Package evaluation of StructuralIdentifiability on Julia 1.13.0-DEV.626 (157b8bc303*) started at 2025-05-23T01:56:41.126 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 7.86s ################################################################################ # Installation # Installing StructuralIdentifiability... Resolving package versions... Updating `~/.julia/environments/v1.13/Project.toml` [220ca800] + StructuralIdentifiability v0.5.14 Updating `~/.julia/environments/v1.13/Manifest.toml` ⌅ [c3fe647b] + AbstractAlgebra v0.44.13 [a9b6321e] + Atomix v1.1.1 [861a8166] + Combinatorics v1.0.3 [34da2185] + Compat v4.16.0 [864edb3b] + DataStructures v0.18.22 [e2ba6199] + ExprTools v0.1.10 [0b43b601] + Groebner v0.9.4 [18e54dd8] + IntegerMathUtils v0.1.2 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.0 [1914dd2f] + MacroTools v0.5.16 ⌅ [2edaba10] + Nemo v0.49.5 [bac558e1] + OrderedCollections v1.8.1 [3e851597] + ParamPunPam v0.5.2 [aea7be01] + PrecompileTools v1.3.2 [21216c6a] + Preferences v1.4.3 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.10.4 [fb686558] + RandomExtensions v0.4.4 [220ca800] + StructuralIdentifiability v0.5.14 [a759f4b9] + TimerOutputs v0.5.29 [013be700] + UnsafeAtomics v0.3.0 [e134572f] + FLINT_jll v300.200.201+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.12.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v0.7.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.12.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.12.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.95s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... Precompiling package dependencies... Precompilation completed after 220.79s ################################################################################ # Testing # Testing StructuralIdentifiability Status `/tmp/jl_IxFWDR/Project.toml` ⌅ [c3fe647b] AbstractAlgebra v0.44.13 [4c88cf16] Aqua v0.8.12 [2a0fbf3d] CPUSummary v0.2.6 [861a8166] Combinatorics v1.0.3 [864edb3b] DataStructures v0.18.22 [0b43b601] Groebner v0.9.4 [c8e1da08] IterTools v1.10.0 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.49.5 [3e851597] ParamPunPam v0.5.2 [aea7be01] PrecompileTools v1.3.2 [27ebfcd6] Primes v0.5.7 [276daf66] SpecialFunctions v2.5.1 [220ca800] StructuralIdentifiability v0.5.14 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_IxFWDR/Manifest.toml` ⌅ [c3fe647b] AbstractAlgebra v0.44.13 [4c88cf16] Aqua v0.8.12 [a9b6321e] Atomix v1.1.1 [2a0fbf3d] CPUSummary v0.2.6 [861a8166] Combinatorics v1.0.3 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.16.0 [adafc99b] CpuId v0.3.1 [864edb3b] DataStructures v0.18.22 [ab62b9b5] DeepDiffs v1.2.0 [ffbed154] DocStringExtensions v0.9.4 [e2ba6199] ExprTools v0.1.10 [0b43b601] Groebner v0.9.4 [615f187c] IfElse v0.1.1 [18e54dd8] IntegerMathUtils v0.1.2 [92d709cd] IrrationalConstants v0.2.4 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.0 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 ⌅ [2edaba10] Nemo v0.49.5 [bac558e1] OrderedCollections v1.8.1 [3e851597] ParamPunPam v0.5.2 [aea7be01] PrecompileTools v1.3.2 [21216c6a] Preferences v1.4.3 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.10.4 [fb686558] RandomExtensions v0.4.4 [276daf66] SpecialFunctions v2.5.1 [aedffcd0] Static v1.2.0 [220ca800] StructuralIdentifiability v0.5.14 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [013be700] UnsafeAtomics v0.3.0 [e134572f] FLINT_jll v300.200.201+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v0.6.4 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.12.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v0.7.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.12.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.12.1+1 [e37daf67] LibGit2_jll v1.9.0+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.2+0 [14a3606d] MozillaCACerts_jll v2025.2.25 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.5+0 [458c3c95] OpenSSL_jll v3.5.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [8e850b90] libblastrampoline_jll v5.12.0+0 [8e850ede] nghttp2_jll v1.65.0+0 [3f19e933] p7zip_jll v17.5.0+2 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Precompiling packages... 8549.2 ms ✓ AbstractAlgebra → TestExt 1 dependency successfully precompiled in 9 seconds. 18 already precompiled. Resolving package versions... Updating `/tmp/jl_IxFWDR/Project.toml` [961ee093] + ModelingToolkit v9.80.1 Updating `/tmp/jl_IxFWDR/Manifest.toml` [47edcb42] + ADTypes v1.14.0 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.3.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.19.0 [4c555306] + ArrayLayouts v1.11.1 [e2ed5e7c] + Bijections v0.1.10 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] + BlockArrays v1.6.3 [70df07ce] + BracketingNonlinearSolve v1.2.0 [d360d2e6] + ChainRulesCore v1.25.1 [fb6a15b2] + CloseOpenIntervals v0.1.13 [a80b9123] + CommonMark v0.9.1 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 [187b0558] + ConstructionBase v1.5.8 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [e2d170a0] + DataValueInterfaces v1.0.0 [2b5f629d] + DiffEqBase v6.174.0 [459566f4] + DiffEqCallbacks v4.6.0 [77a26b50] + DiffEqNoiseProcess v5.24.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 ⌅ [a0c0ee7d] + DifferentiationInterface v0.6.54 [8d63f2c5] + DispatchDoctor v0.4.19 [31c24e10] + Distributions v0.25.120 [5b8099bc] + DomainSets v0.7.15 [7c1d4256] + DynamicPolynomials v0.6.2 [06fc5a27] + DynamicQuantities v1.8.0 [4e289a0a] + EnumX v1.0.5 [f151be2c] + EnzymeCore v0.8.8 [55351af7] + ExproniconLite v0.10.14 [7034ab61] + FastBroadcast v0.3.5 [9aa1b823] + FastClosures v0.3.2 [a4df4552] + FastPower v1.1.2 [1a297f60] + FillArrays v1.13.0 [64ca27bc] + FindFirstFunctions v1.4.1 [6a86dc24] + FiniteDiff v2.27.0 [1fa38f19] + Format v1.3.7 ⌅ [f6369f11] + ForwardDiff v0.10.38 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [d9f16b24] + Functors v0.5.2 [46192b85] + GPUArraysCore v0.2.0 [c27321d9] + Glob v1.3.1 [86223c79] + Graphs v1.12.1 [34004b35] + HypergeometricFunctions v0.3.28 [d25df0c9] + Inflate v0.1.5 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [82899510] + IteratorInterfaceExtensions v1.0.0 [ae98c720] + Jieko v0.2.1 [98e50ef6] + JuliaFormatter v2.1.2 ⌅ [70703baa] + JuliaSyntax v0.4.10 [ccbc3e58] + JumpProcesses v9.14.3 [ba0b0d4f] + Krylov v0.10.1 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.7 [10f19ff3] + LayoutPointers v0.1.17 [5078a376] + LazyArrays v2.6.1 [87fe0de2] + LineSearch v0.1.4 [d3d80556] + LineSearches v7.3.0 [7ed4a6bd] + LinearSolve v3.14.0 [d8e11817] + MLStyle v0.4.17 [d125e4d3] + ManualMemory v0.1.8 [bb5d69b7] + MaybeInplace v0.1.4 [e1d29d7a] + Missings v1.2.0 [961ee093] + ModelingToolkit v9.80.1 [2e0e35c7] + Moshi v0.3.5 [46d2c3a1] + MuladdMacro v0.2.4 [102ac46a] + MultivariatePolynomials v0.5.9 [d8a4904e] + MutableArithmetics v1.6.4 [d41bc354] + NLSolversBase v7.9.1 [77ba4419] + NaNMath v1.1.3 [8913a72c] + NonlinearSolve v4.9.0 [be0214bd] + NonlinearSolveBase v1.10.0 [5959db7a] + NonlinearSolveFirstOrder v1.5.0 [9a2c21bd] + NonlinearSolveQuasiNewton v1.5.0 [26075421] + NonlinearSolveSpectralMethods v1.2.0 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.12.0 [90014a1f] + PDMats v0.11.35 [d96e819e] + Parameters v0.12.3 [e409e4f3] + PoissonRandom v0.4.4 [f517fe37] + Polyester v0.7.17 [1d0040c9] + PolyesterWeave v0.2.2 [85a6dd25] + PositiveFactorizations v0.2.4 [08abe8d2] + PrettyTables v2.4.0 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.33.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [ae5879a3] + ResettableStacks v1.1.1 [79098fc4] + Rmath v0.8.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.14 [9dfe8606] + SCCNonlinearSolve v1.2.0 [94e857df] + SIMDTypes v0.1.0 [0bca4576] + SciMLBase v2.93.0 [19f34311] + SciMLJacobianOperators v0.1.5 ⌅ [c0aeaf25] + SciMLOperators v0.4.0 [53ae85a6] + SciMLStructures v1.7.0 [efcf1570] + Setfield v1.1.2 [727e6d20] + SimpleNonlinearSolve v2.5.0 [699a6c99] + SimpleTraits v0.9.4 [a2af1166] + SortingAlgorithms v1.2.1 [0a514795] + SparseMatrixColorings v0.4.19 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.13 [1e83bf80] + StaticArraysCore v1.4.3 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.0 [2913bbd2] + StatsBase v0.34.5 [4c63d2b9] + StatsFuns v1.5.0 [7792a7ef] + StrideArraysCore v0.5.7 [892a3eda] + StringManipulation v0.4.1 [2efcf032] + SymbolicIndexingInterface v0.3.40 [19f23fe9] + SymbolicLimits v0.2.2 [d1185830] + SymbolicUtils v3.27.0 [0c5d862f] + Symbolics v6.39.1 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.0 [ed4db957] + TaskLocalValues v0.1.2 [8ea1fca8] + TermInterface v2.0.0 [1c621080] + TestItems v1.0.0 [8290d209] + ThreadingUtilities v0.5.3 [410a4b4d] + Tricks v0.1.10 [781d530d] + TruncatedStacktraces v1.4.0 [5c2747f8] + URIs v1.5.2 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.22.1 [a7c27f48] + Unityper v0.1.6 [897b6980] + WeakValueDicts v0.1.0 [1d5cc7b8] + IntelOpenMP_jll v2025.0.4+0 [856f044c] + MKL_jll v2025.0.1+1 [f50d1b31] + Rmath_jll v0.5.1+0 [1317d2d5] + oneTBB_jll v2022.0.0+0 [9fa8497b] + Future v1.11.0 [4af54fe1] + LazyArtifacts v1.11.0 [a63ad114] + Mmap v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [4607b0f0] + SuiteSparse Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Resolving package versions... Updating `/tmp/jl_IxFWDR/Project.toml` [0c5d862f] + Symbolics v6.39.1 No packages added to or removed from `/tmp/jl_IxFWDR/Manifest.toml` Precompiling packages... 2065.5 ms ✓ MaybeInplace 4727.7 ms ✓ LazyArrays 2692.3 ms ✓ DispatchDoctor 1617.1 ms ✓ TruncatedStacktraces 3225.5 ms ✓ SciMLOperators 12300.5 ms ✓ CommonMark 28289.1 ms ✓ PrettyTables 4889.5 ms ✓ IntelOpenMP_jll 1160.8 ms ✓ oneTBB_jll 1557.5 ms ✓ StaticArrays → StaticArraysChainRulesCoreExt 1419.0 ms ✓ ResettableStacks 4935.5 ms ✓ DomainSets 1463.9 ms ✓ DifferentiationInterface → DifferentiationInterfaceStaticArraysExt 1429.0 ms ✓ FiniteDiff → FiniteDiffStaticArraysExt 9769.0 ms ✓ StaticArrayInterface 7270.5 ms ✓ MultivariatePolynomials 9803.3 ms ✓ Graphs 4050.1 ms ✓ SpecialFunctions → SpecialFunctionsChainRulesCoreExt 3511.4 ms ✓ StatsFuns → StatsFunsChainRulesCoreExt 1077.2 ms ✓ StatsFuns → StatsFunsInverseFunctionsExt 10297.6 ms ✓ Distributions 3823.6 ms ✓ FastPower → FastPowerForwardDiffExt 1730.2 ms ✓ DifferentiationInterface → DifferentiationInterfaceForwardDiffExt 1912.0 ms ✓ MaybeInplace → MaybeInplaceSparseArraysExt 3612.2 ms ✓ LazyArrays → LazyArraysStaticArraysExt 2501.8 ms ✓ LazyArrays → LazyArraysBlockArraysExt 931.7 ms ✓ DispatchDoctor → DispatchDoctorEnzymeCoreExt 11761.1 ms ✓ DynamicQuantities 1497.3 ms ✓ DispatchDoctor → DispatchDoctorChainRulesCoreExt 1117.8 ms ✓ SciMLOperators → SciMLOperatorsStaticArraysCoreExt 1584.5 ms ✓ SciMLOperators → SciMLOperatorsSparseArraysExt 58572.1 ms ✓ JuliaFormatter 4463.9 ms ✓ SymbolicIndexingInterface 5595.7 ms ✓ MKL_jll 1118.4 ms ✓ StaticArrayInterface → StaticArrayInterfaceOffsetArraysExt 1666.2 ms ✓ StaticArrayInterface → StaticArrayInterfaceStaticArraysExt 1152.6 ms ✓ CloseOpenIntervals 1336.4 ms ✓ LayoutPointers 4835.0 ms ✓ DynamicPolynomials 4191.7 ms ✓ Distributions → DistributionsTestExt 4320.8 ms ✓ Distributions → DistributionsChainRulesCoreExt 4321.8 ms ✓ NLSolversBase 4056.4 ms ✓ DynamicQuantities → DynamicQuantitiesUnitfulExt 1728.1 ms ✓ DynamicQuantities → DynamicQuantitiesLinearAlgebraExt 5635.6 ms ✓ RecursiveArrayTools 1966.6 ms ✓ StrideArraysCore 70224.3 ms ✓ SymbolicUtils 6680.9 ms ✓ LineSearches 4258.3 ms ✓ RecursiveArrayTools → RecursiveArrayToolsSparseArraysExt 4505.4 ms ✓ RecursiveArrayTools → RecursiveArrayToolsForwardDiffExt 24540.3 ms ✓ SciMLBase 3026.9 ms ✓ Polyester 10049.2 ms ✓ SymbolicLimits 11259.4 ms ✓ Optim 4521.9 ms ✓ SciMLBase → SciMLBaseChainRulesCoreExt 5385.3 ms ✓ SciMLBase → SciMLBaseMLStyleExt 9055.9 ms ✓ SciMLJacobianOperators 4075.5 ms ✓ SCCNonlinearSolve 3013.4 ms ✓ FastBroadcast 19332.9 ms ✓ LinearSolve 155904.8 ms ✓ Symbolics 10672.4 ms ✓ LineSearch 15350.8 ms ✓ NonlinearSolveBase 3284.4 ms ✓ RecursiveArrayTools → RecursiveArrayToolsFastBroadcastExt 9058.2 ms ✓ LinearSolve → LinearSolveSparseArraysExt 5220.8 ms ✓ LinearSolve → LinearSolveEnzymeExt 13435.1 ms ✓ Symbolics → SymbolicsForwardDiffExt 10261.6 ms ✓ DifferentiationInterface → DifferentiationInterfaceSymbolicsExt 4084.9 ms ✓ LineSearch → LineSearchLineSearchesExt 4154.6 ms ✓ NonlinearSolveBase → NonlinearSolveBaseSparseMatrixColoringsExt 3877.4 ms ✓ NonlinearSolveBase → NonlinearSolveBaseSparseArraysExt 7360.4 ms ✓ NonlinearSolveBase → NonlinearSolveBaseLinearSolveExt 8902.1 ms ✓ BracketingNonlinearSolve 4985.4 ms ✓ NonlinearSolveBase → NonlinearSolveBaseLineSearchExt 7736.8 ms ✓ NonlinearSolveBase → NonlinearSolveBaseForwardDiffExt 7756.9 ms ✓ DiffEqBase 4146.7 ms ✓ BracketingNonlinearSolve → BracketingNonlinearSolveForwardDiffExt 4895.1 ms ✓ DiffEqBase → DiffEqBaseChainRulesCoreExt 7696.4 ms ✓ DiffEqBase → DiffEqBaseForwardDiffExt 6109.6 ms ✓ DiffEqBase → DiffEqBaseUnitfulExt 6355.8 ms ✓ DiffEqBase → DiffEqBaseDistributionsExt 5110.9 ms ✓ DiffEqBase → DiffEqBaseSparseArraysExt 13731.7 ms ✓ DiffEqCallbacks 4211.7 ms ✓ NonlinearSolveBase → NonlinearSolveBaseDiffEqBaseExt 16705.8 ms ✓ SimpleNonlinearSolve 6583.5 ms ✓ JumpProcesses 20056.4 ms ✓ DiffEqNoiseProcess 17069.2 ms ✓ NonlinearSolveSpectralMethods 48733.6 ms ✓ NonlinearSolveFirstOrder 27127.8 ms ✓ NonlinearSolveQuasiNewton 5302.1 ms ✓ SimpleNonlinearSolve → SimpleNonlinearSolveChainRulesCoreExt 5776.4 ms ✓ SimpleNonlinearSolve → SimpleNonlinearSolveDiffEqBaseExt 5626.3 ms ✓ NonlinearSolveSpectralMethods → NonlinearSolveSpectralMethodsForwardDiffExt 7832.5 ms ✓ NonlinearSolveQuasiNewton → NonlinearSolveQuasiNewtonForwardDiffExt 36697.5 ms ✓ NonlinearSolve Info Given ModelingToolkit was explicitly requested, output will be shown live  WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl WARNING: Detected access to binding `ModelingToolkit.ConstraintsSystem` in a world prior to its definition world.  Julia 1.12 has introduced more strict world age semantics for global bindings.  !!! This code may malfunction under Revise.  !!! This code will error in future versions of Julia. Hint: Add an appropriate `invokelatest` around the access to this binding. To make this warning an error, and hence obtain a stack trace, use `julia --depwarn=error`. WARNING: Detected access to binding `ModelingToolkit.SystemStructure` in a world prior to its definition world.  Julia 1.12 has introduced more strict world age semantics for global bindings.  !!! This code may malfunction under Revise.  !!! This code will error in future versions of Julia. Hint: Add an appropriate `invokelatest` around the access to this binding. To make this warning an error, and hence obtain a stack trace, use `julia --depwarn=error`. WARNING: Detected access to binding `ModelingToolkit.SparseMatrixCLIL` in a world prior to its definition world.  Julia 1.12 has introduced more strict world age semantics for global bindings.  !!! This code may malfunction under Revise.  !!! This code will error in future versions of Julia. Hint: Add an appropriate `invokelatest` around the access to this binding. To make this warning an error, and hence obtain a stack trace, use `julia --depwarn=error`. WARNING: Detected access to binding `BipartiteGraphs.BipartiteGraph` in a world prior to its definition world.  Julia 1.12 has introduced more strict world age semantics for global bindings.  !!! This code may malfunction under Revise.  !!! This code will error in future versions of Julia. Hint: Add an appropriate `invokelatest` around the access to this binding. To make this warning an error, and hence obtain a stack trace, use `julia --depwarn=error`. WARNING: Detected access to binding `ModelingToolkit.ODESystem` in a world prior to its definition world.  Julia 1.12 has introduced more strict world age semantics for global bindings.  !!! This code may malfunction under Revise.  !!! This code will error in future versions of Julia. Hint: Add an appropriate `invokelatest` around the access to this binding. To make this warning an error, and hence obtain a stack trace, use `julia --depwarn=error`. WARNING: Detected access to binding `ModelingToolkit.NonlinearSystem` in a world prior to its definition world.  Julia 1.12 has introduced more strict world age semantics for global bindings.  !!! This code may malfunction under Revise.  !!! This code will error in future versions of Julia. Hint: Add an appropriate `invokelatest` around the access to this binding. To make this warning an error, and hence obtain a stack trace, use `julia --depwarn=error`. WARNING: Detected access to binding `ModelingToolkit.TearingState` in a world prior to its definition world.  Julia 1.12 has introduced more strict world age semantics for global bindings.  !!! This code may malfunction under Revise.  !!! This code will error in future versions of Julia. Hint: Add an appropriate `invokelatest` around the access to this binding. To make this warning an error, and hence obtain a stack trace, use `julia --depwarn=error`. WARNING: Detected access to binding `ModelingToolkit.ClockInference` in a world prior to its definition world.  Julia 1.12 has introduced more strict world age semantics for global bindings.  !!! This code may malfunction under Revise.  !!! This code will error in future versions of Julia. Hint: Add an appropriate `invokelatest` around the access to this binding. To make this warning an error, and hence obtain a stack trace, use `julia --depwarn=error`. WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in var"#bareiss_update_virtual_colswap_mtk!#1725"(Any, typeof(ModelingToolkit.bareiss_update_virtual_colswap_mtk!), Any, ModelingToolkit.SparseMatrixCLIL{T, Ti} where Ti<:Integer where T, Any, Any, Any, Any) at /home/pkgeval/.julia/packages/ModelingToolkit/udKhl/src/systems/sparsematrixclil.jl WARNING: Detected access to binding `ModelingToolkit.MTKParameters` in a world prior to its definition world.  Julia 1.12 has introduced more strict world age semantics for global bindings.  !!! This code may malfunction under Revise.  !!! This code will error in future versions of Julia. Hint: Add an appropriate `invokelatest` around the access to this binding. To make this warning an error, and hence obtain a stack trace, use `julia --depwarn=error`. 300497.7 ms ✓ ModelingToolkit 96 dependencies successfully precompiled in 1257 seconds. 202 already precompiled. 23 dependencies had output during precompilation: ┌ DiffEqBase │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ ┌ DiffEqBase → DiffEqBaseChainRulesCoreExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ ┌ Polyester │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ ┌ NonlinearSolveQuasiNewton │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ ┌ DiffEqNoiseProcess │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ ┌ DiffEqBase → DiffEqBaseSparseArraysExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ ┌ SimpleNonlinearSolve → SimpleNonlinearSolveDiffEqBaseExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ ┌ DiffEqBase → DiffEqBaseUnitfulExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ ┌ NonlinearSolve │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ ┌ NonlinearSolveFirstOrder │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl │ WARNING: Detected access to binding `NonlinearSolveFirstOrder.GeneralizedFirstOrderAlgorithm` in a world prior to its definition world. │ Julia 1.12 has introduced more strict world age semantics for global bindings. │ !!! This code may malfunction under Revise. │ !!! This code will error in future versions of Julia. │ Hint: Add an appropriate `invokelatest` around the access to this binding. │ To make this warning an error, and hence obtain a stack trace, use `julia --depwarn=error`. └ ┌ DiffEqCallbacks │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ ┌ NonlinearSolveSpectralMethods → NonlinearSolveSpectralMethodsForwardDiffExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ ┌ NonlinearSolveBase → NonlinearSolveBaseDiffEqBaseExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ ┌ NonlinearSolveQuasiNewton → NonlinearSolveQuasiNewtonForwardDiffExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ ┌ DiffEqBase → DiffEqBaseDistributionsExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ ┌ ModelingToolkit │ [Output was shown above] └ ┌ JumpProcesses │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ ┌ NonlinearSolveSpectralMethods │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ ┌ SimpleNonlinearSolve │ WARNING: Detected access to binding `SimpleNonlinearSolve.SimpleNewtonRaphson` in a world prior to its definition world. │ Julia 1.12 has introduced more strict world age semantics for global bindings. │ !!! This code may malfunction under Revise. │ !!! This code will error in future versions of Julia. │ Hint: Add an appropriate `invokelatest` around the access to this binding. │ To make this warning an error, and hence obtain a stack trace, use `julia --depwarn=error`. └ ┌ StrideArraysCore │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ ┌ RecursiveArrayTools → RecursiveArrayToolsFastBroadcastExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ ┌ DiffEqBase → DiffEqBaseForwardDiffExt │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ ┌ FastBroadcast │ WARNING: llvmcall with integer pointers is deprecated. │ Use actual pointers instead, replacing i32 or i64 with i8* or ptr │ in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl └ WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl Precompiling packages... 11742.8 ms ✓ Groebner → GroebnerDynamicPolynomialsExt 1 dependency successfully precompiled in 12 seconds. 44 already precompiled. Precompiling packages... 105683.9 ms ✓ Symbolics → SymbolicsNemoExt 25920.5 ms ✓ Symbolics → SymbolicsGroebnerExt 2 dependencies successfully precompiled in 133 seconds. 163 already precompiled. 1 dependency had output during precompilation: ┌ Symbolics → SymbolicsNemoExt │ [ Info: Assuming ((1//128)*(√((5120//1)*(a^4)) - (80//1)*(a^2))) != 0 │ [ Info: Assuming ((5//8)*(a^2)) != 0 └ Precompiling packages... Info Given MTKDeepDiffsExt was explicitly requested, output will be shown live  WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl 58688.8 ms ✓ ModelingToolkit → MTKDeepDiffsExt 1 dependency successfully precompiled in 61 seconds. 299 already precompiled. 1 dependency had output during precompilation: ┌ ModelingToolkit → MTKDeepDiffsExt │ [Output was shown above] └ Precompiling packages... Info Given ModelingToolkitSIExt was explicitly requested, output will be shown live  WARNING: llvmcall with integer pointers is deprecated. Use actual pointers instead, replacing i32 or i64 with i8* or ptr in initialize_task(Any) at /home/pkgeval/.julia/packages/ThreadingUtilities/nn4y1/src/ThreadingUtilities.jl 72210.1 ms ✓ StructuralIdentifiability → ModelingToolkitSIExt 1 dependency successfully precompiled in 74 seconds. 316 already precompiled. 1 dependency had output during precompilation: ┌ StructuralIdentifiability → ModelingToolkitSIExt │ [Output was shown above] └ [ Info: Testing started [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y ┌ Warning: New variable c, treating as a scalar parameter └ @ StructuralIdentifiability ~/.julia/packages/StructuralIdentifiability/r7Tss/src/pb_representation.jl:94 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: a [ Info: Parameters: b [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: a, b [ Info: Parameters: k1, k2 [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y 2.107876 seconds (970.16 k allocations: 50.219 MiB, 99.46% compilation time) 0.002757 seconds (7.81 k allocations: 354.625 KiB) 0.002182 seconds (11.23 k allocations: 494.750 KiB) 0.002123 seconds (11.17 k allocations: 488.203 KiB) 0.002760 seconds (15.25 k allocations: 649.508 KiB) 0.001422 seconds (8.11 k allocations: 365.141 KiB) 0.001226 seconds (8.22 k allocations: 313.977 KiB) 15.787300 seconds (6.85 M allocations: 353.270 MiB, 1.15% gc time, 99.75% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.375552 seconds (108.07 k allocations: 5.726 MiB, 98.23% compilation time) [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.012036 seconds (9.63 k allocations: 543.555 KiB, 90.07% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b [ Info: Inputs: u [ Info: Outputs: y Coefficient extraction for rational functions: Test Failed at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/test/extract_coefficients.jl:27 Expression: Set(C) == Set([x // 1, (y + 3) // 1, y ^ 2 // 1, one(R) // 1, 3 * one(R) // 1, -((x ^ 2 + y ^ 2)) // 1]) Evaluated: Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[1//3, 1//3*y + 1, 1//3*x, 1, -1//3*x^2 - 1//3*y^2, 1//3*y^2]) == Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x, y + 3, y^2, -x^2 - y^2, 1, 3]) Stacktrace: [1] top-level scope @ ~/.julia/packages/StructuralIdentifiability/r7Tss/test/extract_coefficients.jl:2 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:1833 [inlined] [3] macro expansion @ ~/.julia/packages/StructuralIdentifiability/r7Tss/test/extract_coefficients.jl:27 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.13/Test/src/Test.jl:730 [inlined] [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 IOEQS: Dict{QQMPolyRingElem, QQMPolyRingElem}(y1(t)_2 => -y1(t)_0 + y1(t)_2, y2(t)_1 => -a*y2(t)_0 + a*u(t)_0 + y2(t)_1 - u(t)_1) [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a, b, c, d [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, I, W, R [ Info: Parameters: a, bi, bw, gam, k, mu, xi [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a01, a12, a13, a21, a31 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, In [ Info: Parameters: N, a, b, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003874012 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 6.966736077 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.072003013 seconds [ Info: Global identifiability assessed in 7.898811863 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002309387 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Global identifiability assessed in 0.810148972 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Global identifiability assessed in 5.659e-5 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.034001857 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.501949485 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.812e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:14 ✓ # Computing specializations.. Time: 0:00:15 [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 4 specializations in 15.132713412 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings ⌜ # Computing specializations.. Time: 0:00:31 ✓ # Computing specializations.. Time: 0:00:31 [ Info: Computed Groebner bases in 41.257897368 seconds [ Info: Inclusion checked with probability 0.9955 in 0.031106924 seconds [ Info: Global identifiability assessed in 151.239447984 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.700139237 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 1.854402913 seconds [ Info: Dimensions of the Wronskians [676] [ Info: Ranks of the Wronskians computed in 0.104027219 seconds [ Info: Global identifiability assessed in 35.209536845 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015839025 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0345772 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000306387 seconds [ Info: Global identifiability assessed in 0.109257068 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Note: the input model has nontrivial submodels. If the computation for the full model will be too heavy, you may want to try to first analyze one of the submodels. They can be produced using function `find_submodels` [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 15.08891431 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003464786 seconds [ Info: Dimensions of the Wronskians [2, 3, 2] [ Info: Ranks of the Wronskians computed in 3.1119e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.193149404 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.010353068 seconds [ Info: Inclusion checked with probability 0.9955 in 0.001422076 seconds [ Info: Global identifiability assessed in 16.729631558 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002466195 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00205721 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.154e-5 seconds [ Info: Global identifiability assessed in 0.006901752 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002696154 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002158849 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.143e-5 seconds [ Info: Global identifiability assessed in 0.007729964 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005532326 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004812273 seconds [ Info: Dimensions of the Wronskians [6] [ Info: Ranks of the Wronskians computed in 2.05e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 5 variables [ Info: Used 9 specializations in 0.13755975 seconds, found 11 relations [ Info: Computing 6 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.121056772 seconds [ Info: Inclusion checked with probability 0.9955 in 0.001945621 seconds [ Info: Global identifiability assessed in 1.243380558 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00510014 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002776142 seconds [ Info: Dimensions of the Wronskians [5, 2] [ Info: Ranks of the Wronskians computed in 1.33e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 5 specializations in 0.002117 seconds, found 7 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.055944271 seconds [ Info: Inclusion checked with probability 0.9955 in 0.002330327 seconds [ Info: Global identifiability assessed in 0.091887708 seconds [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: V_m, c, k01, k_m [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k1, k2, k3, k4 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: s, i, r, x1, x2 [ Info: Parameters: M, b0, b1, g, mu, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, E, I, R, Q [ Info: Parameters: beta, gamma, psi, v [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: k01, k12, k13, k14, k21, k31, k41 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x5, x7, x4, x6 [ Info: Parameters: k10, k5, k6, k7, k8, k9 [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, In, L, Q [ Info: Parameters: Ninv, a, b, e, g, s [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, R, W [ Info: Parameters: Dd, T, a, d, dr, e, g, r, rR [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: P3, P0, P5, P4, P1, P2 [ Info: Parameters: Ks, M, Mar, alpa, beta, beta_SA, beta_SI, phi, siga1, siga2 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: C, α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR [ Info: Parameters: EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1 [ Info: Inputs: pro_EGFR [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio [ Info: Parameters: kOHbeta10, kbeta, kbeta10, kcryOH, kcrybeta, kzea [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: EpoR_A, k1, k2, k3, k5, k6, k7 [ Info: Inputs: [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, U, I [ Info: Parameters: N, a, b, d, g [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: alpha [ Info: Inputs: [ Info: Outputs: y [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001136059 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000909252 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.413e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000543304 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001157249 seconds [ Info: The search for identifiable functions concluded in 1.737350251 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000953951 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000938771 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.3199e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000424056 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.007827274 seconds [ Info: Inclusion checked with probability 0.995 in 0.000798972 seconds [ Info: The search for identifiable functions concluded in 0.014935124 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001319067 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00100002 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.41e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: The search for identifiable functions concluded in 0.002970511 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001317717 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000969001 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.087e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: The search for identifiable functions concluded in 0.002752093 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001886001 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001350396 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.5729e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: The search for identifiable functions concluded in 0.006488716 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001835852 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001362866 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.579e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: The search for identifiable functions concluded in 0.006391387 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.267918221 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001484326 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.583e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000441626 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.000573244 seconds [ Info: The search for identifiable functions concluded in 0.276838283 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001781442 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001222688 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.234e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 1 variables [ Info: Used 1 specializations in 0.000470155 seconds, found 1 relations [ Info: Computing 2 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.006396697 seconds [ Info: Inclusion checked with probability 0.995 in 0.000525575 seconds [ Info: The search for identifiable functions concluded in 0.013895263 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00101598 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001554475 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.511e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 5 specializations in 0.001735843 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001246788 seconds [ Info: The search for identifiable functions concluded in 0.01426066 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00098497 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00099953 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.377e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 5 specializations in 0.001647474 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.031271703 seconds [ Info: Inclusion checked with probability 0.995 in 0.001218178 seconds [ Info: The search for identifiable functions concluded in 0.045232646 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000942381 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000894891 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.462e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.18140002 seconds, found 2 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001517525 seconds [ Info: The search for identifiable functions concluded in 1.115315844 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001408356 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001216998 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.0279e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.001563675 seconds, found 2 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.026296282 seconds [ Info: Inclusion checked with probability 0.995 in 0.001424496 seconds [ Info: The search for identifiable functions concluded in 0.040077497 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002297807 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00204966 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.72e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.0020142 seconds, found 3 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001725063 seconds [ Info: The search for identifiable functions concluded in 0.0224033 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002727013 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002205708 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.961e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 3 variables [ Info: Used 3 specializations in 0.001926141 seconds, found 3 relations [ Info: Computing 4 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.04892877 seconds [ Info: Inclusion checked with probability 0.995 in 0.001452375 seconds [ Info: The search for identifiable functions concluded in 0.072432609 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002782703 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002265797 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.94e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 4 specializations in 0.002813223 seconds, found 6 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001745973 seconds [ Info: The search for identifiable functions concluded in 0.026806157 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002668164 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002307558 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.858e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 4 specializations in 0.002842752 seconds, found 6 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.060899422 seconds [ Info: Inclusion checked with probability 0.995 in 0.002177759 seconds [ Info: The search for identifiable functions concluded in 0.08963553 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.274854933 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0061539 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.961e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 1 specializations in 0.189087875 seconds, found 6 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.003494016 seconds [ Info: The search for identifiable functions concluded in 1.507329368 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007291768 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005816903 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.9479e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 1 specializations in 0.001305937 seconds, found 6 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.085972516 seconds [ Info: Inclusion checked with probability 0.995 in 0.003272458 seconds [ Info: The search for identifiable functions concluded in 0.132267282 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00507642 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003522385 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.0319e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 1 specializations in 0.00109 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.00196144 seconds [ Info: The search for identifiable functions concluded in 0.025808047 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00505307 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003620105 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.699e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 1 specializations in 0.000804082 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.042604842 seconds [ Info: Inclusion checked with probability 0.995 in 0.002050229 seconds [ Info: The search for identifiable functions concluded in 0.069123741 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004828132 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003457926 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.018e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 3 specializations in 0.002545365 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.00207279 seconds [ Info: The search for identifiable functions concluded in 0.035052966 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004918551 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003531155 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.921e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 3 specializations in 0.002558265 seconds, found 4 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.094988037 seconds [ Info: Inclusion checked with probability 0.995 in 0.001965581 seconds [ Info: The search for identifiable functions concluded in 0.130714748 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002731543 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002416117 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.804e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 3 specializations in 0.001829672 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.001695354 seconds [ Info: The search for identifiable functions concluded in 0.021752026 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002463786 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002270508 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.871e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 4 variables [ Info: Used 3 specializations in 0.001903292 seconds, found 3 relations [ Info: Computing 5 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.042423614 seconds [ Info: Inclusion checked with probability 0.995 in 0.001682844 seconds [ Info: The search for identifiable functions concluded in 0.063519707 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014387349 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.036253274 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000297197 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:05 ✓ # Computing specializations.. Time: 0:00:05 [ Info: Computing normal forms of degree 2 in 7 variables [ Info: Used 6 specializations in 2.22235974 seconds, found 9 relations [ Info: Computing 8 Groebner bases for degrees (3, 3) for block orderings [ Info: Inclusion checked with probability 0.995 in 0.019134753 seconds [ Info: The search for identifiable functions concluded in 14.304354922 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01424621 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.032370512 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000336377 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Computing normal forms of degree 2 in 7 variables [ Info: Used 6 specializations in 0.006421877 seconds, found 9 relations [ Info: Computing 8 Groebner bases for degrees (3, 3) for block orderings [ Info: Computed Groebner bases in 0.125798585 seconds [ Info: Inclusion checked with probability 0.995 in 0.017798295 seconds [ Info: The search for identifiable functions concluded in 0.309958358 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.738701917 seconds [ Info: Computing Wronskians ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 37 running 1 of 2 signal (10): User defined signal 1 unknown function (ip: 0x7911fead7f14) at /lib/x86_64-linux-gnu/libc.so.6 pthread_cond_wait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv_cond_wait at /workspace/srcdir/libuv/src/unix/thread.c:822 ijl_task_get_next at /source/src/scheduler.c:520 wait at ./task.jl:1216 wait_forever at ./task.jl:1150 jfptr_wait_forever_30682.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 jl_apply at /source/src/julia.h:2336 [inlined] start_task at /source/src/task.c:1249 unknown function (ip: (nil)) at (unknown file) getindex at ./essentials.jl:953 unknown function (ip: 0x7911db5718b9) at (unknown file) _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 monomial_compress at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/wronskian.jl:37 monomial_compress at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/wronskian.jl:20 [inlined] #wronskian##0 at ./none (unknown line) [inlined] iterate at ./generator.jl:48 [inlined] collect_to! at ./array.jl:848 collect_to_with_first! at ./array.jl:826 unknown function (ip: 0x7911cda96c25) at (unknown file) _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 collect at ./array.jl:800 wronskian at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/wronskian.jl:200 #initial_identifiable_functions#326 at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/global_identifiability.jl:86 initial_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/global_identifiability.jl:86 [inlined] #_find_identifiable_functions#362 at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/identifiable_functions.jl:108 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/identifiable_functions.jl:86 [inlined] #360 at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:536 with_logger at ./logging/logging.jl:647 [inlined] #find_identifiable_functions#358 at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/identifiable_functions.jl:49 unknown function (ip: 0x7911cd3efac4) at (unknown file) _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 jl_apply at /source/src/julia.h:2336 [inlined] do_call at /source/src/interpreter.c:124 eval_value at /source/src/interpreter.c:242 eval_body at /source/src/interpreter.c:580 eval_body at /source/src/interpreter.c:557 eval_body at /source/src/interpreter.c:557 jl_interpret_toplevel_thunk at /source/src/interpreter.c:898 jl_toplevel_eval_flex at /source/src/toplevel.c:776 jl_toplevel_eval_flex at /source/src/toplevel.c:716 ijl_toplevel_eval at /source/src/toplevel.c:788 ijl_toplevel_eval_in at /source/src/toplevel.c:833 eval at ./boot.jl:489 include_string at ./loading.jl:2846 _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 _include at ./loading.jl:2906 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x7911db4efd42) at (unknown file) _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/test/runtests.jl:161 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:1833 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/test/runtests.jl:159 [inlined] macro expansion at ./timing.jl:645 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/test/runtests.jl:158 _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_invoke at /source/src/gf.c:3497 jl_toplevel_eval_flex at /source/src/toplevel.c:765 jl_toplevel_eval_flex at /source/src/toplevel.c:716 ijl_toplevel_eval at /source/src/toplevel.c:788 ijl_toplevel_eval_in at /source/src/toplevel.c:833 eval at ./boot.jl:489 include_string at ./loading.jl:2846 _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 _include at ./loading.jl:2906 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_75000.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 jl_apply at /source/src/julia.h:2336 [inlined] do_call at /source/src/interpreter.c:124 eval_value at /source/src/interpreter.c:242 eval_stmt_value at /source/src/interpreter.c:193 [inlined] eval_body at /source/src/interpreter.c:707 jl_interpret_toplevel_thunk at /source/src/interpreter.c:898 jl_toplevel_eval_flex at /source/src/toplevel.c:776 jl_toplevel_eval_flex at /source/src/toplevel.c:716 ijl_toplevel_eval at /source/src/toplevel.c:788 ijl_toplevel_eval_in at /source/src/toplevel.c:833 eval at ./boot.jl:489 exec_options at ./client.jl:297 _start at ./client.jl:564 jfptr__start_20716.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 jl_apply at /source/src/julia.h:2336 [inlined] true_main at /source/src/jlapi.c:959 jl_repl_entrypoint at /source/src/jlapi.c:1126 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7911fea79249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point ============================================================== [ Info: Computed Wronskians in 11.732839534 seconds [ Info: Dimensions of the Wronskians [3, 830] [ Info: Ranks of the Wronskians computed in 0.412722749 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 2 signal (10): User defined signal 1 unknown function (ip: 0x75204946af14) at /lib/x86_64-linux-gnu/libc.so.6 pthread_cond_wait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv_cond_wait at /workspace/srcdir/libuv/src/unix/thread.c:822 ijl_task_get_next at /source/src/scheduler.c:520 ⌜ # Computing specializations.. Time: 0:00:00wait at ./task.jl:1216 wait_forever at ./task.jl:1150 jfptr_wait_forever_30682.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 ⌝ # Computing specializations.. Time: 0:00:00jl_apply at /source/src/julia.h:2336 [inlined] start_task at /source/src/task.c:1249 unknown function (ip: (nil)) at (unknown file) epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:454 wait at ./task.jl:1216 wait_forever at ./task.jl:1150 ⌟ # Computing specializations.. Time: 0:00:01jfptr_wait_forever_30682.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 jl_apply at /source/src/julia.h:2336 [inlined] start_task at /source/src/task.c:1249 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point ============================================================== ⌞ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:02 ⌝ # Computing specializations.. Time: 0:00:02 ⌟ # Computing specializations.. Time: 0:00:02 ⌞ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:03 ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 Points: 2   ⌝ # Computing specializations.. Time: 0:00:00 Points: 3   ⌟ # Computing specializations.. Time: 0:00:01 Points: 4   ⌞ # Computing specializations.. Time: 0:00:01 Points: 5   ⌜ # Computing specializations.. Time: 0:00:01 Points: 6   ⌝ # Computing specializations.. Time: 0:00:02 Points: 7 ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.13/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (interactive) Task 0x000075202ff33a30 Total snapshots: 1. Utilization: 0% ╎1 @Base/task.jl:1150 wait_forever() ╎ 1 @Base/task.jl:1216 wait() Thread 2 (default) Task 0x00007520329fc100 Total snapshots: 1. Utilization: 0% ╎1 @Base/task.jl:1150 wait_forever() ╎ 1 @Base/task.jl:1216 wait()  ⌟ # Computing specializations.. Time: 0:00:02 Points: 8   ✓ # Computing specializations.. Time: 0:00:03 [ Info: Computing normal forms of degree 2 in 6 variables [ Info: Used 6 specializations in 0.010481977 seconds, found 5 relations [ Info: Computing 7 Groebner bases for degrees (3, 3) for block orderings [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 unknown function (ip: 0x75204946af14) at /lib/x86_64-linux-gnu/libc.so.6 pthread_cond_wait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv_cond_wait at /workspace/srcdir/libuv/src/unix/thread.c:822 ijl_task_get_next at /source/src/scheduler.c:520 [37] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/test/identifiable_functions.jl:958 _ZNK4llvm8TypeSizecvmEv at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) wait at ./task.jl:1216 _ZL16computeKnownBitsPKN4llvm5ValueERKNS_5APIntERNS_9KnownBitsEjRKNS_13SimplifyQueryE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) wait_forever at ./task.jl:1150 jfptr_wait_forever_30682.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 jl_apply at /source/src/julia.h:2336 [inlined] start_task at /source/src/task.c:1249 unknown function (ip: (nil)) at (unknown file) epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:454 _ZL16computeKnownBitsPKN4llvm5ValueERKNS_5APIntERNS_9KnownBitsEjRKNS_13SimplifyQueryE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm16computeKnownBitsEPKNS_5ValueERNS_9KnownBitsEjRKNS_13SimplifyQueryE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm16computeKnownBitsEPKNS_5ValueEjRKNS_13SimplifyQueryE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm19haveNoCommonBitsSetERKNS_9WithCacheIPKNS_5ValueEEES6_RKNS_13SimplifyQueryE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) wait at ./task.jl:1216 _ZN4llvm16InstCombinerImpl8visitAddERNS_14BinaryOperatorE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) wait_forever at ./task.jl:1150 _ZN4llvm16InstCombinerImpl3runEv at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) jfptr_wait_forever_30682.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 jl_apply at /source/src/julia.h:2336 [inlined] start_task at /source/src/task.c:1249 unknown function (ip: (nil)) at (unknown file) Allocations: 21980040 (Pool: 21979471; Big: 569); GC: 21 _ZL31combineInstructionsOverFunctionRN4llvm8FunctionERNS_19InstructionWorklistEPNS_9AAResultsERNS_15AssumptionCacheERNS_17TargetLibraryInfoERNS_19TargetTransformInfoERNS_13DominatorTreeERNS_25OptimizationRemarkEmitterEPNS_18BlockFrequencyInfoEPNS_21BranchProbabilityInfoEPNS_18ProfileSummaryInfoERKNS_18InstCombineOptionsE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm15InstCombinePass3runERNS_8FunctionERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm11PassManagerINS_8FunctionENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm27ModuleToFunctionPassAdaptor3runERNS_6ModuleERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm11PassManagerINS_6ModuleENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/src/pipeline.cpp:791 operator() at /source/src/jitlayers.cpp:1475 withModuleDo<(anonymous namespace)::sizedOptimizerT::operator()(llvm::orc::ThreadSafeModule) [with long unsigned int N = 4]:: > at /source/usr/include/llvm/ExecutionEngine/Orc/ThreadSafeModule.h:136 [inlined] operator() at /source/src/jitlayers.cpp:1436 [inlined] operator() at /source/src/jitlayers.cpp:1588 [inlined] addModule at /source/src/jitlayers.cpp:2045 jl_compile_codeinst_now at /source/src/jitlayers.cpp:649 jl_compile_codeinst_impl at /source/src/jitlayers.cpp:840 jl_compile_method_internal at /source/src/gf.c:3004 _jl_invoke at /source/src/gf.c:3482 [inlined] ijl_apply_generic at /source/src/gf.c:3690 jl_apply at /source/src/julia.h:2336 [inlined] jl_f_invokelatest at /source/src/builtins.c:877 profile_printing_listener at ./Base.jl:337 #start_profile_listener##0 at ./Base.jl:355 jfptr_YY.start_profile_listenerYY.YY.0_16770.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 jl_apply at /source/src/julia.h:2336 [inlined] start_task at /source/src/task.c:1249 unknown function (ip: (nil)) at (unknown file) __libc_calloc at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) ijl_gc_counted_calloc at /source/src/gc-stock.c:3757 flint_calloc at /workspace/srcdir/flint-3.2.2/src/generic_files/memory_manager.c:133 fmpz_mpoly_realloc at /workspace/srcdir/flint-3.2.2/src/fmpz_mpoly/realloc.c:58 fmpz_mpoly_set at /workspace/srcdir/flint-3.2.2/src/fmpz_mpoly/set.c:41 fmpq_mpoly_set at /workspace/srcdir/flint-3.2.2/src/fmpq_mpoly.h:193 [inlined] fmpq_mpoly_sub at /workspace/srcdir/flint-3.2.2/src/fmpq_mpoly/sub.c:29 sub! at /home/pkgeval/.julia/packages/Nemo/SKc7w/src/flint/fmpq_mpoly.jl:695 [inlined] - at /home/pkgeval/.julia/packages/Nemo/SKc7w/src/flint/fmpq_mpoly.jl:261 derivative at /home/pkgeval/.julia/packages/AbstractAlgebra/WNQoR/src/Fraction.jl:664 derivative at /home/pkgeval/.julia/packages/AbstractAlgebra/WNQoR/src/Fraction.jl:657 [inlined] _check_algebraicity at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/RationalFunctionFields/RationalFunctionField.jl:133 check_algebraicity at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/RationalFunctionFields/RationalFunctionField.jl:180 field_contains at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/RationalFunctionFields/RationalFunctionField.jl:294 field_contains at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/RationalFunctionFields/RationalFunctionField.jl:369 [inlined] issubfield at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/RationalFunctionFields/RationalFunctionField.jl:388 unknown function (ip: 0x7911cd4c5851) at (unknown file) _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 #simplified_generating_set#319 at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/RationalFunctionFields/RationalFunctionField.jl:693 simplified_generating_set at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/RationalFunctionFields/RationalFunctionField.jl:693 unknown function (ip: 0x7911cd3f01d9) at (unknown file) _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 #_find_identifiable_functions#362 at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/identifiable_functions.jl:86 [inlined] #360 at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:536 with_logger at ./logging/logging.jl:647 [inlined] #find_identifiable_functions#358 at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/src/identifiable_functions.jl:49 unknown function (ip: 0x7911cd3efac4) at (unknown file) _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 jl_apply at /source/src/julia.h:2336 [inlined] do_call at /source/src/interpreter.c:124 eval_value at /source/src/interpreter.c:242 eval_body at /source/src/interpreter.c:580 eval_body at /source/src/interpreter.c:557 eval_body at /source/src/interpreter.c:557 jl_interpret_toplevel_thunk at /source/src/interpreter.c:898 jl_toplevel_eval_flex at /source/src/toplevel.c:776 jl_toplevel_eval_flex at /source/src/toplevel.c:716 ijl_toplevel_eval at /source/src/toplevel.c:788 ijl_toplevel_eval_in at /source/src/toplevel.c:833 eval at ./boot.jl:489 include_string at ./loading.jl:2846 _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 _include at ./loading.jl:2906 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x7911db4efd42) at (unknown file) _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/test/runtests.jl:161 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.13/Test/src/Test.jl:1833 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/test/runtests.jl:159 [inlined] macro expansion at ./timing.jl:645 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/r7Tss/test/runtests.jl:158 _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_invoke at /source/src/gf.c:3497 jl_toplevel_eval_flex at /source/src/toplevel.c:765 jl_toplevel_eval_flex at /source/src/toplevel.c:716 ijl_toplevel_eval at /source/src/toplevel.c:788 ijl_toplevel_eval_in at /source/src/toplevel.c:833 eval at ./boot.jl:489 include_string at ./loading.jl:2846 _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 _include at ./loading.jl:2906 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_75000.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:3490 [inlined] ijl_apply_generic at /source/src/gf.c:3690 jl_apply at /source/src/julia.h:2336 [inlined] do_call at /source/src/interpreter.c:124 eval_value at /source/src/interpreter.c:242 eval_stmt_value at /source/src/interpreter.c:193 [inlined] eval_body at /source/src/interpreter.c:707 jl_interpret_toplevel_thunk at /source/src/interpreter.c:898 jl_toplevel_eval_flex at /source/src/toplevel.c:776 jl_toplevel_eval_flex at /source/src/toplevel.c:716 ijl_toplevel_eval at /source/src/toplevel.c:788 ijl_toplevel_eval_in at /source/src/toplevel.c:833 eval at ./boot.jl:489 exec_options at ./client.jl:297 _start at ./client.jl:564 PkgEval terminated after 2726.63s: test duration exceeded the time limit