 77.6μs │ │ 382 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.2μs │ │ 383 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 78.5μs │ │ 384 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 74.4μs │ │ 385 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.4μs │ │ 386 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.8μs │ │ 387 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 97.1μs │ │ 388 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 117μs │ │ 389 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.8μs │ │ 390 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 77.4μs │ │ 391 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.5μs │ │ 392 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 77.9μs │ │ 393 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 77.2μs │ │ 394 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 76.1μs │ │ 395 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.2μs │ │ 396 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.5μs │ │ 397 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 73.7μs │ │ 398 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 74.4μs │ │ 399 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 76.8μs │ │ 400 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 110μs │ │ 401 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 90.4μs │ │ 402 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 88.4μs │ │ 403 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.4μs │ │ 404 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.9μs │ │ 405 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.8μs │ │ 406 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.1μs │ │ 407 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.8μs │ │ 408 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 86.2μs │ │ 409 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 90.3μs │ │ 410 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 90.5μs │ │ 411 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 85.2μs │ │ 412 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 118μs │ │ 413 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 99.0μs │ │ 414 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.8μs │ │ 415 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 100μs │ │ 416 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 94.9μs │ │ 417 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 88.5μs │ │ 418 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 85.1μs │ │ 419 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.5μs │ │ 420 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.9μs │ │ 421 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 85.6μs │ │ 422 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 116μs │ │ 423 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.2μs │ │ 424 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.3μs │ │ 425 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.3μs │ │ 426 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.6μs │ │ 427 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.5μs │ │ 428 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.4μs │ │ 429 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.2μs │ │ 430 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 93.0μs │ │ 431 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 91.8μs │ │ 432 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 91.4μs │ │ 433 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 102μs │ │ 434 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 116μs │ │ 435 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.4μs │ │ 436 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 93.7μs │ │ 437 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.7μs │ │ 438 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.5μs │ │ 439 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.3μs │ │ 440 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.3μs │ │ 441 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.0μs │ │ 442 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.2μs │ │ 443 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.2μs │ │ 444 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 77.3μs │ │ 445 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 105μs │ │ 446 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 85.0μs │ │ 447 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.7μs │ │ 448 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.2μs │ │ 449 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.5μs │ │ 450 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.6μs │ │ 451 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 76.8μs │ │ 452 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.4μs │ │ 453 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 77.6μs │ │ 454 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 74.5μs │ │ 455 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.8μs │ │ 456 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 78.4μs │ │ 457 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 96.8μs │ │ 458 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 79.2μs │ │ 459 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 78.3μs │ │ 460 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.2μs │ │ 461 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 71.4μs │ │ 462 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 75.1μs │ │ 463 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 78.1μs │ │ 464 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 86.5μs │ │ 465 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.7μs │ │ 466 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 85.9μs │ │ 467 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.0μs │ │ 468 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 85.9μs │ │ 469 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 112μs │ │ 470 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 98.8μs │ │ 471 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.2μs │ │ 472 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 86.0μs │ │ 473 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.8μs │ │ 474 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.8μs │ │ 475 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.5μs │ │ 476 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 85.1μs │ │ 477 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 88.9μs │ │ 478 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.4μs │ │ 479 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 76.6μs │ │ 480 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.0μs │ │ 481 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 110μs │ │ 482 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 81.0μs │ │ 483 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.5μs │ │ 484 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 91.3μs │ │ 485 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 94.3μs │ │ 486 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.3μs │ │ 487 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 84.5μs │ │ 488 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.0μs │ │ 489 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 87.8μs │ │ 490 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.6μs │ │ 491 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 89.6μs │ │ 492 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 102μs │ │ 493 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 83.9μs │ │ 494 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.8μs │ │ 495 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 80.4μs │ │ 496 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 85.3μs │ │ 497 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 98.8μs │ │ 498 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 92.6μs │ │ 499 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 82.4μs │ │ 500 │ -1.274465980169 │ + -Inf │ 1.2663e-8 │ 76.9μs │ ┌ Warning: Geometry optimisation not converged. └ @ GeometryOptimization ~/.julia/packages/GeometryOptimization/y8zYr/src/minimize_energy.jl:184 ┌ Warning: Geometry optimisation not converged. └ @ GeometryOptimization ~/.julia/packages/GeometryOptimization/y8zYr/src/minimize_energy.jl:184 ┌ Warning: Geometry optimisation not converged. └ @ GeometryOptimization ~/.julia/packages/GeometryOptimization/y8zYr/src/minimize_energy.jl:184 Geometry optimisation convergence (in atomic units) ┌─────┬─────────────────┬───────────┬─────────────┬─────────────┬──────────┬────────┐ │ n │ Energy │ log10(ΔE) │ max(Force) │ max(Virial) │ Pressure │ Δtime │ ├─────┼─────────────────┼───────────┼─────────────┼─────────────┼──────────┼────────┤ │ 0 │ -5.048023512592 │ │ 0.0497838 │ 0.214617 │ -0.086 │ 5.03ms │ │ 1 │ -5.053857174654 │ │ 0.0417544 │ 0.11144 │ 0.096 │ 149ms │ │ 2 │ -5.068970038105 │ -1.82 │ 0.0290543 │ 0.519164 │ -0.48 │ 10.2ms │ │ 3 │ -5.091377675834 │ -1.65 │ 0.0120427 │ 0.145446 │ 0.0035 │ 9.60ms │ │ 4 │ -5.093379791885 │ -2.70 │ 0.00834367 │ 0.113627 │ 0.055 │ 9.89ms │ │ 5 │ -5.093867517168 │ -3.31 │ 0.00804451 │ 0.0623905 │ -0.048 │ 9.53ms │ │ 6 │ -5.094309101639 │ -3.35 │ 0.00803498 │ 0.0341903 │ -0.0045 │ 9.09ms │ │ 7 │ -5.094821917864 │ -3.29 │ 0.0066669 │ 0.106718 │ 0.076 │ 9.53ms │ │ 8 │ -5.096019412106 │ -2.92 │ 0.00616621 │ 0.0751187 │ -0.048 │ 8.76ms │ │ 9 │ -5.096647130335 │ -3.20 │ 0.00487024 │ 0.0200153 │ -0.017 │ 8.62ms │ │ 10 │ -5.096688831915 │ -4.38 │ 0.00495798 │ 0.0157907 │ 0.015 │ 9.08ms │ │ 11 │ -5.096808359590 │ -3.92 │ 0.00500669 │ 0.0358582 │ -0.0069 │ 8.55ms │ │ 12 │ -5.097222027510 │ -3.38 │ 0.00275507 │ 0.0564083 │ -0.038 │ 9.53ms │ │ 13 │ -5.097322255052 │ -4.00 │ 0.00297638 │ 0.03074 │ 0.012 │ 9.43ms │ │ 14 │ -5.097385581939 │ -4.20 │ 0.00329646 │ 0.0134235 │ 0.0037 │ 9.18ms │ │ 15 │ -5.097425777035 │ -4.40 │ 0.00293386 │ 0.024858 │ -0.014 │ 8.58ms │ │ 16 │ -5.097479411639 │ -4.27 │ 0.00282421 │ 0.0320618 │ 0.02 │ 9.24ms │ │ 17 │ -5.097712927365 │ -3.63 │ 0.00156876 │ 0.0202586 │ 0.017 │ 9.58ms │ │ 18 │ -5.097750401005 │ -4.43 │ 0.00131727 │ 0.00906246 │ -0.0078 │ 8.19ms │ │ 19 │ -5.097755943236 │ -5.26 │ 0.00134201 │ 0.00265733 │ 0.00071 │ 8.62ms │ │ 20 │ -5.097768710191 │ -4.89 │ 0.000880012 │ 0.0143812 │ 0.012 │ 9.48ms │ │ 21 │ -5.097788844473 │ -4.70 │ 0.000737727 │ 0.010757 │ -0.0059 │ 9.29ms │ │ 22 │ -5.097796596745 │ -5.11 │ 0.000716081 │ 0.00435037 │ -0.00095 │ 8.50ms │ │ 23 │ -5.097799806141 │ -5.49 │ 0.000721946 │ 0.00456393 │ 0.0045 │ 8.67ms │ │ 24 │ -5.097801780602 │ -5.70 │ 0.000706506 │ 0.00448365 │ -0.0019 │ 8.70ms │ │ 25 │ -5.097807973984 │ -5.21 │ 0.000739418 │ 0.00786306 │ -0.0028 │ 9.01ms │ │ 26 │ -5.097829810525 │ -4.66 │ 0.000617849 │ 0.0145512 │ 0.013 │ 8.62ms │ │ 27 │ -5.097839169746 │ -5.03 │ 0.000690577 │ 0.00244434 │ 0.00017 │ 8.57ms │ │ 28 │ -5.097840710385 │ -5.81 │ 0.00070445 │ 0.00261539 │ -0.0025 │ 8.44ms │ │ 29 │ -5.097845704743 │ -5.30 │ 0.000576443 │ 0.00936183 │ 0.0076 │ 9.08ms │ │ 30 │ -5.097858061832 │ -4.91 │ 0.000371774 │ 0.0056815 │ 0.0018 │ 9.42ms │ │ 31 │ -5.097859965777 │ -5.72 │ 0.000356536 │ 0.00466881 │ -0.0028 │ 9.20ms │ │ 32 │ -5.097860908466 │ -6.03 │ 0.000350682 │ 0.0017826 │ 0.0011 │ 9.44ms │ │ 33 │ -5.097861484908 │ -6.24 │ 0.000338407 │ 0.00141021 │ 0.00042 │ 8.97ms │ │ 34 │ -5.097862414700 │ -6.03 │ 0.000236382 │ 0.00511844 │ -0.0039 │ 8.89ms │ │ 35 │ -5.097864289140 │ -5.73 │ 0.00017781 │ 0.00239594 │ 0.00033 │ 10.0ms │ │ 36 │ -5.097864623627 │ -6.48 │ 0.00013693 │ 0.000598522 │ 0.00053 │ 9.33ms │ │ 37 │ -5.097864659970 │ -7.44 │ 0.000133569 │ 0.000507205 │ -0.0005 │ 9.92ms │ │ 38 │ -5.097864882525 │ -6.65 │ 0.000121225 │ 0.00165762 │ -0.00028 │ 9.04ms │ │ 39 │ -5.097865253688 │ -6.43 │ 9.10569e-5 │ 0.00204485 │ 0.0012 │ 8.83ms │ │ 40 │ -5.097865361163 │ -6.97 │ 9.87427e-5 │ 0.000863637 │ -0.00036 │ 8.79ms │ │ 41 │ -5.097865444111 │ -7.08 │ 0.000104136 │ 0.0004272 │ -0.00025 │ 8.89ms │ │ 42 │ -5.097865479170 │ -7.46 │ 9.92596e-5 │ 0.000789619 │ 0.00051 │ 8.59ms │ │ 43 │ -5.097865568504 │ -7.05 │ 8.20299e-5 │ 0.00104896 │ -0.00051 │ 8.51ms │ │ 44 │ -5.097865808469 │ -6.62 │ 5.00538e-5 │ 0.00067438 │ -0.00058 │ 8.67ms │ │ 45 │ -5.097865829200 │ -7.68 │ 4.89036e-5 │ 0.000167263 │ 0.00014 │ 8.26ms │ │ 46 │ -5.097865834989 │ -8.24 │ 4.86827e-5 │ 0.000206043 │ -1.1e-5 │ 8.46ms │ │ 47 │ -5.097865862236 │ -7.56 │ 2.99967e-5 │ 0.000704391 │ -0.00057 │ 8.39ms │ │ 48 │ -5.097865888685 │ -7.58 │ 2.88468e-5 │ 0.000371816 │ 0.00011 │ 8.66ms │ │ 49 │ -5.097865897787 │ -8.04 │ 2.70167e-5 │ 0.000197091 │ 6.9e-5 │ 8.74ms │ │ 50 │ -5.097865902382 │ -8.34 │ 2.79848e-5 │ 0.000181402 │ -0.00015 │ 8.24ms │ │ 51 │ -5.097865904911 │ -8.60 │ 2.93238e-5 │ 0.000142628 │ 6.6e-5 │ 8.77ms │ │ 52 │ -5.097865919454 │ -7.84 │ 2.57898e-5 │ 0.00039588 │ 0.00025 │ 8.82ms │ │ 53 │ -5.097865937936 │ -7.73 │ 2.67795e-5 │ 0.000280142 │ -0.00024 │ 10.5ms │ │ 54 │ -5.097865942186 │ -8.37 │ 2.35678e-5 │ 6.01423e-5 │ -1.1e-5 │ 9.46ms │ │ 55 │ -5.097865943607 │ -8.85 │ 2.45464e-5 │ 0.000137745 │ 0.00012 │ 8.83ms │ │ 56 │ -5.097865949097 │ -8.26 │ 2.05005e-5 │ 0.000236181 │ -0.00015 │ 8.89ms │ │ 57 │ -5.097865955914 │ -8.17 │ 1.47518e-5 │ 0.000132201 │ -5.1e-5 │ 8.30ms │ │ 58 │ -5.097865957480 │ -8.80 │ 1.78274e-5 │ 0.00015371 │ 0.0001 │ 9.59ms │ │ 59 │ -5.097865958614 │ -8.95 │ 1.93066e-5 │ 6.46982e-5 │ -2.1e-5 │ 9.45ms │ │ 60 │ -5.097865959588 │ -9.01 │ 1.61401e-5 │ 9.90793e-5 │ -3.4e-5 │ 9.63ms │ │ 61 │ -5.097865963498 │ -8.41 │ 1.17697e-5 │ 0.000279313 │ 0.00024 │ 9.70ms │ │ 62 │ -5.097865968904 │ -8.27 │ 1.04958e-5 │ 9.83633e-5 │ 1.4e-5 │ 9.78ms │ │ 63 │ -5.097865969356 │ -9.35 │ 1.05798e-5 │ 3.32647e-5 │ -2.9e-5 │ 9.83ms │ │ 64 │ -5.097865969575 │ -9.66 │ 9.93584e-6 │ 4.85381e-5 │ 4.5e-5 │ 9.59ms │ │ 65 │ -5.097865970968 │ -8.86 │ 5.65341e-6 │ 8.49989e-5 │ 3.7e-5 │ 9.65ms │ │ 66 │ -5.097865971478 │ -9.29 │ 4.06397e-6 │ 6.35943e-5 │ -3.9e-5 │ 9.27ms │ │ 67 │ -5.097865971642 │ -9.78 │ 3.53366e-6 │ 3.01256e-5 │ 1.1e-5 │ 59.4ms │ │ 68 │ -5.097865971734 │ -10.04 │ 3.63713e-6 │ 1.21491e-5 │ 8.7e-6 │ 8.24ms │ │ 69 │ -5.097865971765 │ -10.51 │ 3.25275e-6 │ 2.84718e-5 │ -1.9e-5 │ 8.14ms │ │ 70 │ -5.097865971893 │ -9.89 │ 2.01907e-6 │ 4.04313e-5 │ 5.6e-6 │ 8.35ms │ │ 71 │ -5.097865972011 │ -9.93 │ 1.0181e-6 │ 1.36585e-5 │ 1.3e-5 │ 7.97ms │ │ 72 │ -5.097865972018 │ -11.13 │ 9.81198e-7 │ 3.0274e-6 │ -1.9e-6 │ 8.24ms │ │ 73 │ -5.097865972022 │ -11.38 │ 8.76467e-7 │ 7.06805e-6 │ -1.4e-6 │ 7.88ms │ │ 74 │ -5.097865972040 │ -10.75 │ 7.71343e-7 │ 2.047e-5 │ 1.4e-5 │ 7.90ms │ │ 75 │ -5.097865972057 │ -10.78 │ 7.87584e-7 │ 6.98538e-6 │ -1.1e-6 │ 9.52ms │ │ 76 │ -5.097865972064 │ -11.12 │ 8.3955e-7 │ 4.48194e-6 │ -3.6e-6 │ 9.80ms │ │ 77 │ -5.097865972067 │ -11.59 │ 8.24511e-7 │ 3.78004e-6 │ 2.8e-6 │ 8.26ms │ │ 78 │ -5.097865972069 │ -11.61 │ 7.88916e-7 │ 5.24977e-6 │ -2.4e-6 │ 8.43ms │ │ 79 │ -5.097865972086 │ -10.77 │ 3.58311e-7 │ 6.15578e-6 │ -5.8e-6 │ 8.44ms │ │ 80 │ -5.097865972089 │ -11.63 │ 3.01787e-7 │ 1.51261e-6 │ 1.3e-6 │ 8.70ms │ │ 81 │ -5.097865972089 │ -12.58 │ 2.58067e-7 │ 1.16252e-6 │ -9.2e-8 │ 8.42ms │ │ 82 │ -5.097865972089 │ -12.52 │ 2.55579e-7 │ 5.50555e-7 │ -5.1e-7 │ 8.27ms │ │ 83 │ -5.097865972090 │ -12.53 │ 2.12829e-7 │ 2.65668e-6 │ 5.8e-7 │ 8.28ms │ │ 84 │ -5.097865972090 │ -12.09 │ 7.37665e-8 │ 9.4664e-7 │ 5.2e-7 │ 8.46ms │ │ 85 │ -5.097865972090 │ -13.35 │ 7.7549e-8 │ 8.35543e-7 │ -4.4e-7 │ 8.27ms │ │ 86 │ -5.097865972090 │ -13.41 │ 8.47914e-8 │ 3.94184e-7 │ 1.5e-8 │ 8.67ms │ │ 87 │ -5.097865972090 │ -13.55 │ 6.17803e-8 │ 4.77565e-7 │ 1.4e-7 │ 8.53ms │ │ 88 │ -5.097865972091 │ -13.19 │ 4.52892e-8 │ 8.40809e-7 │ -6.5e-7 │ 8.28ms │ │ 89 │ -5.097865972091 │ -13.50 │ 4.22313e-8 │ 3.72332e-7 │ 9.1e-8 │ 8.26ms │ │ 90 │ -5.097865972091 │ -13.52 │ 4.38154e-8 │ 3.79275e-7 │ 2.9e-7 │ 9.93ms │ │ 91 │ -5.097865972091 │ -13.98 │ 4.03974e-8 │ 1.67504e-7 │ -3.6e-8 │ 8.16ms │ │ 92 │ -5.097865972091 │ -14.98 │ 3.04209e-8 │ 2.38918e-7 │ -1.0e-7 │ 10.0ms │ │ 93 │ -5.097865972091 │ -14.38 │ 3.22046e-8 │ 1.3435e-7 │ -2.6e-8 │ 9.41ms │ │ 94 │ -5.097865972091 │ + -Inf │ 3.2212e-8 │ 1.3392e-7 │ -2.5e-8 │ 11.4ms │ │ 95 │ -5.097865972091 │ + -Inf │ 3.22128e-8 │ 1.33878e-7 │ -2.5e-8 │ 8.95ms │ │ 96 │ -5.097865972091 │ + -Inf │ 3.22128e-8 │ 1.33874e-7 │ -2.5e-8 │ 8.98ms │ │ 97 │ -5.097865972091 │ -14.98 │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 8.14ms │ │ 98 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 8.10ms │ │ 99 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 8.18ms │ │ 100 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 8.28ms │ │ 101 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 8.13ms │ │ 102 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 8.17ms │ │ 103 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 499μs │ │ 104 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 208μs │ │ 105 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 181μs │ │ 106 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 184μs │ │ 107 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 178μs │ │ 108 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 176μs │ │ 109 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 175μs │ │ 110 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 190μs │ │ 111 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 174μs │ │ 112 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 174μs │ │ 113 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 174μs │ │ 114 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 182μs │ │ 115 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 184μs │ │ 116 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 175μs │ │ 117 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 174μs │ │ 118 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 173μs │ │ 119 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 173μs │ │ 120 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 172μs │ │ 121 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 190μs │ │ 122 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 176μs │ │ 123 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 176μs │ │ 124 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 182μs │ │ 125 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 177μs │ │ 126 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 176μs │ │ 127 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 193μs │ │ 128 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 177μs │ │ 129 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 176μs │ │ 130 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 176μs │ │ 131 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 174μs │ │ 132 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 185μs │ │ 133 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 177μs │ │ 134 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 177μs │ │ 135 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 172μs │ │ 136 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 173μs │ │ 137 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 173μs │ │ 138 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 184μs │ │ 139 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 175μs │ │ 140 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 174μs │ │ 141 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 125μs │ │ 142 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 143 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 101μs │ │ 144 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 145 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 110μs │ │ 146 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 106μs │ │ 147 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 148 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 149 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 100μs │ │ 150 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 151 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 101μs │ │ 152 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 99.5μs │ │ 153 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 101μs │ │ 154 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 155 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 115μs │ │ 156 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 157 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 158 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 100μs │ │ 159 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 106μs │ │ 160 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 108μs │ │ 161 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 162 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 163 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 164 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 165 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 134μs │ │ 166 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 167 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 168 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 169 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 170 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 171 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 172 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 110μs │ │ 173 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 174 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 133μs │ │ 175 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 119μs │ │ 176 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 106μs │ │ 177 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 108μs │ │ 178 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 179 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 180 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 181 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 182 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 183 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 124μs │ │ 184 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 185 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 106μs │ │ 186 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 187 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 188 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 106μs │ │ 189 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 190 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 191 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 101μs │ │ 192 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 114μs │ │ 193 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 122μs │ │ 194 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 112μs │ │ 195 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 196 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 197 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 198 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 199 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 200 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 201 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 202 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 119μs │ │ 203 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 204 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 205 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 106μs │ │ 206 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 207 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 208 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 209 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 210 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 211 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 121μs │ │ 212 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 111μs │ │ 213 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 214 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 215 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 112μs │ │ 216 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 119μs │ │ 217 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 112μs │ │ 218 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 109μs │ │ 219 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 220 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 328μs │ │ 221 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 188μs │ │ 222 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 179μs │ │ 223 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 176μs │ │ 224 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 173μs │ │ 225 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 190μs │ │ 226 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 174μs │ │ 227 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 178μs │ │ 228 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 182μs │ │ 229 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 173μs │ │ 230 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 184μs │ │ 231 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 177μs │ │ 232 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 172μs │ │ 233 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 169μs │ │ 234 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 173μs │ │ 235 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 174μs │ │ 236 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 186μs │ │ 237 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 173μs │ │ 238 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 172μs │ │ 239 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 177μs │ │ 240 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 173μs │ │ 241 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 175μs │ │ 242 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 184μs │ │ 243 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 170μs │ │ 244 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 187μs │ │ 245 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 173μs │ │ 246 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 177μs │ │ 247 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 125μs │ │ 248 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 119μs │ │ 249 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 250 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 101μs │ │ 251 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 100μs │ │ 252 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 98.2μs │ │ 253 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 100μs │ │ 254 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 106μs │ │ 255 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 101μs │ │ 256 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 98.9μs │ │ 257 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 113μs │ │ 258 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 110μs │ │ 259 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 260 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 261 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 97.7μs │ │ 262 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 263 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 99.3μs │ │ 264 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 98.1μs │ │ 265 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 106μs │ │ 266 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 267 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 121μs │ │ 268 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 109μs │ │ 269 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 270 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 118μs │ │ 271 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 108μs │ │ 272 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 273 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 101μs │ │ 274 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 100μs │ │ 275 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 276 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 125μs │ │ 277 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 126μs │ │ 278 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 279 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 106μs │ │ 280 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 281 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 101μs │ │ 282 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 283 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 112μs │ │ 284 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 285 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 123μs │ │ 286 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 111μs │ │ 287 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 108μs │ │ 288 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 109μs │ │ 289 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 290 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 291 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 108μs │ │ 292 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 293 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 101μs │ │ 294 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 295 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 123μs │ │ 296 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 109μs │ │ 297 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 298 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 111μs │ │ 299 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 300 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 301 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 108μs │ │ 302 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 303 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 304 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 114μs │ │ 305 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 106μs │ │ 306 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 110μs │ │ 307 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 308 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 309 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 310 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 311 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 312 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 313 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 315μs │ │ 314 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 188μs │ │ 315 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 175μs │ │ 316 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 179μs │ │ 317 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 173μs │ │ 318 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 192μs │ │ 319 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 181μs │ │ 320 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 177μs │ │ 321 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 172μs │ │ 322 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 174μs │ │ 323 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 190μs │ │ 324 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 178μs │ │ 325 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 184μs │ │ 326 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 176μs │ │ 327 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 173μs │ │ 328 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 176μs │ │ 329 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 192μs │ │ 330 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 177μs │ │ 331 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 175μs │ │ 332 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 180μs │ │ 333 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 175μs │ │ 334 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 191μs │ │ 335 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 188μs │ │ 336 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 179μs │ │ 337 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 179μs │ │ 338 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 175μs │ │ 339 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 176μs │ │ 340 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 187μs │ │ 341 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 176μs │ │ 342 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 182μs │ │ 343 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 173μs │ │ 344 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 178μs │ │ 345 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 181μs │ │ 346 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 193μs │ │ 347 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 175μs │ │ 348 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 180μs │ │ 349 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 175μs │ │ 350 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 173μs │ │ 351 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 184μs │ │ 352 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 124μs │ │ 353 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 110μs │ │ 354 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 355 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 101μs │ │ 356 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 100μs │ │ 357 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 358 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 359 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 360 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 202μs │ │ 361 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 123μs │ │ 362 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 108μs │ │ 363 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 106μs │ │ 364 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 365 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 110μs │ │ 366 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 116μs │ │ 367 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 109μs │ │ 368 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 120μs │ │ 369 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 112μs │ │ 370 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 106μs │ │ 371 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 108μs │ │ 372 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 113μs │ │ 373 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 108μs │ │ 374 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 375 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 376 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 377 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 111μs │ │ 378 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 139μs │ │ 379 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 110μs │ │ 380 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 381 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 382 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 383 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 110μs │ │ 384 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 385 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 111μs │ │ 386 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 387 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 129μs │ │ 388 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 113μs │ │ 389 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 111μs │ │ 390 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 391 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 392 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 393 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 394 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 109μs │ │ 395 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 106μs │ │ 396 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 125μs │ │ 397 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 110μs │ │ 398 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 399 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 400 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 401 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 110μs │ │ 402 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 403 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 116μs │ │ 404 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 111μs │ │ 405 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 122μs │ │ 406 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 111μs │ │ 407 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 408 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 111μs │ │ 409 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 113μs │ │ 410 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 108μs │ │ 411 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 412 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 109μs │ │ 413 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 108μs │ │ 414 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 125μs │ │ 415 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 112μs │ │ 416 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 112μs │ │ 417 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 109μs │ │ 418 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 419 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 101μs │ │ 420 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 421 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 422 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 423 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 123μs │ │ 424 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 125μs │ │ 425 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 110μs │ │ 426 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 111μs │ │ 427 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 106μs │ │ 428 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 110μs │ │ 429 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 111μs │ │ 430 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 116μs │ │ 431 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 432 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 120μs │ │ 433 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 106μs │ │ 434 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 435 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 436 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 110μs │ │ 437 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 438 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 439 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 101μs │ │ 440 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 110μs │ │ 441 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 121μs │ │ 442 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 113μs │ │ 443 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 444 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 445 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 446 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 101μs │ │ 447 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 448 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 112μs │ │ 449 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 450 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 451 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 128μs │ │ 452 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 111μs │ │ 453 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 109μs │ │ 454 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 455 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 109μs │ │ 456 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 457 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 458 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 459 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 113μs │ │ 460 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 125μs │ │ 461 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 112μs │ │ 462 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 111μs │ │ 463 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 464 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 465 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 108μs │ │ 466 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 467 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 468 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 101μs │ │ 469 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 115μs │ │ 470 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 106μs │ │ 471 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 108μs │ │ 472 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 473 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 110μs │ │ 474 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 475 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 101μs │ │ 476 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 111μs │ │ 477 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 478 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 118μs │ │ 479 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 112μs │ │ 480 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 481 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 109μs │ │ 482 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 483 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 484 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 485 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 486 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 108μs │ │ 487 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 103μs │ │ 488 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 122μs │ │ 489 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 113μs │ │ 490 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 106μs │ │ 491 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 107μs │ │ 492 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 102μs │ │ 493 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 494 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 495 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 496 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 105μs │ │ 497 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 119μs │ │ 498 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 112μs │ │ 499 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 104μs │ │ 500 │ -5.097865972091 │ + -Inf │ 3.22129e-8 │ 1.33873e-7 │ -2.5e-8 │ 106μs │ ┌ Warning: Geometry optimisation not converged. └ @ GeometryOptimization ~/.julia/packages/GeometryOptimization/y8zYr/src/minimize_energy.jl:184 ┌ Warning: Geometry optimisation not converged. └ @ GeometryOptimization ~/.julia/packages/GeometryOptimization/y8zYr/src/minimize_energy.jl:184 ┌ Warning: Geometry optimisation not converged. └ @ GeometryOptimization ~/.julia/packages/GeometryOptimization/y8zYr/src/minimize_energy.jl:184 Test Summary: | Pass Total Time Package | 76 76 7m44.0s test/nlopt.jl | 2 2 7m05.3s Test NLopt solver via Optimization.jl interface | 2 2 7m05.2s test/minimization.jl | 48 48 27.5s Test silicon StillingerWeber fixed cell minimisation | 36 36 18.1s Test silicon StillingerWeber variable cell minimisation | 12 12 9.4s test/dofmgr.jl | 18 18 5.3s DofManager | 18 18 5.3s Fixed cell getter / setter (no clamped) | 4 4 2.4s Variable cell getter / setter (no clamped) | 6 6 1.7s eval_objective / eval_gradient agrees with raw energy | 8 8 0.7s test/calculator_interface.jl | 8 8 6.0s Test GeometryOptimization with AtomsCalculators interface | 8 8 6.0s minimize_energy! with fixed cell | 4 4 3.0s minimize_energy! with variable cell | 4 4 0.9s Testing GeometryOptimization tests passed Testing completed after 495.78s PkgEval succeeded after 838.72s